文档库 最新最全的文档下载
当前位置:文档库 › 关于用matlab求样本均值,方差以及k阶原点矩的matlab程序

关于用matlab求样本均值,方差以及k阶原点矩的matlab程序

关于用matlab求样本均值,方差以及k阶原点矩的matlab程序
关于用matlab求样本均值,方差以及k阶原点矩的matlab程序

关于用matlab 求样本均值和方差以及matlab 程序

1. 样本均值,公式11n i i x X n

==∑(其中X 为样本)

。程序如下: function y=sample_average(x);

x=input('输入x 的值:');

y=mean(x);

disp('样本的均值为:'),disp(y); 注意:调用时只用复制sample_average 在主页上运行即可(好像是废话);X 样本用行向量形式写出即:x=[x1,x2,…];

2 样本方差,公式:22

11()1n i i S X X n ==--∑;程序: function y=sample_variance(x);

x=input('输入x 的值:');

m=mean(x);

n=length(x);

u=x-m;

y=sum(u.^2)/(n-1);

disp('样本的方差为:'),disp(y);

3 样本原点矩(矩估计时用到),公式11n k

k i i A X n ==∑。程序: function y=SAMPLE_MOMENT(x,k);

x=input('输入x 的值:');%以向量形式写出x ,如x=[1,3,2...]

k=input('输入k 的值:');%k 表示阶数

n=length(x);%n 表示向量长度及样本个数

y=sum(x.^k)/n;

disp('x 的k 阶原点矩为:'),disp(y);

运行结果:

1直接运行:

2用m文件

保存后运行sample_variance;

图论算法及其MATLAB程序代码

图论算法及其MATLAB 程序代码 求赋权图G =(V ,E ,F )中任意两点间的最短路的Warshall-Floyd 算法: 设A =(a ij )n ×n 为赋权图G =(V ,E ,F )的矩阵,当v i v j ∈E 时a ij =F (v i v j ),否则取a ii =0,a ij =+∞(i ≠j ),d ij 表示从v i 到v j 点的距离,r ij 表示从v i 到v j 点的最短路中一个点的编号. ①赋初值.对所有i ,j ,d ij =a ij ,r ij =j .k =1.转向② ②更新d ij ,r ij .对所有i ,j ,若d ik +d k j <d ij ,则令d ij =d ik +d k j ,r ij =k ,转向③. ③终止判断.若d ii <0,则存在一条含有顶点v i 的负回路,终止;或者k =n 终止;否则令k =k +1,转向②. 最短路线可由r ij 得到. 例1求图6-4中任意两点间的最短路. 解:用Warshall-Floyd 算法,MATLAB 程序代码如下: n=8;A=[0281Inf Inf Inf Inf 206Inf 1Inf Inf Inf 8607512Inf 1Inf 70Inf Inf 9Inf Inf 15Inf 03Inf 8 Inf Inf 1Inf 3046 Inf Inf 29Inf 403 Inf Inf Inf Inf 8630];%MATLAB 中,Inf 表示∞ D=A;%赋初值 for (i=1:n)for (j=1:n)R(i,j)=j;end ;end %赋路径初值 for (k=1:n)for (i=1:n)for (j=1:n)if (D(i,k)+D(k,j)

利用Matlab作方差分析

利用Matlab作方差分析 例1(单因素方差分析)一位教师想要检查3种不同的教学方法的效果,为此随机地选取水平相当的15位学生。把他们分为3组,每组5人,每一组用一种方法教学,一段时间以后,这位教师给15位学生进行统考,成绩见下表1。问这3种教学方法的效果有没有显著差异。表1 学生统考成绩表 Matlab中可用函数anova1(…)函数进行单因子方差分析。 调用格式:p=anova1(X) 含义:比较样本m×n的矩阵X中两列或多列数据的均值。其中,每一列表示一个具有m个相互独立测量的独立样本。 返回:它返回X中所有样本取自同一总体(或者取自均值相等的不同总体)的零假设成立的概率p。 解释:若p值接近0(接近程度有解释这自己设定),则认为零假设可疑并认为至少有一个样本均值与其它样本均值存在显著差异。 Matlab程序: Score=[75 62 71 58 73;81 85 68 92 90;73 79 60 75 81]’; P=anova1(Score) 输出结果:方差分析表和箱形图 ANOVA Table Source SS df MS F Prob>F Columns 2 Error 12 Total 14 由于p值小于,拒绝零假设,认为3种教学方法存在显著差异。

例2(双因素方差分析)为了考察4种不同燃料与3种不同型号的推进器对火箭射程(单位:海里)的影响,做了12次试验,得数据如表2所示。表2 燃料-推进器-射程数据表 在Matlab中利用函数 anova2函数进行双因素方差分析。 调用格式:p=anova2(X,reps) 含义:比较样本X中两列或两列以上和两行或两行以上数据的均值。不同列的数据代表因素A的变化,不同行的数据代表因素B的变化。若在每个行-列匹配点上有一个以上的观测量,则参数reps指示每个单元中观测量的个数。 返回:当 reps=1(默认值)时,anova2将两个p值返回到向量p中。 H0A:因素A的所有样本(X中的所有列样本)取自相同的总体; H0B:因素B的所有样本(X中的所有行样本)取自相同的总体。当reps>1时,anova2还返回第三个p值: H0AB:因素A与因素B没有交互效应。 解释:如果任意一个p值接近于0,则认为相关的零假设不成立。 Matlab程序:disp1=[ ; ; ; ]’; p=anova2(disp1,1) 输出结果:方差分析表ANOVA Table Source SS df MS F Prob>F Columns 3 Rows 2 Error 6 12 Total 11

Floyd算法Matlab程序

Floyd算法Matlab程序第一种: %floyd.m %采用floyd算法计算图a中每对顶点最短路 %d是矩离矩阵 %r是路由矩阵 function ,d,r,=floyd(a) n=size(a,1); d=a; for i=1:n for j=1:n r(i,j)=j; end end r for k=1:n for i=1:n for j=1:n if d(i,k)+d(k,j)

end k d r end 第二种: %Floyd算法 %解决最短路径问题,是用来调用的函数头文件 %[D,path]=floyd(a) %输入参数a是求图的带权邻接矩阵,D(i,j)表示i到j的最短距 离,path(i,j)i,j之间最短路径上顶点i的后继点 %[D,path,min1,path1]=floyd(a,i,j) %输入参数a是所求图的带权邻接矩阵,i,j起点终点,min1表示i与j最短距离,path1为最短路径function [D,path,min1,path1]=floyd(a,start,terminal) D=a;n=size(D,1);path=zeros(n,n); for i=1:n for j=1:n if D(i,j)~=inf path(i,j)=j; end end end for k=1:n for i=1:n

for j=1:n if D(i,k)+D(k,j)

方差分析matlab实现

方差分析matlab实现 一、单因素分析 单因素方差分析的命令为:p=anoval(x,group)) 数据x是一个向量,从第1个总体的样本到第r个总体的样本一次排序,group 是一个与x有相同长度的向量,表示x中的元素是如何分组的,可以用同一个整数代表同一个组也可以用相同的字符代表相同的一个组。 Anoval还给出了两幅图表:一个是标准的方差分析表;一个是x中各组的盒子图,如果盒子图的中心线差别很大,则对应的F值很大,相应的概率值(p值)也小。 零假设为各样本具有相同的均值,如果p值接近于零,则拒绝零假设。 例 1 设有三台机器, 用来生产规格相同的铝合金薄板,取样测量薄板的厚度精确至千分之一厘米. 得结果如下表所示. 表8-1A 铝合金板的厚度 这里, 试验的指标是薄板的厚度,机器为因素, 不同的三台机器就是这个因素的三个不同的水平. 如果假定除机器这一因素外, 材料的规格、操作人员的水平等其它条件都相同,这就是单因素试验. 试验的目的是为了考察各台机器所生产的薄板的厚度有无显著的差异, 即考察机器这一因素对厚度有无显著的影响. 如果厚度有显著差异, 就表明机器这一因素对厚度的影响是显著的。 该问题单因素方差分析调用程序如下: 解:chengxu6 x=[0.236 0.238 0.248 0.245 0.243 0.257 0.253 0.255 …

0.254 0.261 0.258 0.264 0.259 0.267 0.262]; group=[1 1 1 1 1 2 2 2 2 2 3 3 3 3 3]; p=anova1(x,group); x1=x(1:5);x2=x(6:10);x3=x(11:15); 判断效应值,得如下结果 ? Source SS df MS F Prob>F ? ------------------------------------------------------ ? Groups 0.00105 2 0.00053 32.92 1.34305e-005 ? Error 0.00019 12 0.00002 ? Total 0.00125 14 a =0.0113 0.0027 0.0087 a 为效应向量,显然对于此问题效应越小越好,所以第二台机器比较好。 例 某食品公司对一种食品设计了四种新包装. 为了考察哪种包装最受欢迎, 选了十个有近似相同销售量的商店作试验, 其中两种包装各指定两个商店销售, 另两种包装各指定三个商店销售. 在试验期中各商店的货架排放位置、空间都尽量一致, 营业员的促销方法也基本相同. 观察在一定时期的销售量, 数据如表7.1.1所示: 表7.1.1 销售量 在本例中, 我们要比较的是四种包装的销售量是否一致, 为此把包装类型看成是一个因子, 记为因子A , 它有四种不同的包装, 就看成是因子A 的四个水平, 记为4321,,,A A A A .一般将第i 种包装在第j 个商店的销售量记为 i ij m j i x ,,2,1;4,3,2,1,Λ== (在本例中,2,3,3,24321====m m m m ). 由于商店间的差异已被控制在最小的范围内, 因此一种包装在不同商店里

多元方差分析matlab程序

x=[1.7541 13.95 -0.4048 1.4666 0.013394 2.0081 24.02 0.2926 1.1369 0.006832 0.1431 13.29 -1.1024 0.0833 0.098995 0.7571 21.54 0.4785 0.7129 0.0183 0.0001 12.19 -0.1576 0.1084 0.076041 1.5481 16.86 0.0295 -0.2196 0.002411 0.1601 17.17 0.2114 -0.1427 0.126538 1.5111 16.34 0.1295 -0.3673 0.06839 1.1721 16.93 0.5895 -0.1423 0.081091 0.3351 14.31 1.5193 0.4275 0.040945 0.1051 13.18 -0.0401 -0.7828 0.000214 1.5481 15.1 0.181 -0.2239 0.028667 0.0001 11.58 -0.4348 0.0059 0.053359 0.3251 12.95 -1.1025 0.4149 0.134351 0.4581 32.38 -0.3326 -3.4022 0.002839 2.0681 1 3.96 -2.0022 2.0934 0.090616 1.7841 14.75 -1.7051 -1.4627 0.06561 1.0541 17.14 -0.3084 - 2.6986 0.002113 1.5511 1 2.82 -0.6163 3.8799 0.012266 1.2361 16.22 - 2.1802 1.3637 0.086214 2.2401 15.97 -1.4668 8.3393 0.005284 ] x =1.7541 13.9500 -0.4048 1.4666 0.0134 2.0081 24.0200 0.2926 1.1369 0.0068 0.1431 13.2900 -1.1024 0.0833 0.0990 0.7571 21.5400 0.4785 0.7129 0.0183 0.0001 12.1900 -0.1576 0.1084 0.0760 1.5481 16.8600 0.0295 -0.2196 0.0024 0.1601 17.1700 0.2114 -0.1427 0.1265 1.5111 16.3400 0.1295 -0.3673 0.0684 1.1721 16.9300 0.5895 -0.1423 0.0811 0.3351 14.3100 1.5193 0.4275 0.0409 0.1051 13.1800 -0.0401 -0.7828 0.0002 1.5481 15.1000 0.1810 -0.2239 0.0287 0.0001 11.5800 -0.4348 0.0059 0.0534 0.3251 12.9500 -1.1025 0.4149 0.1344 0.4581 32.3800 -0.3326 -3.4022 0.0028 2.0681 1 3.9600 -2.0022 2.0934 0.0906 1.7841 14.7500 -1.7051 -1.4627 0.0656 1.0541 17.1400 -0.3084 - 2.6986 0.0021 1.5511 1 2.8200 -0.6163 3.8799 0.0123 1.2361 16.2200 - 2.1802 1.3637 0.0862 2.2401 15.9700 -1.4668 8.3393 0.0053 >> x'

原点矩和中心矩

k阶原点距和k阶中心距各是说明什么数字特征 在数学的概率领域中有一类数字特征叫矩.(X^k为X的k次方) 原点矩: 对于正整数k,如果E|X^k|<无穷,称Vk=E(X^k) 为随机变量X的k阶原点矩.X的数学期望是X的一阶原点矩,即E(x)=v1. k阶矩定义:设X为随机变量,c为常数,k为正整数,如果E[|X-c|^c]<无穷大,则称E[(X-c)^k]为X关于点c的k阶矩. c=0时,称其为X的k阶原点矩; c=E[X]时,称为k阶中心矩. 原点矩顾名思义,是随机变量到原点的距离(这里假设原点即为零点)。中心矩则类似于方差,先要得出样本的期望即均值,然后计算出随机变量到样本均值的一种距离,与方差不同的是,这里所说的距离不再是平方就能构建出来的,而是k次方。这也就不难理解为什么原点矩和中心矩不是距离的“距”,而是矩阵的“矩”了。仅凭本人目前的所学,我认为通过随机试验得出的各种结果虽然都假定为实值单值函数,但它们完全有可能是空间分布,即不在一个平面上。那么这是的距离就类似于一个向量的模了,于是在空间的范围内也能比较出大小来了。我们都知道方差源于勾股定理,这就不难理解原点矩和中心矩了。还能联想到力学中的力矩也是“矩”,而不是“距”。力矩在物理学里是指作用力使物体绕着转动轴或支点转动的趋向。力矩也是矢量,它等于力乘力臂。由此可见数学和物理关系非同一般! 二阶中心距,也叫作方差,它告诉我们一个随机变量在它均值附近波动的大小,方差越大,波动性越大。方差也相当于机械运动中以重心为转轴的转动惯量。(The moment of inertia.) 三阶中心距告诉我们一个随机密度函数向左或向右偏斜的程度。 在均值不为零的情况下,原点距只有纯数学意义。 A1,一阶矩就是 E(X),即样本均值。具体说来就是A1=(西格玛Xi)/n ----(1) A2,二阶矩就是 E(X^2)即样本平方均值 ,具体说来就是 A2=(西格玛Xi^2)/n-----(2) Ak,K阶矩就是 E(X^k)即样本K次方的均值,具体说来就是 Ak=(西格玛Xi^k)/n,---

Floyd算法_计算最短距离矩阵和路由矩阵_查询最短距离和路由_matlab实验报告

实验四:Floyd 算法 一、实验目的 利用MATLAB 实现Floyd 算法,可对输入的邻接距离矩阵计算图中任意两点间的最短距离矩阵和路由矩阵,且能查询任意两点间的最短距离和路由。 二、实验原理 Floyd 算法适用于求解网络中的任意两点间的最短路径:通过图的权值矩阵求出任意两点间的最短距离矩阵和路由矩阵。优点是容易理解,可以算出任意两个节点之间最短距离的算法,且程序容易实现,缺点是复杂度达到,不适合计算大量数据。 Floyd 算法可描述如下: 给定图G 及其边(i , j )的权w i, j (1≤i≤n ,1≤j≤n) F0:初始化距离矩阵W(0)和路由矩阵R(0)。其中: F1:已求得W(k-1)和R(k-1),依据下面的迭代求W(k)和R(k) F2:若k≤n,重复F1;若k>n,终止。 三、实验内容 1、用MATLAB 仿真工具实现Floyd 算法:给定图G 及其边(i , j )的权 w i , j (1≤i≤n ,1≤j≤n) ,求出其各个端点之间的最小距离以及路由。 (1)尽可能用M 函数分别实现算法的关键部分,用M 脚本来进行算法结 果验证; (2)分别用以下两个初始距离矩阵表示的图进行算法验证:

分别求出W(7)和R(7)。 2、根据最短路由矩阵查询任意两点间的最短距离和路由 (1)最短距离可以从最短距离矩阵的ω(i,j)中直接得出; (2)相应的路由则可以通过在路由矩阵中查找得出。由于该程序中使用的是前向矩阵,因此在查找的过程中,路由矩阵中r(i,j)对应的值为Vi 到Vj 路由上的下一个端点,这样再代入r(r(i,j),j),可得到下下个端点,由此不断循环下去,即可找到最终的路由。 (3)对图1,分别以端点对V4 和V6, V3 和V4 为例,求其最短距离和路由;对图2,分别以端点对V1 和V7,V3 和V5,V1 和V6 为例,求其最短距离和路由。 3、输入一邻接权值矩阵,求解最短距离和路由矩阵,及某些点间的最短路径。 四、采用的语言 MatLab 源代码: 【func1.m】 function [w r] = func1(w) n=length(w); x = w; r = zeros(n,1);%路由矩阵的初始化 for i=1:1:n for j=1:1:n if x(i,j)==inf r(i,j)=0; else r(i,j)=j; end, end end; %迭代求出k次w值 for k=1:n a=w; s = w; for i=1:n

第10讲 原点矩与中心矩 协方差与相关系数

第10讲 原点矩与中心矩 协方差与相关系数 教学目的:掌握矩、协方差及相关系数的概念、性质及计算。 教学重点:矩、协方差及相关系数的概念和性质。 教学难点:矩、协方差及相关系数的概念。 教学学时:2学时 教学过程: 第三章 随机变量的数字特征 §3.3 原点矩与中心矩 随机变量的数字特征除了数学期望和方差外,为了更好的描述随机变量分布的特征,有时还要用到随机变量的各阶矩(原点矩与中心矩),它们在数理统计中有重要的应用。 定义1 设X 是随机变量,若),2,1)(( =k X E k 存在,则称它为X 的k 阶原点矩,记作)(X v k ,即 )()(k k X E X v =, ,2,1=k 显然,一阶原点矩就是数学期望,即)()(1X E X v =。 定义2 设随机变量X 的函数),2,1()]([ =-k X E X k 的数学期望存在,则称 })]({[k X E X E -为X 的k 阶中心矩,记作)(X k μ,即 })]({[)(k k X E X E X -=μ, ,2,1=k 易知,一阶中心矩恒等于零,即0)(1≡X μ;二阶中心矩就是方差,即 )()(2X D X =μ。不难证明,原点矩与中心矩之间有如下关系: 2 122v v -=μ 3 1213323v v v v +-=μ

4 12121344364v v v v v v -+-=μ 等。 定义3 设X 和Y 是随机变量,若),2,1,)(( =l k Y X E l k 存在,则称它为X 和Y 的 l k +阶混合矩。若),2,1,}()]([)]({[ =--l k Y E Y X E X E l k 存在,则称它为X 和Y 的l k +阶混合中心矩。 §3.4 协方差与相关系数 1.协方差与相关系数的定义 二维随机变量的数字特征中最常用的就是协方差与相关系数。 定义 3 设有二维随机变量),(Y X ,如果)]()][([Y E Y X E X E --存在,则称 )]()][([Y E Y X E X E --为随机变量X 与Y 的协方差,记作),cov(Y X ,即 =),cov(Y X )]()][([Y E Y X E X E -- 而 ) () (),cov(Y D X D Y X 称为随机变量X 与Y 的相关系数,记作),(Y X R ,即 ) () (),cov(),(Y D X D Y X Y X R =) ()() ,cov(Y X Y X σσ= 显然,协方差),cov(Y X 是X 和Y 的二阶混合中心矩。 当0),cov(=Y X ,通常称随机变量X 与Y 是不相关的。 2.协方差的性质 (1) =),cov(Y X ),cov(X Y ,)(),cov(X D X X = 由定义知性质(1)是显然的。 (2) =),cov(Y X )()()(Y E X E XY E - 证 =),cov(Y X )]()()()([Y E X E X YE Y XE XY E +-- )()()()()()()(Y E X E Y E X E Y E X E XY E +--= )()()(Y E X E XY E -=

利用Matlab作方差分析

利用Matlab作方差分析 例1 (单因素方差分析)一位教师想要检查3种不同的教学方法的效果,为此随机地选取水平相当的15位学生。把他们分为3组,每组5人,每一组用一种方法教学,一段时间以后,这位教师给15位学生进行统考,成绩见下表1。问这3种教学方法的效果有没有 显著差异。表1学生统考成绩表 Matlab中可用函数anova1(??函数进行单因子方差分析。 调用格式:p=anova1(X)含义:比较样本m X n的矩阵X中两列或多列数据的均值。 其中,每一列表示一个具有m个相互独立测量的独立样本。 返回:它返回X中所有样本取自同一总体(或者取自均值相等的不同总体)的零假设成立的概率p。 解释:若p值接近0 (接近程度有解释这自己设定),则认为零假设可疑并认为至少 有一个样本均值与其它样本均值存在显著差异。Matlab程序:Score=[75 62 71 58 73;81 85 68 92 90;73 79 60 75 81] ' ; P=a no va输出结果:方差分析表和箱形图ANOVA Table Source SS df MS F Prob>F Columns 604.9333 2 302.4667 4.2561 0.040088 Error 852.8 12 71.0667 Total 1457.7333 14 由于p值小于0.05,拒绝零假设,认为3种教学方法存在显著差异。

例2 (双因素方差分析) 为了考察4种不同燃料与3种不同型号的推进器对火箭射程 (单位:海里)的影响,做了 12次试验,得数据如表 2所示。表2燃料-推进器-射程数据 表 在Matlab 中利用函数anova2函数进行双因素方差分析。 调用格式:p=anova2(X,reps ) 含义:比较样本X 中两列或两列以上和两行或两行以上 数据的均值。不同列的数据代表因素 A 的变化,不同行的数据代表因素 B 的变化。若在每 个行-列匹配点上有一个以上的观测量,则参数 reps 指示每个单元中观测量的个数。 返回:当reps=1 (默认值)时,anova2将两个p 值返回到向量p 中。 HOA : 因素A 的所有样本(X 中的所有列样本)取自相同的总体; H0B :因素B 的所有样本 (X 中的所有行样本)取自相同的总体。 当reps>1时,anova2还返回第三个p 值: H0AB :因素A 与因素B 没有交互效应。 解释:如果任意一个p 值接近于0,则认为相关的零假设不成立。 Matlab 程序: disp 仁[58.2 56.2 65.3;49.1 54.1 51.6;60.1 70.9 39.2;75.8 58.2 48.7] ;p=a no va2(disp‘ 输出结果:方差分析表 ANOVA Table Source SS df MS F Prob>F Colu mns 157.59 3 52.53 0.43059 0.73875 Rows 223.8467 2 111.9233 0.91743 0.44912 Error 731.98 6 12 1.9967 Total 1113.4167 1 1 由于燃料和推

基于MATLAB的方差分析

基于MATLAB 的方差分析 (重庆科技学院 数理学院) 摘要:方差分析是重要的,应用广泛的实验数据统计分析方法,其实质是检验多个变量均 值的一致性。运用MATLAB 软件进行单因子及双因子方差分析。 关键字:方差分析,MATLAB,单因子,双因子。 1 引言 方差分析是分析试验(或观测)数据的一种统计方法。在工农业生产和科学研究中, 经常要分析各种因素及因素之间的交互作用对研究对象某些指标值的影响。在方差分析中,把试验数据的总波动(总变差或总方差)分解为由所考虑因素引起的波动(各因素的变差)和随机因素引起的波动(误差的变差),然后通过分析比较这些变差来推断哪些因素对所考察指标的影响是显著的,哪些是不显著的。 2 单因子方差分析 某个可控制因素A 对结果的影响大小可通过如下实验来间接地反映,在其它所有可控制因素都保持不变的情况下,只让因素A 变化,并观测其结果的变化,这种试验称为“单因素试验”。因素A 的变化严格控制在几个不同的状态或等级上进行变化,因素A 的每个状态或等级成为因素A 的一个水平。若因素A 设定了s 个水平,则分别记为 A 1,A 2,…,A s 。 数学模型: 2(,),1,2,...,.i i X N i s μσ= (1) 显著性影响问题转化为因素A 不同水平下各随机变量总体的均值是否相等问题,即检验假设 012:s H μμμ== =是否成立 (2) 记号 ij x : 不同水平下的试验结果,i=1,2,…,s ;j=1,2,…,n i ; n=n 1+n 2+…+n s :试验总数; 总平均:11 1i n s ij i j x x n ===∑∑;

matlab与统计回归分析 (1)

一Matlab作方差分析 方差分析是分析试验(或观测)数据的一种统计方法。在工农业生产和科学研究中,经常要分析各种因素及因素之间的交互作用对研究对象某些指标值的影响。在方差分析中,把试验数据的总波动(总变差或总方差)分解为由所考虑因素引起的波动(各因素的变差)和随机因素引起的波动(误差的变差),然后通过分析比较这些变差来推断哪些因素对所考察指标的影响是显著的,哪些是不显著的。 【例1】(单因素方差分析)一位教师想要检查3种不同的教学方法的效果,为此随机地选取水平相当的15位学生。把他们分为3组,每组5人,每一组用一种方法教学,一段时间以后,这位教师给15位学生进行统考,成绩见下表1。问这3种教学方法的效果有没有显著差异。 表1 学生统考成绩表 方法成绩 甲75 62 71 58 73 乙71 85 68 92 90 丙73 79 60 75 81 Matlab中可用函数anova1(…)函数进行单因子方差分析。 调用格式:p=anova1(X) 含义:比较样本m×n的矩阵X中两列或多列数据的均值。其中,每一列表示一个具有m 个相互独立测量的独立样本。 返回:它返回X中所有样本取自同一总体(或者取自均值相等的不同总体)的零假设成立的概率p。

解释:若p值接近0(接近程度有解释这自己设定),则认为零假设可疑并认为至少有一个样本均值与其它样本均值存在显著差异。 Matlab程序: Score=[75 62 71 58 73;81 85 68 92 90;73 79 60 75 81]’; P=anova1(Score) 输出结果:方差分析表和箱形图 ANOVA Table Source SS df MS F Prob>F Columns 604.9333 2 302.4667 4.2561 0.040088 Error 852.8 12 71.0667 Total 1457.7333 14 由于p值小于0.05,拒绝零假设,认为3种教学方法存在显著差异。 例2(双因素方差分析)为了考察4种不同燃料与3种不同型号的推进器对火箭射程(单位:海里)的影响,做了12次试验,得数据如表2所示。 表2 燃料-推进器-射程数据表 推进器1 推进器2 推进器3 燃料1 58.2 56.2 65.3 燃料2 49.1 54.1 51.6 燃料3 60.1 70.9 39.2 燃料4 75.8 58.2 48.7 在Matlab中利用函数anova2函数进行双因素方差分析。 调用格式:p=anova2(X,reps)

matlab图论程序算法大全

精心整理 图论算法matlab实现 求最小费用最大流算法的 MATLAB 程序代码如下: n=5;C=[0 15 16 0 0 0 0 0 13 14 for while for for(i=1:n)for(j=1:n)if(C(i,j)>0&f(i,j)==0)a(i,j)=b(i,j); elseif(C(i,j)>0&f(i,j)==C(i,j))a(j,i)=-b(i,j); elseif(C(i,j)>0)a(i,j)=b(i,j);a(j,i)=-b(i,j);end;end;end for(i=2:n)p(i)=Inf;s(i)=i;end %用Ford 算法求最短路, 赋初值 for(k=1:n)pd=1; %求有向赋权图中vs 到vt 的最短路

for(i=2:n)for(j=1:n)if(p(i)>p(j)+a(j,i))p(i)=p(j)+a(j,i);s(i)=j;pd=0;end ;end;end if(pd)break;end;end %求最短路的Ford 算法结束 if(p(n)==Inf)break;end %不存在vs 到vt 的最短路, 算法终止. 注意在求最小费用最大流时构造有 while if elseif if if pd=0; 值 t=n; if elseif if(s(t)==1)break;end %当t 的标号为vs 时, 终止调整过程 t=s(t);end if(pd)break;end%如果最大流量达到预定的流量值 wf=0; for(j=1:n)wf=wf+f(1,j);end;end %计算最大流量 zwf=0;for(i=1:n)for(j=1:n)zwf=zwf+b(i,j)*f(i,j);end;end%计算最小费用

Floyd算法_计算最短距离矩阵和路由矩阵_查询最短距离和路由_matlab实验报告

一、实验目的 利用MATLAB实现Floyd算法,可对输入的邻接距离矩阵计算图中任意两点间的最短距离矩阵和路由矩阵,且能查询任意两点间的最短距离和路由。 二、实验原理 Floyd 算法适用于求解网络中的任意两点间的最短路径:通过图的权值矩阵求出任意两点间的最短距离矩阵和路由矩阵。优点是容易理解,可以算出任意两个 节点之间最短距离的算法,且程序容易实现,缺点是复杂度达到,不适合计算大量数据。 Floyd 算法可描述如下: 给定图G及其边(i , j ) 的权w, j (1 < i < n ,1 n,终止。?? 三、实验内容 1、用MATLAB仿真工具实现Floyd算法:给定图G及其边(i , j ) 的权 w, j (1 < i < n ,1 < j < n),求出其各个端点之间的最小距离以及路由。 (1)尽可能用 M 函数分别实现算法的关键部分,用 M 脚本来进行算法结果验证; (2)分别用以下两个初始距离矩阵表示的图进行算法验证: 分别求出WT和R7)。 2、根据最短路由矩阵查询任意两点间的最短距离和路由 (1)最短距离可以从最短距离矩阵的3 (i,j)中直接得出; (2)相应的路由则可以通过在路由矩阵中查找得出。由于该程序中使用的是前向矩阵,因此在查找的过程中,路由矩阵中r(i,j) 对应的值为Vi到Vj路由上的下一个端点,这样再代入r(r(i,j),j) ,可得到下下个端点,由此不断循环下去,即可找到最终的路由。 (3)对图1,分别以端点对V4 和V6, V3 和V4 为例,求其最短距离和路由;对图2,分别以端点对V1和V7, V3和V5, V1和V6为例,求其最短距离和路由。 3、输入一邻接权值矩阵,求解最短距离和路由矩阵,及某些点间的最短路径。

图论算法及其MATLAB程序代码

图论算法及其MATLAB程序代码 求赋权图G = (V, E , F )中任意两点间的最短路的Warshall-Floyd算法: 设A = (a ij )n×n为赋权图G = (V, E , F )的矩阵, 当v i v j∈E时a ij= F (v i v j), 否则取a ii=0, a ij = +∞(i≠j ), d ij表示从v i到v j点的距离, r ij表示从v i到v j点的最短路中一个点的编号. ①赋初值. 对所有i, j, d ij = a ij, r ij = j. k = 1. 转向② ②更新d ij, r ij . 对所有i, j, 若d ik + d k j<d ij, 则令d ij = d ik + d k j, r ij = k, 转向③. ③终止判断. 若d ii<0, 则存在一条含有顶点v i的负回路, 终止; 或者k = n终止; 否则令k = k + 1, 转向②. 最短路线可由r ij得到. 例1求图6-4中任意两点间的最短路. 图6-4 解:用Warshall-Floyd算法, MA TLAB程序代码如下: n=8;A=[0 2 8 1 Inf Inf Inf Inf 2 0 6 Inf 1 Inf Inf Inf 8 6 0 7 5 1 2 Inf 1 Inf 7 0 Inf Inf 9 Inf Inf 1 5 Inf 0 3 Inf 8 Inf Inf 1 Inf 3 0 4 6 Inf Inf 2 9 Inf 4 0 3 Inf Inf Inf Inf 8 6 3 0]; % MATLAB中, Inf表示∞ D=A; %赋初值 for(i=1:n)for(j=1:n)R(i,j)=j;end;end%赋路径初值 for(k=1:n)for(i=1:n)for(j=1:n)if(D(i,k)+D(k,j)

方差分析习题及matlab程序

习题四作业 1、一个年级有3个小班,他们进行了一次数学考试,现从3个小班中分别随机抽取12,15,13个学生记录其成绩如下: I:73,66,89,60,82,45,43,93,83,36,73,77; II:88,77,78,31,48,78,91,62,51,76,85,96,74,80,56; III:68,41,79,59,56,68,91,53,71,79,71,15,87. α下,检验各班的平均分数设各班成绩服从正态分布且方差相等,试在显著性水平05 .0 = 有无显著性差异. x=[73,66,89,60,82,45,43,93,83,36,73,77,88,77,78,31,48,78,91,62,51,76,85,96,74,80,56,6 8,41,79,59,56,68,91,53,71,79,71,15,87]; group=[ones(1,12),2*ones(1,15),3*ones(1,13)]; [p,table,stat]=anova1(x,group) p = 0.63 table = 'Source' 'SS' 'df' 'MS' 'F' 'Prob>F' 'Groups' [ 335.48] [ 2.00] [167.74] [0.46] [ 0.63] 'Error' [13429.50] [37.00] [362.96] [] [] 'Total' [13764.98] [39.00] [] [] [] stat = gnames: {3x1 cell} n: [12.00 15.00 13.00] source: 'anova1' means: [68.33 71.40 64.46] df: 37.00 s: 19.05 ?Source SS df MS F Prob>F ?----------------------------------------------- ?Groups 335.5 2 167.739 0.46 0.6335 ?Error 13429.5 37 362.959 ?Total 13765 39

Dijkstra、Floyd算法Matlab_Lingo实现

Dijkstra 算法Matlab 实现。 %求一个点到其他各点的最短路径 function [min,path]=dijkstra(w,start,terminal) %W 是邻接矩阵 %start 是起始点 %terminal 是终止点 %min 是最短路径长度 %path 是最短路径 n=size(w,1); label(start)=0; f(start)=start; for i=1:n if i~=start label(i)=inf; end end s(1)=start; u=start; while length(s)(label(u)+w(u,v)) label(v)=(label(u)+w(u,v)); f(v)=u; end end end v1=0; k=inf; for i=1:n ins=0; for j=1:length(s) if i==s(j) ins=1; end end 应用举例: edge=[ 2,3,1,3,3,5,4,4,1,7,6,6,5,5,11,1,8,6,9,10,8,9, 9,10;... 3,4,2,7,5,3,5,11,7,6,7,5,6,11,5,8,1,9,5,11,9,8,10,9;... 3,5,8,5,6,6,1,12,7,9,9,2,2,10,10,8,8,3,7,2,9,9,2,2]; n=11; weight=inf*ones(n,n); for i=1:n weight(i,i)=0; end for i=1:size(edge,2) weight(edge(1,i),edge(2,i))=edge(3,i); end [dis,path]=dijkstra(weight,1,11)

概率论与数理统计:矩与协方差矩阵的概念

矩与协方差矩阵的概念 §4.4 矩与协方差矩阵 数学期望和方差可以纳入到一个更一般的概念范畴之中,那就是随机变量的矩。 4.4.1 矩与协方差矩阵的概念 定义4.7 设X 和Y 为随机变量. 若)(k X E (1,2, )k =存在,称它为X 的k 阶原点矩,简称k 阶矩. 若{[()]}k E X E X -(1,2, )k =存在,称它为X 的k 阶中心矩. 若)(l k Y X E (,1,2,)k l =存在,称它为X 和Y 的l k +阶混合矩. 若})]([)]({[l k Y E Y X E X E --(,1,2,)k l =存在,称它为X 和Y 的l k +阶混合中 心矩. 注:①X 的数学期望)(X E 是X 的一阶原点矩. ②X 的方差)(X D 是X 的二阶中心矩. ③协方差Cov(,)X Y 是X 和Y 的二阶混合中心矩. 定义4.8 设二维随机变量),(21X X 的四个二阶中心矩都存在,记为 2111112112221221122222{[()]}, {[()][()]}, {[()][()]}, {[()]}, c E X E X c E X E X X E X c E X E X X E X c E X E X =-=--=--=- 称矩阵 ???? ??22211211c c c c 为),(21X X 的协方差矩阵. 类似地,可定义n 维随机变量),,,(21n X X X 的协方差矩阵. 若 ()Cov(,){[()][()]},1,2,,ij i j i i j j c X X E X E X X E X i j n ==--=都存在,则称矩阵 111212122212 n n n n nn c c c c c c c c c ?? ? ?= ? ??? C 为随机变量),,,(21n X X X 的协方差矩阵.

基于matlab的floyd算法+matlab计算最短路径

基于matlab的floyd算法 matlab计算最短路径 function [d,path]=floyd(a,sp,ep) % floyd - 最短路问题 % % Syntax: [d,path]=floyd(a,sp,ep) % % Inputs: % a - 距离矩阵是指i到j之间的距离,可以是有向的 % sp - 起点的标号 % ep - 终点的标号 % % Outputs: % d - 最短路的距离 % path - 最短路的路径 % a =[ 0 50 inf; 50 0 15 ; Inf 15 0 ];% a(i,j),从节点i到j之间的距离 % [d,path]=floyd(a,2,5) sp=3; ep=1; n=size(a,1); D=a; path=zeros(n,n); for i=1:n for j=1:n

if D(i,j)~=inf path(i,j)=j; %j是i的后续点 end end end for k=1:n for i=1:n for j=1:n if D(i,j)>D(i,k)+D(k,j) D(i,j)=D(i,k)+D(k,j); path(i,j)=path(i,k); end end end end p=[sp]; mp=sp; for k=1:n if mp~=ep d=path(mp,ep); p=[p,d]; mp=d; end end d=D(sp,ep) path=p

试计算下图的最短路径, 1.起点C点,终点A点。 2.起点A点,终点G点。 3.起点D点,终点F点。 试计算下图的最短路径, 1.起点F点,终点A点。 2. 起点E点,终点C点。

相关文档