文档库 最新最全的文档下载
当前位置:文档库 › BTS授权股权证明机(DPOS)制白皮书

BTS授权股权证明机(DPOS)制白皮书

BTS授权股权证明机(DPOS)制白皮书
BTS授权股权证明机(DPOS)制白皮书

授权股权证明机制白皮书

(Delegated Proof-of-Stake ,DPOS)

作者:Daniel Larimer

2014年4月3日

翻译:yidaidaxia_郝晓曦

比特坊数字资产研究俱乐部翻译作品(www.bitfarm.io)

摘要

本白皮书介绍一种股权证明机制的新实现方式,该方式可以对交易进行秒级验证,并且能够在更短的时间内提供比现有任何股权证明系统都更好的安全性。在比特币网络产生一个区块的时间过后,一个授权股权证明系统(DPOS)能使你的交易得到20%股东的核实,而在比特币网络声明交易已几乎不可逆(6个区块,约1小时)的时间过后,在DPOS机制下,通过其代表,你的交易已经得到100%股东的核实。

1.0 背景

分布式交易总账需要在尽可能短的时间内做到安全、明确及不可逆,便于提供一个最坚实且去中心化的系统。在实践中,该流程分为两个方面:选择一个独特的节点来产生一个区块,并使得交易总账不可逆。

1.1 工作量证明机制(Proof of Work, POW)

第一个成功解决该问题的尝试是比特币系统(Bitcoin),比特币系统使用工作量证明机制使更长总账的产生具有计算性难度。工作量证明机制就好比是乐透,平均每10分钟有一个节点找到一个区块。如果两个节点在同一个时间找到区块,那么网络将根据后续节点的决定来确定以哪个区块构建总账。从统计学角度讲,一笔交易在6个区块(约1个小时)后被认为是明确确认且不可逆的。然而,核心开发者认为,需要120个区块(约一天),才能充分保护网络不受来自潜在更长的已将新产生的币花掉的攻击区块链的威胁。

尽管出现更长的区块链会变得不太可能,但任何拥有巨大经济资源的人都仍有可能制造一个更长的区块链或者具备足够的哈希算力来冻结用户的账户。

1.2 股权证明机制(Proof of Stake, POS)

股权证明机制已有很多不同变种,但基本概念是产生区块的难度应该与你在网络里所占的股权(所有权占比)成比例。到目前为止,已有两个系统开始运行:点点币(Peercoin)和未来币(NXT)。点点币使用一种混合模式,用你的股权调整你

的挖矿难度。未来币使用一个确定性算法以随机选择一个股东来产生下一个区块。未来币算法基于你的账户余额来调整你被选中的可能性。

未来币和点点币都分别解决了谁来生产下一个区块的问题,但他们没有找到在适当的时间内使区块链具备不可逆的安全性的方法。根据我们能找到的信息,做到这点,点点币需要至少6个区块(约一小时),未来币需要10个区块。我们

找不到在10个区块后未来币能提供什么级别安全性的根据。

我们之前发布了基于交易的股权证明机制(Transactions as Proof of Stake, TaPOS)的白皮书,在该机制中,每笔交易都包含区块链中前一个区块的哈希值。通过该系统,对任何人而言,网络变得越来越安全而不可逆,因为最终每个区块都经过了股东投票。股权证明机制面临的挑战是它没有定义谁来产生下一个区块。

1.3 瑞波共识机制(Ripple Consensus)

瑞波共识算法,使一组节点能够基于特殊节点列表达成共识。初始特殊节点列表就像一个俱乐部,要接纳一个新成员,必须由51%的该俱乐部会员投票通过。共识遵循这核心成员的51%权力,外部人员则没有影响力。由于该俱乐部由“中

心化”开始,它将一直是“中心化的”,而如果它开始腐化,股东们什么也做不了。与比特币及点点币一样,瑞波系统将股东们与其投票权隔开,并因此比其他系统更中心化。

2.0 授权股权证明机制(DPOS)

当使用去中心化自治公司(Decentralized Autonomous Company, DAC)这

一说法时,去中心化表示每个股东按其持股比例拥有影响力,51%股东投票的结果将是不可逆且有约束力的。其挑战是通过及时而高效的方法达到51%批准。

为达到这个目标,每个股东可以将其投票权授予一名代表。获票数最多的前100位代表按既定时间表轮流产生区块。每名代表分配到一个时间段来生产区块。所有的代表将收到等同于一个平均水平的区块所含交易费的10%作为报酬。如果一个平均水平的区块含有100股作为交易费,一名代表将获得1股作为报酬。

网络延迟有可能使某些代表没能及时广播他们的区块,而这将导致区块链分叉。然而,这不太可能发生,因为制造区块的代表可以与制造前后区块的代表建立直接连接。建立这种与你之后的代表(也许也包括其后的那名代表)的直接连接是为了确保你能得到报酬。

该模式可以每30秒产生一个新区块,并且在正常的网络条件下区块链分叉的可能性极其小,即使发生也可以在几分钟内得到解决。

2.1 成为一名代表

成为一名代表,你必须在网络上注册你的公钥,然后分配到一个32位的特有标识符。然后该标识符会被每笔交易数据的“头部”引用。

2.2 授权你的选票

每个钱包有一个参数设置窗口,在该窗口里用户可以选择一个或更多的代表,并将其分级。一经设定,用户所做的每笔交易将把选票从“输入代表”转移至“输出代表”。一般情况下,用户不会创建特别以投票为目的的交易,因为那将耗费他

们一笔交易费。但在紧急情况下,某些用户可能觉得通过支付费用这一更积极的方式来改变他们的投票是值得的。

2.3 保持代表诚实

每个钱包将显示一个状态指示器,让用户知道他们的代表表现如何。如果他们错过了太多的区块,那么系统将会推荐用户去换一个新的代表。如果任何代表被发现签发了一个无效的区块,那么所有标准钱包将在每个钱包进行更多交易前要求选出一个新代表。

2.4 解决区块链分叉

和工作量证明系统及其他股权证明系统一样,最佳区块链是最长的有效区块链。任何时候,一名代表错过签发一个区块的机会,该区块链将比潜在竞争对手短。只要在你的交易被写入区块后的100个区块中的51%被生产出来了,那么

你就可以安全地认为你在主区块链上。

也许,在防止区块链分叉所导致的损失方面,最重要的事是在事发后第一时间得知消息。因为代表们通过生产区块得到很好的报酬,他们将保持接近100%的在线时间来防止因被投票罢免而损失收入。你可以安全地认为如果在过去的10个区块中,有一两个区块错过生产,则互联网的某些部分可能正发生连接问题,那么用户应该对此特别警觉并要求额外的确认数。如果10区块中有超过5个错

过生产,那么这意味着你很可能在一条支链上,因此应该停止所有交易,直到分叉得到解决。

以一种及时的方式(少于5分钟)简单地发现并警示用户网络分叉,是可以最小化潜在损失的非常重要的能力。而知道你是否正处在一条支链上则更为重要。

2.5 100名代表是去中心化的吗?

因为去中心化已经成为一个流行术语,所以其定义很难完全固定。我们将自由市场看作去中心化的基本形式,并将对进入自由市场设置障碍看作是所有中心化的基础。像任何事物一样,中心化有程度之分,所以我们把授权股权证明机制与其它方案的中心化程度进行对比。

2.5.1 比特币

比特币系统目前正以授权工作量证明(Delegated Proof of Work, DPOW)为基础而运行,因此有大约10名代表控制了绝大多数的哈希算力。在那些为其竞争而能使用规模经济进行无收益挖矿的人手中,哈希算力本身就是中心化的。最后,工作量证明机制为进入市场设置障碍,使得“在职”的区块制造者无法轻易被取代。与比特币系统相比,DPOS在区块生产方面至少去中西化了10倍,并且也许在市场竞争方面去中心化了无数倍。

尽管在哈希算力方面有一定量的去中心化,当想到掌控比特币系统的股东(比特币持有者)所持股份的占比,我们认为比特币系统是最中心化的。如果你考虑使用比特币体系的用户总数,其中参与挖矿的人很可能少于百分之一。

2.5.2 点点币

点点币是一个混合系统,所以它由于工作量证明机制而是部分中心化的。和比特币系统一样,它也有矿池。与比特币相比,点点币无疑是更去中心化的,然而,因为股权证明机制矿池需要用户保持他们的电脑在线且钱包解锁,只有一小部分的股东参与了任何形式的挖矿。

2.5.3 未来币

未来币使用透明锻造,以确定的选出下一个制造节点。可以将其类比为,使用授权股权证明机制但你只能将你的投票权授予你自己,而你获得锻造区块机会的频率直接取决于你的账户余额。在这个意义上来说,未来币比点点币和比特币更为去中心化。但由于对安全风险的顾虑以及事实上大多数常规用户不会整天开启他们的电脑来籍此获得锻造机会方面的优势,它仍然遭受着少的可怜的挖矿参与度。

从这个角度来讲,我们可以断定未来币网络是由一小部分股东来保障网络安全的。事实上,如果你不上线投票,那么你将失去你的选票。为了解决这个问题,一些未来币用户用他们的股权建立股权池,并信任第三方来为他们挖矿。这是以一种形式的授权股权证明来提高股东参与度,但这也使他们的账户余额在他们参加这些矿池时承受风险。

3.0 攻击

一般而言,网络必须抵御两种类型的攻击:拒绝服务攻击和双重支付攻击。一个攻击者通过不把一些或全部的交易加入总账来进行拒绝服务攻击。这种攻击可以由任何拥有51%网络(无论比特币、未来币或其它)的人进行。而利用在网络正试图达成共识时的短期优势,可以进行双重支付攻击。

为抵御这些攻击,网络必须使51%的股东尽快达成协议。

3.1 防止排除交易

拥有全部经股东投票选出的100名代表,并且按要求轮流生产区块,意味着任何一笔由至少1%的股东批准的交易能够在30分钟内加入总账。这意味着没有代表可以通过将投票支持其他代表的交易排除在外来获取利益。

3.2 将一些代表的权力中心化

与其所被授权的投票权无关,这前100人所获得的权力权重是相同的,每名代表都有一份相等的投票权。因此,无法通过获得超过1%的选票而将权力集中到一个单一代表手上。

个人或者组织控制区块链的多名代表是有可能的。但是这个过程将需要欺骗很大比例的股东数去支持“傀儡”。

即使可以建立这51%傀儡,他们扰乱网络的能力仍将是有限的、能够被快速识别快速纠正的。没有工作量证明机制设置的进入障碍,占据多数的诚实用户会

把攻击鉴别出来,然后将代码分叉并无视攻击者生产的区块。这种攻击可以扰乱网络,但不会是致命的。

3.3 针对代表的分布式拒绝服务攻击(DDOS)

因为只有100名代表,可以想象一个攻击者对每名轮到生产区块的代表依次进行拒绝服务攻击。幸运的是,由于事实上每名代表的标识是其公钥而非IP 地址,这种特定攻击的威胁很容易被减轻。这将使确定DDOS攻击目标更为困难。而代表之间的潜在直接连接,将使妨碍他们生产区块变得更为困难。

4.0 基于交易的股权证明机制(TaPOS)

代表制是一个短时间内达成坚固共识的高效方式,而TaPOS为股东们提供了一个长效机制来直接批准他们的代表的行为。平均而言,51%的股东在6个月内会直接确认每个区块。而取决于活跃流通的股份所占的比例,差不多10%的股东可以在几天内确认区块链。这种直接确认保障了网络的长期安全,并使所有的攻击尝试变得极度清晰易见。

5.0 高质量的服务

假设一个DPOS系统拥有10亿美元的市场总量,平均每年的交易费为

0.25%,代表们合计获得所有交易费的10%,那么每名代表每年能获得25,000美元以使其节点保持在线。

这是一个利润可观的角色,许多人将为获取它持续竞争。这意味着每个想要获得这份工作的人都会想方设法从拥有这份工作的人那里把它“偷走”。为做到这

点,他们将对代表行为进行统计学分析,以找到对于标准算法的任何偏离行为。一旦找到这种偏离,他们就能有希望赢得一些选票。

那些拥有这份工作的人,可能会全力以赴地证明他们正在按标准软件运行。他们越有效地证明其对区块生产的正直性,越有可能保住他们的工作。你可以想象开发者会很快制作出系统,代表们可以通过这些系统快速证明哪些交易得到了广泛的散播。

事实上,市场竞争将产生用以证明代表们的正直性与可靠性的最具创造性的解决方案。让网络变得更安全的工作可以获得很多收益,而尝试绕轮网络则得不到什么好处。

6.0 结论

DPOS流程与TaPOS结合所产生的网络,其网络共识的可证明性将至少3倍于比特币、点点币及未来币网络。DPOS能够更快地达成共识,同时消除随机小股东带来小规模干扰的可能性。经济激励确保了代表们致力于证明他们有良好行为,并可能采用类似于瑞波系统的共识算法(来实现这种证明)。DPOS,事实上,是一种通过无网络分叉之虞的去中心化方式来产生瑞波特殊节点列表的方法。

注:译者完成翻译后发现https://www.wendangku.net/doc/3e17733183.html,上“麦可猫”也已经完成了翻译并发布在论坛。

具体链接如下,供参考。

https://https://www.wendangku.net/doc/3e17733183.html,/index.php?topic=4031.0

GPS接收机灵敏度解析

1 GPS接收机的灵敏度定义 随着GPS应用范围的不断扩展,对GPS接收机的灵敏度要求也越来越高,高灵敏度的接收性能可以令接收机在室内或其它卫星信号较弱的场景下仍然能够实现定位和跟踪,大大拓展了GPS的使用范围。 作为GPS接收机最为重要的性能指标之一,高灵敏度一直是各个GPS接收模块孜孜以求的目标。对于GPS接收系统而言,灵敏度指标包括多个场景下的指标,分别为:跟踪灵敏度、冷启动灵敏度、温启动灵敏度。目前业界已经可以实现跟踪灵敏度在-160dBm以下,冷启动灵敏度和温启动灵敏度也分别可以达到-145dBm和-158dBm以下,其中冷启动灵敏度和温启动灵敏度分别表示的是在两种不同场景下的捕获灵敏度。 GPS接收机首先需要完成对卫星信号的捕捉,完成捕捉所需要的最低信号强度为捕捉灵敏度;在捕捉之后能够维持对卫星信号跟踪所需要的最低信号强度为跟踪灵敏度。 2 GPS接收模块的灵敏度性能分析 从系统级的观点来看,GPS接收机的灵敏度主要由两个方面决定:一是接收机前端整个信号通路的增益及噪声性能,二是基带部分的算法性能。其中,接收机前端决定了接收信号到达基带部分时的信噪比,而基带算法则决定了解调、捕捉、跟踪过程所能容忍的最小信噪比。 2.1接收机前端电路性能对灵敏度的影响 GPS信号是从距地面20000km的LEO(Low Earth Orbit,低轨道卫星)卫星上发送到地面上来的,其L1频段(f L1=1575.42MHz)自由空间衰减为: (1) 按照GPS系统设计指标,L1频段的C/A码信号的发射EIRP(Effective Isotropic Radiated Power,有效通量密度)为P=478.63W(26.8dBw)([1][2]),若大气层衰减为A=2.0dB,则GPS系统L1频段C/A码信号到达地面的强度为: (2) GPS ICD(Interface Control Document,接口控制文档)文件([3])中给出的GPS系统L1频段C/A码信号强度最小值为-160dBw,和上述结果一致。在实际场景中,由于卫星仰角的不同、以及受树木、建筑物等的遮挡,L1频段 C/A信号到达地面的强度可能会低于-160dBw。

起重机械产品质量证明书

编号:20090156 起重机械产品质量证明书 产品类别:门式起重机 产品品种:电动葫芦门式起重机 型号规格: MB3t-11m-4.5m A5 产品编号: 20090156 设备代码:42704108720090156 质量保证工程师:艾绍全 单位法定代表人:郭祥 质量检验专用章: 郑州新大方重工科技有限公司

编号:20090156 起重机械产品合格证 制造单位:郑州新大方重工科技有限公司 制造地址:郑州市新郑双湖开发区磨河桥南制造许可证编号: TS2441087-2009 产品类别:门式起重机产品品种:电动葫芦门式起重机型号规格:MB3t-11m-4.5m A5 产品编号:20090156 设备代码: 42704108720090156 合同编号:20090611 制造完成日期: 2009 年 7 月 本起重机械产品经质量检验,符合《起重机械安全技术监察规程—桥式起重机》、设计文件和相关标准的要求。 质量检验员:刘渝生 检验部门负责人:艾绍全 质量检验专用章:

一、产品技术特性电动葫芦门式起重机

二、主要受力结构件材料 (2)本表可用材料的原始证明书的有效复印件代替,但是必须注明使用该材料的构件名称和构件号。

三、主要零部件 注:(1)包括车轮、缓冲器、制动器、钢丝绳、吊钩、滑轮、卷筒等主要零部件外,也包括有关的驱动电机和减速器、电气控制设备等,如果所用的与原设计不一致,发生代用,应当在备注栏中注明“代用”; (2)附外构件产品合格证明(复印件)。

四、安全保护装置 注:(1)如果与原设计不一致,发生代用,应当在备注栏中注明“代用”; (2)附型式试验证明、外购件产品合格证明(复印件)。

质量和数量证明书模板

质量数量证明书 quality and quantity certificate no: 合同号: contract no:99jp01m63i8406655 产品名称: product: 产品编号: series no: 部件名称: sub. ass’y: 制造日期: year built: 本证书所列产品按合同规定的质量标准或技术条件检验合格,允许出厂。 we certifiy that the product listed above conforms with the quality requirements specified in contract or manufacturing specifications。 检验处长: manager quality control dept: 总工程师: chief engineer: 厂长: works director: 制造厂: manufacture: 签证日期: date: 压力容器 产品质量证明书 产品名称 产品编号 质量保证工程师(签章) 单位法定代表人(签章) 质量检验专用(公章) 产品合格证 制造单位制造许可证编号 产品名称类别设计单位设计批准书编号 图号订货单位产品编号制造编号制造完成日期 年月日 本压力容器产品经质量检验符合《压力容器安全技术监察规程》、设计图样和技术条件的 要求。 质量总检验员签字 200 年月日质量检验专用(公章) 200 年月日 产品技术特性

产品编号 产品主要受压元件使用材料一览表 审核人: 填表人: 年月日 共页第页 产品焊接试板力学和弯曲性能检验报告 产品编号 理化责任师: 填表人:年月日 共页第页篇三:质量证明书 质量证明书 quality certificate 本证书所列产品按合同规定的质量标准或技术条件检验合格,允许出厂。 we certifiy that the product listed above conforms with the quality requirements specified in contract or manufacturing specifications。篇四:安装质量证明书填写样 本 起重机械施工质量检验记录 使用单位:设备品种: 型号规格: 施工类别:□新装 □移装□改造□重大维修) 说明 1.本质量检验记录适用电动葫芦门式起重机的安装、改造、大修、移装工程施工过程记 录。 2.检验依据 《起重机械安装改造重大维修监督检验规则》tsgq7016-2008 《起重机械安全技术监察 规程-桥式起重机》tsgq0002-2008 《起重机械安全规程》gb6067 《起重设备安装工程施工及验收规范》gb50278 《电气装置施工及验收规范》gb50256 《电 动葫芦门式起重机》jb/t1306 设计文件及相关产品合同以上文件和标准均为现行有效版本 3. 此质量检验记录中的记录为过程记录,当每个阶段自检完毕后,应提交监检员进行必 要确认。 4.如起重机施工仅为局部改造或大修,则可针对施工内容作部分填写,并加以必要说明。 5.性能试验结束后,检验员应及时完成质量检验记录,并提交监检机构和施工单位存档。 6.所有表中“检验结果”栏如无数据要求时应采用“√”、“×”和“/”分别表示“合 格”、“不合格”和“无此项”;如有测量数据要求时应填写实测数据并打“√”或“×”, 有□选择项的则在相应的□内打“√”选择。 7.检验用仪器设备应完好并在计量检定期内。 8.检验员应对检验记录、检测数据进行核对,施工单位对质量检验记录负责。 目录 注:如本施工工程非吊运熔融金属(非金属)的起重机,则去掉序号21项及第20页内 容。

接收机灵敏度计算公式

接收灵敏度的定义公式 摘要:本应用笔记论述了扩频系统灵敏度的定义以及计算数字通信接收机灵敏度的方法。本文提供了接收机灵敏度方程的逐步推导过程,还包括具体数字的实例,以便验证其数学定义。 在扩频数字通信接收机中,链路的度量参数Eb/No (每比特能量与噪声功率谱密度的比值)与达到某预期接收机灵敏度所需的射频信号功率值的关系是从标准噪声系数F的定义中推导出来的。CDMA、WCDMA蜂窝系统接收机及其它扩频系统的射频工程师可以利用推导出的接收机灵敏度方程进行设计,对于任意给定的输入信号电平,设计人员通过权衡扩频链路的预算即可确定接收机参数。 从噪声系数F推导Eb/No关系 根据定义,F是设备(单级设备,多级设备,或者是整个接收机)输入端的信噪比与这个设备输出端的信噪比的比值(图1)。因为噪声在不同的时间点以不可预见的方式变化,所以用均方信号与均方噪声之比表示信噪比(SNR)。 图1. 下面是在图1中用到的参数的定义,在灵敏度方程中也会用到它们: Sin = 可获得的输入信号功率(W) Nin = 可获得的输入热噪声功率(W) = KTBRF其中: K = 波尔兹曼常数= × 10-23 W/Hz/K, T = 290K,室温 BRF = 射频载波带宽(Hz) = 扩频系统的码片速率 Sout = 可获得的输出信号功率(W) Nout = 可获得的输出噪声功率(W) G = 设备增益(数值) F = 设备噪声系数(数值) 的定义如下: F = (Sin / Nin) / (Sout / Nout) = (Sin / Nin) ×(Nout / Sout) 用输入噪声Nin表示Nout: Nout = (F × Nin × Sout) / Sin其中Sout = G × Sin 得到: Nout = F × Nin × G

GPS的接收机灵敏度测试

接收机灵敏度分析 时间:2010-01-19 13:05:49 来源:作者: 1 GPS 接收机的灵敏度定义 随着GPS 应用范围的不断扩展,业界对GPS 接收机的灵敏度要求也越来越高,高灵敏度的接收性能可以令接收机在室内或其它卫星信号较弱的场景下仍然能够实现定位和跟踪,大大拓展了GPS 的使用范围。作为GPS 接收机最为重要的性能指标之一,高灵敏度一直是各个GPS 接收模块孜孜以求的目标。对于GPS 接收系统而言,灵敏度指标包括多个场景下的指标,分别为:跟踪灵敏度、捕获灵敏度、初始启动灵敏度。目前业界已经可以实现跟踪灵敏度在-160dBm 以下的接收机,同时,初始启动的灵敏度和捕获灵敏度也分别可以达到-142dBm 和-148dBm 以下。GPS 接收机首先需要完成对卫星信号的捕获,完成捕获所需要的最低信号强度为捕获灵敏度;在捕获之后能够维持对卫星信号跟踪所需要的最低信号强度为跟踪灵敏度。为了实现定位,GPS 接收机还需要解调GPS 卫星发送的导航电文,相应的,解调导航电文所需要的最低信号强度为初始启动灵敏度。根据上述定义可知,跟踪灵敏度最高,捕获灵敏度次之,初始启动灵敏度最差。 2 GPS 接收模块的灵敏度性能分析 从系统级的观点来看,GPS 接收机的灵敏度主要由两个方面决定:一是接收机前端整个信号通路的增益及噪声性能,二是基带部分的算法性能。其中,接收机前端决定了接收信号到达基带部分时的信噪比,而基带算法则决定了解调、捕获、跟踪过程所能容忍的最小信噪比。 2.1 接收机前端电路性能对灵敏度的影响 GPS 信号是从距地面20000km 的LEO(Low Earth Orbit,低轨道卫星)卫星上发送到地面上来的,其L1 频段(fL1=1575.42MHz)自由空间衰减为: 按照GPS 系统设计指标,L1 频段的C/A 码信号的发射EIRP(Effective Isotropic RadiatedPower,有效通量密度)为P=478.63W(26.8dBw)([1][2]),若大气层衰减为A=2.0dB,则GPS 系统L1 频段C/A 码信号到达地面的强度为: GPS ICD(Interface Control Document,接口控制文档)文件([3])中给出的GPS 系L1 频段C/A 码信号强度最小值为-160dBw,和上述结果一致。在实际场景中,由于卫星仰角的不同、以及受树木、建筑物等的遮挡,L1 频段C/A 信号到达地面的强度可能会低于-160dBw。 一般GPS 接收机的结构如下图所示: GPS 信号被天线接收下来后,如果天线有源,则经过滤波器和低噪放,再通过电缆接到接收机部分,接收

交换机的性能参数和使用选型概述

附录一:交换机的性能参数和使用选型 4.1 交换机性能参数 交换机参数是使用者用来衡量交换机用途、性能的重要参考依据,任何一个网络在施工之前都必须经严格的论证,论证的过程就包括网络拓扑结构的分析,节点设备功能的确定等环节;其中设备功能的确定主要是根据该网络的业务要求而确定,也就是能常所说的设备选型,而选购者也就是根据交换机相应的性能参数来选购所需设备。例如该网络用户需要满足的最小带宽、用户节点数量、是否支持远程网络管理、该交换机有多少个扩展槽、支持那些网络协议、是否支持VLAN、端口数量等等。 4.1.1基本参数 基本参数是设备选型时的主要参考标准,通常从这些参数中就能了解该设备的主要信息,判断是否满足建网要求等,例如我们需要购买一台支持网管功能的第三层千兆企业级模块化以太网交换机,这些参数年中就标明了设备类型。主要类型参考如下。 1.设备类型 交换机的分类标准多种多样,常见的有以下几种: (1)根据网络覆盖范围分 局域网交换机和广域网交换机。 (2)根据传输介质和传输速度划分 以太网交换机、快速以太网交换机、千兆以太网交换机、10千兆以太网交换机、ATM交换机、FDDI交换机和令牌环交换机。 (3)根据交换机应用网络层次划分 企业级交换机、校园网交换机、部门级交换机和工作组交换机、桌机型交换机。 (4)根据交换机端口结构划分 固定端口交换机和模块化交换机。 (5)根据工作协议层划分 第二层交换机、第三层交换机和第四层交换机。 (6)根据是否支持网管功能划分 网管型交换机和非网管理型交换机。

2.交换方式 目前交换机在传送源和目的端口的数据包时通常采用直通式交换、存储转发式和碎片隔离方式三种数据包交换方式。目前的存储转发式是交换机的主流交换方式。 (1)、直通交换方式(Cut-through) 采用直通交换方式的以太网交换机可以理解为在各端口间是纵横交叉的线路矩阵电话交换机。它在输入端口检测到一个数据包时,检查该包的包头,获取包的目的地址,启动内部的动态查找表转换成相应的输出端口,在输入与输出交叉处接通,把数据包直通到相应的端口,实现交换功能。由于它只检查数据包的包头(通常只检查14个字节),不需要存储,所以切入方式具有延迟小,交换速度快的优点。所谓延迟(Latency)是指数据包进入一个网络设备到离开该设备所花的时间。 它的缺点主要有三个方面:一是因为数据包内容并没有被以太网交换机保存下来,所以无法检查所传送的数据包是否有误,不能提供错误检测能力;第二,由于没有缓存,不能将具有不同速率的输入/输出端口直接接通,而且容易丢包。如果要连到高速网络上,如提供快速以太网(100BASE-T)、FDDI或ATM连接,就不能简单地将输入/输出端口“接通”,因为输入/输出端口间有速度上的差异,必须提供缓存;第三,当以太网交换机的端口增加时,交换矩阵变得越来越复杂,实现起来就越困难。 (2)、存储转发方式(Store-and-Forward) 存储转发(Store and Forward)是计算机网络领域使用得最为广泛的技术之一,以太网交换机的控制器先将输入端口到来的数据包缓存起来,先检查数据包是否正确,并过滤掉冲突包错误。确定包正确后,取出目的地址,通过查找表找到想要发送的输出端口地址,然后将该包发送出去。正因如此,存储转发方式在数据处理时延时大,这是它的不足,但是它可以对进入交换机的数据包进行错误检测,并且能支持不同速度的输入/输出端口间的交换,可有效地改善网络性能。它的另一优点就是这种交换方式支持不同速度端口间的转换,保持高速端口和低速端口间协同工作。实现的办法是将10Mbps低速包存储起来,再通过 100Mbps速率转发到端口上。 (3)、碎片隔离式(Fragment Free) 这是介于直通式和存储转发式之间的一种解决方案。它在转发前先检查数据包的长度是否够64个字节(512 bit),如果小于64字节,说明是假包(或称残帧),则丢弃该包;如果大于64字节,则发送该包。该方式的数据处理速度比存储转发方式快,但比直通式慢,但由于能够避免残帧的转发,所以被广泛应用于低档交换机中。 使用这类交换技术的交换机一般是使用了一种特殊的缓存。这种缓存是一种先进先出的FIFO(First In First Out),比特从一端进入然后再以同样的顺序从另一端出来。当帧被接收时,它被保存在FIFO中。

交换机的重要参数解释

交换机的重要参数解释 什么是线速 线速是指交换机的端口上每秒钟传输的bit数,单位为bps(bit per second,即每秒传输多少bit,一个bit也就是一个二进制数0或者1)。以我们常见的例子来说明的话,比如100M的网卡就是说的该网卡的网口线速为100Mbps;再比如安装的电信宽带是50M的宽带,说的是给我们开的端口线速度为50Mbps。 插个题外话——要注意的是,不要把线速和文件下载速度混为一谈了。在电脑上进行文件下载时的速度计算是以字节(byte)而不是以比特(bit)为单位的,我们通常说下载速度可以达到2M每秒意思是2M byte/s,也即2M Bps,大写的B 表示Byte,小写的b表示bit。那么byte和bit的区别是什么呢?其实也很简单,1byte=8bit,也即8倍的关系。 比如50M带宽的电信宽带,是指其线速是50Mbps,但其下载速度并不是50M,而是最大可以达到50M÷8=6.25MBps,当然这是理论值,实际使用过程中能做到满速下载的情况很少。 什么是背板带宽 交换机的背板带宽(Backplane Bandwidth),也称交换带宽,是交换机接口处理器或接口卡和数据总线间所能吞吐的最大数据量。背板可以理解为交换机或路由器内部的一条数据总线,设备端口间的数据交换都在总线上传输。如果把一个网络比喻成一个交通系统的话,各个网络设备相当于不同的城市,而背板就好比一条连接了这个系统内所有城市的高速公路,各城市之间的交通流量都需要从该高速公路上通过。那背板带宽就是该高速公路的最大无阻塞交通流量,当然和实际高速公路上复杂的交通状况不同的是,在这里我们要假设高速公路上的车辆都是以恒定的最高速度在行驶。 背板带宽是背板的物理属性,标志了交换机总的数据交换能力,也叫交换带宽,单位为Gbps(G bit per second,即每秒传输多少G bit的数据),一般的交换机的背板带宽从几Gbps到上百Gbps不等。一台交换机的背板带宽越高,所能处理数据的能力就越强,但相应的成本也会越高。

灵敏度

讨论这个议题的主要起因是:灵敏度(sensitivity)是如何确定的.[https://www.wendangku.net/doc/3e17733183.html,] 问题:我们经常看到某些GPS芯片 商宣称自己的芯片灵敏度是如何的高,但是根据对整个系统的分析可以看出系统的灵敏度主要取决于第一级LNA的设计,GPS产品的灵敏度取决于GPS芯片和放大器的设计,那么就带来下面的问题:[https://www.wendangku.net/doc/3e17733183.html,] 1)系统的灵敏度是如何计算的芯片的灵敏度对系统设计有什么影响 [https://www.wendangku.net/doc/3e17733183.html,] 2)接收GPS信号的功率和信噪比是一个什么样的水平 [https://www.wendangku.net/doc/3e17733183.html,] 3)如何按照信噪比,信号功率设计系统灵敏度 [https://www.wendangku.net/doc/3e17733183.html,] [https://www.wendangku.net/doc/3e17733183.html,] 这真是一篇超精华的帖子!感谢楼主和参与的所有人![5 2 jinfoxhe: R1 灵敏度的计算公式:S=-174dBm+10*log(BW)+Eb/N0+NF. BW一般为中频带宽,Eb/N0为芯片在一定误码的情况下解调需要的信噪比, NF为系统噪声系数.如果是扩频系统,还需要减去扩频增益. 2 对于GSM来说,其灵敏度一般为-110dBm左右(基站),和具体的配置有关系.从仿真来看, GSM的解调Eb/N0为4-5dB. 3 见1. snow99: 好象在说GPS, 不是GSM, 虽然看起来很像 GPS RF BW: 2.046 MHz Modulation: BPSK Process Gain: 46 d Thermal Noise Floor: kTB = -111 dBm/2.046MHz Required Eb/N0: 6 dB (不太清楚, 可以修正)

Receiver NF: 3 dB (Typical) Sensitivity: -111 + 6 + 3 - 46 = -148 dBm 这只是一个大致结果, 考虑系统的其他算法以及Doppler校正, 最终灵敏度在-154 ~ -149之间 https://www.wendangku.net/doc/3e17733183.html,] Arm720: 楼上朋友对灵敏度的描述已经非常清楚了,降低系统的信噪比和噪声系数能提高系统的灵敏度.那么对于设计来说是不是可以这么理解: 1)根据灵敏度公式估算系统的接收灵敏度 2)根据估算的系统接收灵敏度计算对芯片接收灵敏度的要求 芯片接收的灵敏度反映了对前级放大器噪声系数和信噪比的设计要求. 不知我的理解是否正确,如果是这样,估算的原则又是什么那些参考书上有描述,我想详细的研究一下,多谢了! 那位测试过GPS信号的朋友能说一下GPS信号的接收功率和信噪比吗 Arm720: 看来我的发帖晚了一部,多谢jinfoxhe和snow99兄! 不过snow99兄的计算方法和上面公式好像对不上.你描述的是对GPS接收系统的需求,不只这些需求是如何计算出来的. 多谢了! 以下是引用jinfoxhe在2006-4-24 8:56:00的发言: 1 灵敏度的计算公式:S=-174dBm+10*log(BW)+Eb/N0+NF. BW一般为中频带 宽,Eb/N0为芯片在一定误码的情况下解调需要的信噪比, NF为系统噪声系数.如果是扩频系统,还需要减去扩频增益. 2 对于GSM来说,其灵敏度一般为-110dBm左右(基站),和具体的配置有关系.从仿真来看, GSM的解调Eb/N0为4-5dB. 3 见1. 今天仔细看了看jinfoxhe兄的帖子,发现对关键问题进行了描述"Eb/N0为芯片在一定误码条件下的解调需要的信噪比",也就是说,你选的芯片就决定了接收系统灵敏度的理论值,这

起重机械产品质量证明书与合格证样表

起重机械产品质量证明书与合格证样表

————————————————————————————————作者: ————————————————————————————————日期: ?

起重机械产品质量证明书 产品类别:桥式起重机 产品品种:电动单梁起重机 型号规格: LD5-15A3 产品编号: 20160001 设备代码:4170-160001 质量保证工程师: 单位法定代表人: 质量检验专用章: 起重设备有限公司

?起重机械产品合格证 制造单位: 宜宾 制造地址:四川 制造许可证编号:TS 产品类别:桥式起重机产品品种:电动单梁起重机 型号规格:LD5-15A3产品编号:20160001 设备代码:4170-160001合同编号:# 制造完成日期:2016年02月 本起重机械产品经质量检验,符合《起重机械安全技术监察规程-桥式起重机》、设计文件和相关标准的要求。 质量检验员: 检验部门负责人: 质量检验专用章: ?一、产品技术特性 主要参数和用途 额定起重量5t 跨度15m 整机工作级别A3 起升高度7m 大车基距 2.2m 吊钩极限位置左841.5mm

右1310mm 整机功率9.9KW 最大轮压36.5KN 防爆形式/ 防爆等级/ 整机重量 3.798t用途生产 主要结构形式 结构类型箱形梁桥架起重形式钢丝绳电动葫芦操作方式遥控吊具型式吊钩 工作机构主要特性 电动葫芦电动葫芦型号CD15-9 工作级别M3 起升电机型号ZD141-4 功率/转速7.5KW /1400 r/min 起升速度8m/min 起升高度9m 运行电机型号/数量ZDY121-4/1功率/转速0.8KW/1380 r/min 小车运行速度20m/min 最大起重量5t 钢丝绳直径φ15 结构形式D-6×37+FC 大车运行机构工作级别M3 运行速度20m/min 电机型号/数量YDE802-4/2 电机功率/转数2×0.8KW/1380 r/min 减速器型号LDA型减速器速比57.78 制动器型号/数量制动电机/2 制动力矩电机自带 大车车轮踏面直径φ270mm 适应轨道P24 适应工作环境 电源 电压(V) 380V 风压 非工作风压 频率(Hz) 50HZ 工作风压 环境温度(。C)-5~+40 吊钩部位辐射温度(。C)≤300 依据标准 设计标准 GB/T3811-200 8 整机制造标准JB/T1306-2008 二、主要受力结构件材料 序号主要受力构件材料基本情况 名称牌号规格证书号生产单位购置时间备注 1.主梁梁腹板 2.主梁梁上盖板 3.主梁下盖板

交换机参数指标计算

几个概念的总结:、引擎转发性能(交换容量、转发能力) 背板带宽 只有模块交换机(拥有可扩展插槽,可灵活改变端口数量)才有这个概念,固定端口交换机是没有这个概念的,并且固定端口交换机的背板容量和交换容量大小是相等的。背板带宽决定了各板卡(包括可扩展插槽中尚未安装的板卡)与交换引擎间连接带宽的最高上限。由于模块化交换机的体系结构不同,背板带宽并不能完全有效代表交换机的真正性能。固定端口交换机不存在背板带宽这个概念。 但是,我们如何去考察一个交换机的背板带宽是否够用呢?显然,通过估算的方法是没有用的,我认为应该从两个方面来考虑: 1、)所有端口容量X端口数量之和的2倍(2倍为考虑端口模式为全双工的情况)应该小于背板带宽,可实现全双工无阻塞交换,证明交换机具有发挥最大数据交换性能的条件。 2、)满配置吞吐量(Mpps)=满配置GE端口数×1.488Mpps其中1个千兆端口在包长为64字节时的理论吞吐量为1.488Mpps即每秒钟能转发1.488M个64字节的数据包。例如,一台最多可以提供64个千兆端口的交换机,其满配置吞吐量应达到64×1.488Mpps = 95.2Mpps,才能够确保在所有端口均线速(理论上能够达到的最大速率)工作时,提供无阻塞的包交换。如果一台交换机最多能够提供176个千兆端口,而宣称的吞吐量为不到261.8Mpps(176 x 1.488Mpps = 261.8),那么用户有理由认为该交换机采用的是有阻塞的结构设计。 一般是两者都满足的交换机才是合格的交换机。 交换引擎的转发性能(交换容量、转发能力) 由于交换引擎是作为模块化交换机数据包转发的核心,所以这一指标能够真实反映交换机的性能。对于固定端口交换机,交换引擎和网络接口模板是一体的,所以厂家提供的转发性能参数就是交换引擎的转发性能,这一指标是决定交换机性能的关键。支持第三层交换的设备,厂家会分别提供第二层转发速率和第三层转发速率,一般二层能力用bps,三层能力用pps,采用不同体系结构的模块化交换机,这两个参数的意义是不同的。但是,对于一般的局域网用户而言,只关心这两个指标就可以了,它是决定该系统性能的关键指标。对于大型园区网和城域网用户,讨论交换机的体系结构和第三层优化算法是有意义的。 另外,讲一下PPS是如何计算的: 我们知道1个千兆端口的线速(包转发率是1.4881MPPS, 百兆端口的线速包转发率是0.14881MPPS,这是国际标准,但是如何得来的呢? 具体的数据包在传输过程中会在每个包的前面加上64个(前导符)preamble也就是一个64个字节的数据包,原本只有512个bit,但在传输过程中实际上会有512+64+96(96bit帧间隙)=672bit,也就是这时一个数据包的长度实际上是有672bit的 千兆端口线速包转发率=1000Mbps/672=1.488095Mpps,约等 于1.4881Mpps,百兆除于10为0.14881Mpps 设备选型时需要注意的几个方面: 线速只能作为一个参考,绝大多数情况下端口实际速率不会达到线速; 主频高点没有坏处,但是CPU在一般业务中的实际占用率是个很重要的指标。

接收机灵敏度的探讨

无线电接收机诸多的性能当中,「灵敏度」(Sensitivity)无疑是其中最重要的一项,同时,也可能是遭遇最多误解的一项了。 曾经听说过有位OM试着要在天线和接收机的输入端之间,加装一个高增益的前置放大器,以提高灵敏度。这种作法是否正确,有待我们来探讨。 杂讯与讯号杂讯比 直接从字面上的意义,我们了解到,灵敏度是接收微弱讯号的能力。要接收微弱的讯号,一般的想法是设法将讯号储量放大,也就是提高增益(Gain),以接收更微弱的讯号,所以增益高的接收机,其灵敏度一定较高。 这一段话,前半段关於灵敏度定义的部份,基本上是正确的;但後半段,增益与灵敏度关系的推论,跟实际情况却相差了十万八千里,这正是一般人对於灵敏度这项特性最人的误解。 在进入正题之前,且让我们谈谈杂讯(Noise)的问题。 打开接收机,当没有讯号进来时,通常都可以听到细小的「沙沙」声,这就是杂讯的声音。当有讯号进来时,强度够的话,这种「沙沙」声就几乎听不到。可是如果讯号微弱的话,我们会把接收机的音量开大,想更清楚地听到讯号,这一来,「沙沙」声也就相对变大。如果讯号更微弱的话,纵然将接收机的音量开到最大,也只是徒然提高「沙沙」声而已,讯号还是听不清楚。 可见要清楚地接收到微弱讯号,问题并不是在将音量开得多大(提高增益)。如果纯粹想提高增益的话,实在太简单了,了不起再加一级放大器就是。其关键乃是讯号和杂讯相对的强度,是否讯号有足够的强度,不被杂讯所遮盖过去。 这种讯号强度和杂讯强度的对比就叫「讯号杂讯比」(SignaltoNoiseRatio)或者简称S/N比;当然,S/N比在习惯上,也经常以dB来表示。 从接收机声频输出端(如扬声器)所听到的杂讯。可以区分为两类。第一类是伴随着讯号从天线端接收进来的外部杂讯。对於此「天」电杂讯(或称背景杂讯),我们很难有所作为,只好听天由命了。第二类是与外部环境完全无关的内部杂讯,即使将输入端的讯号降低到零,仍可听到的杂讯,这完全是接收机本身所产生的内部杂讯。 对於第二类的内部杂讯,聪明的你,应该已经察觉到跟接收机的灵敏度一定有很密切的关系。 杂讯指数与杂讯系数 描述一个系统(如接收机)内部杂讯大小,可以用杂讯系数(NoiseFact

塔式起重机基础验收表.docx

塔式起重机基础验收表工程名称武汉青山长江大桥安装位置 使用单位安装单位 设备制造单 设备型号位 序号检查项目 检查结论 注 备 (合格√ 不合格×) 1基础承载力 2基础表面平整度 3基础顶部标高偏差( mm) 4预埋螺栓、预埋件位置偏差( mm) 5塔吊平台位置偏差( mm) 6基础周边排水措施 7基础周边与架空输电线安全距离 其他需说明的内容: 验收结论: 验收人员签字: 日期

施工升降机安装自检表 工程名称 安装单位 制造单位 设备型号 安装日期 检查结果 代号说明 名称序号 1 资料 2检查 3 4 标志 5 基础 6和围 护措 √ =合格 检查项目 基础验收表和 隐蔽工程验收 单 安装方案、安 全交底记录 转场保养作业 单 统一编号牌 警示标志 地面防护围栏 门联锁保护装 置 工程地址 安装资质等级 使用单位 备案登记号 最高安装 初始安装高度 高度 ○=整改后合格× =不合格无=无此项 要求检查结果备注 应齐全 应齐全 应齐全 应设置在规定位置 吊笼内应有安全操作规程, 操纵按钮及其他危险处应有醒 目的警示标志,施工升降机应 设限载和楼层标志 应装机电联锁装置,吊笼位 于底部规定位置时,地面防护 围栏门才能打开,地面防护围 栏门开启后吊笼不能启动

施 7地面防护围栏8安全防护区 基础上吊笼和对重升降通道 周围应设置地面防护围栏,高度 ≥ 当施工升降机基础下方有施 工作业区时,应加设对重坠落 伤人的安全防护区及其安全防 护措施 续表 名称 金属结构件 吊笼层门序号检查项目 金属结构件 9 外观 10螺栓连接 11销轴连接 导轨架垂直 12 度 13紧急逃离门 吊笼顶部护 14 栏 15层站层门 要求检查结果备注 无明显变形、脱焊、开裂和锈蚀 紧固件安装准确、紧固可靠 销轴连接定位可靠 架设高度 h( m)垂直度偏差 (mm ) h≤ 70≤( 1/1000) h 70<h≤ 100≤ 70 100<h≤ 150≤ 90 150<h≤ 200≤110 h> 200≤ 130 对钢丝绳式施工升降机,垂直度偏差 应≤( 1000) h 吊笼顶应有紧急出口,装有向外开启 活动板门,并配有专用扶梯。活动板 门应设有安全开关,当门打开时,吊 笼不能启动 吊笼顶应设防护栏杆 高度≥ 应设置层站层门,层门只能由司机 启闭,吊笼门与层站边缘水平距离≤ 50mm 传动及导向 防护装置转动零部件的外露部分应有防护罩等16 防护装置 17制动器制动性能良好,有手动松闸功能18齿条对接 相邻两齿条的对接处沿齿高方向的阶 差应≤,沿长度的齿差应≤

交换机技术参数要求.doc

附表: 交换机技术参数 项目技术要求 推荐品牌H3C 推荐型号H3C S5130-52TP-EI 整机交换容量不低于256Gbps/2.56Tbps 包转发率不低于132Mpps 固定端口至少包含48*10/100/1000Base-T 电口 链路聚合支持GE/10GE端口聚合 端口特性支持IEEE802.3x 流量控制(全双工) IRF2 支持IRF2 智能弹性架构 IRF3 支持PE(Port Extender ,端口扩展)模式 SDN/Openflow 支持OpenFlow 1.3 标准 VLAN 支持基于端口的VLAN 支持L2(Layer 2 )~L4(Layer 4 )包过滤功能,提供基于源MAC地址、目的MAC 地址、源IP 地址、目的IP 地址、TCP/UDP端口、协议类型、VLAN的流分类ACL 支持时间段(Time Range)ACL 支持基于端口、VLAN、全局下发ACL QoS 支持对端口接收报文的速率和发送报文的速率进行限制 DHCP 支持DHCP Client 流量统计支持SFLOW IP 路由支持IPv4 静态路由、RIPv1/v2 组播支持IGMP Snooping /MLD Snooping 二层环网协议支持STP/RSTP/MSTP/PVST OAM 支持802.1ag 镜像支持端口镜像 安全特性支持用户分级管理和口令保护 管理与维护支持XModem/FTP/TFTP加载升级 绿色节能支持EEE(802.3az) 输入电压额定电压范围:AC:100V~240V 50/60Hz 配件SFP+万兆单模光纤模块至少2 个 数量 3 台

项目名称S5130-28TP-EI S5130-52TP-EI 数量 2 4 整机交换容量256Gbps/2.56Tbps 包转发率96Mpps 132Mpps 24*10/100/1000Base-T 48*10/100/1000Base-T 电口固定端口 2*10G BASE-XSFP+万兆2*10G BASE-X SFP+万兆光口,2*10G BASE-T 万兆电口 支持GE/10GE端口聚合 链路聚合支持动态聚合 支持跨设备聚合 支持IEEE802.3x 流量控制(全双工) 端口特性支持基于端口速率百分比的风暴抑制 支持基于PPS/BPS的风暴抑制 支持IRF2 智能弹性架构 支持通过标准以太网接口进行堆叠 IRF2 支持本地堆叠和远程堆叠 支持分布式设备管理,分布式链路聚合 支持PE(Port Extender ,端口扩展)模式 IRF3 PE模式下支持本地转发和纵向转发模式切换 支持自动从 C B(Controlling Bridge ,控制桥)更新版本零配置SDN/ 支持OpenFlow 1.3 标准 支持多控制器(EQUAL模式、主备模式) Openflow 支持多表流水线 支持Group table 支持Meter 支持基于端口的VLAN 支持基于MAC的VLAN 基于协议的VLAN VLAN 支持QinQ,灵活QinQ 支持VLAN Mapping 支持Voice VLAN 支持GVRP 支持L2(Layer 2 )~L4(Layer 4 )包过滤功能,提供基于源MAC地址、目的MAC 支持时间段(Time Range)ACL ACL 支持基于端口、VLAN、全局下发ACL 支持双向ACL 支持对端口接收报文的速率和发送报文的速率进行限制 支持报文重定向 QoS 支持CAR(Committed Access Rate )功能 每个端口支持8 个输出队列 支持端口队列调度(SP、WR、R SP+WR)R

计算ASK接收机的灵敏度

计算ASK接收机的灵敏度 RFIC幅移键控(ASK)或者叫做开关键控(OOK)接收机的灵敏度对于远程无线开门系统(RKE)、轮胎压力监视系统(TPM)、家庭自动化系统以及其它应用系统的设计者来说是一项重要的规范。这类接收机一般工作在315MHz或433MHz的频段上,但是其电路对其它载波频率也是适用的。了解这种接收机一些特性在理论上的极限值对RFIC用户和设计者都是很重要的,因为这样就能确定他们在设计上的改进是不是成功的。本篇应用笔记描述了一种在已知系统噪声系数、IF带宽和基带带宽的条件下一步一步的计算ASK接收机灵敏度的方法。结果表明,接收信号强度指示(RSSI)放大器实现的对数幅度检测在输入SNR较低时降低了输出信噪比(SNR) (门限效应),而灵敏度的提高与IF带宽与基带带宽之比的平方根成正比。 大多数现代幅移键控(ASK)接收机利用将调制的RF信号直接的或者经过一次或多次频率变换后通过一个幅度检测器对数据进行检测。幅度检测器基本上就是一个RF或IF放大器和一个RSSI(接收信号强度指示器),RSSI的输出与输入RF或IF信号功率的对数成正比。 因为RSSI检测器是一个非线性的检测器,它将改变输入信号的信噪比(SNR)。ASK 灵敏度计算的关键就在于RSSI检测器的SNR out与SNR in关系曲线。 一旦我们知道了SNR out与SNR in之间的关系,在已知噪声系数、IF带宽和数据速率的条件下可以通过如下步骤找出ASK灵敏度 1. 确定目标BER(在本例中为10-3)所需的Eb/No,然后根据Eb/No用下面的等式计算SNR。 SNR = (Eb/No) * (R/BBW) 其中R是数据速率,BBW是数据滤波器的带宽 2. 将上一步计算出来的SNR减去IF(预检波)BW与数据滤波器BW之比的dB数。例如,如果IF BW为600KHz数据滤波器BW为6kHz,这就意味着要从SNR中减去20dB。得到的结果就是RSSI检测器输出信号的SNR,这一信号还没有被数据滤波器消除其高频噪声(假设这些噪声占据了IF BW)。对于灵敏度来说,这一比例通常是以dB为单位的负值。 3. 用RSSI的SNR out与SNR in关系曲线找出RF或IF放大器和RSSI检测器输入信号的SNR。实际上就是通过这条曲线用第二步计算中得到SNR out“反向”推导SNR in。 4. 使用接收机前端SNR公式找出接收机输入端的信号水平。这就是灵敏度S S = (SNR in) * (kTBIFFS) 其中kT是在290 K的噪声谱密度(-174 dBm/Hz),BIF是IF(预检波)BW,FS是接收机系统(不仅仅是前端)的噪声系数。 因为RSSI检测器是一个对数检测器,输入输出SNR的关系可以用一种封闭的方式表示,尽管可能看起来有点儿乱。一篇发表在IEEE学报上比较老的关于航空与电子系统的文章[1]推导出了其表达式并画出了SNR out与SNR in关系的曲线。这篇文章中的曲线非常小而且没有足够的网格线,但是可以在Excel表格中对表达式进行分析计算并画出更具体的

交换机性能指标

把多台电脑组成网络,交换机是必不可少的配件。可是现在市场上交换机各式各样、品牌众多,同时价格也从百元、数百元到数千元不等。用户如何选择适合自己使用的交换机呢?又如何来判断交换机的好坏呢?那就需要注册交换机的各项性能指标,通过各项性能指标来判断、选择交换机。下面笔者就交换机的各项性能指标进行全面的解析。 一、交换机类型 交换机类型包括机架式交换机与固定配置式带/不带扩展槽交换机。机架式交换机是一种插槽式的交换机,该类交换机的扩展性较好,可以支持不同的网络类型,但其价格较贵;固定配置式带扩展槽交换机是一种有固定端口数并带少量扩展槽的交换机,这种交换机在支持固定端口类型网络的基础上,还可以支持其它类型的网络,价格居中;固定配置式不带扩展槽交换机仅支持一种类型的网络,但同时价格也是最便宜的。 二、端口 端口指的是交换机的接口数量及端口类型,交换机通常分为16口、24口或更多端口数,一般来说端口数量越多,其价格就会越高。端口类型一般有多个RJ-45口,还会提供一个UP-Link口,用来实现交换设备的级联,另外有的端口还支持MDI/MDIX自动跳线功能,通过该功能可以在级联交换设备时自动按照适当的线序连接,无须进行手工配置。 三、传输速率 现在市场上交换机主要分为百兆与千兆交换机两种,百兆交换机主要以10/100Mbps自适应交换机为主,能够通过网络自动判断、自适应运行,如果是一般公司或是家庭局域网的话,相信百兆交换机就能够满足用户的需求了。当然,有条件的用户也可以选择100/1000Mbps 自适应交换机,以适应未来网络升级的需要。 四、传输模式

目前的交换机一般都支持全/半双工自适应模式,通过网络自行适应传输模式。全双工指可以同时接收和发送数据,数据流是双向的,用来提高网络传输的效率,半双工模式指不能同时接收和发送数据,要么只能接收数据,要发只能发送数据,数据流是单向的。 五、是否支持网管 网管是指网络管理员通过网络管理程序对网络上的资源进行集中化的管理,包括配管理、性能和记账管理、问题管理、操作管理和变化管理等。一般交换机厂商会提供管理软件或第三方管理软件来远程管理交换机,现在常见的网管类型包括:IBM网络管理(Netview)、HP Openview、Sun Solstice Domain Manager、Rmon管理、Snmp管理、基于WEB管理等,网络管理界面分为命令行方式(CLI)与图形用户界面(GUI)方式,不同的管理程序反映了该设备的可管理性及可操作性。 六、交换方式 目前交换机采用的交换方式主要有“存储转发”与“直通转发”两种,存储转发指的是在交换机接收到全部数据包后再决定如何转发,可以检测数据包的错误、支持不同速度的输入、输出端口的交换,不过数据处理时延时较长。直通转发是指在交换机收到整个帧之前就已经开始转发数据,这样可以减少延时,但由于直接转发所有的完整数据包和错误数据包,使得给交换网络带来了许多垃圾通信包。低端的交换机一般只是支持一种交换方式,使用直通转发或存储转发,如今大部分交换产品支持存储转发技术,而直通转发技术适用于网络链路质量较好,错误数据包较少的网络环境中。 七、背板吞吐量 又称作背板带宽,是指交换机接口处理器和数据总线之间所能吞吐的最大数据量,交换机的背板带宽越高,其所能处理数据的能力就会越强,如两台同样是16口的10/100Mbps自适应的交换机,在同样的端口带宽与延迟时间的情况下,背板带宽宽的交换机传输速率就会越快。一般5口与8口交换机的背板带宽都在1Gbps至3.2Gbps之间。背板吞吐量越大的交换机,其价格会越高。

相关文档
相关文档 最新文档