文档库 最新最全的文档下载
当前位置:文档库 › 十进制转换二进制教案方法与技巧

十进制转换二进制教案方法与技巧

十进制转换二进制教案方法与技巧
十进制转换二进制教案方法与技巧

课题:十进制整数转换成二进制整数

2019年11月21日

格雷码转二进制原理

在精确定位控制系统中,为了提高控制精度,准确测量控制对象的位置是十分重要的。目前,检测位置的办法有两种:其一是使用位置传感器,测量到的位移量由变送器经a/d转换成数字量送至系统进行进一步处理。此方法精度高,但在多路、长距离位置监控系统中,由于其成本昂贵,安装困难,因此并不实用;其二是采用光电轴角编码器进行精确位置控制。光电轴角编码器根据其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种。而绝对式编码器是直接输出数字量的传感器,它是利用自然二进制或循环二进制(格雷码)方式进行光电转换的,编码的设计一般是采用自然二进制码、循环二进制码、二进制补码等。特点是不要计数器,在转轴的任意位置都可读出一个固定的与位置相对应的数字码;抗干扰能力强,没用累积误差;电源切断后位置信息不会丢失,但分辨率是由二进制的位数决定的,根据不同的精度要求,可以选择不同的分辨率即位数。目前有10位、11位、12位、13位、14位或更高位等多种。 其中采用循环二进制编码的绝对式编码器,其输出信号是一种数字排序,不是权重码,每一位没有确定的大小,不能直接进行比较大小和算术运算,也不能直接转换成其他信号,要经过一次码变换,变成自然二进制码,在由上位机读取以实现相应的控制。而在码制变换中有不同的处理方式,本文着重介绍二进制格雷码与自然二进制码的互换。 一、格雷码(又叫循环二进制码或反射二进制码)介绍 在数字系统中只能识别0和1,各种数据要转换为二进制代码才能进行处理,格雷码是一种无权码,采用绝对编码方式,典型格雷码是一种具有反射特性和循环特性的单步自补码,它的循环、单步特性消除了随机取数时出现重大误差的可能,它的反射、自补特性使得求反非常方便。格雷码属于可靠性编码,是一种错误最小化的编码方式,因为,自然二进制码可以直接由数/模转换器转换成模拟信号,但某些情况,例如从十进制的3转换成4时二进制码的每一位都要变,使数字电路产生很大的尖峰电流脉冲。而格雷码则没有这一缺点,它是一种数字排序系统,其中的所有相邻整数在它们的数字表示中只有一个数字不同。它在任意两个相邻的数之间转换时,只有一个数位发生变化。它大大地减少了由一个状态到下一个状态时逻辑的混淆。另外由于最大数与最小数之间也仅一个数不同,故通常又叫格雷反射码或循环码。下表为几种自然二进制码与格雷码的对照表: 十进制数自然二进制数格雷码十进制数自然二进制数格雷码 0 0000 0000 8 1000 1100 1 0001 0001 9 1001 1101 2 0010 0011 10 1010 1111 3 0011 0010 11 1011 1110 4 0100 0110 12 1100 1010 5 0101 0111 13 1101 1011 6 0110 0101 14 1110 1001 7 0111 0100 15 1111 1000 二、二进制格雷码与自然二进制码的互换 1、自然二进制码转换成二进制格雷码 自然二进制码转换成二进制格雷码,其法则是保留自然二进制码的最高位作为格雷码的最高位,而次高位格雷码为二进制码的高位与次高位相异或,而格雷码其余各位与次高位的求法相类似。 2、二进制格雷码转换成自然二进制码 二进制格雷码转换成自然二进制码,其法则是保留格雷码的最高位作为自然二进制码的最高位,而次高位自然二进制码为高位自然二进制码与次高位格雷码相异或,而自然二进制

二进制与十进制的转换(教案)

二进制与十进制的转换教案 【教学目的与要求】 1、熟悉数制的概念; 2、掌握位权表示法; 3、熟练掌握二进制与十进制之间的转换方法。 【课时安排】1课时。 【教学重点与难点】 1、难点:位权表示法十进制转化为二进制 2、重点:二、十进制间相互转换 【教学过程】(以下教师的语言、活动简称“师”,学生的活动简称“生”) (一)新课导入 生:加减乘除 师:对,我们最开始学习的就是十以内的加法,之后是两位数的加法,在两位数加法的学习中,老师是不是经常会说,要注意逢十进一?也就是我们平常说的别忘了进位。 (PPT展示)像这样按进位的原则进行记数的方法叫做进位记数制。“进位记数制”简称为“数制”或“进制”。我们平时用的最多的就是十进制了 那么,大家再想一下,还有没有其他的进制呢?比如:小时、分钟、秒之间是怎么换算的?生:1小时=60分钟1分钟=60秒 师:那我们平时会不会说我做这件事用了90分钟呢?不是吧,我们一般会说,用了一个半小时,也就是说:逢60进一,这就是60进制。 (PPT展示)由此可以推断出:每一种数制的进位都遵循一个规则,那就是——逢N进1。这里的N叫做基数。所谓“基数”就是数制中表示数值所需要的数字字符的总数,比如,十进制中用0——9来表示数值,一共有10个不同的字符,那么,10就是十进制的基数,表示逢十进一。 师:下面我们再引入一个新概念——“位权”,什么是位权呢?(PPT展示)大家看一一这个十进制数:1111.111,这7个1是不是完全一样的呢?有什么不同呢?第一个1表示1000,第二个1表示100,……

那么,这个“若干次”是多少呢?有没有什么规定呢?大家观察一下这个例子,以小数点为界,整数部分自右向左,依次是基数的0次、1次、2次、3次幂。小数部分,自左向右,分别是基数的-1次、-2次、-3次幂。 大家再看一下:2856.42这个十进制数,它的值是怎么算出来的呢? 这就叫做按权相加法。也就是让每一位上的数字字符乘以它所代表的权。那么,这种方法有什么用呢?这就是本节课的重点内容。 (二)数制转换 大家都知道,计算机运算时采用的是二进制,但人们在使用计算机解决实际问题时通常使用十进制,这就有一个十进制向二进制转换或由二进制向十进制转换的过程。 也就是说,在使用计算机进行数据处理时首先必须把输入的十进制数转换成计算机所能接受的二进制数;计算机在运行结束后,再把二进制数转换为人们所习惯的十进制数输出。这种将数由一种数制转换成另一种数制称为数制间的转换。 二进制的特点:只有二个不同的数字符号:0和1;逢二进1 1)二进制转十进制

高中信息技术基础进制转换二进制十进制十六进制转换转化

2进制数转换为10进制 (110)2转化为十进制 10进制整理转换成2进制 于是,结果是余数的倒排列,即为: (37)10=(a5a4a3a2a1a0)2=(100101)2 16进制转化成2进制、2进制转化成16进制 (二进制和十六进制的互相转换比较重要。不过这二者的转换却不用计算,每个C,C++程序员都能做到看见二进制数,直接就能转换为十六进制数,反之亦然。) 16进制转化成2进制:每一位十六进制数对应二进制的四位,逐位展开。 二进制数转为十六进制:将二进制数转换成十六进制数是将二进数的整数部分从右向左每四位一组,每一组为一位十六进制整数,不足四位时,在前面补0 (FB)16=(1111 ,1011)2 互转

2进制与16进制的关系: 2进制0000 0001 0010 0011 0100 0101 0110 0111 16进制0 1 2 3 4 5 6 7 2进制1000 1001 1010 1011 1100 1101 1110 1111 16进制8 9 A B C D E F 可以用四位数的二进制数来代表一个16进制,如3A16 转为二进制为: 3为0011,A 为1010,合并起来为00111010。可以将最左边的0去掉得1110102 右要将二进制转为16进制,只需将二进制的位数由右向左每四位一个单位分隔,将各单位对照出16进制的值即可。 16进制数转换为10进制数 假设有一个十六进数 2AF5, 那么如何换算成10进制呢? 用竖式计算: 2AF5换算成10进制: 直接计算就是: 5 * 16^0 + F * 16^1 + A * 16^2 + 2 * 16^3 = 10997 (别忘了,在上面的计算中,A表示10,而F表示15) 假设有人问你,十进数 1234 为什么是一千二百三十四? 你尽可以给他这么一个算式: 1234 = 1 * 10^3 + 2 * 10^2 + 3 * 10^1 + 4 * 10^0 如十进制数2039 它可以表示为:2*10^3+0*10^2+3*10^1+9*10^0

十进制和二进制相互转化程序的设计书

十进制和二进制相互转化 程序设计书 需求分析 随着技术的不断提高,进制转换向着简单化,规模化发展,而对于只能识别二进制0和1码的计算机来说,如何翻译成人类可以认识和编译的语言,和安全加密等给信息管理有关的信息随之增加。在这种情况下单靠人工来处理这些信息不但显得大不从心,而且极容易出错。因此,需要开发二进制与十进制互换系统,该系统可以实现由计算机代替人工执行一系列复杂而繁琐的操作,使得办公人员可以轻松快捷的完成进制转换的任务。 总结系统需求分为大体分为5个模块: 首先第一个需要数据的信息输入,即输入数据的基本信息包括输入的进制选项,所输入的二进制位数,所输入的二进制数,所输入的十进制数和判断是否全1或全0五个模块。 第二个需求是判断数据进制选项信息,在信息和科技不断进步的今天,数据及时准确的更新成了任何一个系统的首要任务,本系统应时代所需设计了数制信息功能,包括对包括数据的进制,二进制数据的位数,十进制数据,进行进制转换计算。 第三个需求是所输入的二进制数据,数据的运行使用主要是解决向十进制转换 第四个需求是所输入的十进制数据,数据运行使用主要是解决向二进制转换。 第五个需求是打印退出,在对系统进行操作后,退出系统。

1.1 数据需求分析 本系统的主要数据进制转换的实现。转换包括:二进制数向十进制数转换,十进制数向二进制数转换,判断是否为全0或全1,是否继续执行等。 1.2功能需求分析 本程序功能为二进制和十进制的相互转换,二进制转十进制主要根据进制转换的根本方法,分别乘以2的次方得到十进制数;十进制转二进制主要根据“除2取余法”得到二进制数。另外,本程序简单易懂,操作简便,给出引导说明,以及还出错处理,只需按照提示输入即可用。 本系统主要实现对二进制与十进制之间互换,需要实现以下几个方面的功能: (1)二进制转十进制:选择二进制向十进制转换,选择二进制位数,输入二进制数,进行数制转换,输出结果,判断是否继续。 (2)十进制转二进制:选择十进制向二进制转换,输入十进制数,进行数制转换,输出结果,判断是否继续。 2系统总体设计 2.1系统模块划分 本系统主要是对二进制与十进制互换的管理,包括了二进制转十进制、十进

二进制与十进制相互转化

课题实验课设计与实施过程的研究报告 --《二进制与十进制相互转化》设计与实施 理化组:杨婧娟 一、课题自然情况摘要: 1、课题总名称: 《农村高中教学效能提高的研究》(哈尔滨市教育学会一般课题) 2、课题研究简介: 《农村高中教学效能提高的研究》是市教育学会一般课题,本课题主要研究 的是高中阶段如何提高教学有效性,挖掘学生的学习潜能,激发学生学习热情。 不断改进教育教学方法,运用先进的教育技术、教学设备和教学手段,优化课堂教学,充分利用上课时间,激发学生强烈的求知欲望,提高课堂效能。 3、进展情况: 本课题已经在我校各个学科进行具体的实施,已经取得了较好的效果,总结了很多有价值的经验,并应用于教学,效果较好,在实施的过程中,不断丰富研 究内涵,实现了理论与实际相结合,达到了在实践中总结经验,经验为教学服务的良好循环。 4、研究者在本课题中的角色 本人参与本课题的研究工作。在课堂教学中尝试不同的方法,培养和激发学生学习兴趣,提高效能。取得较好效果。 5、研究策略和研究方法: 根据电子技术基础课的特点和学生的基本情况,在教学过程中,将明确学生学习目的,利用先进的技术手段参与教学,从培养师生情感和利用所学知识为其他学科服务,以及为生活服务等方面培养学生的学习兴趣,提高课堂教学效能。 实现课内与课外相结合,理论与实践相结合,传统教学与现代化教学相结合的教学方法。 二、本次实验研究目标及所采用的的观察方式: (一)作用 电子技术基础课教学与其它学科教学不同,枯燥乏味是电子技术基础课的特点。本节课教师在讲授过程中,利用多媒体软件,直观的展现教学内容,是枯燥

的数学课堂变得生动有趣,学生在不知不觉中参与到教学过程中,模仿学习,完成学习任务。 本课是教学方法和教学方式两方面进行研究,结合本科教学特点而进行,在整个课题研究过程中具有重要意义。在本课教学中,着重培养学生学习本科知识并为学习其他学科和解决生活实际,提高学生学习积极性,提高学习质量。 (二)目标 根据学生的学习情况,对本课知识的掌握层次既定目标如下: 1、理解并掌握二进制转化为十进制的方法。 2、理解并掌握十进制转化为二进制的方法。 3. 通过教学,养成学生认真学习的习惯,提高学生的思维能力。 利用多媒体教学培养学生学习兴趣,提高课堂教学效能。 三、实验研究过程: 1.学情分析 本班是职高一年级学生,学生的学习积极性很高,但学生的基础参差不齐,思维反应不灵敏。 2.教材分析 本节课要研究的《二进制与十进制相互转化》是职业高中电子技术基础数字电路中的。《二进制与十进制相互转化》是数字电路基础中的重要内容,是 数制的基础。在教学中起承上启下的作用。因此,学好了本节课的内容,既是对 数制的理解,又能为后面学习提供方法。 本节重点是二进制与十进制的相互转化 本节难点是数制转化的方法 3.学习内容分析 本节课不仅是电子技术基础中的重点,还是计算机中的重点,所以学生应该理解掌握本节内容。 4 .教学方法分析 教学中“以学生为主体,以教师为主导,以问题解决为目的,以能力发展为 目标。”的指导思想,结合学生实际,以“问题导引自主探究”式教学方法,并 结合多媒体教学。 5、学习方法分析

计算机《数制与编码-进制转换》公开课教案

课时安排:一课时 教学方法:讲授法 教学目的:1、熟悉数制的概念;2、掌握位权表示法; 3、掌握各数制之间的转换方法。 教学重点:进制、基数、位权的概念 教学难点:二进制—十进制间相互转换 教学过程: 一、师生问好,考勤 二、复习旧识,导入新课 通过学习计算机系统组成,我们已经知道,人与计算机进行信息交换通常使用程序设计语言,程序设计语言经历了三个阶段:机器语言、汇编语言和高级语言。机器语言是机器指令序列,机器指令是一串0和1组成的二进制编码,是唯一能被计算机识别的语言。计算机的语言和我们人类的语言是不一样的。所以当我们对计算机发出一个命令,这些命令必须要经过数字化编码后才能传送、存储和处理。那么要了解计算机是如何将我们发出的信息转换成数字编码之前,我们必须先了解掌握各种数制以及数制的转换。 三、新课讲解 (一)数制 1.进制 按进位的原则进行记数的方法叫做进位记数制。“进位记数制”简称为“数制”或“进制”。我们平时用的最多的就是十进制了,那么,大家想一下,还有没有其他的进制呢?比如,一年12个月,十二进制;古代1斤=16两,逢十六进一,就是十六进制;1公斤=2斤,1时辰=2小时,逢二进一,就是二进制。由此也可以推断出,每一种

进制的进位都遵循一个规则,那就是N进制,逢N进一。这里的N叫做基数。 2.基数 所谓“基数”就是数制中表示数值所需要的数字的总数。十进制中用0—9来表示数值,一共有10个不同的字符;二进制中用0、1来表示数值,一共2个字符;十六进制中0—9、A、B、C、D、E、F,一共有16个不同的字符。为了区别不同的进制数,常在不同进制数字后加一字母表示:十进制D、二进制B、十六进制H。 3.位权 “位权”是指每个数位被赋以一定的权值。位权是基数的若干次幂。采用进位计数制进行计数,表示数值大小的数码与它在数中所处的位置有关。 (二)使用二进制的原因 计算机内部一律采用二进制表示数据信息,而大家常用的则是十进制,有时为了方便还使用八进制或十六进制。采用二进制的原因: ①二进制码在物理上最容易实现。计算机由逻辑电路组成的,逻辑电路通常只有两个状态。例如,电压的高与低、脉冲的有与无、开关的接通与断开等。这两种状态正好用来表示二进制数码“1”和“0”。若是采用十进制,则需表示十个数码,这是困难的。 ②运算简单。③逻辑性强。 (三)数制转换 在计算机进行数据处理时首先把输入的十进制数转换成计算机所能接受的二进制数;计算机运行结束后,再把二进制数转换成人们所习惯的十进制数输出。这种将数由一种数制转换成另一种数制称为数制间的转换。

十进制与二进制之间互换

十进制与二进制之间互换 (1) 十进制转换为二进制,分为整数部分和小数部分 ① 整数部分 方法:除以2取余数法,即每次将整数部分除以2,余数为该位权上的数,而商继续除以2,余数又为上一个位权上的数,这个步骤一直持续下去,直到商为0为止,最后读数时候,从最后一个余数读起,一直到最前面的一个余数。下面举例: 将十进制的168转换为二进制 得出结果 将十进制的168转换为二进制,(10101000)2 分析:第一步,将168除以2,商84,余数为0。 第二步,将商84除以2,商42余数为0。 第三步,将商42除以2,商21余数为0。 第四步,将商21除以2,商10余数为1。 第五步,将商10除以2,商5余数为0。 第六步,将商5除以2,商2余数为1。 第七步,将商2除以2,商1余数为0。 第八步,将商1除以2,商0余数为1。 第九步,读数,因为最后一位是经过多次除以2才得到的,因此它是最高位,读数字从最后的余数向前读,即10101000 例2、正整数的十进制转换二进制: 要点:除二取余,倒序排列 解释:将一个十进制数除以二,得到的商再除以二,依此类推直到商等于一或零时为止,倒取将除得的余数,即换算为二进制数的结果 例如把52换算成二进制数,计算结果如图: 52除以2得到的余数依次为:0、0、1、0、1、1,倒序排列,所以52对应的二进制数就是110100。 由于计算机内部表示数的字节单位都是定长的,以2的幂次展开,或者8位,或者16位,或者32位....。 于是,一个二进制数用计算机表示时,位数不足2的幂次时,高位上要补足若干个0。本文都以8位为例。那么: (52)10=(00110100)2 二、负整数转换为二进制 要点:取反加一 解释:将该负整数对应的正整数先转换成二进制,然后对其“取补”,再对取补后的结果加1即可 例如要把-52换算成二进制: 1.先取得52的二进制:00110100 2.对所得到的二进制数取反:11001011 3.将取反后的数值加一即可:11001100 即:(-52)10=(11001100)2 三、小数转换为二进制 要点:乘二取整,正序排列 解释:对被转换的小数乘以2,取其整数部分(0或1)作为二进制小数部分,取其小数部分,再乘以2,又取其整数部分作为二进制小数部分,然后取小数部分,再乘以2,直到小数部分为0或者已经去到了足够位数。每次取的整数部分,按先后次序排列,就构成了二进制小数的序列 例如把0.2转换为二进制,转换过程如图: 0.2乘以2,取整后小数部分再乘以2,运算4次后得到的整数部分依次为0、0、1、1,结果又变成了0.2, 若果0.2再乘以2后会循环刚开始的4次运算,所以0.2转换二进制后将是0011的循环,即: (0.2)10=(0.0011 0011 0011 .....)2 循环的书写方法为在循环序列的第一位和最后一位分别下加一个点以示标注

高中二进制教案

二进制的教学设计 [教学目标] 1、认知目标 (1)掌握进位制概念; (2)理解进制的本质; (3)掌握十进制和二进制的相互转换; (4)了解计算机所采用的数制及计算机采用二进制数的原因。 2、技能目标 掌握二进制数和十进制数转换以及运算规则。 3、能力目标 对学生思维能力进行拓展,激发他们探索计算机奥秘的欲望。 [教学重点] (1)进制的本质组成 (2)十进制与二进制间的相互转换 [难点] (1)进制的本质组成 (2)十进制与二进制间的相互转换 [教学方法] 讲授法举例法 [授课地点] 普通教室 [教学过程] 一、引入新课 对计算机稍微了解的同学就知道计算机中使用的进位制是二进制,那什么是二进制,它跟我们数学上使用的十进制有什么联系。这节课准备给大家补充点二进制的知识,这跟数学关系很密切,请同学务必认真听课。 二、切入课堂内容 1、什么是进位制 提出问题:什么是进位制?最常见的进位制是什么? 学生普遍回答是十进制。 教师继续提问:那十进制为什么叫十进制?引起学生的思考。(部分经过思考的学生回答是约定的) 教师提醒学生一起回忆幼儿园开始学习算术的情景。 当是我们是从最简单的个位数相加学起,比如2+3=?,当时我们会数手指,2个手指+3个手指等于5个

手指,答案为5。 那4+6呢?4个手指+6个手指等于10个手指,10个手指刚好够用。 那6+9呢?当时我们就困惑了。记得当时老师是告诉我们把6拆成1+5,9+1=10,这时老师跟我们约定用一个脚趾表示10,另外用5个手指表示5。这样通过脚趾,我们就成功解决了两个数相加超过10的问题。教师提问:那当时我们为什么要约定10呢,为什么用9或11?引起学生思考。(部分经过思考的学生回答为了方便运算) 教师提问:除此之外还有哪些常见的进位制?请举例说明。拓展学生的思维。 有学生回答60进制(时分秒的换算),360进制(1周=360度),二进制等等。 教师和学生一起归纳进位制的概念,学生和老师形成共识: 进位制是人们为了计数和运算方便而约定的记数系统。 2、什么是十进制? 教师提出问题:大家学习了十几年十进制,我们了解十进制吗?所谓的十进制,它是如何构成的? 引起学生思考。 十进制由三个部分构成: (1)由0、1、2、3、4、5、6、7、8、9十个数码组成; (2)进位方法,逢十进一;(基数为10) (3)采用位权表示法,即一个数码在不同位置上所代表的值不同。 引入基数和位权的概念 一种进制就规定了一组固定的数字,数字的个数就是这种类制的基数,如十进制规定了,0,1,2…9共10个数字,则十进制的基数就为10。 位权是一个比较新的概念,通过简单的例子介绍什么是位权。 比如:数码3,在个位上表示为3,在十位表示为30,在百位表示为300,在千位表示为3000。 3333=3000+300+30+3=3*103+3*102+3*101+3*100 这里个(100)、十(101)、百(102),称为位权,位权的大小是以基数为底,数码所在位置序号为指数的整数次幂。 教师提出问题:其它进位制的数又是如何的呢?引入二进制。 3、什么是二进制? 从生活最常用的十进制入手,讲解基数和位权的概念,学生理解后,引入二进制数的概念,在对二进制数进行介绍时,会把学生带入到一个全新的数字领域。 (1)二进制的表示方法(同样由三部分组成)

格雷码、二进制转换及译码电路

EDA技术与应用 实验报告 实验名称:格雷码、二进制转换及译码电路 姓名:陈丹 学号:100401202 班级:电信(2)班 时间:2012.11.27 南京理工大学紫金学院电光系

一、实验目的 1)学习用VHDL代码描述组合逻辑电路的方法。 2) 掌握when….else….,generate和case并行语句的使用。 二、实验原理 1)学习VHDL的when….else….,generate和case并行语句。 2)利用when….else….并行语句描述4位二进制码/格雷码转换电路。 3)利用generate并行语句描述n位格雷码/二进制码转换电路。 4)利用case并行语句实现译码电路。 5)利用实验箱验证所设计的电路的正确性,要求将输入输出的数据用数码管显示。 三、实验内容 1、二进制转换为格雷码 4位二进制格雷码转换的真值表如图所示:

1.1建立工程,输入代码 先建立工程,工程命名为“btog”,顶层文件名为“btog”。 选择“file→new”,在弹出的窗口中选择“VHDL File”建立“VHDL”文件。 在新建的VHDL文件中输入二进制格雷码转换的VHDL代码,将文件保存。 二进制转换为格雷码的代码: 1.2 编译仿真 对当前文件进行编译,编译通过以后建立仿真波形,保存为“b_to_g.vwf”.为波形文件添加节点,将“end time”设置为100μs ,将输入输出编组,并为输入信号赋值,其中“start value”为“0000”,“count every”设置为5μs.其波形如下:

仿真结果 2、generate语句实现格雷码转换为二进制 对于n位二进制转换为格雷码的码转换电路,转换表达式如下: Bn=Gn Bi=Gi⊕B(i+1) 2.1建立工程,输入代码 先建立工程,工程命名为“gtob”,顶层文件名为“g_to_b2”。 选择“file→new”,在弹出的窗口中选择“VHDL File”建立“VHDL”文件。 在新建的VHDL文件中输入格雷码二进制转换的VHDL代码,将文件保存。 转换代码:

十进制数转换成二进制

一、十进制与二进制之间的转换 (1)十进制转换为二进制,分为整数部分和小数部分 ①整数部分 方法:除2取余法,即每次将整数部分除以2,余数为该位权上的数,而商继续除以2,余数又为上一个位权上的数,这个步骤一直持续下去,直到商为0为止,最后读数时候,从最后一个余数读起,一直到最前面的一个余数。下面举例: 例:将十进制的168转换为二进制 得出结果将十进制的168转换为二进制,(10101000)2 分析:第一步,将168除以2,商84,余数为0。 第二步,将商84除以2,商42余数为0。 第三步,将商42除以2,商21余数为0。 第四步,将商21除以2,商10余数为1。 第五步,将商10除以2,商5余数为0。 第六步,将商5除以2,商2余数为1。 第七步,将商2除以2,商1余数为0。 第八步,将商1除以2,商0余数为1。 第九步,读数,因为最后一位是经过多次除以2才得到的,因此它是最高位,读数字从最后的余数向前读,即10101000 (2)小数部分 方法:乘2取整法,即将小数部分乘以2,然后取整数部分,剩下的小数部分继续乘以2,然后取整数部分,剩下的小数部分又乘以2,一直取到小数部分 为零为止。如果永远不能为零,就同十进制数的四舍五入一样,按照要求保留多少位小数时,就根据后面一位是0还是1,取舍,如果是零,舍掉,如果是1,向入一位。换句话说就是0舍1入。读数要从前面的整数读到后面的整数,下面举例: 例1:将0.125换算为二进制 得出结果:将0.125换算为二进制(0.001)2 分析:第一步,将0.125乘以2,得0.25,则整数部分为0,小数部分为0.25; 第二步, 将小数部分0.25乘以2,得0.5,则整数部分为0,小数部分为0.5; 第三步, 将小数部分0.5乘以2,得1.0,则整数部分为1,小数部分为0.0; 第四步,读数,从第一位读起,读到最后一位,即为0.001。 例2,将0.45转换为二进制(保留到小数点第四位) 大家从上面步骤可以看出,当第五次做乘法时候,得到的结果是0.4,那么小数部分继续乘以2,得0.8,0.8又乘以2的,到1.6这样一直乘下去,最后不可能得到小数部分为零,因此,这个时候只好学习十进制的方法进行四舍五入了,但是二进制只有0和1两个,于是就出现0舍1入。这个也是计算机在转换中会产生误差,但是由于保留位数很多,精度很高,所以可以忽略不计。 那么,我们可以得出结果将0.45转换为二进制约等于0.0111

二进制和十进制转换教案(学生版)

二进制和十进制转换教案 姓名分数家长评议 冒险 英格:“如果你完全不冒险去做,其实是冒了更多的险。” 再平凡的人们都有他独特的理想,再困顿的生活都有他光采的价值,不需要羡慕功成名遂的人,他们年少也曾经不知所措,你想从他们身上获得秘诀,他只会老实告诉你:“放手去实现你的理想!” 有两个年轻人,去求助一位老人,他们问着相同的问题:“我有许多的理想和抱负,总是笨手笨脚,不知道何时才能实现。” 老人只给他们一人一颗种子,细心的交代着:“这是一颗神奇的种子,谁能够妥善的把它保存下来,就能够实现你的理想。” 几年后,老人碰到了这两个年轻人,顺道问起种子的情况。 第一个年轻人,谨慎的拿着锦盒,缓缓地掀开里头的棉布,对着老人说:“我把种子收藏在锦盒里,时时刻刻都将它妥善的保存着。” 老人示意的点着头,接着第二个年轻人,汗流浃背的指着那座山丘:“您看,我把这颗神奇种子,埋在土里灌溉施肥,现在整座山丘都长满了果树,每一棵果树都结满了果实。” 老人关切垂爱的说着:“孩子们,我给的并不是什么神奇的种子,不过是一般的种子而已,如果只是守着它,永远不会有结果,只有用汗水灌溉,才能有丰硕的成果。” 不晓得谁说的,人类因为有梦想而显得伟大,也因为有了梦想而产生不凡。我倒觉得可以这么修改,生命因为有了理想而呈现伟大,生活因为有了实践而变得不凡。有了理想可以让你产生伟大的抱负,有了实践可以让你变得楚楚不凡。 如果种子有了神奇的力量,没有接触土壤,没有灌溉耕耘,没有精心栽培,最多也不过是一颗普通种子,一点也神奇不起来。 你想写出的话是。 【运河通道1】进制 基数:基数是指一种进制中组成的基本数字,也就是不能再进行拆分的数字。二进制是0和1;八进制是0-7;十进制是0-9;十六进制是0-9+A-F(大小写均可)。也可以这样简单记忆,假设是n进制的话,基数就是【0,n-1】的数字,基数的个数和进制值相同,二进制有两个基数,十进制有十个基数,依次类推。 运算规则:运算规则就是进位或错位规则。例如对于二进制来说,该规则是“满二进一,借一当二”;对于十进制来说,该规则是“满十进一,借一当十”。其他进制也是这样。 【关键词】你想说什么? 【运河通道2】二进制 二进制以2为基数,只用0和1两个数字表示数,逢2进一。 二进制与遵循十进制数遵循一样的运算规则,但显得比十进制更简单。例如:

二进制转换成十进制

二进制数转换成十进制数 二进制的1101转化成十进制 1101(2)=1*2^0+0*2^1+1*2^2+1*2^3=1+0+4+8=13 转化成十进制要从右到左用二进制的每个数去乘以2的相应次方不过次方要从0开始 相反用十进制的13除以2 每除一下将余数就记在旁边 最后按余数从下向上排列就可得到1101 十进制转二进制: 用2辗转相除至结果为1 将余数和最后的1从下向上倒序写就是结果 例如302 302/2 = 151 余0 151/2 = 75 余1 75/2 = 37 余1 37/2 = 18 余1 18/2 = 9 余0 9/2 = 4 余1 4/2 = 2 余0 2/2 = 1 余0 故二进制为100101110 二进制转十进制 从最后一位开始算,依次列为第0、1、2...位 第n位的数(0或1)乘以2的n次方 得到的结果相加就是答案 例如:01101011.转十进制: 第0位:1乘2的0次方=1 1乘2的1次方=2 0乘2的2次方=0 1乘2的3次方=8 0乘2的4次方=0 1乘2的5次方=32 1乘2的6次方=64 0乘2的7次方=0 然后:1+2+0 +8+0+32+64+0=107. 二进制01101011=十进制107.

由二进制数转换成十进制数的基本做法是,把二进制数首先写成加权系数展开式,然后按十进制加法规则求和。这种做法称为"按权相加"法。 二进制转十进制 本人有个更直接的方法,例如二进制数1000110转成十进制数可以看作这样: 数字中共有三个1 即第二位一个,第三位一个,第七位一个,然后十进制数即2的2-1次方+2的3-1次方+2的7-1次方即2+4+64=70 次方数即1的位数减一。如此计算只需要牢记2的前十次方即可在此本人为大家陈述一下:2的0次方是1 2的1次方是2 2的2次方是4 2的3次方是8 2的4次方是16 2的5次方是32 2的6次方是64 2的7次方是128 2的8次方是256 2的9次方是512 2的10次方是1024 2的11次方是2048 2的12次方是4096 2的13次方是8192 2的14次方是16384 2的15次方是32768 在这里仅为您提供前15次方,若需要更多请自己查询。 编辑本段十进制数转换为二进制数 十进制数转换为二进制数时,由于整数和小数的转换方法不同,所以先将十进制数的整数部分和小数部分分别转换后,再加以合并。 十进制转二进制 用2辗转相除至结果为1 将余数和最后的1从下向上倒序写就是结果例如:19.95 转2进制分为两个步骤。 1、小数点前 19/2=9余1 9/2=4 余1

二进制及其转换教案

第11章逻辑代数初步 11.1 二进制及其转换 【教学目标】 l、了解二进制的含义; 2、会进行二进制与十进制之间的相互转换; 【教学重点】 掌握二进制的含义 【教学难点】 会进行二进制与十进制之间的相互转换 【教学方法】 这节课主要采用探究教学和讲授法结合的教学方法,运用二进制的含义,会进行二进制与十进制之间的相互转换,使学生容易理解,同时结合习题让学生加深对逻辑运算的理解。 【教学过程】 环节教学内容设计意图 回顾旧知1、了解散点图的概念,能说出变量相关关系的含义; 2、能根据给出的回归直线方程系数公式建立回归直线方程; 3、会用科学计算器求回归系数。 教师提出问题, 学生回顾旧知识,做 出解答,教师讲解。 通过回顾旧知,唤起 学生对旧知识的回 顾,为学习新知识做 好铺垫。 导入1、十进制的基数是?进位规则是? 2、二进制的基数是?每个数位上的数码个数是?数码分别是? 进位规则是? 我们目前所接触的数都是十进制,它是用0、1、2、3、4、5、 6、7、8、9这十个数码符号来表示的,今天我们来学习另一种 常见的表示数的方法——二进制 教师提出问 题.学生回顾逻辑运 算的规则和真值表的 知识,概括、认识逻 辑运算律,符合职校 学生的认知能力. 新课 相关概念: 1.十进制:用0、1、2、3、4、5、6、7、8、9这十个数码符号 放到相应的位置来表示数的一种方法。如56365 介绍法

2.数位:数码符号在数中的位置 3.基数:每个数位上可以使用的数码符号的个数。十进制的每 一个数位都可以用十个数码符号。 4.位权数:每个数位所代表的数。十进制的进位规则为“逢10 进位1”,位权数如下: 位置 整数部分小数点第三位第二位第一位起点 位权数100 10 1 新课 二进制的概念及十进制、二进制的意义: 十进制的意义:各个十位的数码与其位权数的乘积和。例如: 1 2 3 410 5 10 6 10 3 10 6 10 5 56365? + ? + ? + ? + ? = 二进制:用0、1这两个数码符号表示数的一种方法。例如110101 位置 整数部分小数点 第三位第二位第一位起点 位权数 4 2 1 二进制的意义:各个十位的数码与其位权数的乘积和。例如 1 2 3 4 52 1 2 2 1 2 2 1 2 1 110101? + ? + ? + ? + ? + ? = 二进制与十进制的相互转化: 1.二进制化成十进制 __________ __________ __________ ) 111001101 ( _______ __________ __________ ) 1010110 ( 2 2 = = 2.十进制化成二进制 ______ __________ ) 125 ( __ __________ ) 79 ( 10 10 = = 讲述法 举例说明 启发 观察 引导 学生练习 教师巡视 知识拓展问题解决 例1 写出下列各数的按权展开式 __________ __________ __________ ) 111001101 ( _______ __________ __________ ) 1010110 ( 2 2 = = 例2 将下列二进制数转换成十进制数 引导学生小组 合作交流。

格雷码和二进制码的转换

二进制格雷码与自然二进制码的互换 中国科学院光电技术研究所游志宇 示例工程下载 在精确定位控制系统中,为了提高控制精度,准确测量控制对象的位置是十分重要的。目前,检测位置的办法有两种:其一是使用位置传感器,测量到的位移量由变送器经A/D转换成数字量送至系统进行进一步处理。此方法精度高,但在多路、长距离位置监控系统中,由于其成本昂贵,安装困难,因此并不实用;其二是采用光电轴角编码器进行精确位置控制。光电轴角编码器根据其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种。而绝对式编码器是直接输出数字量的传感器,它是利用自然二进制或循环二进制(格雷码)方式进行光电转换的,编码的设计一般是采用自然二进制码、循环二进制码、二进制补码等。特点是不要计数器,在转轴的任意位置都可读出一个固定的与位置相对应的数字码;抗干扰能力强,没用累积误差;电源切断后位置信息不会丢失,但分辨率是由二进制的位数决定的,根据不同的精度要求,可以选择不同的分辨率即位数。目前有10位、11位、12位、13位、14位或更高位等多种。 其中采用循环二进制编码的绝对式编码器,其输出信号是一种数字排序,不是权重码,每一位没有确定的大小,不能直接进行比较大小和算术运算,也不能直接转换成其他信号,要经过一次码变换,变成自然二进制码,在由上位机读取以实现相应的控制。而在码制变换中有不同的处理方式,本文着重介绍二进制格雷码与自然二进制码的互换。 一、格雷码(又叫循环二进制码或反射二进制码)介绍 在数字系统中只能识别0和1,各种数据要转换为二进制代码才能进行处理,格雷码是一种无权码,采用绝对编码方式,典型格雷码是一种具有反射特性和循环特性的单步自补码,它的循环、单步特性消除了随机取数时出现重大误差的可能,它的反射、自补特性使得求反非常方便。格雷码属于可靠性编码,是一种错误最小化的编码方式,因为,自然二进制码可以直接由数/模转换器转换成模拟信号,但某些情况,例如从十进制的3转换成4时二进制码的每一位都要变,使数字电路产生很大的尖峰电流脉冲。而格雷码则没有这一缺点,它是一种数字排序系统,其中的所有相邻整数在它们的数字表示中只有一个数字不同。它在任意两个相邻的数之间转换时,只有一个数位发生变化。它大大地减少了由一个状态到下一个状态时逻辑的混淆。另外由于最大数与最小数之间也仅一个数不同,故通常又叫格雷反射码或循环码。下表为几种自然二进制码与格雷码的对照表: 十进制数自然二进制数格雷码十进制数自然二进制数格雷码 0 0000 0000 8 1000 1100 1 0001 0001 9 1001 1101 2 0010 0011 10 1010 1111 3 0011 0010 11 1011 1110 4 0100 0110 12 1100 1010 5 0101 0111 13 1101 1011 6 0110 0101 14 1110 1001 7 0111 0100 15 1111 1000

二进制与计算机教学设计

二进制与计算机教学设 计 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

教学设计:《二进制与计算机》 一、教材分析 本内容选自广州市教育局教学研究室2013年新编的《信息技术》初中第一册第一章《信息与信息技术》中第3节《计算机的基本工作原理》中的第二小节。二进制是计算机工作的基本形式,也是计算机理论知识中的最基本的原理,对于信息技术的学习及了解计算机的工作原理具有不可忽视的奠基作用。原教材以一小节的篇幅介绍二进制,只解答了计算机为什么要采用二进制,语焉不详,内容也相对抽象不易理解,难以引起学生的兴趣和重视。有鉴于此,笔者单独以一课时的时间介绍这一相关知识。 二、教学对象分析 本课教学对象为初一的学生。初一的学生活泼好 动,但其逻辑思维能力和抽象思维能力相对较弱,对于 二进制的工作原理不一定能够直观地理解,所以,笔者 在教学设计中,以活动为主线,环环相扣,让学生在游 戏中不断体悟二进制的妙用。 三、教学目标 (一)知识与技能:学会二进制数与十进制数之间的转化,认识计算机表示字符的原理,认识计算机描述图片的原理。 (二)过程与方法:通过模拟活动体会到计算机对字符的表示方法,通过设计图形编码了解计算机对图像的表示方法。 (三)情感态度价值观:学会相互之间的合作和沟通,了解二进制原理在计算机中和生活中的应用,激发其创新思考的乐趣。 四、重点难点分析 教学重点:二进制与十进制的转换 教学难点:二进制对字符的表示 五、教学手段 讲授法、游戏法 六、教学实施过程

七、教学反思 笔者在设计这节课的时候,曾经反复思考,按照计算思维的理论,应该怎样将计算机的理论知识变成普适的知识。计算机的发明和不断改进,以及层出不尽的应用,都凝聚了前辈的智慧,不少伟大的数学家、计算机科学家在为其添砖加瓦,不妨说计算机是人类智慧的伟大结晶。但我们在教授信息技术课程,或者说计算机理论知识时,更多只停留在应用层面,或者只讲解现成的构架,没有将发明过程中的艰难问题提出来,没有将计算机科学家如何柳暗花明巧妙化解难题的智慧表现出

格雷码与二进制代码的转换规则

格雷码与二进制代码的转换规则 一、什么是格雷码? 首先我们来了解一下格雷码。前面我们介绍了一些常见的BCD码,8421BCD、2421BCD、5421BCD,还有余三码,那么这个格雷码我们接触较少,什么是格雷码呢?这种码是一个叫弗兰克*格雷的人在1953年发明的,最初用于通信。 格雷码,又叫循环二进制码或反射二进制码,它的基本的特点就是任意两个相邻的代码只有一位二进制数不同,这点在下面会详细讲解到。在数字系统中,常要求代码按一定顺序变化。例如,按自然数递增计数,若采用8421码,则数0111变到1000时四位均要变化,而在实际电路中,4位的变化不可能绝对同时发生,则计数中可能出现短暂的其它代码(1100、1111等)。在特定情况下可能导致电路状态错误或输入错误。使用格雷码可以避免这种错误。格雷码属于可靠性编码,是一种错误最小化的编码方式。 举个例子来说吧,如果用一个8位的二进制数表示热水壶的温度,温度是不断连续变化的,36°C、37°C、38°C......,那么温度每升高一度,二进制数就加1。这时候,二进制数有可能是多个位同时变化的:当温度由119°C变成120°C时,二进制数由01110111变化成01111000,有四个位发生变化;当二进制数由177°C变化成178°C时,二进制数由01111111变化成10000000,有8个位发生了变化。也就是说,自然二进制数在表示一个连续变化的数值时,可能会有多个位同时发生变化,每个位翻转(变化)的频率是比较高的,这在某些应用场合,是十分不利的。而格雷码,由于具有循环特性和单步特性,当用它表示

一个连续变化的数值时,仅有一个位会翻转,大大的降低了位翻转的频率,因而可以保证传输的稳定性,较少传输误码率。格雷码的单步特性呢就是是指,当格雷码表示的一个数值,连续变化时,格雷码只有一个位会变化。就是我刚才说的它最基本的特点了。还有格雷码的单步特性是指,当格雷码表示的一个数值,连续变化时,格雷码只有一个位会变化。看表,1000变到0000,格雷码只有一位翻转。 二、格雷码与二进制码转换规则 大家看一下这个表,有没有发现二进制转为格雷码的规律?看上去,格雷码似乎很乱,不像8421码那样连续的。我们记8421码的时候很轻松,因为它每位的值都是固定的数,有位权。那么我们怎么记格雷码呢?死背真值表?当然了,这是一种方法,有能力又勤奋的同学可以用这种方法。不过呢,很多东西都是有它独特的规律的,格雷码也不例外。现在我们先来看二进制转换为格雷码的过程,也就是编码。 最初就说了,格雷码的基本特点就是任意两个相邻的代码只有一位二进制 十进制数 自然二进制数 格雷码 十进制数 自然二进制数 格雷码 0 0000 0000 8 1000 1100 1 0001 0001 9 1001 1101 2 0010 0011 10 1010 1111 3 0011 0010 11 1011 1110 4 0100 0110 12 1100 1010 5 0101 0111 13 1101 1011 6 0110 0101 14 1110 1001 7 0111 0100 15 1111 1000

相关文档
相关文档 最新文档