文档库 最新最全的文档下载
当前位置:文档库 › 测量结果不确定度的评定与表示(北京国质联企业管理中心)

测量结果不确定度的评定与表示(北京国质联企业管理中心)

测量结果不确定度的评定与表示(北京国质联企业管理中心)
测量结果不确定度的评定与表示(北京国质联企业管理中心)

测量结果不确定度的评定与表示

一、有关测量不确定度的定义

1、测量不确定度 measurement uncertainty

测量的不确定度 uncertainty of measurement

不确定度uncertainty

基于所用的信息,表征赋予某被测量之量值的分散性的参数。

注:

1、测量不确定度是基于所用信息,定量地表征了关于被测量的知识。

2、测量不确定度由可获得的信息,表征了被测量一组量值或其分布的分散性,这种分散性是由于被测量定义上的不确定、测量中的随机影响和系统影响所致。

3、如果作为被测量的估计值的单个量值发生改变,则相关的测量不确定度也会改变。

4、此参数可以是诸如称为标准测量不确定度的标准差(或其给定的倍数),或者是说明了包含概率的区间的半宽度。

5、测量不确定度一般由多个分量组成,其中一些分量可以通过来自测量列量值的统计分布,进行测量不确定度的评定,并用实验标准差表征。而另一些分量可以通过基于经验或其他信息的假设概率分布进行测量不确定度的评定,也可用标准差表征。

6、测量结果的量值,应理解为被测量的最佳估计值;而测量不确定度的全部分量对分散性有贡献,包括那些由于系统影响引起的分量,诸如与修正值以及测量标准的赋值相关联的分量。

7、根据预期的用途,可以给出测量结果的与一个声称的包含因子一起的扩展不确定度,以便能给出可望以高概率包容被测量或给出可望包容对被测量有贡献的所有量值散布的大部分的包含区间。

2、定义测量不确定度 definitional measurement uncertainty

定义不确定度 definitional uncertainty

由于在被测量定义中内在的细节不充分引起的测量不确定度分量。

注:

1、被测量描述细节上的任何变化,通过测量函数的相应变化,会产生新的被测量,并带来新的定义上的测量不确定度。

2、定义被测量是任何测量程序的第一步。所以,由此引起的定义测量不确定度是测量不确定度的一个分量。

3、由被测量定义引起的不确定度是测量不确定度的下限。

3、测量不确定度的A类评定Type A evaluation of measurement uncertainty

A类评定 Type A evaluation

通过对重复性条件测量所得量值的统计分析,评定测量不确定度的方法。

4、测量不确定度的B类评定Type B evaluation of measurement uncertainty B类

评定 Type B evaluation

通过不是对测量所得量值的统计分析手段,评定测量不确定度的方法。

注:测量不确定度的该分量可以是:

2与分布的量值相联系;

2与有证参考物质的量值相联系;

2得自校准证书并引入漂移;

2得自经验的测量仪器的准确度等级;

2得自由人员经验推断的极限值。

5、标准测量不确定度 standard measurement uncertainty

测量的标准不确定度 standard uncertainty of measurement

标准不确定度 standard uncertainty

以标准差表示的测量不确定度。

注:有时表征测量结果的标准测量不确定度是考虑了测量函数输入量的标准测量不确定度和协方差求得的。该标准测量不确定度在GUM中称合成标准不确定度。

6、合成标准测量不确定度 combined standard measurement uncertainty 合成标准

不确定度combined standard uncertainty

当测量结果由若干个其他量的量值求得时,测量结果的标准测量不确定度。它等于各项其他量加权值的方差和/或协方差之和的正平方根值。其权是按测量结果如何随这些量变化而计算得到的。

7、包含因子 coverage factor

为求得扩展不确定度,对测量结果的合成标准不确定度所乘的数。

8、扩展测量不确定度 expanded measurement uncertainty

扩展不确定度 expanded uncertainty

以某量的估计值为中心,具有特定包含概率的对称包含区间的半宽度。

注:

1、扩展不确定度只是单峰、对称的概率密度函数定义的。

2、扩展不确定度称为“总不确定度”。

3、实际上,扩展不确定度通常是测量结果的标准不确定度的倍数。

9、包含区间 coverage interval

基于可获得的信息,能赋予某量的值所处的区间,该区间与一定高的概率相联系。

20、包含概率 coverage probability

与包含区间相联系的概率。

注:包含概率有时称为“置信水平”。

21、目标测量不确定度 target measurement uncertainty

目标不确定度 target uncertainty

作为目标制定出来的,根据测量结果预期用途决定的测量不确定度。

测量误差理论是测量不确定度评定的基础,而测量不确定度评定则是测量误差理论的一项重要的应用。当对测量设备进行校准和检定后,要出具校准证书或检定证书,按照ISO/IEC17025和ISO10012标准的规定,应给出测量结果和测量不确定度。在研制测量标准及制定计量检定规程或校准规范提出检定方法或校准方法时,也要评定标准装置的不确定

在本章第一节中已介绍测量不确定度的有关概念,下面根据JIF1059-1999《测量不确定度评定与表示》及(GUM)ISO:1993(E)《测量不确定度表达指南》简要介绍测量不确定度

对测量不确定度分析,要考虑实际测量过程中有哪些因素会影响结果的不确定度,并列出不确定度分量。不确定度分析取决于对测量方法、测量设备及被测量的本质的认识,必须

1

例如,定义被测量为一根标称值是500mm长的钢棒的长度。如果要求测准到μm量级,则被测量的定义就不够完整。由于被测的钢棒受温度和压力的影响已比较明显,而这些条件在定义中没有说明,由于定义的不完整使测量结果引入温度和压力的不确定度。完整的定义应是:标称值是500mm的钢棒在250℃和101325Pa

2

例如,对第1项中的完整定义的被测量,由于实际测量时温度和压力达不到定义的要求,

3

例如,被测量为某种介质材料在给定频率时的相对介电常数。由于测量方法和测量设备的限制,只能对该介质材料的一部分进行测量。如果由于材料成分和均匀性方面的不足,测

4

例如,同样以测量钢棒的长度为例,钢棒的支撑方式有明显影响,但测量时由于认识不

5

例如,对被测仪表进行示值估读时(一般是估读到最小分度的1/10),由于存在人的主观因素,使得估读值

6、测量仪器的计量性能(如灵敏度、鉴别力阈、分辨力、死区及稳定性等)

X-2

x

δ~X+

2

x

δ(δx 为指示装置的分辨力)内变动,却给出同样的示值X

7

例如,用活塞式压力计检定精密压力表,压力表示值的不确定度中包括所用的标准器——

8

例如,燃油加油机检定时,计算液体容量要考虑液体膨胀系数t α,查数据手册可以得到所需的t α值,该值的不确定度也应该由手册中查出,它同样是测量结果不确定度的一个

9

例如,被测量的表达式的近拟程度,自动化测试程序的迭代程度,由于测量系统不完善引起的绝缘漏电、热电势、引线电阻上压降等均会引起的不确定度。

10

上述不确定度的来源可能相关,如,第10项可能与前面各项有关。在实际工作中,对于那些尚未认识到的系统效应,显然是不可能在不确定度评定中予以考虑的,但它可能导致

以上10项来源大致归纳为:测量方法(1,8,9)、测量仪器(6,7)、测量条件(2,4)、测量人员(5)、被测对象(3,10)

测量不确定度评定分为A 类测量不确定度评定和B 类测量不确定度评定,用对观测列进行统计分析的方法来评定标准不确定度,称为A 类评定;而用不同于对观测列进行统计分析的方法来评定标准不确定度,称为B 类评定。将它分为A 类和B 类的目的在于说明计算不确定度分量的两种不同途径,仅仅是便于研究而已,并非表明两种计算方法得到的分量本质上存在着差异。两种计算方法均基于概率分布,用任何一种方法得到的不确定度分量都可用标

用A 类方法得到的不确定度分量的估计方差2

u 是根据一系统的重复观测值计算出的,亦为常用的统计估计方差2s 。估计的标准偏差u(2

u 的正平方根)=s

用B 类方法得到的不确定度分量的估计方差u 2

是依据以下已知的有关信息或资料评

(1)以前的观测数据(如计量标准的数据)

(2)对有关技术资料和测量仪器特性的了解和经验(如所用测量仪器的原理及有关知识)

(3)生产部门提供的技术说明文件(如说明书)

(4)校准证书、检定证书或其他证件/文件所提供的数据(或准确度等级)

(5)

(6)规定实验方法的国家标准或类似技术文件中给出的重复性限r 或复现性限R

用这类方法得到的估计方差2

u ,简称为B

测量结果的总的不确定度称为合成标准不确定度,表示为u c ,扩展不确定度是用不确定度传播定律计算出的标准偏差估计值,

等于对所有的方差和协方差分量求和后得到的总方

用合成标准不确定度u c 乘上包含因子(覆盖因子)k 得到扩展不确定度U ,其用途是提供

测量结果的一个区间,期望被测量以较高的置信水平落在此区间 上述几个不确定度的关系见框图

1

测量不确定度的分量 测量结果的不确定度

图1-4-5

(三)测量不确定度的评定

1、建立数学模型

设被测量Y 由其他的n 个测量值1X ,2X ,3X ,…,n X

Y =f(1X ,2X ,3X ,…,n X )

由1X ,2X ,3X ,…,n X 的最佳估计值n x x x x ,.....,,,321而得出y 的最佳值,即测量结果为

y =(321,,x x x ) (1)

如:测量某长方体体积V ,需测量长(1x )、宽(2x )、高(3x )

V =f(n x x x x ,.....,,,321)=3

21x x x ??

测量结果y 的不确定度取决于i x 的不确定度u(i x )。i x 是y 的不确定度来源,在寻找其不确定度来源时,可从所使用的测量仪器、环境条件、检测人员、检测方法等方面综合考

i x 不确定度分量的评定,可通过测量得到的数据计算其实验标准偏差的A 类标准不确定度分量,或根据经验数据计算其B

2、A 类标准不确定度评定

图2 A- 类不确定度评定程序

注:

(1)A 类标准不确定度评定要求测量次数n 不小于

6

(2)当测量次数较少时,也可采用最大残差法、极差法等计算u(i x

)

(3)u(i x )一般取1~

2

(4)A 类标准不确v =n-1 自由度——

(a)在重复性条件下,对被测量作n 次独立测量时,和的项数即为残差的个数

n 而Σvi =0是一个约束条件,即限制条件为1。因此,自由度v =n-1

(b)当测量所得n 组数据用t 个未知数按最小二乘法确定经验模型时,自由度v =n-t

(c)评定扩展不确定度Up 时,自由度用于求包含因子kp

(d)合成标准不确定度Uc(y)的自由度,称为有效自由度eff ν。当被测量y 接近正态分布时,包含因子等于t 分布临界值,即kp =tp(eff ν)

3、B

类标准不确定度评定

当被测量的估计值不是由重复观测得到时,标准偏差无法由A 类评定,只能根据对x 的可能变化的有关信息或资料进行评定。统计中是以先验条件推论,

如贝叶斯统计推断来估

1)B 类标准不确定度评定方法B 类标准不确定度的评定程序见图3

1)

图3 B类不确定度评定程序

(1)正态分布情况下置信概率p 与包含因子kp 间的关系见表

1 (2)在缺乏任何其他信息情况下,一般估计为均匀分布(矩形分布

) (3)测量仪器的最大允许误差(半宽)可作为

B (4)对于数字显示式测量仪器,其分辨力为δx,则u(i x )=0.29δ

x

(5)当明确指出两次测量结果之差的重复性限r s 或复现性限R s ,如无特殊说明,

则u(i x )=r s /2.83或u(i x )=R s /2.83

2)B

B 类不确定度分量的自由度与所得到的标准不确定度u(i x )的相对不确定度σ[u(i x )]/u(i x )有关。根据经验,按所依据的信息来源的不可信程度来判断u(i x )的标准不

2

})

()]([{2

1-=i i i x u x u σν (2)

如,根据有关信息估计u(i x )的计算值的不可靠性为25%,即u(i x )的相对不确定度为

25%,则i ν=(0.25)2

-/2=8

按式(1-4-2)计算出的i ν列于表2 。

3

[例1]从手册中查出纯铜在20℃时线膨胀系数值20α(Cu)=16.523106

-℃

1

-,并说

明此值的误差不超过0.40310

6

-℃

1

-,求

20α(Cu)的

[解]依据经验假设α值以等概率落在区间内,即均匀分布,查表得k=3铜的线膨胀系

u(20α)

0.40310

6

-℃

1

-/3=0.23310

6

-℃

1

-

[例2]在手册中给出了黄铜在20℃时线膨胀系数值20α(Cu)=16.523106

-℃

1

-,其

最小可能值是16.40310

6

-℃

1

-,最大可能值是16.92310

6

-℃

1

-,求线膨胀系数的标准不

[解]由手册中给出的信息知道是一个不对称区间,-

α=16.40310

6

-℃

1

-+α=

16.92310

6

-℃

1

-,对

20α进行修正,修正值C =(-α--+

α)/2

C =(-

α--+

α)/2=(16.92-16.40)3106

-℃

1

-/2=0.26310

6

-℃

1

-

设为均匀分布,则k =3

u(20α)

0.26310

6

-℃

1

-/3=0.15310

6

-℃

1

-

4、

1

合成标准不确定度——当测量结果是由若干个其他量的值求得时,按其他各量的方差或(和)协方差算得的标准不确定度,其符号为u c (y)。主要用于:基本物理常量、常数的测量;计量学的基础性研究;复现SI

测量结果y 的u c (y)取决于i x 的标准不确定度u(i x )[或u A (i x ),u B (i x )],即将u(i x )按不确定度传播律合成,所得合成标准不确定度u c 就是y 的标准不确定度u c (y)。合成标准不确定度的计算见图4

图4 合成不确定度评定程序

注:

(1) u c (y)中y 通常采用量的符号,如:压力p ,即u c (p);u c (y)恒取正值,当不确定度分量A ,B 两类评定方法分别合成,如u CA (y),u CB (y)分别为仅按A ,B 类标准不确定

(2)灵敏系数i

x f ??/

(3) (4)不同量纲的量值不能简单地相加减,应采用相对合成标准不确定度[u crel (y)]表示。 2

合成标准不确定度u c (y)的自由度称为有效自由度eff ν。如果)(2

y u c 是两个或多个估计

)(.)(222i i c x u c y u ∑= (3)

式中:i c ——灵敏系数,f

f c i ??=

即使当每个i x 均为服从正态分布的输入量i X 的估计值时,变量(y-Y)/ u c (y)可近似为

t 分布。其有效自由度eff ν可由韦尔奇一萨特思韦特(Welch-Satterthwaite)公式计算:

∑=i

i c eff

y u y u νγ/)()

(4

4

式中:

i ν——u(i x )

3

[例3]在测长机上测量某轴的长度,测量结果为40.0010mm ,经不确定度分析与评定,各

(1)读数的标准偏差,由指示仪的7次读数的数据求得的重复性为0.17μm ; (2)测长机主轴不稳定性,由实验数据(测量6次)求得其实验标准偏差为0.10μm (3)测长机标尺不准,根据校准证书的信息(很可靠),其标准不确定度为0.05μm (4)温度的影响,根据轴材料温度系数的有关信息评定,可靠程度为50%,其标准不确定度

为0.05μm

[解]把各不确定度分量列入表3

2

4232221u u u u u c +++=

=2

42

32

22

1s s s s +++

=222205.005.010.017.0+++

=0.21m μ

有效自由度eff ν: 98.112

05.005.0510.0617.0210.0/)(4

444444=+∞++==∑i

i c eff

u y u νν 取eff ν=11(自由度只舍不进)

5

扩展不确定度——确定测量结果区间的量,合理赋予被测量之值分布的大部分可望含于此区间(也称展伸不确定度或范围不确定度)

U =k 2u c (y) (4) 式中:k ——

u c (y)——

当涉及健康、安全时,如对一些商业、工业、法规应用中,为使不确定度的置信水平p 较高,需用扩展不确定度U 来表示。扩展不确定度U 计算步骤,见图

5

图5 扩展不确定度评定程序

扩展不确定度的符号一般为U ,但有可能混淆两类不同扩展不确定度时,应分别使用符号U 与Up 加以分别。Up 是在具体置信概率p 下,应写为:如U 95,U 99或U 95.0,U 95.0。

[例4]由[例

3

取置信水准p =95%,查t 分布临界值表,包含因子k =t 95.0(11)= 2.20

Up =k 2u c (y)=2.2030.210μm =0.46μ

m

U 95=0.5μm eff ν

=11

完整的测量结果含有两个基本量,一是被测量的最佳估计值,一般由测量值的算术平均值给出;另一个就是测量不确定度。给出测量结果时,可根据有关的计量检定规程或技术规

范加以明确,应尽可能详细,以便使用时可以正确地利用。

1、测量不确定度报告应提供的信息

(1)

(2)

(3)

(4)列表说明:输入量实验观测数据及其估计值,标准不确定度的评定方法(A 类,B 类)

(5)

(6)对所有相关输入量给出其相关系数r(或协方差) (7)给出被测量估计值,合成标准不确定度或扩展不确定度(相对标准不确定度或相对扩展不确定度)

(8)必要时还应给出有效自由度eff ν

2

1

(1)

如,标准砝码的质量为m s ,其测量结果为100.0105g u c (ms)

为0.3mg

ms =100.0105g ,合成标准不确定度u c (ms)=0.3mg

(2)用扩展不确定度U

u

c (y)=0.3mg ,取包含因子k =2,U =230.3mg =0.6mg

m s =100.0105g ,扩展不确定度U =0.6mg ,包含因子k =2

(3)用扩展不确定度Up

如,u c (y)=0.3mg ,eff ν=9,按p =95%,查t 分布临界值,得kp =t 95(9)=2.26,U 95=

2.2630.3mg =0.7mg

m s =100.0105g

U 95=0.7mg ,有效自由度eff ν=9

2

(1)

ms =100.0105(0.0003)g (2)用扩展不确定度U

ms =(100.0105±0.0006)g(k =2) (3)用扩展不确定度Up

ms =(100.0105±0.0007)g(p =95%,eff ν=9)

3、说明

(1)报告测量结果也可用相对形式Urel 或urel

(a)m s =100.0105(1±73106

-)g (p =95%,eff ν=9)

(式中“7310

6

-”为U95rel 之值)

(b)m s =100.0105g ,urel =3.03106

-

(2)在最终的测量结果中,应不再含有可修正的系统误差,即测量结果应是经过修正的。

(3)最终测量结果的修约间隔应与扩展不确定度的修约间隔相同。例如,当测量结果经修正后为100.33,扩展不确定度的计算值为0.698时,若规定修约间隔为0.5,则其测量结果应表示为(100.5±0.5)

(4)测量结果的计量单位只能出现一次,并且要列于测量结果表达式的后面。但当采用

(a)电阻R

R=100.00426Ω±1.03104-Ω

因电阻单位Ω

(b)电阻R

R=100.00426Ω(1±1.03104-)

因电阻单位Ω

(c)电阻R

R=(100.00426±1.03104-)Ω

(d)角度θ

θ=59°30′09″±20

θ=59°30′(1±103-)

4

(1)仪表最大允许误差:±1.0%

(2)温度:(20.0±0.5)

(3)轴长为80+0.2-0.1mm

(4)电阻:500(1±0.005)Ω

(5)接地电阻:R≥20MΩ;

(6)相对湿度:40%~75%

当进行检测工作时,只要其结果不超出其规定范围,就可认为该项指标合格。但是有时也难以作出判断。如,1.0级仪表,当它的最大误差已达到1.049%的时候,判它合格还是不合格呢?在GB1250—1989《极限数值的表示方法和判定方法》中,规定:“在判定检测数据是否符合要求时,应将检验所得测定值与标准规定的极限值作比较。比较的方法有两种:(a)修约值比较法;(b)全数值比较法。”

所谓修约值比较法是将修约后的数值与标准规定的极限数值进行比较,以判定实际指标或参数是否符合标准要求。计量器具的检定规程大都是这样规定的。因此,当1.0级仪表的最大测量误差达到1.049%

所谓全数值比较法是将检验所得的测量结果或其计算值不经修约处理,而用数值的全部数字与标准规定的误差限比较。只要超出规定的误差限数值(不论超出的程度大小),都判定

5、

(1)测量结果不确定度只需用1~2

一般采取原则是:第一个非零数字≥3,取1位有效数字;第一个非零数字<3,取2

(2)

(3)相关系数保留3

(4)一般测量结果不确定度采取只进不舍(全进法);有效自由度采取只舍不进(全舍法)。

如:测量结果不确定度为10.47mg

10.47mg 11mg(只进不舍)

有效自由度为11.97

11.97 11 (只舍不进)

测量过程不确定度评定报告

A类分量不确定度评定试验记录

由软件计算后自动生存。

测量不确定度评定报告

测量不确定度评定报告1、评定目的识别实验室定量项目检测结果不确定度的来源,明确评定方法,给临床检测结果提供不确定度依据。 、评定依据2CNAS-GL05《测量不确定度要求的实施指南》 JJF 1059-1999《测量不确定度评定和表示》 CNAS— CL01《检测和校准实验室能力认可准则》 、测量不确定度评定流程3 测量不确定度评定总流程见图一。

概述 建立数学模型,确定被测量Y与输入量 测量不确定度来源 标准不确定度分量评 B类评定评类A 计算合成标准不确定 评定扩展不确定 编制不确定度报告 图一测量不确定度评定总流程 测量不确定度评定方法、4建立数学模型 4.1.1 数学模型根据检验工作原理和程序建立,即确定被测量Y(输出量)与影响量(输入量)X,X,…,X间的函数关系f来确定,即:N21 Y=f(X,X,…,X)N12建立数学模型时应说明数学模型中各个量的含义和计量单位。必须注意, 数学模型中不能进入带有正负号(±)的项。另外,数学模型不是唯一的,若采用不同测量方法和不同测量程序,就可能有不同的数学模型。 4.1.2计算灵敏系数 偏导数Y/x=c称为灵敏系数。有时灵敏系数c可由实验测定,iii即通过变化第i个输入量x,而保持其余输入量不变,从而测定Y的变化i量。

不确定度来源分析 测量过程中引起不确定度来源,可能来自于: a、对被测量的定义不完整; b、复现被测量定义的方法不理想; c、取样的代表性不够,即被测量的样本不能完全代表所定义的被测量; d、对测量过程受环境影响的认识不周全或对环境条件的测量和控制不完善; e、对模拟式仪器的读数存在人为偏差(偏移); 、测量仪器的计量性能(如灵敏度、鉴别力阈、分辨力、死区及稳定性f 等)的局限性; 、赋予计量标准的值或标准物质的值不准确;g 、引入的数据和其它参量的不确定度;h 、与测量方法和测量程序有关的近似性和假定性;i 、在表面上完全相同的条件下被测量在重复观测中的变化。j 标准不确定度分量评定 对观测列进行统计分析所作的评估--4.3.1 A 类评定 , x进行n次独立的等精度测量,得到的测量结果为:a对输入量XI 1为xx,…x。算术平均值n2 n1 ∑xx = in n i=1 由贝塞尔公式计算:s(x单次测量的实验标准差)i 1 n ∑ i—i 2 ( xx )S(x)= n-1 i=1

测量不确定度评定作业指导书(含表格)

测量不确定度评定作业指导书 (IATF16949/ISO9001-2015) 1.目的: 规定了测量不确定度的评定方法,保证实验室对测量结果进行不确定度评定和报告出具。 2.适用范围: 适用于各检测项目的不确定度评定与表示。 3.依据的技术文件: JJF1059.1Y2012 测量不确定度的评定与表示。 4. 不确定度的评定方法: 测量不确定度评定依据JJF 1059.1-2012《测量不确定度评定与表示》进行,应对由仪器设备、人员、试验环境、试验方法等各方面可能引入的不确定度分量进行全面分析,然后根据JJF 1059.1-2012的要求合成不确定度,作出正确的分析报告。不确定度愈小,分析测试结果与真值愈靠近,其质量愈高,数据愈可靠。因此,测量不确定度就是对测量结果质量和水平的定量表征。 5.测量不确定度评定的步骤: 5.1一般评定不确定度的流程如下:

5.2建立测量的数学模型 测量的数学模型是指测量结果与其直接测量的量、引用的量以及影响量等有关量之间的数学函数关系。当被测量Y由N个其他量X1、X2、…、XN的函数关系确定时,被测量的数学模型为: Y = f (X1、X2、…、XN) 5.3测量不确定度的来源 一般应从被测量、样本离散性、环境、人员、仪器设备、方法、试剂、用于数据计算的常量及其他参量、测量方法及测量重复性等方面考虑不确定度来源。详细介绍如下: 1、对被测量的定义不完整或不完善 若在定义要求的温度和压力下测量,就可避免由此引起的不确定度。 2、实现被测量定义的方法不理想 如上例,被测量的定义虽然完整,但由于测量时温度和压力实际上达不到定义的要求(包括由于温度和压力的测量本身存在不确定度),使测量结果中引入了不确定度。

测量不确定度评定报告

测量不确定度评定报告 1、评定目的 识别实验室定量项目检测结果不确定度的来源,明确评定方法,给临床检测结果提供不确定度依据。 2、评定依据 CNAS-GL05《测量不确定度要求的实施指南》 JJF 1059-1999《测量不确定度评定和表示》 CNAS— CL01《检测和校准实验室能力认可准则》 3 、测量不确定度评定流程 测量不确定度评定总流程见图一。 图一测量不确定度评定总流程 4、测量不确定度评定方法 4.1建立数学模型 4.1.1 数学模型根据检验工作原理和程序建立,即确定被测量Y(输出量)与影

响量(输入量)X 1,X 2 ,…,X N 间的函数关系f来确定,即: Y=f(X 1,X 2 ,…,X N ) 建立数学模型时应说明数学模型中各个量的含义和计量单位。必须注意, 数学模型中不能进入带有正负号(±)的项。另外,数学模型不是唯一的,若采用不同测量方法和不同测量程序,就可能有不同的数学模型。 4.1.2计算灵敏系数 偏导数Y/x i =c i 称为灵敏系数。有时灵敏系数c i 可由实验测定,即通 过变化第i个输入量x i ,而保持其余输入量不变,从而测定Y的变化量。 4.2不确定度来源分析 测量过程中引起不确定度来源,可能来自于: a、对被测量的定义不完整; b、复现被测量定义的方法不理想; c、取样的代表性不够,即被测量的样本不能完全代表所定义的被测量; d、对测量过程受环境影响的认识不周全或对环境条件的测量和控制不完善; e、对模拟式仪器的读数存在人为偏差(偏移); f、测量仪器的计量性能(如灵敏度、鉴别力阈、分辨力、死区及稳定性等)的 局限性; g、赋予计量标准的值或标准物质的值不准确; h、引入的数据和其它参量的不确定度; i、与测量方法和测量程序有关的近似性和假定性; j、在表面上完全相同的条件下被测量在重复观测中的变化。 4.3标准不确定度分量评定 4.3.1 A 类评定--对观测列进行统计分析所作的评估 a对输入量X I 进行n次独立的等精度测量,得到的测量结果为: x 1,x 2 , (x) n 。 算术平均值x为 1 n x n= ∑x i n i=1 单次测量的实验标准差s(x i )由贝塞尔公式计算: 1 n S(x i )= ∑ ( x i — x )2 n-1 i=1

CNAS-CL07 测量不确定度评估和报告通用要求

CNAS—CL07 测量不确定度评估和报告通用要求General Requirements for Evaluating and Reporting Measurement Uncertainty 中国合格评定国家认可委员会

测量不确定度评估和报告通用要求 1.前言 1.1中国合格评定国家认可委员会(英文缩写:CNAS)充分考虑目前国际上与合格评定相关的各方对测量不确定度的关注,以及测量不确定度对测量、试验结果的可信性、可比性和可接受性的影响,特别是这种影响和关注可能会造成消费者、工业界、政府和市场对合格评定活动提出更高的要求。因此,CNAS在认可体系的运行中给予测量不确定度评估以足够的重视,以满足客户、消费者和其他各有关方的期望和需求。 1.2CNAS在测量不确定度评估和应用要求方面将始终遵循国际规范的相关要求,与国际相关组织的要求保持一致,并在国际规范和有关行业制定的相关导则框架内制订具体的测量不确定度要求。 2.适用范围 本文件适用于CNAS对校准和检测实验室的认可活动。同时也适用于其它涉及校准和检测活动的申请人和获准认可机构。 3.引用文件 下列文件中的条款通过引用而成为本文件的条款。以下引用的文件,注明日期的,仅引用的版本适用;未注明日期的,引用文件的最新版本(包括任何修订)适用。 3.1Guide to the expression of uncertainty in measurement(GUM).BIPM,IEC, IFCC,ISO,IUPAC,IUPAP,OIML,lst edition,1995.《测量不确定度表示指南》3.2International Vocabulary of Basic and General Terms in Metrology(VIM). BIPM,IEC,IFCC,ISO,IUPAC,IUPAP,OIML,2nd edition,1993.《国际通用计量学基本术语》 3.3JJF1001-1998《通用计量术语和定义》 3.4JJF1059-1999《测量不确定度评定和表示》

测量不确定度评定举例

测量不确定度评定举例 A.3.1 量块的校准 通过这个例子说明如何建立数学模型及进行不确定度的评定;并通过此例说明如何将相关的输入量经过适当处理后使输入量间不相关,这样简化了合成标准不确定度的计算。最后说明对于非线性测量函数考虑高阶项后测量不确定度的评定结果。 1).校准方法 标称值为50mm 的被校量块,通过与相同长度的标准量块比较,由比较仪上读出两个量块的长度差d ,被校量块长度的校准值L 为标准量块长度 L s 与长度差d 之和。即: L=L s +d 实测时,d 取5次读数的平均值d ,d =0.000215mm ,标准量块长度L s 由校准证书给出,其校准值L s =50.000623mm 。 2)测量模型 长度差d 在考虑到影响量后为:d =L (1+?? )-L s (1+?s ?s ) 所以被校量的测量模型为: 此模型为非线性函数,可将此式按泰勒级数展开: L =ΛΛ+-++)(θαθαs s s s L d L 忽略高次项后得到近似的线性函数式: )(θαθα-++=s s s s L d L L () 式中:L —被校量块长度; L s —标准量块在20℃时的长度,由标准量块的校准证书给出; ? —被校量块的热膨胀系数; ?s —标准量块的热膨胀系数; ? —被校量块的温度与20℃参考温度的差值; ?s —标准量块的温度与20℃参考温度的差值。

在上述测量模型中,由于被校量块与标准量块处于同一温度环境中,所以?与?s 是相关的量;两个量块采用同样的材料,?与?s 也是相关的量。为避免相关,设被校量块与标准量块的温度差为??,??= ?-?s ;他们的热膨胀系数差为??,??= ?-?s ;将?s = ?-?? 和 ?=??+?s 代入式(),由此,数学模型可改写成: = ][θαδαθδs s s l d l +-+ () 测量模型中输入量??与?s 以及??与?不相关了。 特别要注意:在此式中的??和??是近似为零的,但他们的不确定度不为零,在不确定度评定中要考虑。由于??和??是近似为零,所以被测量的估计值可以由下式得到: L =L s +d () 3).测量不确定度分析 根据测量模型, 即: l = ][θαδαθδs s s l d l +-+ 由于各输入量间不相关,所以合成标准不确定度的计算公式为: )()()()()()()(222222222222θδαδθαδδθαθ αu c u c u c u c d u c l u c l u s d s s c s +++++= () 式中灵敏系数为: 1)(11=+-=??= =θαδαθδs s s l f c c , 由此可见,灵敏系数c 3和c 4为零,也就是说明?s 及? 的不确定度对测量结果的不确定度没有影响。合成标准不确定度公式可写成: )()()()()(22222222θαδαδθu l u l d u l u l u s s s s c +++= () 4).标准不确定度分量的评定 ○ 1标准量块的校准引入的标准不确定度u (l s ) 标准量块的校准证书给出:校准值为l s =50.000623mm ,U = 0.075?m (k =3),

盲样测量不确定度评定报告

盲样测量不确定度评定报告 1、概述 1.1 测量依据 JJG119-2005《实验室(酸度)计检定规程》 1.2 环境条件: 温度(23±3)℃;相对湿度≤85%RH 1.3 测量标准: pH 标准缓冲溶液,中国计量测试技术研究院提供;酸度计:型号:pHS-3E ; 编号:600709040019;制造厂:上海精密科学仪器有限公司;量程:(0.00~14.00)pH;分辨率:0.01pH;电极编号:05598709J 1.4 被测对象:盲样(新疆维吾尔自治区计量测试研究院提供) 1.5 测量过程: 选用JJG119-2005《实验室(酸度)计检定规程》附录A 表1中规定的一种(或多种)标准溶液,在规定温度的重复性条件下,对pHS-3E 型酸度计进行校准后,测量盲样溶液,重复校准和测量操作6次,6次测量结果的平均值即为盲样的pH 值。 2、数学模型 y=x 3、输入量引入的标准不确定度 3.1测量重复性引入的标准不确定度分量u 1 按照贝塞尔公式计算单次测量的实验标准差: () 1 1 2 --= ∑=n pH pH s n i i (n=6) 平均值的实验标准差: u 1= 6

盲样检测 3.2酸度计引入的不确定度分量u2 用性能已知的pH(酸度)计,对未知pH值的盲样(酸度计溶液标准物质)进行测量。 选用JJG119-2005《实验室(酸度)计检定规程》参照酸度计使用说明书中校准点对传递的酸度计进行校准,用校准过的酸度计对盲样(酸度计溶液标准物质)进行测定6次,得出测量重复性引入的标准不确定度分量u 1 。结合酸度 计引入的不确定度分量u 2和盲样引入的标准不确定度分量u 3 得到合成标准不确 定度,扩展不确定度。

低温测量不确定度评估报告

低温测量不确定度评定报告 报告编号:201403 1. 测量方法 1.1)按图1所示的线路连接样品; 试验供电电源:220V ±5%~, 50Hz ±1%,电路导线横截面积:1.0mm2。 1.2) 样品放置在试验箱外,将样品感温探头放入试验箱中,进入试验箱的毛细管长度应大于150mm ; 1.3)接通电路,开启试验箱,从常温开始降温,观察指示灯状态,至指示灯熄灭,记录试验起始和结束时间、试验起始温度和指示灯熄灭瞬间样品的动作温度。 2. 数学模型 n x t t = 式中,x t 为样品在低温箱中的实际温度,n t 为低温箱温度显示仪表的相应读数。 3. 不确定度来源 3.1 通过分析识别出影响结果的因素有测量重复性,人员的读数,温度试验箱的偏差,温度试验箱 内的时间波动度与空间均匀性,降温速率,环境温度湿度的影响,电源电压的波动,读数的时延等等。 3.2 不确定度分量的分析评估 温度试验箱的特性对本次测量结果有较大的影响,如箱体的精度,偏差,波动度,均匀性等。 温度箱内的温度在持续变化,可能造成温度箱内的温度与实际动作温度不完全一致,因此需考虑降温速率所引入的不确定度。 图1

由于在温度箱内进行试验,因此,环境温湿度对结果的影响也较小,基本忽略。 电源电压的波动通过稳压源控制电压参数的可变性,从而使得影响程度最小化。 读数的时延,我们通过选择熟练的操作人员的操作而减小其影响。人员的读数影响较小,可忽略。 综上所述,不确定度分量如下: A 类评定:1. 重复性条件下重复测量引入的标准不确定度分量1u . B 类评定:2. 低温箱的校准(温度偏差)引入的标准不确定度分量2u 3. 低温箱的最大偏差引入的标准不确定度分量 3u 4. 温度变化速率(温度波动度)引入的标准不确定度分量4u 5. 温度均匀度引入的标准不确定度分量 5u 4. 不确定度分量评定 4.1 1u 的计算 (测量重复性) 将样品在重复性条件下重复测量4次指示灯熄灭时的瞬间温度,测的数据列表如下: () () C 4349.01u 10 1 2 1?=--= ∑=n t t i i 4.2 2u 的计算 (温湿度箱的校准) 由校准证书给出扩展不确定度为0.3 °C ,K=2,则标准不确定度为: 15.023 .02== u 4.3 3u 的计算 (温湿度箱的最大偏差) 校准证书显示温度箱在-30°C ~70°C 的最大偏差为0.45°C ,服从均匀分布,3=k ,则 2598 .03 45.03== u 4.4 4u 的计算 (温度变化速率,即温度波动度) 温度箱的降温速率为1K/min ,在到达温控器响应的温度时,温度箱内的温度在持续变化,可能造成温度箱内的温度与实际动作温度不完全一致。由校准证书给出温度箱的波动度为±0.23°C , ° C °C

钢卷尺测量不确定度评定报告

钢卷尺测量不确定度评定报告 1测量方法及数学模型 1.1测量依据:依据JJG4-1999《钢卷尺检定规程》 钢卷尺的示值误差:△L=L a-L s+L a*αa*Δt-L s*αs*Δt 式中:L a——被检钢卷尺的长度; L s——标准钢卷尺的长度; αa——被检钢卷尺的膨胀系数; αs——标准钢卷尺的膨胀系数; Δt——被检钢卷尺和标准钢卷尺对参考温度20℃的偏离值。 由于L a-L s很小,则数学模型: △L= L a-L s +L s*△α*Δt 式中:△α——被检钢卷尺和标准钢卷尺的膨胀系数差 1.2方差及传播系数的确定 对以上数学模型各分量求偏导: 得出:c(L a)=1;c(L s)= -1+△α*Δt≈-1;c(△α)= L s*Δt;c(Δt)= L s*△α≈0 则:u c2 =u2(△L)=u2(L s)+ u2(L a) + (L s*Δt )2u2(△α) 2计算分量标准不确定度 2.1标准钢卷尺给出的不确定度u (L s) (1)由标准钢卷尺的测量不确定度给出的分量u (L s1) 根据规程JJG741—2005《标准钢卷尺》,标准钢卷尺的测量不确定度为: U=0.02mm其为正态分布,覆盖因子k=3,自由度v=∞,故其标准不确定度: u (L s1)= 0.02∕3 =0.007 (2)由年稳定度给出的不确定度分量u (L s2) 根据几年的观测,本钢卷尺年变动量不超过0.05mm,认为是均匀分布,则:L a≤5m:u (L s2)=0.05∕31/2 =0.029mm 估计u (L s2)的不可靠性为10%,则自由度v=1/2×(0.1)-2=50 (3)由拉力偏差给出的不确定度分量u (L s3) 由拉力引起的偏差为:△=L×103×△p/(9.8×E×F)

功率不确定度评定与表示.

输入功率和电流的 不确定度评定与表示 编制: 日期: 审核: 日期: 批准:日期: 1 目的 测试样品的输入电流及输入功率。 2 检测方法和步骤 按GB4706.13-1998标准的要求,被测样品在额定电压及相应的气候类型条件下,运行达到稳定状态后,测量被测样品在运行周期开停时的电流及输入功率值,取其平均值作为被测量样品的电流、输入功率测量值。 被测样品由稳压电源供电,对于N型气候类型的电冰箱,测试的环境温度保持在32℃,使用青岛青智仪器有限公司的8775A型数字式电参量测试仪,直接测量被测样品运行周期开停时的输入功率及电流。 3 数学模型 由于是用电叁数表直接测量被测样品的电流和输入功率,因此: Ic=Is 其中: Ic:被测电流 A,Is:示值电流 A Pc=Ps 其中: Pc:被测功率 W,Is:被测功率 W 4 不确定度分量的识别与量化 4.1不确定度来源有:

a .由仪器显示的末位数值波动引起的检测人员读数的不确定度,可用A类 方法评价。 b .由稳压电源的波动引起的测试条件的不稳定,此不确定度可用A类方法 评价。 c .由仪器的测量准确度引起的测量不确定度,此类不确定度可用该仪器的 校准证书的信息通过B类方法评定。 d .由于环境温度的波动造成仪器测量准确度的变化和被测样品的电流、功 率的测量不确定度,此类不确定度可用B类方法评定。 4.1.1 A类不确定度评定 对于由仪器显示值的波动以及稳压电源波动造成的测量不确定度,通过重复测量加以评定。进行五次重复测量,并通过下列公式计算测量结果的标准不确定度μ(): = ()=-) ()=μ()= a电流测量值及计算结果: 测量值5 1.258

测量不确定度评定报告(完整资料).doc

此文档下载后即可编辑 测量不确定度评定报告 1、评定目的 识别实验室定量项目检测结果不确定度的来源,明确评定方法,给临床检测结果提供不确定度依据。 2、评定依据 CNAS-GL05《测量不确定度要求的实施指南》 JJF 1059-1999《测量不确定度评定和表示》 CNAS— CL01《检测和校准实验室能力认可准则》 3 、测量不确定度评定流程 测量不确定度评定总流程见图一。

图一 测量不确定度评定总流程 4、测量不确定度评定方法 4.1建立数学模型 4.1.1 数学模型根据检验工作原理和程序建立,即确定被测量Y (输出量)与影响量(输入量)X 1,X 2,…,X N 间的函数关系f 来确定,即: Y=f (X 1,X 2,…,X N ) 建立数学模型时应说明数学模型中各个量的含义和计量单位。必须注意, 数学模型中不能进入带有正负号(±)的项。另外,数学模型不是唯一的,若采用不同测量方法和不同测量程序,就可能有不同的数学模型。 4.1.2计算灵敏系数 偏导数Y/x i =c i 称为灵敏系数。有时灵敏系数c i 可由 实验测定,即通过变化第i 个输入量x i ,而保持其余输入量不变,从而测定Y 的变化量。

4.2不确定度来源分析 测量过程中引起不确定度来源,可能来自于: a 、对被测量的定义不完整; b 、复现被测量定义的方法不理想; c 、取样的代表性不够,即被测量的样本不能完全代表所定义的被测量; d 、对测量过程受环境影响的认识不周全或对环境条件的测量和控制不完善; e 、对模拟式仪器的读数存在人为偏差(偏移); f 、测量仪器的计量性能(如灵敏度、鉴别力阈、分辨力、死区 及稳定性等)的局限性; g 、赋予计量标准的值或标准物质的值不准确; h 、引入的数据和其它参量的不确定度; i 、与测量方法和测量程序有关的近似性和假定性; j 、在表面上完全相同的条件下被测量在重复观测中的变化。 4.3标准不确定度分量评定 4.3.1 A 类评定--对观测列进行统计分析所作的评估 a 对输入量XI 进行n 次独立的等精度测量,得到的测量结果为: x 1,x 2,…x n 。算术平均值x 为 1 n x n = ∑x i

6测量不确定度评定方法.doc

测量不确定度的评定方法 1适用范围 本方法适用于对产品或参数进行检测时,所得检测结果的测量不 确定度的评 定与表示。 2编制依据 JJF 1059 —1999测量不确定度评定与表示 3评定步骤 3.1概述:对受检测的产品或参数、检测原理及方法、检测用仪器 设备、检测时的环境条件、本测量不确定度评定报告的使用作一简要的描述; 3.2建立用于评定的数学模型; 3.3根据所建立的数学模型,确定各不确定度分量(即数学模型中 的各输入量)的来源; 3.4分析、计算各输入量的标准不确定度及其自由度; 3.5计算合成不确定度及其有效自由度; 3.6计算扩展不确定度; 3.7给出测量不确定度评定报告。 4评定方法 4.1数学模型的建立 数学模型是指被测量(被检测参数)Y 与各输入量 X i之间的函数

关系,若被测量 Y 的测量结果为 y,输入量的估计值为x i,则数学模型为 y f x1 , x2 ,......, x n。 数学模型中应包括对测量结果及其不确定度由影响的所有输入 量,输入量一般有以下二种: ⑴ 当前直接测定的值。它们的值可得自单一观测、重复观测、 依据经验信息的估计,并包含测量仪器读数修正值,以及对周围温度、大气压、湿度等影响的修正值。 ⑵ 外部来源引入的量。如已校准的测量标准、有证标准物质、 由手册所得的参考数据。 4.2测量不确定度来源的确定 根据数学模型,列出对被测量有明显影响的测量不确定度来源,并要做到不遗漏、不重复。如果所给出的测量结果是经过修正后的结果,注意应考虑由修正值所引入的标准不确定度分量。如果某一标准不确定度分量对合成不确定度的贡献较小,则其分量可以忽略不计。 测量中可能导致不确定度的来源一般有: ⑴被测量的定义不完整; ⑵复现被测量的测量方法不理想; ⑶取样的代表性不够,即被测样本不能代表所定义的被测量; ⑷对测量过程受环境影响的认识不恰如其分或对环境的测量 与控制不完善; ⑸对模拟式仪器的读数存在人为偏移;

秒表测量误差测量不确定度的评估

6.6 秒表测量误差测量不确定度的评估 6.6.1 概述 6.6.1.1测量依据:JJG237-2010《秒表检定规程》 6.6.1.2 计量标准:主要计量标准为时间检定仪,时间间隔测量范围(1~99999)s 。 表1 实验室的计量标准器和配套设备 6.6.1.3被校对象: 表2 被校准的机械秒表和电子秒表的分类 6.6.1.4 测量方法: 6.6.1.4.1 机械秒表测量误差的测量方法:按被校机械秒表的秒度盘和分度盘的满刻度值两个校准点进行校准,对每一被校准测量点测量3次,按下式(1)计算每次的测量误差,按(2)式取其中误差最大的作为校准结果。 0T T T i i -=? (1) {}Max i T T ?=? (2) 式中: i T —— 每次的测量值; 0T —— 时间检定仪给出的标准值; i T ?—— 每次测量得到的测量误差; T ?—— 校准结果给出的测量误差。 6.6.1.4.2 电子秒表测量误差的测量方法:对电子秒表的测量误差选择10s 、10min 、1h 三个校准点进行校准,对10s 、10min 两个受校点测量3次,1h 受校点测量2次,按下式(1)计算每次的测量误差,按(2)式取其中误差最大的作为校准结果。 6.6.1.5环境条件 1) 环境温度:(20±5)℃,校准过程中温度变化不超过2℃;相对湿度(65±15)%; 2) 周围无影响仪器正常工作的电磁干扰和机械振动; 3) 电源电压在额定电压的±10%,50Hz 。 6.6.2数学模型

{}Max i T T T 0-=? (3) 式中: T ? —— 机械秒表、电子秒表走时示值测量误差; i T —— 被校机械秒表、电子秒表每次走时测量值; 0T —— 时间检定仪给出的标准时间间隔值。 i —— 测量次数, 一般为3次, 当电子秒表测量1h 点时, 为2次。 6.6.3不确定度传播率 )()()(02 222212T u c T u c T u i c +=? 式中,灵敏系数1/1=???=i T T c ,1/02=???=T T c 。 6.6.4机械秒表、电子秒表测量误差标准不确定度的评定 6.6.4.1 输入量T 0的标准不确定度 标准设备时间检定仪标准装置的扩展不确定度为U 0=1.55×10-6×T+0.0092s, k =2 则将校准点3s ,对应的标准时间T 0的扩展不确定度为 U 0=1.55×10-6×3s+0.0092s=0.0092s ,k=2 ;则该标准引起的标准不确定度 分量为:s s k U T u 0046.02 0092.0)(00== =。 6.6.4.2 输入量T i 的标准不确定度 以被校机械秒表、分辨力0.01s 、校准点3s 为例 1)示值重复性引起的不确定度:校准3s 测量点,共进行3次的重复测量,极差为0.005s, 则单次测量的重复性为: s s s d R T s n i 0030.000295.0693 .1005.0)(≈=== 。 因测量误差为取最大的单次测量误差, 则A 类标准不确定度分量为单次测量的重复性为:s T s T u i i 0030.0)()(1==。 2)读数误差引起的不确定度: 由被校准机械秒表的分辨力引起的,采用B 类标准不确定度评定。已知分辨力为0.01s ,则不确定度区间半宽度为0.005s ,按均分布计算, s s T u i 00289.03 005.0)(2== 由于重复性分量包含了人员读数引入的不确定度分量,为避免重复计算,只计算最大影响量)(1i T u ,舍弃)(2i T u 。 6.6.5合成标准不确定度 6.6.5.1主要标准不确定度汇总表3

不确定度评定报告

不确定度评定报告 1、测量方法 由标准晶振输出频标信号,输入到通用计数器中,在通用计数器上显示读数。 2、数学模型 数学模型 A=A S +δ 式中:A —频率计上显示的频率值 A S —参考频率标准值; δ—被测与参考频标频率的误差。 3、输入量的标准不确定度 3.1 标准晶振引入的标准不确定度()s A u ,用B 类标准不确定度评定。 标准晶振的频率准确度为±2×10-10,即当被测频率为10MHz 时,区间半宽为a =10×106×2×10-9=2×10-2Hz ,在区间内认为是均匀分布,则标准不确定度为 ()s A u =a/k =1.2×10-2Hz ()=rel s A u 1.2×10-2/107=1.2×10-9 3.2被测通用计数器的测量重复性引入的标准不确定度分量u(δ2) u(δ2)来源于被测通用计数器的测量重复性,可通过连续测量得到测量列,采用A 类方式进行评定。对一台通用计数器10MHz 连续测量10次,得到测量列9999999.6433、9999999.6446、9999999.6448、9999999.6437、9999999.6435、9999999.6428、9999999.6446、9999999.6437、9999999.6457、9999999.6451Hz 。 由测量列计算得 算术平均值 ∑==n i i f n f 1 1=9999999.6442Hz, 标准偏差 () Hz n f f s n i i 00091.01 2 1 =--= ∑=

标准不确定度分量u(δ 3 )=0.00091/=0.00029Hz u(δ 3 )rel=2.9×10-11 4 合成标准不确定度评定 主要标准不确定度汇总表 输入量A S 、δ 1 、δ 2 相互独立,所以合成标准不确定度为 u c (A)= 9 2 2 2 1 210 5.1 ) ( ) ( ) (- ? = + +δ δu u A u S 5 扩展不确定度评定 取k=2,则 扩展不确定度为 U rel =k×u c=2×1.5×10-9=3×10-9 6测量不确定度报告 f=f0(1±3×10-9)Hz,k=2 不确定度评定报告 1、测量方法 由标准晶振输出频标信号,输入到通用计数器中,在通用计数器上显示读数。 2、数学模型

测量不确定度评定例题

测量不确定度评定与表示 一.思考题 1.什么是概率分布? 答:概率分布是一个随机变量取任何给定值或属于某一给定值集的概率随取值而变化的函数,该函数称为概率密度函数。 2.试写出测量值X 落在区间[]b a ,内的概率p 与概率密度函数的函数关系式,并说明其物理意义。 答:()()dx x p b X a p b a ?= ≤≤ 式中,()x p 为概率密度函数,数学上积分代表面积。 物理意义 : 概率分布曲线 概率分布通常用概率密度函数随随机变量变化的曲线来表示,如图所示。 测量值X 落在区间[]b a ,内的概率p 可用上式计算 由此可见,概率p 是概率分布曲线下在区间[]b a ,内包含的面积,又称包含概率或置信水平。当9.0=p ,表明测量值有90%的可能性落在该区间内,该区间包含了概率分布下总面积的90%。在(一∞~+∞)区间内的概率为1,即随机变量在整个值集的概率为l 。当=p 1(即概率为1)表明测量值以100%的可能性落在该区间内,也就是可以相信测量值必定在此区间内。 3.表征概率分布的特征参数是哪些? 答:期望和方差是表征概率分布的两个特征参数。 4.期望和标准偏差分别表征概率分布的哪些特性? 答:期望μ影响概率分布曲线的位置;标准偏差σ影响概率分布曲线的形状,表明测量值的分散性。 5.有限次测量时,期望和标准偏差的估计值分别是什么? 答:有限次测量时,算术平均值X 是概率分布的期望μ的估计值。即:∑=n i i x n X 1 1= 有限次测量时,实验标准偏差s 是标准偏差σ的估计值。即:()() 1 1 2 --=∑=n X x x s n i i

拉伸试验结果的测量不确定度报告

拉伸试验结果的测量不确定度评定 1试验 检测方法 依据GB∕T228-2002《金属材料室温拉伸试验方法》进行试样的加工和试验. 环境条件 试验时室温为25℃,相对湿度为75%. 检测设备及量具 100kN电子拉力试验机,计量检定合格,示值误差为±1%;电子引伸计(精度级);0~150㎜游标卡尺,精度0.02mm;50mm间距的标距定位极限偏差为±1%。 被测对象 圆形横截面比例试样,名义圆形横截面直径10 mm。 试验过程 根据GB∕T228-2002,在室温条件下,用游标卡尺测量试样圆形横截面直径,计算原始横截面积,采用电子拉力试验机完成试验,计算相应的规定非比例延伸强度、上屈服强度R eH、下屈服强度R eL、抗拉强度R m、断后伸长率A及断面收缩率Z。 2数学模型 拉伸试验过程中涉及到的考核指标,R eH,R eL,R m,A,Z的计算公式分别为 = ∕S0(1) R eH=F eH∕S0(2) R eL= F eL∕S0(3) R m=F m∕S0(4) A=(L U-L0)∕L0(5) Z=(S0-S)∕S0(6) 式中———规定非比例延伸力; F eH———上屈服力; F eL———下屈服力; F m———最大力; L U———断后标距; L0———原始标距; S0———原始横截面积; S u———断面最小横截面积。 3测量不确定度主要来源 试验在基本恒温的条件下进行,温度变化范围很小,可以忽略温度对试验带来的影响。 对于强度指标,不确定度主要分量可分为三类:试验力值不确定度分量、试样原始横截面积测量不确定度分量和强度计算结果修约引起的不确定度分量. 对于断后伸长率A, 不确定度主要分量包含输入量L0和L U的不确定度分量. 对于断面收缩率Z, 不确定度主要分量包含输入量S0和S u的不确定度分量. 4标准不确定度分量的评定 试验力值测量结果的标准不确定度分量 4.1.1试验机误差所引入的不确定度分量

测量不确定度评定程序文件

1 目的 为评价中心检测/校准结果的可信程度,规范测量不确定度的评 定与表达方法,科学、合理、准确的进行测量不确定度评定 2 应用范围 适用于中心检测/校准结果的测量不确定度的评定与表示。 3 职责 3.1 技术负责人负责测量不确定度评定工作。 3.2 技术科组织实施测量不确定度的评定,负责拟定有关检测项目测量不确定度评定的作业指导书,指导测试人员控制各标准方法规定的影响量,编写《不确定度评定报告》,负责对检测结果测量不确定度报告的验证。 3.3 检测人员严格遵守方法标准和规范化作业技术,认真检查原始记录和检测结果。 4 程序 4.1化验中心采用公认的检测方法时应遵守该方法对不确定度的表述。 4.2化验中心采用非标准方法或偏离的标准方法时,应重新进行确认,并对方法的测量不确定度进行评定。 4.3由技术负责人组织或指定有关技术人员(可包括监督员、检测人员、设备责任人等)进行测量不确定度的评定工作。 4.4不确定度评定和报告根据JJF1059-2012《测量不确定度评定与表示》来实施。具体步骤如下: XX 公司化验中心 程序文件 第01版 第0次修订 第 页 共 页 测定不确定度评定程序 文 号 YYH/CX28-2014 颁布日期 2014年3月14日

4.1.1建立不确定度的数学模型 建立被测对象与其他对其有影响量的函数关系。以通过这些量的不确定度给出被测对象的不确定。 4.1.2确定不确定度的来源,找出构成不确定度的主要分量。 分析测试领域的测量不确定度的来源一般有以下几种: a.被测量量的定义不完整; b.被测样品代表性不够,即样品不能完全代表所定义的被测对象; c.复现被测量的测量方法不够理想; d.对测量过程受环境影响的认识不恰如其分,或对环境的测量与控制不完善; e.读数存在人为偏移; f.测量仪器的计量性能的局限性(如分辨率、灵敏度、稳定性、噪音水平等影 响,以及自动分析仪器的滞后影响和仪器检定校准中的不确定度); g.测量标准和标准物质的不确定度; h.引用的数据或其它参量的不确定度; i.包括在检测方法和程序中某些近似和假设,某些不恰当的校准模式选择,以及数据计算中的舍、入影响; j.测试过程中的随机影响等。 在确定这些影响不确定度的因素对总不确定度的贡献时,还要考虑这些因素相互之间的影响。 4.1.3量化不确定度分量 要对每一个不确定度来源通过测量或估计进行量化。首先估计每一个分量对合成不确定度的贡献,排除不重要的分量。可用下面几种方法进行量化: a.通过实验进行定量; b.使用标准物质进行定量; c.基于以前的结果或数据的估计进行定量; d.基于判断进行定量。 4.1.4计算合成标准不确定度 根据JJF1059-2012中第4、5、6节规定的方法,通过确定A类和B类标准不确

测量不确定度评估报告

测量不确定度评估报告 1.识别测量不确定度的来源 在医学实验室中构成测量不确定度的4个主要分量主要包括“检验过程不精密度”、“校准品赋值的不确定度”、“样品影响分量”和“其它检验影响分量”。我们参考CNAS-GL05:2011《测量不确定度要求的实施指南》和CNAS-TRL-001:2012《医学实验室―测量不确定度的评定与表达》的要求,制定了测量不确定度评定程序,评估了本科室申报的定量项目的测量不确定度。由于在医学实验室中“样品影响分量”和“其它检验影响分量”的不确定度难以估计,故我们只评估了前两个分量的不确定度。 2.目标不确定度 2.1 确定的检验程序在正式启用前,实验室应为每个测量程序确定目标不确定度,即规定每个测量程序的测量不确定度性能要求。 2.2 检验科每个测量程序的目标不确定度由各实验室确定。 2.3 各实验室在确定目标不确定度时可以基于生物变异、国内外专家组的建议、管理准则或当地医学界的判断。根据应用要求,对不同水平的测量结果可以确定一个或多个目标不确定度。 2.4目标不确定度如下: 2.4.1临床化学项目将TEa(国家标准(GB/T20470-2006)、卫生部临床检验中心室间质量评价标准)作为目标扩展不确定度。 2.4.2血液学项目,将TEa(行业标准WS/T406-2012)指标作为目标扩展不确定度。 3.确立输出量与输入量之间的数学模型 若输出量为Y(被测量值),输入量X的估计值为xi,则被测量与各输入量之间的函数关系为Y=f(x1,x2,x3,x4…);由于在医学实验室中“样品影响分量”和“其它检验影响分量”的不确定度难以估计,故只对前两个分量的不确定进行评估。 4测量不确定度的计算 4.1 A类评估:检验过程不精密度评估样本使用高低2个水平的室内质控品作为实验用样本。 计算本室2水平质控品的日间精密度。计算批间变异系数CV。

测量不确定度的评定与表示

二、测量不确定度评定与表示 (一)相关数理统计基本知识 (二)测量不确定度有关概念 (三)产生测量不确定度的原因与测量模型化(四)标准不确定度的A类评定 (五)标准不确定度的B类评定 (六)合成标准不确定度评定 (七)扩展不确定度评定 (八)测量结果及其不确定度报告 2010-5-2429 (一)相关数理统计基本知识 基本统计计算 通过多次重复测量并进行某些统计计算,可增加测量得到的信息量。其中有两 项最基本的统计计算: (1)求一组数据的平均值或算术平均值 (理论上是数学期望), (2)求单次测量或算术平均值的实验标准偏差(理论上是总体标准偏差)。 2010-5-2430

2010-5-2431 1. 最佳估计值┈┈多次测量的平均值 一般而言,测量数值越多,得到的“真值”的估计值就越好。理想的估计值应当用无穷多数值集来求平均值。但是增加读数要做额外的工作,并增大测量成本,且会产生“缩小回报”的效果。什么是合理的次数呢?10次是普遍选择的,因为这能使计算容易。20次读数只比10次给出稍好的估计值,50次只比20次稍好。根据经验通常取6~10次读数就足够了。 数学期望2010-5-2432 2. 分散范围(区间)-标准偏差●定量给出分散范围的常见形式是标准偏差。一个数集的标准偏差给出了各个读数与该组读数平均值之差的典型值。●根据“经验”,全部读数大概有三分之二(68%)会落在平均值的正负(±)一倍标准偏差范围内,大概有全部读数的95%会落在正负两倍标准偏差范围内。虽然这种“尺度”并非普遍适用,但应用广泛。标准偏差的“真值”只能从一组非常大(无穷多)的读数求出。由有限个数的读数所求得的只是标准偏差的估计值,称为实验标准偏差或估计的标准偏差,用符号s 表示。方差的平方根

测量不确定度评定程序文件

测量不确定度评定程序 1 目的 为本中心合理评定测量结果的不确定度提供依据,使测量不确定度评定方法符合国际和国相关技术规、标准的规定。 2 适用围 适用于与本中心所有检测项目有关参量测量结果的不确定度评定与表示。 3 职责 3.1 副主任 a) 负责批准测量不确定度评定报告; b) 批准对外公布实验室能力时的测量不确定度。 3.2 技术负责人 a)制定实验室测量不确定度评定总体计划,提出中心测量不确定度评定的总 体要求; b)组织审核、验证项目测量不确定度评定报告。 3.3 检测项目负责人 a)负责项目有关参量的测量不确定度评定,编写评定报告初稿。 4 程序 4.1 技术负责人制定年度培训计划,聘请专家讲授JJF1059-1999《测量不确定度 评定与表示指南》,使检测人员理解测量不确定度评定的基本知识和方法。办公 室协助技术负责人具体实施培训计划,负责培训容和考核结果的记录、归档。 4.2 测量不确定度评定步骤(详细评定步骤参见本程序附录1) 说明测量系统时要给出如下信息:①所用检测仪器型号、资产编号、技术指 标;②校准/检定证书号、校准/检定日期和校准/检定实验室明名称。 4.2.1 根据检测项目依据的技术标准/规/规程,明确被测量,简述被测量定义、测 量方法和测量过程。 4.2.2 画出测量系统方框图 4.2.3 给出测量不确定度评定数学模型。

4.2.4 根据数学模型和有关信息,列出各不确定度分量的来源,尽可能做到不遗漏不重复,主要来源有(但不限于):所用的参考标准或标准物质(参考物质)、方法和仪器设备、环境条件、被测物品的性能和状态、操作人员等。需要指出,被测物品预计的长期性能所引起的不确定度来源通常不予考虑。 4.2.5 评定各不确定度分量的标准不确定度:①不确定度A类评定采用统计方法; ②不确定度B类评定采用非统计方法。 合理地评定应依据对方法性能的理解和测量围,并利用以前的经验和资料、文献中确认的数据等。测量不确定度评定所需要的严密程度取决于①检测方法的要求;②客户的要求;③据以作出满足某技术规决定的紧限。 4.2.6 计算合成标准不确定度。 4.2.7 确定扩展不确定度和报告测量结果。 4.3 测量不确定度报告的审核和批准 4.3.1 中心技术负责人对各项目测量不确定度评定报告进行审核。必要时,可委托外单位专家审核。 4.3.2 评审后的测量不确定度评定报告和测量不确定度表示意见经中心副主任批准后,作为实验室的受控技术文件打印归档,并作为作业指导书发至有关检测人员执行。 4.3.3 检测项目负责人发现有关不确定度分量发生较大变化时,应及时向技术负责人或质量监督员报告并提出修改的具体意见,由技术负责人组织审核批准后实施。 4.4 测量不确定度的报告和应用 在下列情况下检测实验室的检测报告(或证书)中应给出有关测量结果不确定度的信息: a)当不确定度与检测结果的有效性或应用有关时; b)客户有要求时; c)当不确定度影响到对技术标准/规限度的符合性时,(即测量结果处于技术 标准/规规定的临界值附近时,测量不确定度的区间宽度对判断符合性 具有重要影响)。

相关文档
相关文档 最新文档