文档库 最新最全的文档下载
当前位置:文档库 › 手机射频知识

手机射频知识

手机射频知识
手机射频知识

GSM手机射频测试指导

目录

序言 (2)

第一章测试条件 (3)

1.1 正常测试条件 (3)

1.2 极限测试条件 (3)

1.3 震动条件 (3)

1.4 其它测试条件及规定 (4)

1.5 附件要求 (5)

第二章发射机指标及其测试 (6)

2.1 发射载波峰值功率 (6)

2.2 发射载频包络 (11)

2.3调制频谱(Spectrum Due to Modulation) (15)

2.4开关频谱(Spectrum Due to Switching) (18)

2.5频率误差(Frequency Error) (20)

2.6相位误差(Phase Error) (22)

2.7传导杂散骚扰(Conduct Spurious Emissions) (24)

2.8发射峰值电流和平均电流 (27)

第三章接收机指标及其测试 (29)

3.1接收灵敏度(Rx Sensitivity) (29)

3.2接收信号指示电平(RX Level) (33)

3.3接收信号指示质量(RX Quality) (35)

第四章其余测试补充 (38)

4.1 RC滤波电路对PA-RAMP的影响 (38)

4.2 PA匹配调整 (42)

4.3天线开关指标测试 (42)

第五章附录 (44)

序言

目前国家对手机的质量问题越来越重视,对于手机质量的客户满意度和返修率也一致关注。其中,GSM手机的射频问题仍然是一个影响手机质量、开发进度和生产效率的重要因素。为了保证产品的品质和性能符合GSM规范和国家标准,需要在手机测试方面建立一套完整、科学的测试体系。为此我们参照GSM规范欧洲标准、国家邮电部移动通信技术规范、国家信息产业部通信行业标准以及日常积累的测试经验编写了这份射频测试规程。

本规范的目的是针对研发阶段的GSM手机提供一个较全面测试和校准的指标依据,尽量保证研发阶段GSM手机的点测指标满足FTA、CTA与批量生产点测指标要求,使手机的射频问题尽可能在研发阶段暴露出来并在量产前解决,同时为评估手机的RF点测性能、指标余量、一致性、稳定性提供参考依据,另外为不熟悉测试的新员工提供一些指导。本文主要内容包括射频指标术语解释,发射机和接收机部分射频指标的测试方法,测试结果,测试参考标准等,最后还给出了指标超标的一般分析。

由于我们射频知识与经验有限,不足之处请指导。

第一章测试条件

手机的测试条件包括测试环境条件、测试温度、湿度条件、测试电压及震动测试等内容。

民用设备的测试一般应在正常测试条件下进行,如有特殊要求时,也可在极限条件下进行测试。鉴于移动站的特殊使用环境,下面将对移动站的测试条件作重点介绍。

1.1 正常测试条件

对于移动站来说,正常测试温度和湿度条件应为以下范围的任意组合:

温度:15—35℃

相对湿度:25—75%

正常测试电压应为设备的标称工作电压,其频率(测试电源)应为标称频率±lHz范围内。对于用在车载整流铅酸电他上的无线设备,其正常测试电压应为电池标称电压的1.1倍。

1.2 极限测试条件

对于移动站,极限测试条件应为极限电压部极限温度的任意组。

其中对于手持机来说极限环境温度为-10~+55℃。

对于车载台和便携式移动站来说,其极限测试温度为-20~+55℃。

极限测试电压对于使用交流市电的移动站,为其标称电压的0.9~1.1倍。

对于采用汞/镍镉电池的移动站,极限测试电压为其标称电压的0.9~1.0倍。

对于采用整流铅酸电他的移动站来说,极限测试电压为其标称电压的0.9~1.3倍。

在极限温度下的测试过程:

对于高温,当实现温度平衙后,移动站在发射条件下(非DTx)开机1分钟再在空闲模式(idle mode)(非DTx)下开机4分钟,Ms应满足规定的要求。

对于低温,当实现温度平衡后,移动站应在Ms空闲模式(非DTx)下开机1分钟再进行测试,Ms应满足规定的要求。

1.3 震动条件

在震动条件下测试移动站,应采用随机震动,其震动频率范围和加速度频谱密度(ASD)如下:

在频率为5~20Hz范围内,其震动ASD为0.96m2/s3。

在频率为20~500Hz范围内,在20Hz时ASD为0.96m2/s3,其它频率为-3dB/倍频程。

1.4 其它测试条件及规定

1.系统模拟器(SS)

系统模拟器是一系列测试设备的总称,它是一个功能性工具,能对被测设备提供必要的输入测试信号并能分析被测设备的输出信号以实施GSM规范中所有的测试、市场上现存的测试仪器可以实现全部或部分系统模拟器的测试功能。如HP8922B/E/G系列、R/S公司的CMD54、CMD52及CRTS02、04、24系列等可以提供对移动站和基站不同级别的测试。在测试基站时,系统模拟器可以模拟移动站和网络在A(或Abis)接口及空中接口(Um接口)对基站进行测量。在测试移动站时,系统模拟器可以模拟基站及网络在空中接口(Um接口)对移动站进行测量。

2.衰落和多径传播棋拟器(MFs)

多径衰落模拟器(MFS)在功能上也属于系统模拟器的一部分,它主要用于在无线干扰性能测量中模拟真实的移动无线信道上的宽带多径传播条件。它能提供由COST207和GSM05.05建议中所规定的标准多径传播模式。其中包括典型的城市区地形(TU)、农村地形(RA)、丘陵地形(HT)及专门用于测试均衡器性能的传播模式(EQU)。MFS应能模拟上述多径传播条件下从车速3km/h到250km/h范围内的多径分布,特别是使用车速为3、50、100和250km/h的情况。

3.标准测试信号

系统测试设备应能产生下列标准测试信号作为测试输入信号:

(1)标准测试信号Co:它是未调制的连续载波信号。

(2)标准测试信号C1:它是标准的GSM调制信号,其调制数据为010l格式信号输入到信道编码器输入端。信道编码器可由测试方法来选择测试和加密模式。在非跳频模式采用该信号时,其它未使用的时隙发送空闲突发脉冲串(dummy burst),且功率电平相对于使用时隙而变化。

以上两种标准测试信号都是用于表示有用信号,对于无用信号(即干扰信号)有下列三种标准测试信号:

(3)标准测试信号I0:为未调制的连续载波信号。

(4)标准测试信号I1:为GSM调制载波信号,其结构遵照GSM信号突发(burst,称为突发脉冲或简称突发。下同)结构,但其所有调制比特(包括突发中的训练序列部分)皆直接为随机或伪随机数据流。

(5)标准测试信号I2:为标准的GSM调制信号,但与C1信号不同,其突发的训练序列部分为标准的GSM训练序列,但突发中的数据比特(包括比特58和59)皆为随机或伪随机数据流。

1.5 附件要求

1、采用相同标准的射频线和转接头,要求包括转接头在内GSM频段各信道间的损耗值小于0.5dB, 损耗值差异小于0.2dB;DCS频段各信道间的损耗值小于1dB, 损耗值差异小于0.3dB, 特性阻抗含转接头应在50±5 欧姆内。

2、射频综合测试仪采用CMU200或HP8960。频谱分析仪采用HP或AGILENT 系列。

3、RF带阻滤波器BANDREJECT FILTER要求对相应发射频段的信号衰减30 dB以上,对二次、三次谐波衰减(插入损耗)小于1.5 dB, VSWR小于1.3:1,输入额定功率大于1W。

4、测试时, 手机在与综测仪建立连接时BS TCH信号强度设为-60dBm,当测试误码率时,BS信号标准为-102dBm。

5、测试设备通常为:

综合测试仪R&S CMU200 或Agilent 8960

网络分析仪Agilent 8753ES

频谱分析仪Agilent E4404B

信号发生器R&S SMIQ 06B

示波器6050A

直流电源Keithley

屏蔽箱、陷波滤波器、RF衰减器、射频连接线等;

第二章 发射机指标及其测试

2.1 发射载波峰值功率

1、 定义:

指发射机载波功率在一个突发脉冲的有用信息比特时间上的平均值。即对该载频时隙突发脉冲串的有用信息比特部分(即时隙中段突发的有用信息比特部分,对常规信道为147比特,对允许接入信道(RACH )为87比特)测量的功率的平均值。 2、 目的:

如果发射功率在相应的级别达不到指标要求,会造成很难打出电话的毛病,即离基站近时容易打出而离基站远时不易打出困难,往往表现出发射时总是提示用户重拨号码。如果发射功率在相应的级别超出指标的要求,一方面可以客服空中损耗,降低对接收机接收灵敏度的要求,但则会造成电池损耗大,待机时间短;另外扩大小区覆盖范围,引入邻道干扰。则需测量发射机的载波输出功率是否符合GSM 规范的指标。 3、 测量:

(1)、仪器连接如图一,点测或耦合测试;

C M U 200

M

S

图一

(2)、测试原理:

手机发射部分由发射信号形成电路、功率放大电路、功率控制电路三个单元组成。

GSM频段分为124个信道,功率级别为5-33dBm,即LEVEL5-LEVEL19共15个级别;

DCS频段分为373个信道(512-885),功率级别为0-30dBm,即LEVEL0-LEVEL15共15个级别;每个信道有15个功率等级,测试时选上、中、下三个信道对每个功率等级进行测试,每个功率等级以2dBm增减。

频段各信道发射频率(MHZ) ARFCN信道编号各信道接收频率(MHZ) P-GSM 900 F T (n) = 890 + 0.2×n 1 ≤n ≤124 F R (n) = F T (n) + 45

E-GSM 900 F T (n) = 890 + 0.2×n

F T (n) = 890 + 0.2×(n-1024)

0 ≤n ≤124

975≤n ≤1023

F R (n) = F T (n) + 45

DCS 1800 F T (n) = 1710.2 + 0.2×(n-512) 512≤n ≤885 F R (n) = F T (n) + 95 PCS 1900 F T (n) = 1850.2 + 0.2×(n-512) 512≤n ≤810 F R (n) = F T (n) + 80 GSM 850 F T (n) = 824.2 + 0.2×(n-128) 128≤n ≤251 F R (n) = F T (n) + 45

表1 各频段载波频率与信道编号表

由于手机不断移动,手机和基站之间的距离在不断变化,因此手机的发射功率不是固定不变的,基站根据距离远近的不同向手机发出功率级别信号,手机收到功率级别信号后会自动调整自身的功率,离基站远时发射功率大,离基站近时发射功率小。具体过程如下:手机中的数据存储器存放有功率级别表,当手机收到基站发出的功率级别要求时,在CPU的控制下,从功率表中调出相应的功率级别数据,经数/模转换后变成标准的功率电平值,而手机的实际发射功率经取样后也转换成一个相应的电平值,两个电平比较产生出功率误差控制电压,去调节发射机激励放大电路、预放、功放电路的放大量,从而使手机的发射功率调整到要求的功率级别上。

(3)、测试方法:

首先由MS按照一般的呼叫建立过程在一个绝对射频频道号(ARFCN)为60~65之间的TCH信道上建立一个呼叫,并将该MS的功率控制电平设置为其最大功率等级。

※CMU200与MS建立连接的一般设置如节末附图。

连接完成后,选择Power,激活功率列表。

在每个频段上,选择高中低三个信道,从低到高选择几个功率级别进行功率测试,记录测试数据。GSM频段选1、62、124 三个信道;DCS频段选512、698、885 三个信道。对每个功率级别进行测试。

4、结果:

测试示意图:

5

、技术要求 POWER CONTROL LEVEL GSM900(dBm) DCS1800(dBm)

标准值(dBm )

校准范围

极限范围

标准值(dBm ) 校准范围 极限范围 0 30 ±0.2 ±0.3 1 28 ±0.2 ±2 2 26 ±0.2 ±2 3 24 ±0.2 ±2 4 22 ±0.2 ±2 5 33 ±0.2 ±0.3 20 ±0.2 ±2 6 31 ±0.2 ±2 18 ±0.2 ±2 7 29 ±0.2 ±2 16 ±0.2 ±2 8 27 ±0.2 ±2 14 ±0.2 ±2 9 25 ±0.2 ±2 12 ±0.2 ±2 10 23 ±0.2 ±2 10 ±0.2 ±2 11 21 ±0.2 ±2 8 ±0.3 ±2 12 19 ±0.2 ±2 7 ±0.4 ±2 13

17

±0.2

±2

6

±0.5

±2

14 15 ±0.2 ±2 5 ±0.5 ±2

15 13 ±0.2 ±2 3 ±0.8 ±2

16 11 ±0.2 ±2

17 9 ±0.2 ±2

18 7 ±0.4 ±2

19 5 ±0.5 ±2

6、超标

若测试的信道功率指标超差,可通过校准使其回到正常值。若校准后仍不能达到规定的指标,则应检查发射电路的检波器、校准器、电平控制环路是否有问题。

※CMU200与MS建立连接的一般设置

点测时设置为0.3

2.2 发射载频包络

1、定义:

发信载频包络是指发信载频功率相对于时间的关系。(Power RAMP)

由于GSM系统是一个TDMA的系统,八个用户共用一个频点,手机只在分配给它的时间内打开,然后必须及时关闭,以免影响相邻时隙的用户。由于这一原因,GSM规范对一个时隙中的RF突发的幅度包络作了规定,对于时隙中间有用信号的平坦度也作了相应的规定,这个幅度包络在577us的一个时隙内,其动态范围大于70dB,而时隙有用部分平坦度应小于±1dB。

2、目的:

该测试主要是验证发射机发射的载频包络在一个时隙期间是否严格满足GSM规定的TDMA时隙幅度的上升沿、下降沿及幅度平坦部分与模块的吻合程度。手机发射突发信号的上升与下降部分应在+4dB--30dB,模块范围之内,顶部起伏部分应在±1dB模板范围之内。若突发信号超出模板范围,将会对临近时隙的用户产生干扰。

3、测量:

(1)、仪器连接如图一,点测或耦合测试;

(2)、测试原理及方法:

首先由MS 按照一般的呼叫建立过程在一个绝对射频频道号(ARFCN )为60~65

之间的TCH 信道上建立一个呼叫,并将该MS 的功率控制电平设置为其最大功率等级,设置该MS 的时间提前量(TA )值为0。

在综合测试仪CMU200设置BCCH AND TCH 信道,选择并激活RF POWER RAMP 即可测试功率/时间特性。对于移动台,有两种基本格式的突变:常规突发和接入突发,因而需要分别加以验证两种格式发信载频包络。将GSM 规定的常规突发功率/时间模板与该突发的工作包络相比较,看其上升沿、下降沿及幅度平坦度是否在功率/时间模板的要求之内。

GSM 频段选1、62、124 三个频段,功率级别选最大LEVEL5;DCS 频段选512、698、885 三个频段,功率级别选最大LEVEL0进行测试。突发脉冲的曲线必须在模板的包络范围内。 4、 结果

C M U

200

M

S

图一

5、 技术要求

GSM 对常规突发规定的功率/时间框罩要求见图2,对接入突发规定的功率/时间框罩要求见图3。

在任何频率上,对正常和极限测试条件的每一种组合及每一种功率控制电平下,对常规突发的抽样测量其功率/时间关系(即功率包络)都应在图2所示的阴影限制之内。对接入突发的抽样测量其功率包络应在图3所示的阴影限制之内。特别是对在147比特(对常规突

发)和87比特(对接入突发)期间的幅度平坦度要求在±1dB以内。对图中所示的±28us 处其上升沿/下降沿功率应不大于-59dBc(若此时-59dBc的实际功率值低于-36dBm,则该处要求为上升/下降沿功率不大于-36dBm),在±18us处其上升/下降沿-6dBc。

图2

图3

若功率/时间(Power RAMP)测试超标,不在RAMP模板之内,可通过校准使其回到正常值。若校准后仍不能达到规定的指标,则应检查手机突发脉冲的上下沿控制(时域门控制)电路,功率放大器的开关定时及电平控制环路。

可以通过软件更改上升沿、下降沿的各16值改变RAMP的形状,达到模板要求。但改变该值对调制频谱和开关频谱有一定的影响,需要综合考虑。

可更改值

2.3调制频谱(Spectrum Due to Modulation)

1、定义

调制频谱指数字比特流信息经GMSK调制后在临近频带上所产生的频谱。

由于GSM调制信号的突发特性,因此输出射频频谱应考虑由于调制和射频功率电平切换而引起的对相邻信道的干扰。在时间上,连续调制频谱和功率切换频谱不是同时发生的,因而输出射频频谱可分为连续调制频谱和切换瞬态频谱。连续调制频谱是由GSM调制而产生的在其载频的不同频偏处(主要是在相邻频道)的射频功率。

防止带外频谱辐射,以免引起邻到干扰(指本频道对邻频道产生的干扰)。 3、 测量

(1)、仪器连接如图一,点测或耦合测试;

(2)、测试原理及方法:

首先由MS 按照一般的呼叫建立过程在一个绝对射频频道号(ARFCN )为60~65之间的TCH 信道上建立一个呼叫,并将该MS 的功率控制电平设置为其最大功率等级,设置该MS 的时间提前量(TA )值为0。

在综合测试仪CMU200屏幕设置BCCH AND TCH 信道,选择Spectrum 下的Modulation GSM 并激活它,即可观测到调制频谱呈山字形的离散线条。用MARKER 点选取各频点相对应的电平与标称值相比较即可判断出频谱的好坏。测试时手机分别设置为正常和调频两种模式。

GSM 频段选1、62、124 三个频段,功率级别选最大LEVEL5;频点选±100KHZ 、±200KHZ 、±250KHZ 、±400KHZ ;DCS 频段选512、698、885 三个频道,功率级别选最大LEVEL0。频点选在±100KHZ 、±200KHZ 、±250KHZ 、±400KHZ 进行测试。 4、 结果

C M

U 200

M

S

图一

5、技术要求

功率电平(dBm)

在规定频偏处的最大相对电平(dB)

100KHz 200KHz 250KHz 400KHz

600~

<1200

KHz

1200~

<1800

KHz

1800~

<6000

KHz

6000KHz

测量带宽30KHz 测量带宽100KHz >43 +0.5 -30 -33 -60 -70 -73 -75 -80 41 +0.5 -30 -33 -60 -68 -71 -73 -80 39 +0.5 -30 -33 -60 -66 -69 -71 -80 37 +0.5 -30 -33 -60 -64 -67 -69 -80 35 +0.5 -30 -33 -60 -62 -65 -67 -80

<33 +0.5 -30 -33 -60 -60 -63 -65 -80

在衡量调制频谱时,可使用谱线的指标余量(margin)。指标余量即最接近Time-Plate的

一条谱线与Time-Pkate之间的距离。指标余量越大,则调制频谱越好,即对邻道的干扰越

小。

对指标余量可作如下分析:

若margin>l0dBm,则调制频谱为优;

若0<margin<l0dBm,则调制频谱为较好;

若margin=0或谱线高度超出Time-Plate,则调制频谱为不合格。

6、 超标

调制频谱指标超差,可通过校准使其回到正常值。若校准后仍不能达到规定的指标,则应检查手机的频率合成器、高斯预调制滤波器、I /Q 调制器的平衡,突发形成的调节及功放开关点的调节电路。

2.4开关频谱(Spectrum Due to Switching )

1、 定义

指由于功率切换而在标称载频的临近频带上产生的射频频谱。即由于调制突发的上升和下降沿而产生的在其标称载频的不同频偏处(主要是在相邻频道)的射频功率。 2、 目的

防止频段切换时的开关脉冲对邻频道产生干扰(指本频道对邻频道产生的干扰)。 3、 测量

(1)、仪器连接如图一,点测或耦合测试;

(2)、测试原理及方法:

首先由MS 按照一般的呼叫建立过程在一个绝对射频频道号(ARFCN )为60~65

之间的TCH 信道上建立一个呼叫,并将该MS 的功率控制电平设置为其最大功率等级,设置该MS 的时间提前量(TA )值为0。

在综合测试仪CMU200屏幕设置BCCH AND TCH 信道,选择Spectrum 下的

Switching GSM 并激活它,即可观测到开关频谱山字形状的离散线条。用MARKER 点选取各频点相对应的电平与标称值相比较即可判断出频谱的好坏。

GSM 频段选1、62、124 三个频段,功率级别选最大LEVEL5;频点选±400KHZ 、

±600KHZ 、±1200KHZ 、±1800KHZ ;

DCS 频段选512、698、885 个频道,功率级别选最大LEVEL0。频点选在±400KHZ 、±600KHZ 、±1200KHZ 、±1800KHZ 测试。 4、 结果

C M U 200

M

S

图一

5

技术要求

功率控制级

功率电平

(dBm)

距载频不同偏置处的最大功率(dBm)

400KHz 600KHz 1200KHz 1800KHz

0 43 -9 -21 -21 -24

1 41 -11 -21 -21 -24

2 39 -1

3 -21 -21 -24

3 37 -15 -21 -21 -24

4 3

5 -17 -21 -21 -24

5 33 -19 -21 -21 -24

射频及传输线基础知识

传输线的基本知识 传输射频信号的线缆泛称传输线,常用的有两种:双线与同轴线。频率更高则会用到微带线与波导,虽然结构不同,用途各异,但其基本传输特性都由传输线公式所表征。 不妨先让我们作一个实验,在一台PNA3620上测一段同轴线的输入阻抗。我们会发现在某个频率上同轴线末端开路时其输入阻抗却呈现短路,而末端短路时入端反而呈现开路。通过这个实验可以得到几个结论或想法:首先,这个现象按低频常规电路经验看是想不通的,因此一段线或一个网络必须在使用频率上用射频仪器进行测试才能反映其真实情况。其二,出现这种现象时同轴线的长度为测试频率下的λ/ 4或其奇数倍;因此传输线的特性通常是与长度的波长数有关,让我们习惯用波长数来描述传输线长度,而不是绝对长度,这样作就更通用更广泛一些。最后,这种现象必须通过传输线公式来计算(或阻抗圆图来查出),熟悉传输线公式或圆图是射频、天馈线工作者的基本功。 传输线公式是由著名的电报方程导出的,在这里不作推导而直接引用其公式。对于一般工程技术人员,只需会利用公式或圆图即可。 这里主要讲无耗传输线,有耗的用得较少,就不多提了。 射频器件(包括天线)的性能是与传输线(也称馈线)有关的,射频器件的匹配过程是在传输线上完成的,可以说射频器件是离不开传输线的。先熟悉传输线是合理的,而电路的东西是比较具体的。即使是天线,作者也尽量将其看成是个射频器件来处理,这种作法符合一般基层工作者的实际水平。 1.1 传输线基本公式 1.电报方程 对于一段均匀传输线,在有关书上可 查到,等效电路如图1-1所示。根据线的 微分参数可列出经典的电报方程,解出的 结果为: V 1= 2 1(V 2+I 2Z 0)e гx + 2 1 (V 2-I 2Z 0)e -гx (1-1) I 1= 21Z (V 2+I 2Z 0)e г x - 21Z (V 2-I 2Z 0)e -г x (1-2) 2 x 为距离或长度,由负载端起算,即负载端的x 为0 2г= α+j β, г为传播系数,α为衰减系数, β为相移系数。无耗时г = j β. 一般情况下常用无耗线来进行分析,这样公式简单一些,也明确一些,或者说理想化一些。而这样作实际上是可行的,真要计算衰减时,再把衰减常数加上。 2 Z 0为传输线的特性阻抗。 2 Z i 为源的输出阻抗(或源内阻),通常假定亦为Z 0;若不是Z 0,其数值仅影响线上电压的幅度大小,并不影响其分布曲线形状。

射频电路的设计原理及应用

射频电路的设计原理及应用 普通手机射频电路由接收通路、发射通路、本振电路三大电路组成。其主要负责接收信号解调;发射信息调制。早期手机通过超外差变频(手机有一级、二级混频和一 本、二本振电路),后才解调出接收基带信息;新型手机则直接解调出接收基带信息(零中频)。更有些手机则把频合、接收压控振荡器(RX—VCO)也都集成 在中频内部。 射频电路方框图 一、接收电路的结构和工作原理 接收时,天线把基站发送来电磁波转为微弱交流电流信号经滤波,高频放大后,送入中频内进行解调,得到接收基带信息(RXI-P、RXI-N、RXQ-P、RXQ-N);送到逻辑音频电路进一步处理。 1、该电路掌握重点 (1)、接收电路结构。 (2)、各元件的功能与作用。 (3)、接收信号流程。 2、电路分析 (1)、电路结构。 接收电路由天线、天线开关、滤波器、高放管(低噪声放大器)、中频集成块(接收解调器)等电路组成。早期手机有一级、二级混频电路,其目的把接收频率降低后再解调(如下图)。 接收电路方框图

(2)、各元件的功能与作用。 1)、手机天线: 结构:(如下图)由手机天线分外置和内置天线两种;由天线座、螺线管、塑料封套组成。 作用: a)、接收时把基站发送来电磁波转为微弱交流电流信号。 b)、发射时把功放放大后的交流电流转化为电磁波信号。 2)、天线开关: 结构:(如下图)手机天线开关(合路器、双工滤波器)由四个电子开关构成。 图一、图二 作用:其主要作用有两个: a)、完成接收和发射切换; b)、 完成900M/1800M信号接收切换。 逻辑电路根据手机工作状态分别送出控制信号(GSM-RX-EN;DCS- RX-EN;GSM-TX-EN;DCS- TX-EN),令各自通路导通,使接收和发射信号各走其道,互不干扰。 由于手机工作时接收和发射不能同时在一个时隙工作(即接收时不发射,发射时不接收)。因此后期新型手机把接收通路的两开关去掉,只留两个发射转换开关;接收切换任务交由高放管完成。 3)、滤波器: 结构:手机中有高频滤波器、中频滤波器。 作用:其主要作用:滤除其他无用信号,得到纯正接收信号。后期新型手机都为零中频手机;因此,手机中再没有中频滤波器。 4)、高放管(高频放大管、低噪声放大器): 结构:手机中高放管有两个:900M高放管、1800M高放管。都是三极管共发射极放大电路;后期新型手机把高放管集成在中频内部。

手机射频系统工作原理和无信号、不发射等故障的检修

天线感应接收到1900MHz~1915MHz的高频信号,经过L101、C103、L105选频网络选择相应频率的高频信号,XFl01滤波器对信号提纯,进入功放ICl01的7脚,功放内部的奉线开关在CPU的控制下,自动闭合到接收通路,信号经过天线开关从20脚输出,由C117、L1 10耦合到ICl01的22脚。信号在ICl01内部,进行第一次的高频放在,然后进行第一次混频。 1900MHz~1915MHz的高频信号和1659.5MHz~1674.02MHz的一本振信号混频后(1C101的1脚输入),输出一个243.95MHz的中频信号,经过一级放大后,由ICl01的26脚输出。 该中频信号通过电容C123、C102耦合,中频滤波器XFl02滤波,输出信号再经过C130、C104、C132、L117耦合,从40脚进入中频ICl02内部,开始第二次混频。二本振信号频率为233.15MHz,经过混频后,从ICl02的38脚输出10.8MHz低频信号,低滤波器XFl03对该信号滤波后,再从36脚进入ICl02的内部进行二次中频放大,最后从31脚输出已放大的低频信号RXDATA,送入到逻辑电路进行解调(D/A转换,解码,放大)恢复为音频信号。 一本振、二本振信号由相应的本地振荡电路产生。 发射电路工作原理 CPU的8脚、9脚、11脚、12脚分别输出HQ+、HQ-、HI+、HI-四路已编码的模拟信号,分别从3脚、4脚、1脚、2脚进入中频ICl02,在中频ICl02内部经过三次混频电路、加法运算电路、运放电路调制后,低频率信号提升到1900MHz的频率,然后从46脚输出一路已经调制好的高频载波信号。 已调制的高频载波信号通过电感L105、L114、电阻R1、电容C128、C125耦合到高通滤波器XFl04,滤波后再次经过L121、Rll0耦合后,由14脚送入到功放ICl01内部进行功率电平放大,完成功率计整,天线开关闭合到发射通路,高频发射信号经过天开关XFl01滤波后,从天线发射出去。 中频ICl02内部三次混频电路所需的本振信号有两个,一是由接收二本振信号(223.15MH z)在中频ICl02内部的倍频器倍频后提供的,二是由一本振信号(1659.05MHz~1674.02MHz)提供,它作为本振信号直接参与最后一次混频。 总的看来,本机的收发混频都共用同样的本振信号,只不过是发射状态时本振信号还需要在ICl02的内部进行具体的频率变化的处理。 一、接收机电路工作原理与无接收信号、电话不能打入故障的检修 1、一本振电路原理 无论是接收信号,还是发射信号,都是要共用一本振电路提供混频时所需要的本振信号。 X102是压控振荡器(VC01),4脚是输入脚,l脚是输出脚,6脚是供电脚,2脚、3脚、5脚接地。 工作电平送入X102的4脚后,X102发生振荡频率。1脚输出振荡信号,其一部分反馈送回IC102的27脚,在中频ICl02的内部进行鉴相,和原来的工作电平进行比较,产生频率误差控制电压。然后从25脚输出、C22、R205、C223组成的环路滤波器,送X102的4脚。该误差控制电压改变X102内部的变容二极管的电容量,使得输出振荡信号的频率变化较小,从而稳定振荡信号的频率。 VCO PS为VCO启动允许电平,高电平有效(3V脉冲),由CPU的34脚送出。VCC_SYN为中频供电电压。Q103在VCO_PS高电平时导通,集电极输出3V电压作为VCO(X102)工作电压。 X102的1脚输出的振荡信号频率为1659.05MHz~1674.02MHz,它通过C150、R135耦合,从1脚输入到高频信号放大ICl06,4脚输出的就是一个已放大的一本振信号。ICl06的6脚为电压脚,2脚、3脚、5脚接地。

射频基础知识培训

射频基础知识培训 1、无线通信基本概念 利用电磁波的辐射和传播,经过空间传送信息的通信方式称之为无线电通信(Wireless Communication),也称之为无线通信。利用无线通信可以传送电报、电话、传真、数据、图像以及广播和电视节目等通信业务。 目前无线通信使用的频率从超长波波段到亚毫米波段(包括亚毫米波以下),以至光波。无线通信使用的频率范围和波段见下表1-1 表1-1 无线通信使用的电磁波的频率范围和波段

由于种种原因,在一些欧、美、日等西方国家常常把部分微波波段分为L、S、C、X、Ku、K、Ka等波段(或称子波段),具体如表1 - 2所示 表1-2 无线通信使用的电磁波的频率范围和波段

无线通信中的电磁波按照其波长的不同具有不同的传播特点,下面按波长分述如下: 极长波(极低频ELF)传播 极长波是指波长为1~10万公里(频率为3~30Hz)的电磁波。理论研究表明,这一波段的电磁波沿陆地表面和海水中传播的衰耗极小。 1.2超长波(超低频SLF)传播 超长波是指波长1千公里至1万公里(频率为30~300Hz)的电磁波。这一波段的电磁波传播十分稳定,在海水中衰耗很小(频率为75Hz时衰耗系数为m)对海水穿透能力很强,可深达100m以上。 甚长波(甚低频VLF)传播 甚长波是指波长10公里~100公里(频率为3~30kHz)的电磁波。无线通信中使用的甚长波的频率为10~30kHz,该波段的电磁波可在大地与低层的电离层间形成的波导中进行传播,距离可达数千公里乃至覆盖全球。 长波(低频LF)传播 长波是指波长1公里~10公里(频率为30~300kHz)的电磁波。其可沿地表面传播(地波)和靠电离层反射传播(天波)。 中波(中频MF)传播 中波是指波长100米~1000米(频率为300~3000kHz)的电磁波。中波可沿地表面传播(地波)和靠电离层反射传播(天波)。中波沿地表面传播时,受地表面的吸收较长波严重。中波的天波传播与昼夜变化有关。 短波(高频HF)传播 短波是指波长为10米~100米(频率为3~30MHz)的电磁波。短波可沿地表面传播(地波),沿空间以直接或绕射方式传播(空间波)和靠电离层反射传播(天波)。 超短波(甚高频VHF)传播

手机电路原理,通俗易懂

第二部分原理篇 第一章手机的功能电路 ETACS、GSM蜂窝手机是一个工作在双工状态下的收发信机。一部移动电话包括无线接收机(Receiver)、发射机(Transmitter)、控制模块(Controller)及人机界面部分(Interface)和电源(Power Supply)。 数字手机从电路可分为,射频与逻辑音频电路两大部分。其中射频电路包含从天线到接收机的解调输出,与发射的I/Q调制到功率放大器输出的电路;逻辑音频包含从接收解调到,接收音频输出、发射话音拾取(送话器电路)到发射I/Q调制器及逻辑电路部分的中央处理单元、数字语音处理及各种存储器电路等。见图1-1所示 从印刷电路板的结构一般分为:逻辑系统、射频系统、电源系统,3个部分。在手机中,这3个部分相互配合,在逻辑控制系统统一指挥下,完成手机的各项功能。 图1-1手机的结构框图 注:双频手机的电路通常是增加一些DCS1800的电路,但其中相当一部分电路是DCS 与GSM通道公用的。 第二章射频系统 射频系统由射频接收和射频发射两部分组成。射频接收电路完成接收信号的滤波、信号放大、解调等功能;射频发射电路主要完成语音基带信号的调制、变频、功率放大等功能。手机要得到GSM系统的服务,首先必须有信号强度指示,能够进入GSM网络。手机电路中不管是射频接收系统还是射频发射系统出现故障,都能导致手机不能进入GSM网络。 对于目前市场上爱立信、三星系列的手机,当射频接收系统没有故障但射频发射系统有故障时,手机有信号强度值指示但不能入网;对于摩托罗拉、诺基亚等其他系列的手机,不管哪一部分有故障均不能入网,也没有信号强度值指示。当用手动搜索网络的方式搜索网络时,如能搜索到网络,说明射频接收部分是正常的;如果不能搜索到网络,首先可以确定射频接收部分有故障。 而射频电路则包含接收机射频处理、发射机射频处理和频率合成单元。 第一节接收机的电路结构 移动通信设备常采用超外差变频接收机,这是因为天线感应接收到的信号十分微弱,而鉴频器要求的输人信号电平较高,且需稳定。放大器的总增益一般需在120dB以上,这么大的放大量,要用多级调谐放大器且要稳定,实际上是很难办得到的,另外高频选频放大器的通带宽度太宽,当频率改变时,多级放大器的所有调谐回路必须跟着改变,而且要做到统一调谐,

手机射频知识

GSM手机射频测试指导

目录 序言 (2) 第一章测试条件 (3) 1.1 正常测试条件 (3) 1.2 极限测试条件 (3) 1.3 震动条件 (3) 1.4 其它测试条件及规定 (4) 1.5 附件要求 (5) 第二章发射机指标及其测试 (6) 2.1 发射载波峰值功率 (6) 2.2 发射载频包络 (11) 2.3调制频谱(Spectrum Due to Modulation) (15) 2.4开关频谱(Spectrum Due to Switching) (18) 2.5频率误差(Frequency Error) (20) 2.6相位误差(Phase Error) (22) 2.7传导杂散骚扰(Conduct Spurious Emissions) (24) 2.8发射峰值电流和平均电流 (27) 第三章接收机指标及其测试 (29) 3.1接收灵敏度(Rx Sensitivity) (29) 3.2接收信号指示电平(RX Level) (33) 3.3接收信号指示质量(RX Quality) (35) 第四章其余测试补充 (38) 4.1 RC滤波电路对PA-RAMP的影响 (38) 4.2 PA匹配调整 (42) 4.3天线开关指标测试 (42) 第五章附录 (44)

序言 目前国家对手机的质量问题越来越重视,对于手机质量的客户满意度和返修率也一致关注。其中,GSM手机的射频问题仍然是一个影响手机质量、开发进度和生产效率的重要因素。为了保证产品的品质和性能符合GSM规范和国家标准,需要在手机测试方面建立一套完整、科学的测试体系。为此我们参照GSM规范欧洲标准、国家邮电部移动通信技术规范、国家信息产业部通信行业标准以及日常积累的测试经验编写了这份射频测试规程。 本规范的目的是针对研发阶段的GSM手机提供一个较全面测试和校准的指标依据,尽量保证研发阶段GSM手机的点测指标满足FTA、CTA与批量生产点测指标要求,使手机的射频问题尽可能在研发阶段暴露出来并在量产前解决,同时为评估手机的RF点测性能、指标余量、一致性、稳定性提供参考依据,另外为不熟悉测试的新员工提供一些指导。本文主要内容包括射频指标术语解释,发射机和接收机部分射频指标的测试方法,测试结果,测试参考标准等,最后还给出了指标超标的一般分析。 由于我们射频知识与经验有限,不足之处请指导。

射频电路结构和工作原理

射频电路结构和工作原理 一、射频电路组成和特点: 普通手机射频电路由接收通路、发射通路、本振电路三大电路组成。其主要负责接收信号解调;发射信息调制。早期手机通过超外差变频(手机有一级、二级混频和一本、二本振电路),后才解调出接收基带信息;新型手机则直接解调出接收基带信息(零中频)。更有些手机则把频合、接收压控振荡器(RX—VCO)也都集成在中频内部。 RXI-P RXQ-P RXQ-N (射频电路方框图) 1、接收电路的结构和工作原理: 接收时,天线把基站发送来电磁波转为微弱交流电流信号经滤波,

高频放大后,送入中频内进行解调,得到接收基带信息(RXI-P、RXI-N、RXQ-P、RXQ-N);送到逻辑音频电路进一步处理。 1、该电路掌握重点: (1)、接收电路结构。 (2)、各元件的功能与作用。 (3)、接收信号流程。 电路分析: (1)、电路结构。 接收电路由天线、天线开关、滤波器、高放管(低噪声放大器)、中频集成块(接收解调器)等电路组成。早期手机有一级、二级混频电路,其目的把接收频率降低后再解调(如下图)。 (接收电路方框图) (2)、各元件的功能与作用。 1)、手机天线: 结构:(如下图)

由手机天线分外置和内置天线两种;由天线座、螺线管、塑料封套组成。 塑料封套螺线管 (外置天线)(内置天线) 作用: a)、接收时把基站发送来电磁波转为微弱交流电流信号。 b)、发射时把功放放大后的交流电流转化为电磁波信号。 2)、天线开关: 结构:(如下图) 手机天线开关(合路器、双工滤波器)由四个电子开关构成。 900M收收GSM 900M收控收控 900M发控GSM 900M发入GSM (图一)(图二) 作用:其主要作用有两个: a)、完成接收和发射切换; b)、完成900M/1800M信号接收切换。

手机射频接收功能电路分析

一、接收电路的基本组成 移动通信设备常采用超外差变频接收机。这是因为天线感应接收到的信号十分微弱,而鉴频器要求的输入信号电平较高而且稳定。放大器的总增益一般需在120dB以上。这么大的放大量,要用多级调谐放大器且要稳定,实际上是很难办得到的。另外高频选频放大器的通带宽度太宽,当频率改变时,多级放大器的所有调谐回路必须跟着改变,而且要做到统一调谐,这也是难以做到的。超外差接收机则没有这种问题,它将接收到的射频信号转换成固定的中频,其主要增益来自于稳定的中频放大器。 手机接收机有三种基本的框架结构:一种是超外差一次变频接收机,一种是超外差二次变频接收机,第三种是直接变频线性接收机。 超外差变频接收机的核心电路就是混频器,可以根据手机接收机电路中混频器的数量来确定该接收机的电路结构。 1.超外差一次变频接收机 接收机射频电路中只有一个混频电路的称作超外差一次变频接收机。超外差一次变频接收机的原理方框图如图4-1所示。它包括天线电路(ANT)、低噪声放大器(LNA)、混频器(Mixer)、中频放大器(IF Amplifier)和解调电路(Demodula tor)等。摩托罗拉手机接收电路基本上都采用以上电路。 超外差一次变频接收机工作过程是:天线感应到的无线蜂窝信号(GSM900频段935,--960MHz或DCSl800频段1805---1880MHz)不断变频,经天线电路和射频滤波器进入接收电路。接收到的信号首先由低噪声放大器进行放大,放大后的信号再经射频滤波器后,被送到混频器。在混频器中,射频信号与接收VCO信号进行混频,得到接收中频信号。中频信号经中频放大后,在中频处理模块内进行RXI/Q解调,解调所用的参考信号来自接收中频VCO。该信号首先在中频处理电路中被分频,然后与接收中频信号进行混频,得到67.707kHz的RXI/Q信号。2.超外差二次变频接收机 若接收机射频电路中有两个混频电路,则该机是超外差二次变频接收机。超外差二次变频接收机的方框图:如图4-2所示。 与一次变频接收机相比,二次变频接收机多了一个混频器和一个VCO,这个V CO在一些电路中被叫作IFVCO或VHFVCO。诺基亚手机、爱立信手机、三星、松下和西门子等手机的接收电路大多数属于这种电路结构。 在图4—1和图4-2中,解调电路部分也有VCO,应注意的是,该处的VCO 信号是用于解调,作参考信号而且该VCO信号通常来自两种方式:一是来自基准频率信号13MHz,另一种是来自专门的中频VCO。 超外差二次变频接收机工作过程是:天线感应到的无线蜂窝信号(GSM900频段935~960MHz或DCSl800频段1805—1880MHz)经天线电路和射频滤波器进入接收电路。接收到的信号首先由低噪声放大器进行放大放大后的信号再经射频滤波后被送到第一混频器。在第一混频器中,射频信号接收VCO信号进行混频,得到接收第一中频信号。第一中频信号与接收第二本机振荡信号混频,得到接收第二中频。接收第二本机振荡来自VHFVCO电路。接收第二中频信号经二中频放大后,在中频处理模块内进行RXI/Q解调,解调所用的参考信号来自接收中频VCO。该信号首先在中频处理电路中被分频,然后与接收中频信号进行混频,得到67. 707kHz的RXI/Q信号。 3.直接变频线性接收机

手机各电路原理_射频电路_内容详细,不看后悔

本次培训内容:
手机各级电路原理及故障检修
1,基带电路
发话电路、受话电路、蜂鸣电路、耳机电路、 背光电路、马达电路、按键电路、充电电路、开 关机电路、摄像电路、蓝牙电路、FM电路、显示 电路、SIM卡电路、TF卡电路
2,射频电路
接收电路、发射电路

一、手机通用的接收与发射流程
天线:ANT 声表面滤波器:SAWfilter 低噪声放大器:LNA 功放:PA

手机通用的接收与发射流程
1、信号接收流程: 天线接收——天线匹配电路——双工器——滤波(声 表面滤波器SAWfilter)——放大(低噪声放大器 LNA)——RX_VCO混频(混频器Mixer)——放大 (可编程增益放大器PGA)——滤波——IQ解调(IQ 调制器)——(进入基带部分)GMSK解调——信道均 衡——解密——去交织——语音解码——滤波—— DAC——放大——话音输出。

手机通用的接收与发射流程
2、信号发射流程: 话音采集——放大——ADC——滤波——语音编
码——交织——加密——信道均衡——GMSK调制—— (进入射频部分)IQ调制(IQ调制器)——滤波—— 鉴相鉴频(鉴相鉴频器)——滤波——TX_VCO混频 (混频器Mixer)——功率放大(PA)——双工器—— 天线匹配电路——天线发射。

手机通用的接收与发射流程
3、射频电路原理框图:

二、射频电路的主要元件及工作原理
天线:ANT 声表面滤波器:SAWfilter 低噪声放大器:LNA 功放:PA

射频电路结构和工作原理

射频电路结构和工作原理 一、射频电路组成和特点: 普通手机射频电路由接收通路、发射通路、本振电路三大电路组成。其主要负责接收信号解调;发射信息调制。早期手机通过超外差变频(手机有一级、二级混频和一本、二本振电路),后才解调出接收基带信息;新型手机则直接解调出接收基带信息(零中频)。更有些手机则把频合、接收压控振荡器(RX —VCO )也都集成在中频内部。 RXI-P RXI-N 900M RXQ-P RXQ-N 1800M VCC 频率取样 13M CLK 功 DAT 率 RST 样 取 发射频率取样 信 号 TXI-P TXI-N 射频电压 TXQ-P TXQ-N 等级 (射频电路方框图) 1、接收电路的结构和工作原理: 接收时,天线把基站发送来电磁波转为微弱交流电流信号经滤波, 天 线 开 关 接收解调 频 率 合 成 R X VCO 鉴相 调制 功 率 放大器 TX VCO 功控 分频 发射互感器

高频放大后,送入中频内进行解调,得到接收基带信息(RXI-P 、RXI-N 、RXQ-P 、RXQ-N );送到逻辑音频电路进一步处理。 1、 该电路掌握重点: (1)、接收电路结构。 (2)、各元件的功能与作用。 (3)、接收信号流程。 电路分析: (1)、电路结构。 接收电路由天线、天线开关、滤波器、高放管(低噪声放大器)、中频集成块(接收解调器)等电路组成。早期手机有一级、二级混频电路,其目的把接收频率降低后再解调(如下图)。 900M 1800M SYN-VCC 频率取样 13M SYN-CLK SYN- DAT SYN- RST (接收电路方框图) (2)、各元件的功能与作用。 1)、手机天线: 结构:(如下图) 由手机天线分外置和内置天线两种;由天线座、螺线管、塑料封套 天 线 开 关 接收解调 频 率 合 成 R X VCO O CPU (音频) 分频 数字 处理 音频放大

手机射频基本原理

BTX 培训文档 手机射频基本原理及生产使用手册 简介: 本文对目前公司所做的 GSM 以及 CDMA 手机的射频部分原理做了简单介绍,着重于生产所用的校准终测软件的使用,常见问题的分析与解决。阅读本文的时候还可参考另外一篇《 G+C 项目产线使用手册》具体的 CDMA 错误代码还可参考 《 AMTS_Calibration_Error_Codes_and_Troubleshooting_7_U 》 .GSM: 1.基本通信架构示意图 注:蓝色字体框仅起到标识作用,不代表实际器件;

2.射频部分工作原理简述: A.发射通路( TX) 基带送过来的 IQ 信号进入收发芯片( MT6129)以后进行上变频,将基带信号调制到射频信号,MT6129 将此射频信号送出,经过匹配进入 PA(SKY77318 ),放大以后经过匹配到达天线开关 ( LMSP33AA_695 ),直接进入 RF 测试座——天线这一条道路,发射出去。 在发射通路中,由 PA 对射频信号进行放大,具体放大到多少,取决于 APC 的电平, APC 是给PA 提供偏置电压以控制其放大倍数的,由基带进行控制。 天线开关是对通路收发进行控制的器件,发射与接收通路不是同时打开的,由 HB_LX 以及 LB_LX 进行时序的控制,打开或者关闭发射以及接收通路。 B.接收通路( RX )天线接收到空间的 GSM 信号,通过 RF 测试座以后进入天线开关,经过匹配进入接收声表面滤波器( RX SAW ),进行滤波并且分成差分信号以后,进入收发芯片(MT6129),进行解调,下变频以后形成接收 IQ 信 号,送到基带进行下一步处理。 C.时钟电路 GSM 的参考时钟由一颗 26MHz 的晶振提供, 26MHz 信号进入收发芯片以后,会经由内部的buffer 再送到基带。 3.ATE 常用测试项的选择以及说明: 在 ATE 项目中,会有如下界面:

手机射频基本原理

BTX培训文档 手机射频基本原理及生产使用手册 简介: 本文对目前公司所做的GSM以及CDMA手机的射频部分原理做了简单介绍,着重于生产所用的校准终测软件的使用,常见问题的分析与解决。阅读本文的时候还可参考另外一篇《G+C项目产线使用手册》。具体的CDMA错误代码还可参考《AMTS_Calibration_Error_Codes_and_Troubleshooting_7_U》 一.GSM: 1.基本通信架构示意图 注:蓝色字体框仅起到标识作用,不代表实际器件;

A.发射通路(TX) 基带送过来的IQ信号进入收发芯片(MT6129)以后进行上变频,将基带信号调制到射频信号,MT6129将此射频信号送出,经过匹配进入PA(SKY77318),放大以后经过匹配到达天线开关(LMSP33AA_695),直接进入RF测试座——天线这一条道路,发射出去。 在发射通路中,由PA对射频信号进行放大,具体放大到多少,取决于APC的电平,APC是给PA提供偏置电压以控制其放大倍数的,由基带进行控制。 天线开关是对通路收发进行控制的器件,发射与接收通路不是同时打开的,由HB_LX以及LB_LX进行时序的控制,打开或者关闭发射以及接收通路。 B.接收通路(RX) 天线接收到空间的GSM信号,通过RF测试座以后进入天线开关,经过匹配进入接收声表面滤波器(RX SAW),进行滤波并且分成差分信号以后,进入收发芯片(MT6129),进行解调,下变频以后形成接收IQ信号,送到基带进行下一步处理。 C.时钟电路 GSM的参考时钟由一颗26MHz的晶振提供,26MHz信号进入收发芯片以后,会经由内部的buffer再送到基带。 3.ATE常用测试项的选择以及说明: 在A TE项目中,会有如下界面: 下面做个简单说明: 在下半部分的图面里,是对配置文件的选择: Test Setup File Location(Setup file)――选择setup文件,这是最先进行选择的;

手机原理手机RF原理及设计(手机设计流程)

手机原理手机RF原理及设计(手机设计流程) 1.接收部分 天线开关为FET器件(双工器)是一个双刀掷模拟开关,其中一个刀进行收发信号切换,另一个刀T3,T4组成的控制电路控制,控制指令为RX—EN。 当控制信号RX—EN为高电平时,天线开关处于接收状态,接收信号通过天线开关进入陶瓷带通滤波器BPF3,BPF2进行高频滤波,然后再经过耦合电容 C103,C19,C109送到PMB6253内进行低噪声放大,放大后的信号送入混频器,高频放大器经过滤波后,与来自主压振荡器的接收本振信号RXVCO一起送入混频器完成两信号的混频,混频后产生中频信号经耦合电容C14,C87通过BPF1将其中的杂波滤除,再送到隔离放大器放大。 中频信号在收发IC内完成接收信号正交解调处理,完成解调处理后产生模拟接收基带信号,RXI/RXQ接收I/Q基带信号分别从IC的8、9脚输出。 在收发IC、U1内部,接收部分包括中频、中频放大、混频、PLL。13MHZ主时钟、主压器振荡器、接收中频和发射中频等。 手机高频原理方向图

2.发射部分 经CPU送出的TX1、TXQ分别送入收发IC U1以产生TXIF发射中频,发射中频输入信号TXIFIN与TXVCO在U1内进行混频,鉴相,再产生振荡频率,预放大后从U1,28脚输出,经耦合电容C33到功放CX77301 4脚,X3为TXVCO,功率控制IC4输出误差电压以改变功放的放大量,达到改变发射信号的功率等级。当控制信号TX—EX为高电平时,天线开关于发射状态。 新手机开发 现介绍GSM/DCSl800双频段手机RF部分的基本工作原理和各单元的设计方案、技术指标和参数计算。对几种不同的双频手机RF方案,在经过分析和比较之后,提出一种性能价格比较高的技术方案。 GSM手机属高科技通信产品,其销售对象是千家万户,因此对手机的性能价格比要求特别高,手机的利润只能体现在大批量的生产和销售中。针对这种情况,在满足欧洲电信标准ETS GSMll.10技术规范的前提条件下,RF部分的设计者必须在先行方案设计中就充分注意到性能价格比,这将对手机在未来的市场上能否有竞争力产生十分重要的影响。 GSM手机的性价比是由各个组成单元的性价比来决定的,所以,对RF部分各个单元电路进行认真、细致的分析和比较,这对于提高整机的性价比是十分重要的。 1.GSM900/DCSl800双频手机的特点 双频手机有以下特点:根据基站的控制信令,双频手机即可以工作在900MHz频段网络,也可 以工作在1800MHz频段网络,当一个网络繁忙或信号质量差时,双频手机可自动切换到另一个频段

相关文档
相关文档 最新文档