文档库 最新最全的文档下载
当前位置:文档库 › 高等数学知识在医学中的应用举例

高等数学知识在医学中的应用举例

高等数学知识在医学中的应用举例
高等数学知识在医学中的应用举例

高等数学知识在医学中的应用举例

随着现代科学技术的发展和电子计算机的应用与普及,数学方法在医药学中的应用日益广泛和深入。医药学科逐步由传统的定性描述阶段向定性、定量分析相结合的新阶段发展。数学方法为医药科学研究的深入发展提供了强有力的工具。 高等数学是医学院校开设的重要基础课程,下文仅例举一些用高等数学基础知识解决医学中的一些实际问题的例子,旨在启发学生怎样正确理解和巩固加深所学的知识,并且强化应用数学解决实际问题的意识。 例1 脉管稳定流动的血流量

设有半径为R ,长度为L 的一段血管,左端为相对动脉端,血压为1P .右端为相对静脉端,血压为2P (12P P >)(如下图).取血管的一个横截面,求单位时间内通过血管横截面的血流量Q .

分析 利用微元法,在取定的横截面任取一个内径为r ,外径为r dr +(圆心在血管中心)的小圆环作为研究问题的微元,它的面积近似等于2πrdr ,假定血管中血液流动是稳定的,此时血管中血液在各点处的流速v 是各点与血管中心距离

r 的函数,即()v v r =.血流量等于流速乘以面积.因此,可以求得在在单位时

间内,通过该环面的血流量dQ 的近似值,进而求得该横截面的血流量Q . 解 在单位时间内,通过环面的血流量dQ 近似地为

dQ ()22().v r πrdr πrv r dr ==

从而,单位时间内通过该横截面的血流量为 0

()22().R R Q v r πrdr π

rv r dr =

=蝌

由研究人员经实验得知,在通常情况下,有

2P

2212

()().4P P v r R r ηL

-=

- 其中η为血液的粘滞系数.于是 2212

2()4R

P P Q πR r rdr ηL

-=-ò

224120

()142R πP P R r r ηL 轾-犏=-犏臌

4

12

().8πP P R ηL

=

- 小结 血流量与血管两端压力差成正比;血流量与血管半径的4次方成正比;血流量与血液粘滞系数成反比.

例2 药物在体内血液中的浓度称为血药浓度.血药浓度随时间变化的函数称为药时曲线.如口服药后,体内血药浓度的变化关系是

()

(e a k t k t C C t A e e --==- 这里,,(0,0)e a e a A k k k k >>为参数,试对该药时曲线进行分析.

解题思路 要分析该药时曲线,首先要确定药时曲线的性态特征,然后根据曲线对血药浓度的进行分析. 解 性态描述 (1)定义域为(0,)+?. (2)求()C t 的一、二阶导数.

()()e a k t k t e a C t A k e k e --¢

=-+ 22()()e a k t k t

e a C t A k e k e --ⅱ

=-. (3) 求()C t 的一、二阶导数等于零的解.由()0C t ¢

=,解得 ln

.a

e

m a e

k k t T k k ==-

由()0C t ⅱ

=,解得

0ln

22.a e

m a e

k k t T T k k ===-

(4)因为lim ()0t

C t =,所以0C =是曲线的水平渐近线.

(5)列出药时曲线的性态特征表如下

000(0,)(,)(,)

m m m T T T T T T +?范围

()0()0C t C t ¢+---ⅱ---+性态

凸增

最大值

凸减

拐点

凹减

绘出下图:

根据曲线的性态特征,可见:

(1)服药后,体内血药浓度的变化规律是:从0到m T 这段时间内体内药物浓度不断增高,m T 以后逐渐减少.

(2)服药后到m T 时,体内药物浓度达到最大值()m m C T C =,称之为峰浓度,m T 称为峰时.若m T 小m C 大,则反映该药物不仅被吸收快且吸收好,有速效之优点. (3)服药后到0t T =这段时间内曲线是凸的,其后为凹的.这显示体内药物浓度在

0T 前变化的速度在不断减小(即血药浓度在减速变化),而在0T 后变化的速度在

不断增加(即血药浓度在加速变化),在0t T = 处血药浓度的变化速度达到最小

值.由于在0T 后整个血药浓度在不断减少,所以,血药浓度在加速减少. (4)当t 时,()0C t ?,即渐近线是时间轴,表明药物最终全部从体内消除.

例3 求直线型经验公式

从某新生儿1个月开始,每月测量他的体重,得原始数据如下:

根据这些数据,求关于,x y 的经验公式(精确到0.001).

解 (主要介绍最小二乘法,也把选点法和平均值法作以介绍,以示比较) (一)选点法

把表中各对数据作为点的坐标,在坐标平面上画出这些点,观察这些点,可以看出它们大致分布在一条直线上,用透明直尺的边缘在这些点间移动,使它尽量靠近或通过大多数点,画出直线,然后在该直线上选两点(一般为提高经验公式的

精确度,选取的两点间隔较远为好),例如选(1,3.5)和(7,8.0)两点,得经验公式为

0.750

2

.y x =+ (A) (这里图略) (二)平均值法

先根据七组数据画出经验曲线,确定经验公式是直线型的,然后把表中,x y 的对应值代入y kx b =+,可得七个关于,k b 的一次方程.为了确定k 与b 的值,把七个方程分为两组,使两组中方程个数相差一个(当方程为偶数个时,则取相同个数),再把各组方程两边分别相加,就得关于,k b 的方程组.

3.5

4.22

5.84)8.07k b k b k b k b =+=+=++=

+ 5.036.55)7.26k b

k b k b

=+=++=+ 21.5144k b =+ 18.714k b =+

解方程组:21.514418.7143k b k b ì=+??í?=+??

得 2.800,0.736b k ==,代入y kx b =+,得经验公式:

0.7362

.y x =+ (B) (三)最小二乘法

对于实验数据中自变量的每一个值(1,2,

,)i x i n =的实测值(1,2,

,)i y i n =,由

经验公式求出相应的值(1,2,,)i y i n ¢

=,则差值i i y y ¢-叫做偏差,记作

(1,2,,)i δi n =,偏差平方和记作21

n

i i δ=?,最小二乘法就是采用偏差平方和为最小

来确定经验公式的.

利用最小二乘法求经验公式y kx b =+,其中k 与b 为待定系数,分别由下列公式确定:22

.()i i i x y nx y k x n x -=

-?

?

其中,i

i x y x y n

n

=

=

.b y k x

=-

由上式得22

2

40.2

181.87470.750.()14074

i i i x y nx y k x n x -创-=

=

?--???

5.7430.75042.743.

b y k x =-=-椿 代入y kx b =+,得经验公式:

0.75

02.y x =+ (C)

三种方法求得的经验公式分别为:

0.750 2.750;y x =+ 计算得偏差平方和210.0075;n

i i δ==?

0.736 2.800;y x =+ 计算得偏差平方和210.0127;n i i δ==?

0.750 2.743.y x =+ 计算得偏差平方和21

0.0068.n

i i δ==?

可见,用最小二乘法求出的经验公式最精确.

例4 药物动力学中静脉恒速注射的一室模型

把剂量为0D 的丹参注射液在T 一段时间内以恒速(速度0

0D k T

=

)滴入人体,人体内药物量用x 表示,显然当0t =时,0x =,求体内血药浓度C 随时间t 的变化规律.

分析 人体内除了有药物输入这一输入速度外,同时还有一个消除速度记为kx ,这样体内药物量x 变化的数学模型为

0dx

kx k dt

=-+ (1) 其中k 为消除速度常数.由方程和初始条件可求得血药浓度C 随时间t 的变化规律.

解(一)

0dx

kx k dt

=-+是一阶线性微分方程,常数变易法解之. 对应的齐次方程为dx

kx dt =-,分离变量得kt x ce -=,将()kt x c t e -=代入方程

0dx

kx k dt =-+中,得01()kt k c t e c k =+,则()00111kt kt kt k k x e c e c e k k

--骣÷?=+=+÷?÷?桫,由 初始条件0t =时,0x =得11c =-,故()0

1kt k x e k

-=

- 两端再除以表现分布容积V ,则血药浓度方程为 ()C t =

(1)kt k e kV -- 当滴注完了时(t T =时)的体内血药浓度为 0()(1)

kT D C T e kVT

-=-. 解(二)由

0dx

kx k dt

=-+,0t =时,0x =是初始条件,用拉普拉斯变换求解. 设()()X s L s =,则(0)0x =,对方程(1)两端取拉氏变换

0()()dx L kL x L k dt

骣÷

?=-+÷?÷?桫 整理后得

0011(),()k k X s s s k k s s k

骣÷

?==-÷?÷?桫++ 取拉氏逆变换,可得

(1)kt k x e k

-=

- 两端再除以表现分布容积V ,则血药浓度方程为 ()C t =

(1)kt k e kV -- 当滴注完了时(t T =时)的体内血药浓度为 0()(1)

kT D C T e kVT

-=-.

例5 药物动力学中快速静脉注射的二室模型

在一次快速静脉注射给药的情况下,如快速静脉注射柴胡注射液、葡萄糖注射液等,其药物动力学过程可用下图所示的二室模型来模拟.其中一室常代表血液及血流灌注充沛的器官和组织,二室表血流灌注贫乏的组织,

121221

101

2

k x x k k ˉ

101221,,k k k 都是一级速率常数.设静脉注射的剂量为0x ,在时刻t ,一室和二室中

的药量分别为1x 和2x ,且当0t =时,102,0x x x ==.试求一室和二室药量随时间变化的规律.

分析 在时刻t ,一室和二室中的药量分别为1x 和2x ,其数学模型为下列微分方程组

1

212121012

121212().dx k x k k x dt

dx k x k x dt

ì??=-+??

í

??=-????

(1)

由方程和初始条件可求得一室和二室药量1x 和2x 随时间的变化规律. 解 用拉普拉斯变换求解,设1122[()](),[()]()L x t X s L x t X s ==,对方程组(1)两端取拉氏变换得

10

21

212

1212

121

2(

)()()(),()()().s X s x k X s k k

X s

s X s k

X s k X s

ì-=-+??í

?=-??

解得

021

12122110

2110

()()()x s k X s s k k k s k k +=

++++

设α-和β-是21221102110()0s k k k s k k ++++=的两个根,由判别式可知

αβ1,则有

21221

10

21

10

()()(),s k k k s k

k s αs β++++=++ 于是

021

1()()()()

x s k X s s αs β+=

++

取拉氏逆变换,即得一室药量随时间t 的变化规律为

21021

1()()αt βt

k αx e k βx e x βα

-----=- 若以1V 表示一室的表现分布容积,则血药浓度随时间的变化规律为 02102111()()()()()

αt βt

x αk x k βC t e e V αβV αβ----=+--

类似地,可求出 120

12022

1221102110()()()()k x k x X s s k k k s k k s αs β=

=++++++ 取拉氏逆变换,得二室药量随时间的变化规律为 12

02()αt βt k x x e e βα

--=

--. (注:本例选自"生物数学学报"2000,15(4):476-479董萍, 拉普拉斯变换在药物动力学中的应用)

例6 某医院采用I 、II 、III 、IV 四种方法医治某种癌症,在该癌症患者中采用4种方案的百分比分别为0.1,0.2,0.25,0.45,其有效率分别为0.97,0.95,0.94,0.9. 试求: (1)到该院接受治疗的患者,治疗有效的概率为多少?

(2)如果1名患者经治疗有收效, 最有可能接受了哪种方案的治疗? 解 分别记采用I 、II 、III 、IV 种方法治疗为事件1234,,,A A A A ,

则1234()0.1,()0.2,()0.25,()0.45P A P A P A P A ====

治疗有效记为B, 则B 伴随事件1234,,,A A A A 之一的发生而发生 则1234(|)0.97,(|)0.95,(|)0.94,(|)0.9P B A P B A P B A P B A ==== 由全概率公式有,

4

1

()()(|)0.10.97

0.20.950.250.940.450.9i i i P B P A P B A ==

=?????

0.927.

由贝叶斯公式4

1

()(|)

(|)()(|)

k k k i i i P A P B A P A B P A P B A ==

?

有1114

1

()(|)

97

(|)927

()(|)

i i i P A P B A P A B P A P B A ==

=

?

; 234190235405

(|);(|);(|).927927927

P A B P A B P A B =

== 取{}1234405

max (|),(|),(|),(|)927P A B P A B P A B P A B =,所以最有可能接受了第IV

种方案的治疗.

例7 某种动物雌性的最大生丰年龄为15年.以5年为间隔,把这一动物种群分为3个年龄组[0,5),[5,10),[10,15).设初始时刻00t =时,3个年龄组的雌性动物个数分别为500, 1000, 500.利用统计资料,已知

*

1231211

0,4,3,,24

a a a

b b =====.试分析该动物种群的年龄分布.

*注释与分析 设第(1,2,3)i i =个年龄组的生育率为(1,2,3)i a i =,存活率为i b (i b 表示第i 年龄组中可存活到第1i +年龄组的雌性数与该年龄组总数之比,

1,2i =).在不发生意外事件(灾害等)的条件下,i i a b 均为常数,且0,0

1i i a b ??.由已知条件可知初始年龄分布向量(0)(500,1000,500)T X =.由

莱斯利种群模型得莱斯利矩阵为1

2312

043

001/2000001/40a a a L b b 骣骣鼢珑鼢珑鼢珑鼢==珑鼢珑鼢

珑鼢

鼢珑桫

桫.

()(1)(0),0,1,2,.k k k X LX L X k -===以下从莱斯利矩阵入手对该动物种群的年龄

分布进行分析.

解 由(0)(500,1000,500)T X =,0431/20001/40L 骣÷?÷?÷?÷=?÷?÷?÷÷

?桫. 于是,

(1)(0)0435*******/200100025001/40500250X L X 骣骣骣鼢?珑?鼢?珑?鼢?珑?鼢?===珑?鼢?珑?鼢?珑?鼢?鼢?珑?桫桫桫 (2)(1)0435********/200250275001/4025062.5X L X 骣骣骣鼢?珑?鼢?珑?鼢?珑?鼢?===珑?鼢?珑?鼢?珑?鼢?鼢?珑?桫

桫桫 (3)(2)0431750110001/200275087501/4062.5687.5X LX 骣骣骣鼢?珑?鼢?珑?鼢?珑?鼢?===珑?鼢?珑?鼢?珑?鼢?鼢?珑?桫桫桫

为了分析k 时,该动物种群年龄分布向量的特点.先求出矩阵L 的特征值和

特征向量.L 的特征多项式

243331det()1/20()()2240

1/4λλE L λλλλλ骣--÷?÷?÷?÷-=-=--+?÷?÷?÷÷?-桫 得L

的特征值1233,2λλλ=

== 显然1λ是矩阵L 的唯一正特征值, 且1213,λλλλ>>,因此矩阵L 可与对角矩阵相似.

设矩阵L 属于特征值i λ的特征向量为(1,2,3)i αi =.不难计算,L 的属于特征

值13

2

λ=的特征向量1111,,318T

α骣÷?=

÷?÷

?桫.记矩阵123(,,),P ααα=123Λ(,,),diag λλλ= 则

1ΛP L P -=或1ΛL P P -=

于是, ()(0)1Λk k k

X L X P P X

-==

1(0

1

21311000(/)000(/)k k k λP λλP X λλ-骣÷?÷?÷?÷=?÷?÷?÷÷?桫

即 ()1(0)

32111

11,,k k

k k λλX Pdiag P X λλλ-骣骣骣

÷?鼢珑÷?鼢=÷珑?鼢÷珑鼢?÷桫桫?桫 因为

32

11

1,1λλλλ<<,所以 ()()1(0)

1

1l i m 1,0,0k k k X P d i a g P X λ-=. 记列向量1(0)P X -的第一个元素为c (常数),则上式可化为

()123111

lim (,,)00k k k c X αααc αλ骣÷?÷?÷?÷==?÷?÷?÷÷?桫

于是,当k 充分大时,近似地成立

()11131/321/18k

k k X c λαc 骣÷

?÷骣?÷÷??÷==÷??÷÷??÷桫?÷÷?桫

(c 为常数) 这一结果说明,当时间充分长,这种动物中雌性的年龄分布将趋于稳定:即3

个年龄组的数量比为11

1::318,并由此可近拟得到k t 时种群中雌性动物的总量,

从而对整个种群的总量进行估计.

武汉大学大一上学期高数期末考试题

高数期末考试 一、填空题(本大题有4小题,每小题4分,共16分) 1. ,)(cos 的一个原函数是已知 x f x x =??x x x x f d cos )(则 . 2. lim (cos cos cos )→∞ -+++=2 2 221 n n n n n n π π ππ . 3. = -+? 2 12 12 211 arcsin - dx x x x . 二、单项选择题 (本大题有4小题, 每小题4分, 共 16分) 4.  )时( ,则当,设133)(11)(3→-=+-= x x x x x x βα. (A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小; (C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小. 5. ) ( 0),sin (cos )( 处有则在设=+=x x x x x f . (A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导. 6. 若 ()()()0 2x F x t x f t dt =-?,其中()f x 在区间上(1,1) -二阶可导且'>()0f x ,则( ). (A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值; (C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。 7. ) ( )( , )(2)( )(1 =+=?x f dt t f x x f x f 则是连续函数,且设 (A )2 2x (B )2 2 2x +(C )1x - (D )2x +. 8. 三、解答题(本大题有5小题,每小题8分,共40分) 9. 设函数=()y y x 由方程 sin()1x y e xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(17 7 x x x x ?+-求 11. .  求,, 设?--?????≤<-≤=1 32 )(1020 )(dx x f x x x x xe x f x 12. 设函数)(x f 连续, =?1 ()()g x f xt dt ,且 →=0 ()lim x f x A x ,A 为常数. 求'()g x 并讨论'()g x 在 =0x 处的连续性. 13. 求微分方程2ln xy y x x '+=满足 =- 1(1)9y 的 解. 四、 解答题(本大题10分) 14. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01, 且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵 坐标之和,求此曲线方程. 五、解答题(本大题10分) 15. 过坐标原点作曲线x y ln =的切线,该切线与曲线 x y ln =及x 轴围成平面图形D. (1) 求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所 得旋转体的体积V . 六、证明题(本大题有2小题,每小题4分,共8分) 16. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的 [,]∈01q ,1 ()()≥??q f x d x q f x dx . 17. 设函数)(x f 在[]π,0上连续,且 )(0 =?π x d x f , cos )(0 =? π dx x x f .证明:在()π,0内至少存在两个 不同的点21,ξξ,使.0)()(21==ξξf f (提示:设 ?= x dx x f x F 0 )()()

高等数学知识点总结 (1)

高等数学(下)知识点 主要公式总结 第八章 空间解析几何与向量代数 1、 二次曲面 1) 椭圆锥面:2 2 222z b y a x =+ 2) 椭球面:122 222 2=++c z b y a x 旋转椭球面:1222222=++c z a y a x 3) 单叶双曲面:122 222 2=-+c z b y a x 双叶双曲面:1222222=--c z b y a x 4) 椭圆抛物面:z b y a x =+2222 双曲抛物面(马鞍面):z b y a x =-22 22 5) 椭圆柱面:1222 2=+b y a x 双曲柱面:122 22=-b y a x 6) 抛物柱面: ay x =2 (二) 平面及其方程 1、 点法式方程: 0)()()(000=-+-+-z z C y y B x x A 法向量:),,(C B A n =ρ ,过点),,(000z y x 2、 一般式方程: 0=+++D Cz By Ax 截距式方程: 1=++c z b y a x 3、 两平面的夹角:),,(1111C B A n =ρ,),,(2222C B A n =ρ, ?∏⊥∏21 0212121=++C C B B A A ;?∏∏21// 2 1 2121C C B B A A == 4、 点 ),,(0000z y x P 到平面0=+++D Cz By Ax 的距离: (三) 空间直线及其方程 1、 一般式方程:?????=+++=+++0 022221111D z C y B x A D z C y B x A 2、 对称式(点向式)方程: p z z n y y m x x 0 00-=-=-

高等数学在医学中的应用

数学在医学中的应用众所周知,数学是一门以高度的抽象性、严谨性为特点的学科,但同时数学在其他各门学科也有广泛的应用性,而且随着大型计算机的飞速发展,数学也越来越多的渗透到各个领域中。数学建模可以说是用数学方法解决实际问题的一个重要手段。简单的说,用数学语言来描述实际问题,将它变成一个数学问题,然后用数学工具加以解决,这个过程就称为数学建模。人们通过对所要解决的问题建立数学模型,使许多实际问题得到了完满的解决。如大型水坝的应力计算、中长期天气预报等。建立在数学模型和计算机模拟基础上的CAD(Computer Aided Design)技术,以其快速、经济、方便等优势,大量地替代了传统工程设计中的现场实验、物理模拟等手段。那么数学在医学领域有哪些应用呢?现代的医学为什么要借助数学呢?本研究主要叙述这两个问题。 1现代医学应用数学的必要性 现代医学的大趋势是从定性研究走向定量研究,即要能够有效地探索医学科学领域中物质的量与量关系的规律性,推动医学科学突破狭隘经验的束缚,向着定量、精确、可计算、可预测、可控制的方向发展,并由此逐渐派生出生物医学工程学、数量遗传学、药代动力学、计量诊断学、计量治疗学、定量生理学等边缘学科,同时预防医学、基础医学和临床医学等传统学科也都在试图建立数学模式和运用数学理论方法来探索出其数量规律。而这些都要用到数学知识。数学模型有助生物学家将某些变量隔离出来、预测未来实验的结果,或推论无法

测量的种种关系,因为在实验中很难将研究的事物抽离出来单独观察。尽管这些数学模型无法极其精确地模仿生命系统的运作机制,却有助于预测将来实验的结果。可以利用数学分析实验数据资料。当实验数据非常多时,传统的方法就不再适用了,只能转而使用数值计算的相关理论,以发现数据中存在的关联和规则。特别地随着当前国际生命科学领域内最重要的基因组计划的发展,产生了前所未有的巨量生物医学数据。为分析利用这些巨量数据而发展起来的生物信息学广泛应用了各种数学工具,从而使得数学方法在现代生物医学研究中的作用日益重要。 2医学上的一些例子 医学统计学(Medical Statistics)临床上可用来解释疾病发生与流行的程度和规律;评价新药或新技术的治疗效果;揭示生命指标的正常范围,相互的内在联系或发展规律;运用统计的原理和方法,结合医学的工作实际,研究医学的实验设计和数据处理。医学统计学是基于概率论和数理统计的基本原理和方法,研究医学领域中数据的收集、整理和分析的一门学科。如在疾病的防治工作中,经常要探讨各种现象数量间的联系,寻找与某病关系最密切的因素;要进行多种检查结果的综合评定、探讨疾病的分型分类:计量诊断,选择治疗方案;要对某些疾病进行预测预报、流行病学监督,对药品制造、临床化验工作等作质量控制,以及医学人口学研究等。医学统计学,特别是其中的多变量分析,为解决这些问题提供了必要的方法和手段。以传染病模型为例,了能定量的研究传染病的传播规律,人们建立了各

2018最新大一高等数学期末考试卷(精编试题)及答案详解

大一高等数学期末考试卷(精编试题)及答案详解 一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )( 0),sin (cos )( 处有则在设=+=x x x x x f . (A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导. 2. )时( ,则当,设133)(11)(3→-=+-= x x x x x x βα. (A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是 等价无穷小; (C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小. 3. 若 ()()()0 2x F x t x f t dt =-?,其中()f x 在区间上(1,1)-二阶可导且 '>()0f x ,则( ). (A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值; (C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。 4. ) ( )( , )(2)( )(1 =+=?x f dt t f x x f x f 则是连续函数,且设 (A )2 2x (B )2 2 2x +(C )1x - (D )2x +. 二、填空题(本大题有4小题,每小题4分,共16分) 5. = +→x x x sin 20 ) 31(lim . 6. ,)(cos 的一个原函数是已知 x f x x =? ?x x x x f d cos )(则 . 7. lim (cos cos cos )→∞ -+++=2 2 2 21 n n n n n n π π ππ . 8. = -+? 2 12 12 211 arcsin - dx x x x . 三、解答题(本大题有5小题,每小题8分,共40分) 9. 设函数=()y y x 由方程 sin()1x y e xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(17 7 x x x x ?+-求

高数知识点总结

高数重点知识总结 1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(x a y =),三角函数(y=sinx),常数函数(y=c) 2、分段函数不是初等函数。 3、无穷小:高阶+低阶=低阶 例如:1lim lim 020==+→→x x x x x x x 4、两个重要极限:()e x e x x x x x x x x =?? ? ??+=+=∞ →→→11lim 1lim )2(1 sin lim )1(1 0 经验公式:当∞→→→)(,0)(,0x g x f x x ,[] ) ()(lim ) (0 )(1lim x g x f x g x x x x e x f →=+→ 例如:()33lim 10 031lim -? ? ? ? ?-→==-→e e x x x x x x 5、可导必定连续,连续未必可导。例如:||x y =连续但不可导。 6、导数的定义:()00 00 ') ()(lim ) (') ()(lim x f x x x f x f x f x x f x x f x x x =--=?-?+→→? 7、复合函数求导: [][])(')(')(x g x g f dx x g df ?= 例如:x x x x x x x y x x y ++=++ = +=2412221 1', 8、隐函数求导:(1)直接求导法;(2)方程两边同时微分,再求出dy/dx 例如:y x dx dy ydy xdx y x y yy x y x - =?+- =?=+=+22,),2('0'22,),1(1 22左右两边同时微分法左右两边同时求导解:法 9、由参数方程所确定的函数求导:若?? ?==) ()(t h x t g y ,则)(')('//t h t g dt dx dt dy dx dy ==,其二阶导数:()[] ) (')('/)('/)/(/22 t h dt t h t g d dt dx dt dx dy d dx dx dy d dx y d === 10、微分的近似计算:)(')()(000x f x x f x x f ??=-?+ 例如:计算 ?31sin

高等数学在医学中的作用的

浅谈高等数学在现代医学中的作用一、高等数学在医学领域的应用 数学是一门语言, 它是表达量变和质变最完美的工具; 数学又是一种感觉, 它是科学迅速超越时空的触角。恩格斯曾对数学做过如下定义: 数学是研究现实世界的空间形式与数量关系的 科学。数学是基础教育中最受重视的学科之一, 并贯穿于整个基础教育阶段。高等数学教育则几乎覆盖了大学本科阶段所有自然学科领域和部分人文社会学科领域。 随着计算机科学技术的不断发展, 数学的社会化程度也日 益提高, 数学的思想、观点、方法已广泛地渗透到自然科学和社会科学的各个领域。数学在传统领域的应用, 以及在新领域取得的许多重要进程, 使得数学在医学领域中的作用也不断突出。数学与医学, 特别是生物医学的结合越来越紧密。例如, 可以为生物医学工程学、细胞分子生物学、肿瘤生长动力学、药物动力学等现代生物医学做出定性描述向定量描述的趋变; 常微分方程 可以运用到临床医学的定量分析和群体医学的动态分析; 生物 统计学、概率论可以为药物使用、人口统计与流行病、公共卫生管理等作出决策; 数学可为医学基础、临床医学、预防医学建立医学数学模型,经过数学处理得到可供人们作出分析、判断、预测和决策的定量结果; 临床治疗和医学科研所使用到的各种高、精、尖端医学仪器都离不开数学和计算机科学的支持, 等等。 马克思曾说过:“一门科学只有成功地应用数学时, 才算达

到了完善的地步。”因此可以看出, 数学与现代医学结合程度将决定现代医学的发展程度。中科院在《21 世纪初科学发展趋势》的研究报告中指出, 生命科学“可能发展成为科学革命的中心”, 数学科学则“一直是整个科学技术发展的带动因素”, 加快数学在医学领域的应用和发展是当今医学发展的必然趋势。 二、高等数学教育在医学教育中的作用及意义 数学的思维方式、计量分析技术有力地推动了现代医学的 迅速发展。强调用数学、统计学研究并解决医学问题的思路和方法, 增强对医学问题进行定量分析与处理的能力, 提高医学科研 水平, 促进临床工作进一步精确化、科学化早已成为各国高等医学教育所关注的重要内容。目前国内绝大多数的医学院校都在 大学一年级开设了《医用高等数学》。笔者认为, 开设这门课程除了可以扩大学生知识面以外, 还有着如下五个方面的作用及意义: 1. 高数教育可以加强医学生的道德教育 抽象性是数学的基本特征之一, 具体表现为推理的严谨性、 表达的准确性、类别的归纳性、计算的规定性、定义的唯一性等等。学生在学习高数的同时, 也能受到其特性的影响: 教育过程 中数学史的讲解可以激发学生的爱国主义热情; 逻辑性的推理 可以培养学生严谨的思维模式; 公理、定义、计算规则的唯一性要求可以使学生形成对法律法规、社会公德的内在自我约束; 对问题的归类、分析可以培养学生灵活思考问题、周密总结分析的

高等数学基本知识点大全

高等数学基本知识点

一、函数与极限 1、集合的概念 ⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N ⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。 ⑶、全体整数组成的集合叫做整数集。记作Z。 ⑷、全体有理数组成的集合叫做有理数集。记作Q。 ⑸、全体实数组成的集合叫做实数集。记作R。 ⑶、邻域:设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x的全体称为点α的δ邻域,点α称为此邻域的中心,δ称为此邻域的半径。 2、函数 ⑴、函数的定义:如果当变量x在其变化范围内任意取定一个数值时,量y按照一定的法则f总有确定的数值与它对应,则称y是x的函数。变量x的变化范围叫做这个函数的定义域。通常x叫做自变量,y 叫做函数值(或因变量),变量y的变化范围叫做这个函数的值域。注:为了表明y是x的函数,我们用记号y=f(x)、y=F(x)等等来表示。这里的字母"f"、"F"表示y与x之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的。如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。这里我们只讨论单值函数。 ⑵、函数相等 由函数的定义可知,一个函数的构成要素为:定义域、对应关系和值域。由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,我们就称两个函数相等。 ⑶、域函数的表示方法 a):解析法:用数学式子表示自变量和因变量之间的对应关系的方法即是解析法。例:直角坐标系中,半径为r、圆心在原点的圆的方程是:x2+y2=r2 b):表格法:将一系列的自变量值与对应的函数值列成表来表示函数关系的方法即是表格法。例:在实际应用中,我们经常会用到的平方表,三角函数表等都是用表格法表示的函数。 c):图示法:用坐标平面上曲线来表示函数的方法即是图示法。一般用横坐标表示自变量,纵坐标表示因变量。例:直角坐标系中,半径为r、圆心在原点的圆用图示法表示为: 3、函数的简单性态 ⑴、函数的有界性:如果对属于某一区间I的所有x值总有│f(x)│≤M成立,其中M是一个与x无关的常数,那么我们就称f(x)在区间I有界,否则便称无界。 注:一个函数,如果在其整个定义域内有界,则称为有界函数 例题:函数cosx在(-∞,+∞)内是有界的. ⑵、函数的单调性:如果函数在区间(a,b)内随着x增大而增大,即:对于(a,b)内任意两点x1

大学高等数学期末考试题及答案详解(计算题)

大学数学期末高等数学试卷(计算题) 一、解答下列各题 (本大题共16小题,总计80分) 1、(本小题5分) .d )1(22x x x ? +求 2、(本小题5分) 求极限 lim x x x x x x →-+-+-2332121629124 3、(本小题5分) 求极限lim arctan arcsin x x x →∞?1 4、(本小题5分) ? -.d 1x x x 求 5、(本小题5分) .求dt t dx d x ?+2 021 6、(本小题5分) ??.d csc cot 46x x x 求 7、(本小题5分) .求?ππ 2 1 21cos 1dx x x 8、(本小题5分) 设确定了函数求.x e t y e t y y x dy dx t t ==?????=cos sin (),22 9、(本小题5分) . 求dx x x ?+3 01 10、(本小题5分) 求函数 的单调区间y x x =+-422 11、(本小题5分) .求? π +2 02sin 8sin dx x x 12、(本小题5分) .,求设 dx t t e t x kt )sin 4cos 3()(ωω+=- 13、(本小题5分) 设函数由方程所确定求.y y x y y x dy dx =+=()ln ,226 14、(本小题5分) 求函数的极值y e e x x =+-2 15、(本小题5分) 求极限lim ()()()()()()x x x x x x x →∞++++++++--121311011011112222 16、(本小题5分) .d cos sin 12cos x x x x ? +求 二、解答下列各题

大学全册高等数学知识点(全)

大学高等数学知识点整理 公式,用法合集 极限与连续 一. 数列函数: 1. 类型: (1)数列: *()n a f n =; *1()n n a f a += (2)初等函数: (3)分段函数: *0102()(),()x x f x F x x x f x ≤?=?>?; *0 ()(), x x f x F x x x a ≠?=?=?;* (4)复合(含f )函数: (),()y f u u x ?== (5)隐式(方程): (,)0F x y = (6)参式(数一,二): () ()x x t y y t =??=? (7)变限积分函数: ()(,)x a F x f x t dt = ? (8)级数和函数(数一,三): 0 (),n n n S x a x x ∞ ==∈Ω∑ 2. 特征(几何): (1)单调性与有界性(判别); (()f x 单调000,()(()())x x x f x f x ??--定号) (2)奇偶性与周期性(应用). 3. 反函数与直接函数: 1 1()()()y f x x f y y f x --=?=?= 二. 极限性质: 1. 类型: *lim n n a →∞; *lim ()x f x →∞ (含x →±∞); *0 lim ()x x f x →(含0x x ± →) 2. 无穷小与无穷大(注: 无穷量): 3. 未定型: 000,,1,,0,0,0∞ ∞∞-∞?∞∞∞ 4. 性质: *有界性, *保号性, *归并性 三. 常用结论: 11n n →, 1(0)1n a a >→, 1()max(,,)n n n n a b c a b c ++→, ()00! n a a n >→

医学高等数学习题解答(1,2,3,6)

3 6. arctan x 2 1. 2. 3. 4. 5. 6. 7. 第一章 、判断题题解 正确。设 h (x )=f (x )+f ( x ), 错。 错。错。错。函数、极限与连续习题题解(P27) y =2ln x 的定义域(0,+ ..1 lim , x 0 x 则 h ( x )= f ( x )+ f (x )= h (x )。故为偶函数。 ),y =ln x 2的定义域(,0)U (0,+ )。定义域不同。 O 故无界。 在x 0点极限存在不一定连续。 1 …, -0逐渐增大。 x lim x 正确。 设limf(x) A,当x 无限趋向于x 0,并在x 0的邻域,有 A f(x) A 。 x 为 正确。 处也连续, 8.正确。 反证法:设 F (x )=f (x )+g (x )在 x 。处连续,则 g (x ) = F (x ) f (x ),在 x 。处 F (x ), f (x )均连续,从而 g (x )在 x =x 。 与已知条件矛盾。 是复合函数的连续性定理。 二、选择题题解 1. f(x) x 2, (x) 2x ,f[ (x)] 2x 22x (D) 2. 3. 4. y =x (C ) 1 lim xsin — xsin lim ------- - x 0 cosx 5. 帅 f (x) 6. 9 x 2 0 7. 8. (A ) (B ) 唧伽 1) 2, lim f (x) (D ) 画出图形后知:最大值是 一- 4 设 f(x) x x 1,则 f(1) 1,f(2) 帅 (3 10。 13, x) 2, lim f(x) 2 f ⑴(B ) x 1 (A ) f (x)连续,由介质定理可 知。 (D ) 三、填空题题解 0 1. 2. 3、 arctan(x )是奇函数, 关于原点对称。 3. 4. ,y ,可以写 成 5. 设 x t 6 , x 1,t 1, l t m t 2 t 3 —有界, 1 lim x x 故极限为 0 。

大学高等数学(微积分)下期末考试卷(含答案)

大学高等数学(微积分)<下>期末考试卷 学院: 专业: 行政班: 姓名: 学号: 座位号: ----------------------------密封-------------------------- 一、选择题(在每个小题四个备选答案中选出一个正确答案,填在题末 的括号中,本大题分4小题, 每小题4分, 共16分) 1、设lim 0n n a →∞ =,则级数 1 n n a ∞ =∑( ); A.一定收敛,其和为零 B. 一定收敛,但和不一定为零 C. 一定发散 D. 可能收敛,也可能发散 2、已知两点(2,4,7),(4,6,4)A B -----,与AB 方向相同的单位向量是( ); A. 623(, , )777 B. 623(, , )777- C. 623( ,, )777-- D. 623(, , )777-- 3、设3 2 ()x x y f t dt = ? ,则dy dx =( ); A. ()f x B. 32()()f x f x + C. 32()()f x f x - D.2323()2()x f x xf x - 4、若函数()f x 在(,)a b 内连续,则其原函数()F x ( ) A. 在(,)a b 内可导 B. 在(,)a b 内存在 C. 必为初等函数 D. 不一定存在

二、填空题(将正确答案填在横线上, 本大题分4小题, 每小题4分, 共16分) 1、级数1 1 n n n ∞ =+∑ 必定____________(填收敛或者发散)。 2、设平面20x By z -+-=通过点(0,1,0)P ,则B =___________ 。 3、定积分1 21sin x xdx -=?__________ _。 4、若当x a →时,()f x 和()g x 是等价无穷小,则2() lim () x a f x g x →=__________。 三、解答题(本大题共4小题,每小题7分,共28分 ) 1、( 本小题7分 ) 求不定积分sin x xdx ? 2、( 本小题7分 ) 若()0)f x x x =+>,求2'()f x dx ?。

专升本高等数学知识点汇总

专升本高等数学知识点汇总 常用知识点: 一、常见函数的定义域总结如下: (1) c bx ax y b kx y ++=+=2 一般形式的定义域:x ∈R (2)x k y = 分式形式的定义域:x ≠0 (3)x y = 根式的形式定义域:x ≥0 (4)x y a log = 对数形式的定义域:x >0 二、函数的性质 1、函数的单调性 当21x x <时,恒有)()(21x f x f <,)(x f 在21x x ,所在的区间上是增加的。 当21x x <时,恒有)()(21x f x f >,)(x f 在21x x ,所在的区间上是减少的。 2、 函数的奇偶性 定义:设函数)(x f y =的定义区间D 关于坐标原点对称(即若D x ∈,则有D x ∈-) (1) 偶函数)(x f ——D x ∈?,恒有)()(x f x f =-。 (2) 奇函数)(x f ——D x ∈?,恒有)()(x f x f -=-。 三、基本初等函数 1、常数函数:c y =,定义域是),(+∞-∞,图形是一条平行于x 轴的直线。 2、幂函数:u x y =, (u 是常数)。它的定义域随着u 的不同而不同。图形过原点。 3、指数函数

定义: x a x f y ==)(, (a 是常数且0>a ,1≠a ).图形过(0,1)点。 4、对数函数 定义: x x f y a log )(==, (a 是常数且0>a ,1≠a )。图形过(1,0)点。 5、三角函数 (1) 正弦函数: x y sin = π2=T , ),()(+∞-∞=f D , ]1,1[)(-=D f 。 (2) 余弦函数: x y cos =. π2=T , ),()(+∞-∞=f D , ]1,1[)(-=D f 。 (3) 正切函数: x y tan =. π=T , },2 )12(,|{)(Z R ∈+≠∈=k k x x x f D π , ),()(+∞-∞=D f . (4) 余切函数: x y cot =. π=T , },,|{)(Z R ∈≠∈=k k x x x f D π, ),()(+∞-∞=D f . 5、反三角函数 (1) 反正弦函数: x y sin arc =,]1,1[)(-=f D ,]2 ,2[)(π π- =D f 。 (2) 反余弦函数: x y arccos =,]1,1[)(-=f D ,],0[)(π=D f 。 (3) 反正切函数: x y arctan =,),()(+∞-∞=f D ,)2 ,2()(π π- =D f 。 (4) 反余切函数: x y arccot =,),()(+∞-∞=f D ,),0()(π=D f 。 极限 一、求极限的方法 1、代入法 代入法主要是利用了“初等函数在某点的极限,等于该点的函数值。”因此遇到大部分简单题目的时候,可以直接代入进行极限的求解。 2、传统求极限的方法 (1)利用极限的四则运算法则求极限。 (2)利用等价无穷小量代换求极限。 (3)利用两个重要极限求极限。 (4)利用罗比达法则就极限。

2017级临床医学医用高等数学模拟卷

xx 级本科医用高等数学半期考试A 卷 班级: 姓名: 学号: 一、选择题(2’*10,共20’) 1. 设=≤<≤<--=→)(10,0 1,1{)(lim 0 x f x x x x x f x 则 ( ) A .–1 B. 1 C. 0 D 不存在 2. 0)('=x f 是可导函数)(x f 在0x 点处有极值的( ) A. 充分条件 B. 必要条件 C. 充分必要条件 D. 既非充分为非必要条件若函数 3. )(x f 为可微函数,则dy ( ) A. 与x ?无关 B.为x ?的线性函数 C. 当0→?x 时为x ?的高阶无穷小 C.为x ?的等价无穷小 4. 若?==)()()('x dF x f x F ,则( ) A. )(x f B )(x F C. C x f +)( D.C x F +)( 5. a x x a y =,求y '=( ) A. )(ln x a a x a a x + B. )1(x a x a a x + C. )(ln a a x a a x + D. a x a a x ln 1 1 -+ 6.下列各组函数中( )为同一函数的原函数 A.F 1(x )=lnx F 2(x)=ln(3+x) B. F 1(x )=lnx F 2(x)=ln(x -1) C.F 1(x )=lnx F 2(x)=3lnx D. F 1(x )=lnx F 2(x)=ln(3x)

7. =?dx x x 2ln ( ) A. C x x x ++1 ln 1 B. C x x x ++- 1 ln 1 C. C x x x +-1 ln 1 D. C x x x +--1 ln 1 8. =? →3 20 sin lim x dt t x x ( ) A. 0 B. 1 C. 3 1 D ∞ 9. 下列积分中,值为零的是( ) A ? -1 1 2dx x B.?-2 13dx x C.?-1 1 dx D.?-11 2sin xdx x 10. 下无结论正确的是( ) A 初等函数必存在原函数 B. 每个不定积分都可以表示为初等函数 C. 初等函数的原数必定是初等数 D. A,B,C 都不正确 二.填空题(2’*10,共20’) 1.若函数)(x f 在0x 点及其附近有二阶导数,且0)(,0)(0''0'<=x f x f ,则)(x f 在0x 处有极 值。 2. )1)(2(-+=x x y 的定义域 。 3.x e e im l x x x sin 0-→-= 。 4.若A x f x =∞ →)(lim ,则其几何意义: 。 5.== )('',)('x f dx dy x f 则 。 6.函数)(x f 在0x 点可导的充分必要条件是: 。 7.)ln (2x x d = 。 8.??xdx x tan sec = 。 9. )'(arccos x = 。 10.??=++=dx b ax f c x F dx x f )(,)()(则 。

关于大学高等数学期末考试试题与答案

关于大学高等数学期末考 试试题与答案 Last revision on 21 December 2020

(一)填空题(每题2分,共16分) 1 、函数ln(5)y x =+-的定义域为 . 2、2()12x e f x x a ??=??+? 000x x x <=> ,若0lim ()x f x →存在,则a = . 3、已知 30lim(1)m x x x e →+=,那么m = . 4、函数21()1x f x x k ?-?=-??? 11x x ≠= ,在(),-∞+∞内连续,则k = . 5、曲线x y e =在0x =处的切线方程为 . 6、()F x dx '=? . 7、sec xdx =? . 8、20cos x d tdt dx ??=? ???? . (二)单项选择(每题2分,共12分。在每小题给出的选项中,选出正确答案) 1、下列各式中,不成立的是( )。 A 、lim 0x x e →+∞= B 、lim 0x x e →-∞= C 、21 lim 1x x e →∞= D 、1lim 1x x e →∞= 2、下列变化过程中,( )为无穷小量。 A 、()sin 0x x x → B 、()cos x x x →∞ C 、()0sin x x x → D 、()cos x x x →∞ 3、0lim ()x x f x →存在是)(x f 在0x 处连续的( )条件。 A 、充分 B 、必要 C 、充要 D 、无关 4、函数3y x =在区间[]0,1上满足拉格朗日中值定理的条件,则ξ=( )。 A 、 B 、

5、若曲线()y f x =在区间(),a b 内有()0f x '<,()0f x ''>,则曲线在此区间内 ( )。 A 、单增上凹 B 、单增下凹 C 、单减上凹 D 、单减下凹 6、下列积分正确的是( ). A 、1 12111dx x x --=-? B 、 122π-==?? C 、22cos xdx ππ-=?0 D 、2220 sin 2sin 2xdx xdx πππ-==?? (三)计算题(每题7分,共 56分) 1、求下列极限 (1 )2x → (2)lim (arctan )2x x x π →∞?- 2、求下列导数与微分 (1)x x y cos ln ln sin +=,求dy ; (2)2tan (1)x y x =+,求 dx dy ; (3)ln(12)y x =+,求(0)y '' 3、计算下列积分 (1 ); (2 ); (3)10arctan x xdx ?. (四)应用题(每题8分,共16分) 1. 求ln(1)y x x =-+的单调区间与极值. 2. 求由抛物线21y x +=与直线1y x =+所围成的图形的面积. 参考答案 一、填空题(每空2分,共16分) 1. ()3,5 2. 2 3. 3 4. 2 5. 10x y -+= 6. ()F x C + 7. sec tan x x C ++ln 8.2cos x

高等数学知识在医学中的应用举例

高等数学知识在生物化学工程中的应用举例 高等数学是生命科学学院校开设的重要基础课程,数学方法为生物化学的深入研究发展提供了强有力的工具。下面仅举一些用高等数学基础知识解决生物化学工程中的一些实际问题的例子,旨在启发学生怎样正确理解和巩固加深所学的知识,并且强化应用数学解决实际问题的意识。 例1 在化工原理中常用的柏努利方程式中的应用 化工生产过程中常于密闭管道内输送液体,使液体流动的主要因素有(1)流体本身的位差;(2)两截面间的压强差;(3)输送机械向流体外作的外功。 流动系统的能量衡量常用柏努利方程式,下面来介绍柏努利方程式。 定态流动时液体的机械能衡量式为 ∑?-=+?+ ?f e p p h W v d p u z g 212 2 (1) 该式队可压缩液体和不可压缩液体均适用。对不可压缩液体,(1)式中?2 p p vdp 项应视过程性质(等温、绝热或多变过程)按热力学原则处理,对不可压缩液体,其比容v 或者密度ρ为常数,故ρ ρ ρp p p dp vdp p p p p ?= -= = ??2 12 2 1 ,代入(1)式有: ∑-=?+?+?f e h W p u z g ρ 22 或 ∑+++=+++f e h p u gz W p u gz ρ ρ22 22121122 (2) (2)式称为柏努利方程式。 需要注明的是,22u 为动能,gz 为位能,ρ p 为静态能,e W 为有效能,∑f h 为能量损耗,z ?为高度差。 例2 混合气体粘度的计算 常温下混合气体的计算式为

∑∑=== n i i i n i i i i m M y M y 1 211 21μμ (3) 其中m μ为常温下混合气体的粘合度(Pa.s );i y 为纯组分i 的摩尔分率;i μ为混合气体的温度下,纯组分i 的粘度(Pa.s );i M 为组分i 的分子量(Kg/kmol )。 例如:空气组分约为01.0,78.0,21.022Ar N O (均为体积积分率),试利用 Ar N O ,,22的粘度数量,计算常温下C 020时空气的粘度? 解:常温下空气可视为理想气体,故各组分的体积积分率等于摩尔分率, Ar N O ,,22的分子量分别为32,28及39.9,经查表知道常温下C 020时各组分的粘度为 s Pa Ar s Pa N s Pa O ??????---55252 1009.2107.11003.2 代入(3)式计算空气的粘度,即 s Pa M y M y n i i i n i i i i m ??=?+?+????+???+???= = ----==∑∑52 12 12 12 15 2 152 151 211 21 1078.19 .3901.02878.03221.09 .391009.201.028107.178.0321003.221.0μμ 例3. 在细胞生长计算中的应用 随着细胞的生成繁殖,培养基中的营养物质被消耗,一些有害的代谢产物在培养液中累积起来,细胞的生长速度开始下降,最终细胞浓度不再增加,进入静止期,在静止期细胞的浓度达到最大值。 如果细胞的生长速率的下降是由于营养物质的消耗造成的,可以通过以下的分析来统计分批培养可能达到的最大细胞浓度。设限制性基质为A ,其浓度为a ,

同济大学大一 高等数学期末试题 (精确答案)

学年第二学期期末考试试卷 课程名称:《高等数学》 试卷类别:A 卷 考试形式:闭卷 考试时间:120 分钟 适用层次: 适用专业; 阅卷须知:阅卷用红色墨水笔书写,小题得分写在每小题题号前,用正分表示,不 得分则在小题 大题得分登录在对应的分数框内;考试课程应集体阅卷,流水作业。 课程名称:高等数学A (考试性质:期末统考(A 卷) 一、单选题 (共15分,每小题3分) 1.设函数(,)f x y 在00(,)P x y 的两个偏导00(,)x f x y ,00(,)y f x y 都存在,则 ( ) A .(,)f x y 在P 连续 B .(,)f x y 在P 可微 C . 0 0lim (,)x x f x y →及 0 0lim (,)y y f x y →都存在 D . 00(,)(,) lim (,)x y x y f x y →存在 2.若x y z ln =,则dz 等于( ). ln ln ln ln .x x y y y y A x y + ln ln .x y y B x ln ln ln .ln x x y y C y ydx dy x + ln ln ln ln . x x y y y x D dx dy x y + 3.设Ω是圆柱面2 2 2x y x +=及平面01,z z ==所围成的区域,则 (),,(=??? Ω dxdydz z y x f ). 21 2 cos .(cos ,sin ,)A d dr f r r z dz π θθθθ? ? ? 21 2 cos .(cos ,sin ,)B d rdr f r r z dz π θθθθ? ? ? 212 2 cos .(cos ,sin ,)C d rdr f r r z dz π θπθθθ-?? ? 21 cos .(cos ,sin ,)x D d rdr f r r z dz πθθθ?? ? 4. 4.若1 (1)n n n a x ∞ =-∑在1x =-处收敛,则此级数在2x =处( ). A . 条件收敛 B . 绝对收敛 C . 发散 D . 敛散性不能确定 5.曲线2 2 2x y z z x y -+=?? =+?在点(1,1,2)处的一个切线方向向量为( ). A. (-1,3,4) B.(3,-1,4) C. (-1,0,3) D. (3,0,-1) 二、填空题(共15分,每小题3分) 系(院):——————专业:——————年级及班级:—————姓名:——————学号:————— ------------------------------------密-----------------------------------封----------------------------------线--------------------------------

高等数学(下)知识点总结

主要公式总结 第八章空间解析几何与向量代数 1、 二次曲面 1) 椭圆锥面:2 2222z b y a x =+ 2) 椭球面:122 222 2=++c z b y a x 旋转椭球面:1222222=++c z a y a x 3) 单叶双曲面:122 222 2=-+c z b y a x 双叶双曲面:1222222=--c z b y a x 4) 椭圆抛物面:z b y a x =+2222双曲抛物面(马鞍面):z b y a x =-22 22 5) 椭圆柱面:1222 2=+b y a x 双曲柱面:122 22=-b y a x 6) 抛物柱面: ay x =2 (二) 平面及其方程 1、 点法式方程: 0)()()(000=-+-+-z z C y y B x x A 法向量:),,(C B A n =ρ ,过点),,(000z y x 2、 一般式方程: 0=+++D Cz By Ax 截距式方程: 1=++c z b y a x 3、 两平面的夹角:),,(1111 C B A n =ρ ,),,(2222C B A n =ρ , 22 22 22 21 21 21 2 12121cos C B A C B A C C B B A A ++?++++= θ ?∏⊥∏210212121=++C C B B A A ;? ∏∏21//2 1 2121C C B B A A == 4、 点 ),,(0000z y x P 到平面0=+++D Cz By Ax 的距离: 2 2 2 000C B A D Cz By Ax d +++++= (三) 空间直线及其方程

相关文档
相关文档 最新文档