文档库 最新最全的文档下载
当前位置:文档库 › 自然数倒数的求和公式

自然数倒数的求和公式

自然数倒数的求和公式

自然数倒数的求和公式

自然数倒数和求和公式一直以来没有答案,但是我觉得可以用一个简单的积分式来表达。

这纯属我个人观点,可能有不严密的地方。

∑?∑∑=-=-=----=+?+++===n k n n n n n

k f f dx x x x

x x x x x x f n

x x f 11021,1)0()1(11111)()( 则引入函数

在这里,虽然x=1处没有定义,但是这个积分公式任然成立,在实际运算中,借助数学工具,积分上限可以取0.9999999…。用这个积分公式比直接用求和符号计算节省的时间随n 的增大而增大应用价值较高。

求连续自然数平方和的公式

求连续自然数平方和的公式 前面,在“求连续自然数立方和的公式”一中,介绍了用列表法推导公式的过程。这种方法浅显易懂,有它突出的优越性。在“有趣的图形数”一文中,也曾经用图形法推出过求连续自然数平方和的公式: 12+22+32…+n 2=6 ) 12)(1(++n n n 这里用列表法再来推导一下这个公式,进一步体会列表法的优点。 首先,算出从1开始的一些连续自然数的和与平方和,列出下表: n 1 2 3 4 5 6 …… 1+2+3+…+n 1 3 6 10 15 21 …… 12+22+32+…+n 2 1 5 14 30 55 91 …… 然后,以连续自然数的平方和为分子,连续自然数的和为分母,构成分数 A n =n n ++++++++ 3213212 222, 再根据表中的数据,算出分数A n 的值,列出下表: n 1 2 3 4 5 6 …… A n 1 35 37 3 311 313 …… 观察发现,A n 的通项公式是3 1 2+n 。 既然A n =n n ++++++++ 3213212222,而它的通项公式是3 1 2+n ,于是大胆猜想 n n ++++++++ 3213212222=3 1 2+n 。 因为分母1+2+3+…+n =2 ) 1(+n n , 所以 2)1(3212222+++++n n n =31 2+n 。 由此得到 12+22+32…+n 2= 2)1(+n n ×312+n =6 ) 12)(1(++n n n 。 即 12+22+32…+n 2= 6 ) 12)(1(++n n n 。

用数学归纳法很容易证明等式的正确性,这样就轻而易举地推出了求连续自然数平方和的公式。 这个妙不可言的推导过程是数学家波利亚的杰作,关键之处是他运用了“猜想—证明”的思路。联想到当年著名文学家胡适也曾经有过“大胆假设,小心求证”的名言。看来,无论数学也好,文学也好,追求真理的道路是相通的。 这件事对我们教师有什么启示吗?有,那就是:切莫轻视了对学生观察、类比和猜想能力的培养,这往往是培育创新思维的有效途径。

高中数学排列组合公式大全_高中数学排列组合重点知识.doc

高中数学排列组合公式大全_高中数学排列 组合重点知识 高中数学排列组合公式大全_高中数学排列组合重点知识 高中数学排列组合公式大全 1.排列及计算公式 从n个不同元素中,任取m(m n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n 个不同元素中取出m(m n)个元素的所有排列的个数,叫做从n 个不同元素中取出m个元素的排列数,用符号p(n,m)表示. p(n,m)=n(n-1)(n-2) (n-m+1)= n!/(n-m)!(规定0!=1). 2.组合及计算公式 从n个不同元素中,任取m(m n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号 c(n,m) 表示. c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!*n2!*...*nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).

排列(Pnm(n为下标,m为上标)) Pnm=n (n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标) =n!;0!=1;Pn1(n为下标1为上标)=n 组合(Cnm(n为下标,m为上标)) Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标) =1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m 高中数学排列组合公式记忆口诀 加法乘法两原理,贯穿始终的法则。与序无关是组合,要求有序是排列。 两个公式两性质,两种思想和方法。归纳出排列组合,应用问题须转化。 排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。 不重不漏多思考,捆绑插空是技巧。排列组合恒等式,定义证明建模试。 关于二项式定理,中国杨辉三角形。两条性质两公式,函数赋值变换式。 高中数学排列组合重点知识 1.计数原理知识点 ①乘法原理:N=n1 n2 n3 nM (分步) ②加法原理:N=n1+n2+n3+ +nM (分类) 2. 排列(有序)与组合(无序) Anm=n(n-1)(n-2)(n-3) (n-m+1)=n!/(n-m)! Ann =n! Cnm = n!/(n-m)!m!

自然数平方数列和立方数列求和公式

自然数平方数列和立方数列求和公式怎么推导?即: (1) 1^2+2^2+3^2+……+n^2=n(n+1)(2n+1)/6 (2) 1^3+2^3+3^3+……+n^3=[n(n+1)/2]^2 推导过程如下: 一. 1^2+2^2+3^2+……+n^2=n(n+1)(2n+1)/6 利用立方差公式 n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)] =n^2+(n-1)^2+n^2-n =2*n^2+(n-1)^2-n 2^3-1^3=2*2^2+1^2-2 3^3-2^3=2*3^2+2^2-3 4^3-3^3=2*4^2+3^2-4 ...... n^3-(n-1)^3=2*n^2+(n-1)^2-n 各等式全相加 n^3-1^3=2*(2^2+3^2+...+n^2)+[1^2+2^2+...+(n-1)^2]-(2+3+4+...+n) n^3-1=2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+...+(n-1)^2+n^2]-n^2-(2+3+4+... +n) n^3-1=3*(1^2+2^2+3^2+...+n^2)-2-n^2-(1+2+3+...+n)+1 n^3-1=3(1^2+2^2+...+n^2)-1-n^2-n(n+1)/2 3(1^2+2^2+...+n^2)=n^3+n^2+n(n+1)/2=(n/2)(2n^2+2n+n+1) =(n/2)(n+1)(2n+1) 故:1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6 二. 1^3+2^3+3^3+……+n^3=[n(n+1)/2]^2 证明如下: (n+1)^4-n^4=[(n+1)^2+n^2][(n+1)^2-n^2] =(2n^2+2n+1)(2n+1)

连续自然数的立方和

连续自然数立方和的公式 “图形法“ 早在公元100年前后,毕达哥拉斯学派的继承人尼科马霍斯,在他的著作《算术入门》中就曾经用非 常简单的方法推导过这个公式。 奇数列1,3,5,7,9,11,13,…有一个性质,很容易验证: 请你自上而下仔细观察这一系列等式的左端: 第1个等式左端,结束于第1个奇数; 第2个等式左端,结束于第3个奇数; 第3个等式左端,结束于第6个奇数; 第4个等式左端,结束于第10个奇数; 第5个等式左端,结束于第15个奇数; …… 结果发现,这些奇数的序数1,3,6,10,15,…原来是“三角形数”,它的每一项等于从1开始的连 续自然数的和。第1项是1,第2项是1+2=3,第3项是1+2+3=6,第4项是1+2+3+4=10,第5 项是1+2+3+4+5=15,……第n项是1+2+3+…+n=n(n+1)/2。即,第n个等式左端,结束于第n(n +1)/2个奇数。 然后,对上面这一系列等式的左右两端,分别求和: 右端是连续自然数的立方和13+23+33+…+n3。 左端是连续奇数的和。我们知道,求连续奇数的和,求到第几个奇数,就等于第几个奇数的平方。现在,求到第n(n+1)/2个奇数,当然等于[n(n+1)/2]2。 这样就得到求连续自然数立方和的公式: 这种方法思路清晰论证简单。尼科马霍斯之所以能够想到这个方法,显然跟毕达哥拉斯学派对图形数的 宠爱有关。图形数是自然数的形象化,自然数是众数之源,自然数真是一个取之不尽用之不竭的宝藏。

“列表法” 这里再介绍一种列表法,同样可以推出这个公式,并且更简单,更好理解。 第一步:列一个表,在第一行填入一个因数1、2、3、4、5,在第一列填入另一个因数1、2、3、4、5。 第二步:在右下方的空格里分别填入对应的两个因数的积。 显然,所有乘积的和等于 这5块依次是:

排 列 组 合 公 式 及 排 列 组 合 算 法

排列组合n选m,组合算法——0-1转换算法(巧妙算法)C++实现 知识储备 排列的定义:从n个不同元素中,任取m(m≤n,m与n均为自然数,下同)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 A(n,m)表示计算公式: 注意:m中取n个数,按照一定顺序排列出来,排列是有顺序的,就算已经出现过一次的几个数。只要顺序不同,就能得出一个排列的组合,例如1,2,3和1,3,2是两个组合。 组合的定义:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号 C(n,m) 表示。 计算公式: 注意:m中取n个数,将他们组合在一起,并且顺序不用管,1,2,3和1,3,2其实是一个组合。只要组合里面数不同即可 组合算法 本算法的思路是开两个数组,一个index[n]数组,其下标0~n-1表示1到n个数,1代表的数被选中,为0则没选中。value[n]数组表示组合

的数值,作为输出之用。 ? 首先初始化,将index数组前m个元素置1,表示第一个组合为前m 个数,后面的置为0。? 然后从左到右扫描数组元素值的“10”组合,找到第一个“10”组合后将其变为?“01”组合,同时将其左边的所有“1”全部移动到数组的最左端。一起得到下一个组合(是一起得出,是一起得出,是一起得出)重复1、2步骤,当第一个“1”移动到数组的n-m的位置,即m个“1”全部移动到最右端时;即直到无法找到”10”组合,就得到了最后一个组合。 组合的个数为: 例如求5中选3的组合: 1 1 1 0 0 --1,2,3? 1 1 0 1 0 --1,2,4? 1 0 1 1 0 --1,3,4? 0 1 1 1 0 --2,3,4? 1 1 0 0 1 --1,2,5? 1 0 1 0 1 --1,3,5? 0 1 1 0 1 --2,3,5? 1 0 0 1 1 --1,4,5? 0 1 0 1 1 --2,4,5? 0 0 1 1 1 --3,4,5 代码如下:

最新自然数幂次方和公式

1 2 自然数幂次方和的另一组公式 3 摘要:一般的自然数幂次方和公式是用n 的p+1次方的多项式表示,考虑到任 4 一多项式均可用k n C 表示,本文给出了自然数幂次方和用k n C 表示的方法,并且给 5 出了相应的系数完整表达式。这比多项式表达方便得多,因为多项式表达的系数 6 至今仍是递推公式表达。 7 8 9 由笔者的文章(注【1】)知,自然数幂次方和可以用关于n 的多项式表达,而 10 每一个多项式均可用k n C 表示的,因此可猜想自然数幂次方和也可以用k n C 表达出 11 来。 12 假设自然数幂次方和可以写成以下形式 13 ∑∑=++===p k k n k n k p n C A k S 1 111 。。。。。。(1) 14 那么同理可应有: 15 ∑∑=++--=-==p k k n k n k p n C A k S 1 11)1(1 1 1 16 那么: 17 ∑∑=+=++--=-=p k k n k p k k n k n n p C A C A S S n 1 1 1 11 1 18

[ ]∑∑==+++=-=p k k n k p k k n k n k p C A C C A n 1 1 111 19 20 ∑== p k k n k p C A n 1 21 因为对于充分大的自然数n 均使得上述式子成立,所以上式对应的应该是一个22 关于n 的p 次多项式,其中: 23 )1).....(1(k n n n C k n -+-= 24 这仅仅是一个多项式的写法,与排列组合无关, n 可为任意的数。 25 分别令n=1,2,3, 。。。。p-1时就有: 26 01 1 1 1 +=+ ==∑∑∑∑=+===t k k t k p t k k t k t k k t k p k k t k p C A C A C A C A t 27 ∑==t k k t k p C A t 1 )1...3,2,1(-=p t 。。。。。。。。 28 (2) 29 ∑-=-=1 1t k k t k p t C A t A )1...3,2,1(-=p t 。。。。。。。。 30 (3) 31 这是一个递推的数列,其中A 1=1 , 很显然,通过它可以求出所有的系数t A ,32 仿照笔者的文章(注【1】)可证明,由(3)式求出的系数t A ,使得公式(1)33 成立,即自然数幂次方和的公式由(1)(3)给出了。 34 其中(3)式是递推公式,那么能不能直接写出系数A t 的表达式呢,下35 面给出这个结论。 36

小学奥数 数列求和 巧妙求和 含答案

第16讲巧妙求和 一、知识要点 某些问题,可以转化为求若干个数的和,在解决这些问题时,同样要先判断是否求某个等差数列的和。如果是等差数列求和,才可用等差数列求和公式。 在解决自然数的数字问题时,应根据题目的具体特点,有时可考虑将题中的数适当分组,并将每组中的数合理配对,使问题得以顺利解决。 二、精讲精练 【例题1】刘俊读一本长篇小说,他第一天读30页,从第二天起,他每天读的页数都前一天多3页,第11天读了60页,正好读完。这本书共有多少页? 【思路导航】根据条件“他每天读的页数都比前一天多3页”可以知道他每天读的页数是按一定规律排列的数,即30、33、36、……57、60。要求这本书共多少页也就是求出这列数的和。这列数是一个等差数列,首项=30,末项=60,项数=11.因此可以很快得解: (30+60)×11÷2=495(页) 想一想:如果把“第11天”改为“最后一天”该怎样解答? 练习1: 1.刘师傅做一批零件,第一天做了30个,以的每天都比前一天多做2个,第15天做了48个,正好做完。这批零件共有多少个? 2.胡茜读一本故事书,她第一天读了20页,从第二天起,每天读的页数都比前一天多5页。最后一天读了50页恰好读完,这本书共有多少页? 3.丽丽学英语单词,第一天学会了6个,以后每天都比前一天多学1个,最后一天学会了16个。丽丽在这些天中学会了多少个英语单词? 【例题2】30把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试几次? 【思路导航】开第一把锁时,如果不凑巧,试了29把钥匙还不行,那所剩的一把就一定能把它打开,即开第一把锁至多需要试29次;同理,开第二把锁至多需试28次,开第三把锁至多需试27次……等打开第29把锁,剩下的最后一把不用试,一定能打开。所以,至多需试29+28+27+…+2+1=(29+1)×29÷2=435(次)。 练习2: 1.有80把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试多少次? 2.有一些锁的钥匙搞乱了,已知至多要试28次,就能使每把锁都配上自己的钥匙。一共有几把锁的钥匙搞乱了? 3.有10只盒子,44只羽毛球。能不能把44只羽毛球放到盒子中去,使各个盒子里的羽毛球只数不相等?

排 列 组 合 公 式 及 排 列 组 合 算 法 ( 2 0 2 0 )

字符串的排列组合算法合集 全排列在笔试面试中很热门,因为它难度适中,既可以考察递归实现,又能进一步考察非递归的实现,便于区分出考生的水平。所以在百度和迅雷的校园招聘以及程序员和软件设计师的考试中都考到了,因此本文对全排列作下总结帮助大家更好的学习和理解。对本文有任何补充之处,欢迎大家指出。 首先来看看题目是如何要求的(百度迅雷校招笔试题)。一、字符串的排列 用C++写一个函数, 如 Foo(const char *str), 打印出 str 的全排列,如 abc 的全排列: abc, acb, bca, dac, cab, cba 一、全排列的递归实现 为方便起见,用123来示例下。123的全排列有123、132、213、231、312、321这六种。首先考虑213和321这二个数是如何得出的。显然这二个都是123中的1与后面两数交换得到的。然后可以将123的第二个数和每三个数交换得到132。同理可以根据213和321来得231和312。因此可以知道——全排列就是从第一个数字起每个数分别与它后面的数字交换。找到这个规律后,递归的代码就很容易写出来了: view plaincopy #includeiostream?using?namespace?std;?#includeassert.h?v oid?Permutation(char*?pStr,?char*?pBegin)?{?assert(pStr?pBe

gin);?if(*pBegin?==?'0')?printf("%s",pStr);?else?{?for(char *?pCh?=?pBegin;?*pCh?!=?'0';?pCh++)?{?swap(*pBegin,*pCh);?P ermutation(pStr,?pBegin+1);?swap(*pBegin,*pCh);?}?}?}?int?m ain(void)?{?char?str[]?=?"abc";?Permutation(str,str);?retur n?0;?}? 另外一种写法: view plaincopy --k表示当前选取到第几个数,m表示共有多少个数?void?Permutation(char*?pStr,int?k,int?m)?{?assert(pStr); ?if(k?==?m)?{?static?int?num?=?1;?--局部静态变量,用来统计全排列的个数?printf("第%d个排列t%s",num++,pStr);?}?else?{?for(int?i?=?k;?i?=?m;?i++)?{?swa p(*(pStr+k),*(pStr+i));?Permutation(pStr,?k?+?1?,?m);?swap( *(pStr+k),*(pStr+i));?}?}?}?int?main(void)?{?char?str[]?=?" abc";?Permutation(str?,?0?,?strlen(str)-1);?return?0;?}? 如果字符串中有重复字符的话,上面的那个方法肯定不会符合要求的,因此现在要想办法来去掉重复的数列。二、去掉重复的全排列的递归实现 由于全排列就是从第一个数字起每个数分别与它后面的数字交换。我们先尝试加个这样的判断——如果一个数与后面的数字相同那么这二个数就不交换了。如122,第一个数与后面交换得212、221。然后122中第二数就不用与第三个数交换了,但对212,它第二个数

自然数幂求和公式的存在与规律探讨

本科毕业论文 自然数幂求和公式的存在与规律探讨 SUM FORMULA OF POWER OF NATURAL NUMBER'S EXISTENCE AND REGULARITY 学院(部):理学院 专业班级:08-2数学与应用数学 学生姓名:张兴刚 指导教师:范自强 2012年6 月1 日

自然数幂求和公式的存在与规律探讨 摘要 自然数幂求和是一个古老的数学问题,本文从线性空间入手,提出关于多项式的自然线性空间的概念,利用了线性空间的简单性质,证明了任意正整数的自然数幂求和公式的存在和简单规律;归纳出自然数幂求和公式中一条精彩的结论,系数定理,一劳永逸的解决并揭示了自然数幂求和问题的内涵;本文亦从线性空间的角度,提出自由空间概念,为自然数幂求和问题带来了一种新的视角。 关键字:自然数幂求和、自然线性空间、多项式、系数定理、自由线性空间

Sum formula of power of natural number 's existence and regularity Abstract Natural number power sum is an ancient mathematical problems, this article from the linear space sets out, put forward on polynomial natural linear space, linear space of the simple nature, it is proved that for any positive integer sum formula of power of natural number exists, and the simple rule; summarize sum formula of power of natural number in a wonderful conclusion coefficient theorem, put things right once and for all solutions and reveals the natural number power sum problem connotation; this paper also from linear spatial angle, put forward the concept of free space, is a natural number power sum problem brought a new perspective. Keywords: natural number power sum, natural linear space, polynomial coefficient theorem, free linear space

常用的一些求和公式

下面是常用的一些求和公式:

a1, a1+d, a1+2d, a1+3d, .... (d为常数) 称为公差为d的等差数列.与等差数列相应的级数称为等差级数,又称算术级数. 通项公式 前n项和 等差中项 a1, a1q, a1q2, a1q3....,(q为常数) 称为公比为q的等比数列.与等比数列相应的级数称为等比级数,又称几何级数. 通项公式 前n项和 等比中项

无穷递减等比级数的和 更多地了解数列与级数:等差数列与等差级数(算术级数) 等比数列 等比数列的通项公式 等比数列求和公式 (1) 等比数列:a (n+1)/an=q (n∈N)。 (2) 通项公式:an=a1×q^(n-1); 推广式:an=am×q^(n-m); (3) 求和公式:Sn=n*a1 (q=1) Sn=a1(1-q^n)/(1-q) =(a1-an*q)/(1-q) (q≠1) (q为比值,n为项数) (4)性质: ①若m、n、p、q∈N,且m+n=p+q,则am*an=ap*aq; ②在等比数列中,依次每k项之和仍成等比数列. ③若m、n、q∈N,且m+n=2q,则am*an=aq^2 (5) "G是a、b的等比中项""G^2=ab(G ≠ 0)". (6)在等比数列中,首项a1与公比q都不为零. 注意:上述公式中an表示等比数列的第n项。 等比数列 如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0)。 (1)等比数列的通项公式是:An=A1*q^(n-1) 若通项公式变形为an=a1/q*q^n(n∈N*),当q>0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q*q^x上的一群孤立的点。

排列组合公式排列组合计算公式----高中数学!

排列组合公式/排列组合计算公式 公式P是指排列,从N个元素取R个进行排列。 公式C是指组合,从N个元素取R个,不进行排列。 N-元素的总个数 R参与选择的元素个数 !-阶乘,如9!=9*8*7*6*5*4*3*2*1 从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1); 因为从n到(n-r+1)个数为n-(n-r+1)=r 举例: Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数? A1: 123和213是两个不同的排列数。即对排列顺序有要求的,既属于“排列P”计算范畴。 上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积) Q2: 有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”? A2: 213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。即不要求顺序的,属于“组合C”计算范畴。 上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1 排列、组合的概念和公式典型例题分析 例1设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每

名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法? 解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法. (2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法. 点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算. 例2 排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种? 解依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出: ∴ 符合题意的不同排法共有9种. 点评按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型. 例3判断下列问题是排列问题还是组合问题?并计算出结果. (1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手? (2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法? (3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积? (4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?②从中选出2盆放在教室有多少种不同的选法? 分析(1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析. (1)①是排列问题,共用了封信;②是组合问题,共需握手(次). (2)①是排列问题,共有(种)不同的选法;②是组合问题,共有种不同的选法. (3)①是排列问题,共有种不同的商;②是组合问题,共有种不同的积. (4)①是排列问题,共有种不同的选法;②是组合问题,共有种不同的选法. 例4证明. 证明左式

推导自然数立方和公式两种方法

推导213)1(21??????+=∑=n n k n k 的两种方法 通化市第一中学校 刘天云 邮编 134001 方法一:拆项累加相消求和 已知:)12)(1(6 112++= ∑=n n n k n k 而)]2)(1()1()3)(2)(1([4 1)2)(1(++--+++=++k k k k k k k k k k k 则:∑=+++= ++n k n n n n k k k 1 )3)(2)(1(41)]2)(1([ 所以:∑∑∑∑====--++=n k n k n k n k k k k k k k 1 1121323)]2)(1([ )1(2 12)12)(1(613)3)(2)(1(41+?-++?-+++=n n n n n n n n n 2)1(21?? ????+=n n 另外:∑=+++= ++n k n n n n k k k 1)3)(2)(1(4 1)]2)(1([还可以作如下证明: )2)(1(432321++++??+??n n n )(6323433++++=n C C C )3)(2)(1(4 1643+++==+n n n n C n 方法二:构造群数列推导 构造奇数列,并按第n 群中含有个奇数的方式分群,即 1 / 3,5 / 7,9,11 / 13,15,17,19 / …… 我们用两种方法研究前n 群的所有数的和. 1、第n 群最末一个数是数列的第)1(2 1+n n 项,而且该项为 11)1(2 122)1(21 -+=-+?=+n n n n a n n

那么,第n 群最初一个数是数列的第1)1(2 1+-n n 项,而且该项为 111)1(21221)1(21 +-=-?? ????+-?=+-n n n n a n n 所以,第n 群的n 个数的和为:322)]1()1[(2 1n n n n n n =-+++-. 则前n 群的所有数的和可记作∑=n k k 13. 2、前n 群所有数的和为该奇数列的前)1(21+n n 项的和,即2 )1(21??????+n n 因此:2 13)1(21??????+=∑=n n k n k

VB 第4课 连续自然数求和

第4课连续自然数求和 在运用VB6.0进行程序设计时,经常会发现某一段代码是需要反复执行的,我们把用以实现此种需求的程序结构称为循环结构。在VB6.0中提供的循环结构有两种,一种是For…Next循环;另一种是Do…Loop循环。本节课中,我们将依托一个“连续自然数求和”小程序来引出For...Next循环,并针对其进行简单讨论。 编写意图 流程控制语句是VB6.0程序设计中极其重要的一环,可以说理解并掌握了VB6.0编程中流程控制语句的使用方法,就相当于打开了一扇通往计算机程序设计世界的大门。流程控制语句的学习其实更是一种逻辑思维模式的学习,是一种较为复杂的因果判定思想的形成过程,这种思想在所有的编程语言中也都是通用的。 初中四年级的学生经过多年的学习生活,已经具备了较好的逻辑思维能力和自学能力,所以,本节课我们设计了制作“连续自然数求和”小程序这样一个学习任务,通过这个任务的完成,引出流程控制语句中的For...Next循环结构,同时学习了列表框控件属性的修改方法。 内容分析 课文中出示的“连续自然数求和”小程序共主要涉及到了:修改控件属性、For...Next 循环结构以及简单循环程序的编写、卸载当前窗体四个知识点,其中隐含当前窗体,本节侧重修改控件属性的方法和循环程序的编写这两个知识点地学习。 教学目标 1.知识与技能 ◆理解For...Next循环结构的作用,掌握其语法形式和使用其进行简单循环程序的编写地方法,进而初步形成程序设计中循环程序的概念; ◆列表框控件的属性设置方法。 2.过程与方法 ◆通过学生自读教材和上机对比操作演练,结合前面学习过的控件属性知识,使其能够自行发现并总结出控件属性的修改方法; ◆通过学生自读教材,使学生在对“连续自然数求和”小程序进行分析的过程中理解并掌握For...Next循环结构及运用For...Next语句进行循环程序设计地方法。 3.情感态度与价值观 ◆使学生因自行探究并总结出了控件属性的修改方法而感受探究成功的快乐的同时,进一步增强其自学能力、树立自信心、克服其对计算机编程的恐惧心理; ◆使学生通过对连续自然数进行传统的累加运算与应用循环程序设计“连续自然数求和”程序的对比中认识到计算机程序设计在生活中的作用和意义。

排列组合公式_排列组合计算公式

排列组合公式/排列组合计算公式 排列P------和顺序有关 组合C -------不牵涉到顺序的问题 排列分顺序,组合不分 例如把5本不同的书分给3个人,有几种分法. "排列" 把5本书分给3个人,有几种分法"组合" 1.排列及计算公式 从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示. p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1). 2.组合及计算公式 从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号 c(n,m) 表示. c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!*n2!*...*nk!).

k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m). 排列(Pnm(n为下标,m为上标)) Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n 分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n 组合(Cnm(n为下标,m为上标)) Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m 2008-07-08 13:30 公式P是指排列,从N个元素取R个进行排列。 公式C是指组合,从N个元素取R个,不进行排列。 N-元素的总个数 R参与选择的元素个数 !-阶乘,如 9!=9*8*7*6*5*4*3*2*1 从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1); 因为从n到(n-r+1)个数为n-(n-r+1)=r 举例: Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数? A1: 123和213是两个不同的排列数。即对排列顺序有要求的,既属于“排列P”计算范畴。 上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积) Q2: 有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”? A2: 213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。即不要求顺序的,属于“组合C”计算范畴。 上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1 排列、组合的概念和公式典型例题分析 例1设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法? 解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法.

幂级数求和函数方法概括与总结

幂级数求和函数方法概括与总结

常见幂级数求和函数方法综述 引言 级数是高等数学体系的重要组成部分,它是在生产实践和科学实验推动下逐步形成和发展起来的。中国魏晋时期的数学家刘徽早在公元263年创立了“割圆术”,其要旨是用圆内接正多边形去逐步逼近圆,从而求得圆的面积。这种“割圆术”就已经建立了级数的思想方法,即无限多个数的累加问题。而将一个函数展开成无穷级数的概念最早来自于14世纪印度的马徳哈瓦,他首先发展了幂级数的概念,对泰勒级数、麦克劳林级数、无穷级数的有理数逼近等做了研究。同时,他也开始讨论判断无穷级数的敛散性方法。到了19世纪,高斯、欧拉、柯西等各自给出了各种判别级数审敛法则,使级数理论全面发展起来。中国传统数学在幂级数理论研究上可谓一枝独秀,清代数学家董祐诚、坎各达等运用具有传统数学特色的方法对三角函数、对数函数等初等函数幂级数展开问题进行了深入的研究。而今,级数的理论已经发展的相当丰富和完整,在工程实践中有着广泛的应用,级数可以用来表示函数、研究函数的性质、也是进行数值计算的一种工具。它在自然科学、工程技术和数学本身方面都有广泛的作用。 幂级数是一类最简单的函数项级数,在幂级数理论中,对给定幂级数分析其收敛性,求收敛幂级数的和函数是重要内容之一。但很多人往往对这一内容感到困难。产生这一问题的一个重要原因是教材对这一问题讨论较少,仅有的一两个例题使得我们对幂级数求和中的诸多类型问题感到无从下手。事实上,求幂级数和函数的方法与技巧是多种多样的,一般要综合运用求导、拼凑、分解等来求解,因此它是一个难度较大、技巧较高的有趣的数学问题。 一、幂级数的基本概念 (一)、幂级数的定义 [1] 1、设()(1,2,3 )n u x n =是定义在数集E 上的一个函数列,则称 12()()(),n u x u x u x x E ++++ ∈ 为定义在E 上的函数项级数,简记为1 ()n n u x ∞=∑ 。 2、具有下列形式的函数项级数 2 00102000 ()()()()n n n n n a x x a a x x a x x a x x ∞ =-=+-+-+ +-+ ∑

数列的求和问题(规律总结)

数列的求和问题 知识点一:数列的前项和的相关公式 1.任意数列的第项与前项和之间的关系式: 2.等差数列的前项和公式: (为常数) 当d≠0时,S n是关于n的二次式且常数项为0; 当d=0时(a1≠0),S n=na1是关于n的正比例式. 3.等比数列的前项和公式: 当时,,, 当时,或 知识点二:求数列的前项和的几种常用方法 1.公式法: 如果一个数列是等差或者等比数列,求其前项和可直接利用等差数列或等比数列的前项和公式求和; 2.分组转化法: 把数列的每一项拆分成两项或者多项,或者把数列的项重新组合,或者把整个数列分成两部分等等,使其转化成等差数列或者等比数列等可求和的数列分别进行求和。例如对通项公式为a n=2n+3n的数列求和。 3.倒序相加法: 如果一个数列,与首末两项等距的两项之和等于首末两项之和,可以采用把正着写和与倒着写和的两个和式相加,就得到一个常数列的和.例如等差数列前项和公式的推导。对 通项公式为的数列求和。

4.错位相减法: 如果一个数列的通项是由一个非常数列的等差数列与等比数列的对应 项乘积组成的,求和的时候可以采用错位相减法.即错位相减法适用于通项为 (其中是公差d≠0的等差数列,是公比q≠1的等比数列)(也称为“差比数列”) 的数列求前项和.例如对通项公式为的数列求和。 一般步骤: ,则 所以有 注意: ①错位相减法是基于方程思想和数列规律的一种方法。一般都是把前项和的两边都乘以等比数列的公 比q后,再错位相减求出其前项和; ②在使用错位相减法求和时一定要注意讨论等比数列中其公比q是否有可能等于1,若q=1,错位相减法 会不成立. 5.裂项相消法: 把数列的通项拆成两项之差,然后把数列的每一项都按照这种方法拆成两项的差,以达到在求和的时候隔项正负相抵消的目的,使前n项的和变成只剩下若干少数项的和的方法. 例如对通项公式为的数列求和。 常见的拆项公式: ①; ②若为等差数列,且公差d不为0,首项也不为0,则; ③若的通项的分子为非零常数,分母为非常数列的等差数列的两项积的形式时, 则. ④;.

排列组合计算公式及经典例题汇总

排列组合公式/排列组合计算公式 排列A------和顺序有关 组合 C -------不牵涉到顺序的问题 排列分顺序,组合不分 例如把5本不同的书分给3个人,有几种分法. "排列" 把5本书分给3个人,有几种分法"组合" 1.排列及计算公式 从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号A(n,m)表示. A(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1). 2.组合及计算公式 从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n 个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号

c(n,m) 表示. c(n,m)=A(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=A(n,r)/r=n!/r(n-r)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!*n2!*...*nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为 c(m+k-1,m). 排列(Anm(n为下标,m为上标)) Anm=n×(n-1)....(n-m+1);Anm=n!/(n-m)!(注:!是阶乘符号);Ann(两个n分别为上标和下标)=n!;0!=1;An1(n为下标1为上标)=n

斯特林数和自然数前m项n次方的求和公式

斯特林数和自然数前m 项n 次方的求和公式 将 n 个元素,分成 k 个非空子集,不同的分配方法种数,称为斯特林数(Stirling Number ),记为),(k n S ,n k ≤≤1。 例如,将4个物体d c b a ,,,分成3个非空子集,有下列6种方法: )}(),(),,{(d c b a ,)}(),(),,{(d b c a ,)}(),(),,{(c b d a , )}(),(),,{(d a c b ,)}(),(),,{(c a d b ,)}(),(),,{(b a d c 。 所以,6)3,4(=S 。 斯特林数),(k n S 的值列表如下: 容易看出,有 1),()1,(==n n S n S ,12)2,(1 -=-n n S ,2 )1,(2 = =-C n n S n 。定理1 当 n k ≤≤2 时,有 ),()1,(),1(k n kS k n S k n S +-=+ 。 证 把1+n 个元素分成k 个非空子集,有),1(k n S +种不同分法。 把1+n 个元素分成k 个非空子集,也可以这样考虑:或者将第1+n 个元素单独作为1个子集,其余n 个元素分成1-k 个非空子集,这种情况下有)1,(-k n S 种不同做法;或者先将前n 个元素分成k 个非空子集,有),(k n S 种分法,再将第1+n 个元素插入这k 个子集,有k 种选择,这种情况下有k ),(k n S 种不同做法。所以共有),()1,(k n kS k n S +-种分法。 两种考虑,结果应该是一样的,因此有 ),()1,(),1(k n kS k n S k n S +-=+ 。 如果规定当1时,0),(=k n S ,则公式 ),()1,(),1(k n kS k n S k n S +-=+对 任何正整数n 和任何整数k 都成立。

相关文档
相关文档 最新文档