文档库 最新最全的文档下载
当前位置:文档库 › 遥感部分

遥感部分

遥感部分
遥感部分

1.1 遥感图像的预处理

奠边府断裂带由于面积较大(101-104°E,17-23°N),大致需要14幅遥感影像数据才能完全覆盖。由于收到数据来源的限制,本研究只能下载NASA发射的Landsat 8卫星的遥感数据,Landsat 8 OLI_TRIS时间为2013年至今,其条带号分别为127045—127048的4幅遥感图,128044—128048的5幅遥感图,129044—129048的5幅遥感图。因此,遥感图像的处理主要包括影像融合、镶嵌和裁剪,其中镶嵌过程由涉及辐射校正和大气校正。这里需注意Landsat 8数据和其他TM数据类似,发布的数据做过地形数据参与的几何校正,一般情况下可以直接使用而不需要做几何校正。

(1)辐射校正

遥感影像往往要受到太阳光照射条件、大气吸收和散射等的影响而造成一定的差异,直观表现为影像的色彩差异。常用的辐射校正方法有绝对辐射归一化和相对辐射归一化,前者是将每幅图像的灰度值转换成地表反射率,相对辐射归一化则是将其他影像的灰度值逐一归一化到参考影像,从而使多时相遥感影像具有相同的辐射尺度[67]。本研究采用绝对辐射归一化处理,具体参数根据USGS TM 数据处理系统的辐射标定算法[68]进行。

(2)大气校正

遥感影像获取过程中或多或少会受到大气中水汽、云层等因素的干扰,需要对影像进行大气校正。本研究采用通用的大气校正模型FLAASH模型,其在ENVI软件中的实现较为简单,FLAASH校正模型的各种参数设置参考其他学者的研究成果[69][70]。

(3)图像融合

图像融合,是将低分辨率的多光谱影像与高分辨率的单波段影像重采样生成一副高分辨率多光谱影像遥感的图像处理技术,使得处理后的影像既有较高的空间分辨率,又具有多光谱特征。为了更清晰识别研究区的地形地貌特征,研究利用Landsat 8卫星丰富的波段光谱信息,即使用30米分辨率的多光谱(Band 1—Band 7)结合15米分辨率的全色波段(Band 8)来提高多光谱数据的空间分辨率,方法是在ENVI5.1上使用Gram-Schmidt融合方法进行图像融合处理。

(4)图像镶嵌

图像镶嵌,指在一定数学基础控制下把多景相邻遥感图像拼接成一个大范围、无缝的图像的过程。ENVI的图像镶嵌功能可提供交互式的方式,将有地理坐标或没有地理坐标的多幅图像合并,生成一幅单一的合成图像。本研究下载的Landsat 8数据具有地理坐标信息,所以图像的镶嵌是基于地理坐标的镶嵌。

图像的镶嵌主要是使用了影像无缝镶嵌工具Seamless Mosaic,所有功能集成在一个流程化的界面。本研究在遥感图像镶嵌时主要运用了如下功能:控制图层的叠放顺序、设置忽略值、显示或隐藏图层或轮廓线、重新计算有效的轮廓线、选择重采样方法和输出范围、图像颜色校正、羽化/调和以及自动生成接边线功能。使用该工具可以对影像的镶嵌做到更精细的控制,包括镶嵌匀色、接边线功能和镶嵌预览等功能,生成的图像色调均匀,便于地物识别。

(5)图像裁剪

由于遥感图像的范围大于研究区范围,需要对镶嵌之后的遥感图像进行裁剪,图像裁剪的目的是将研究之外的区域去除。本研究中图像裁剪按照101-104°E,17-23°N这个矩形范围裁剪即可。

(6)波段组合

Landsat8的OLI陆地成像仪包括9个波段,可以组合更多的RGB方案。这里需要根据实际情况,调整波段组合。不同波段合成对地物有不同的增强效果。

1.2 三维地形图的制作

在ArcGIS10.1或者ENVI5.1中,将奠边府断裂带的DEM数据和遥感数据叠加,使用ArcGIS10.1中的3D分析功能(3D Analyst Tools)或者ENVI5.1中的三维可视化浏览功能(3D SurfaceView)就可以看出奠边府断裂带地区的空间展布和地形地貌,又助于后续分析其构造演化。

[67] 李小文,刘素红.遥感原理与应用[M].北京:科学出版社,2008.

[68] 张兆明,何国金.Landsat5 TM数据辐射标定[J].科技导报,2008,26(7):54-58.

[69] 张鹏,王学强.大气辐射校正软件LEDAPS与FLAASH对比研究[J].安徽农业科学,2014,42(10):3105-3108.

[70] 袁国金,牛峥,王锡平.基于FLAASH的Hyperion高光谱影像大气校正[J].光谱学与光谱分析,2009,29(5):1181-1185.

遥感原理与应用知识点

第一章 1、遥感的定义:通过不接触被探测的目标,利用传感器获取目标数据,通过对数据进行分析,获取被探测目标、区域和现象的有用信息 2、广义的遥感:在不直接接触的情况下,对目标物或自然现象远距离感知的一种探测技术。 3、狭义的遥感:指在高空和外层空间的各种平台上,应用各种传感器(摄影仪、扫描仪和雷达等)获取地表的信息,通过数据的传输和处理,从而实现研究地面物体形状、大小、位置、性质以及环境的相互关系。 4、探测依据:目标物与电磁波的相互作用,构成了目标物的电磁波特性。(信息被探测的依据)传感器能收集地表信息,因为地表任何物体表面都辐射电磁波,同时也反射入照的电磁波。地表任何物体表面,随其材料、结构、物理/化学特性,呈现自己的波谱辐射亮度。 5、遥感的特点:1)手段多,获取的信息量大。波段的延长(可见光、红外、微波)使对地球的观测走向了全天候全天时。 2)宏观性,综合性。覆盖范围大,信息丰富,一景TM影像185×185km2,可见的,潜在的各类地表景观信息。 3)时间周期短。重复探测,有利于进行动态分析 6、遥感数据处理过程 7、遥感系统:1)被探测目标携带信息 2)电磁波辐射信息的获取 3)信息的传输和记录 4)信息的处理和应用 第三章 1、电磁波的概念:在真空或物质中电场和磁场的相互振荡以及振动而进行传输的能量波。 2、电磁波特征(特征及体现):1)波动性:电磁辐射以波动的形式在空间中传播 2)粒子性:以电磁波形式传播出去的能量为辐射能,其传播也表现为光子组成的粒子流的运动 紫外线、X射线、γ射线——粒子性 可见光、红外线——波动性、粒子性 微波、无线电波——波动性 3、叠加原理:当空间同时存在由两个或两个以上的波源产生的波时,每个波并不因其他的波的存在而改变其传播规律,仍保持原有的频率(或波长)和振动方向,按照自己的传播方向继续前进,而空间相遇的点的振动的物理量,则等于各个独立波在该点激起的振动的物理量之和。 4、相干性与非相干性:由叠加原理可知,当两列频率、振动方向相同,相位相同或相位差恒定的电磁波叠加时,在空间会出现某些地方的振动始终加强,另一些地方的振动始终减弱或完全抵消,这种现象叫电磁波的相干性。没有固定相位关系的两列电磁波叠加时,没有一定的规律可循,这种现象叫电磁波的非相干性

常见国产卫星遥感影像数据的简介

北京揽宇方圆信息技术有限公司 常见国产卫星遥感影像数据的简介 本文介绍了常见国产卫星数据的简介、数据时间、传感器类型、分辨率等情况。 中国资源卫星应用中心产品级别说明 ◆1A级和1C级产品均为相对辐射校正产品,只是不同卫星选用的生产参数不同。 ◆2级,2A级和2C级产品均为系统几何校正产品,只是不同卫星选用的生产参数不同。 其中: ■GF-1卫星和ZY3卫星归档产品为1A级,ZY1-02C卫星数据归档产品级别为1C级,其他卫星归档级别为2级! ◆归档产品是指:该类产品已经存在于系统中,仅需要从存储系统中迁移出来.即可供用户下载的数据。 ◆生产产品是指:该类产品不是已经存在的产品,需要对原始数据产品进行生产,然后再提供给用户下载的数据。

■当用户需要的产品级别是上述归档的级别,直接选择相应的产品级别,然后查询即可! ■当用户需要的产品级别不是上述归档的级别,就需要进行生产.本系统提供GF-1卫星和ZY3卫星2A级的生产产品,ZY1-02C卫星2C级的生产产品,在选择需要的级别查询后,无论有没有数据,在查询结果页上方有一个“查询0级景”按钮,点击此按钮后,进行数据查询,如果有数据,选择需要的产品直接订购,即可选择需要的产品级别。 国产卫星 一、GF-3(高分3号) 1.简介 2016年8月10日6时55分,高分三号卫星在太原卫星发射中心用长征四号丙运载火箭成功发射升空。 高分三号卫星是中国高分专项工程的一颗遥感卫星,为1米分辨率雷达遥感卫星,也是中国首颗分辨率达到1米的C频段多极化合成孔径雷达(SAR)成像卫星,由中国航天科技集团公司研制。 2.数据时间 2016年8月10日-现在 3.传感器 SAR:1米 二、ZY3-02(资源三号02星) 1.简介 资源三号02星(ZY3-02)于2016年5月30日11时17分,在我国在太原卫星发射中心用长征四号乙运载火箭成功将资源三号02星发射升空。这将是我国首次实现自主民用立体测绘双星组网运行,形成业务观测星座,

遥感影像各参数提取和运算

遥感影像各参数提取和运算 一.实验目的 1.1 熟悉使用ENVI软件的一些常用功能; 1.2 学会利用ENVI软件对遥感影像的NDVI和NDWI进行计算,对典型地物的参数信息进行提取和分析。 二.实验内容 2.1 计算可见光至短波红外波段的7个波段的TOA反射率数据和热红外的2个波段的亮度温度值; 2.2 计算NDVI和NDWI; 2.3 选择水体、土壤、植被和人工建筑等典型地物,每种典型地物至少选择50个样点,提取各个样点的7个TOA反射率值、2个亮温值和2个光谱指数值; 2.4 针对各个典型地物的遥感参数进行统计分析,至少计算各个参数的Minimum, Maximum, Range and Standard Deviation,利用图表的形式对其进行专业分析。三.实验数据与实验平台 数据:LANDSAT 7 ETM+影像、p125r053_7t20001106.met 平台:ENVI 4.7软件 四.实验过程与结果分析 4.1. 计算可见光至短波红外波段的7个波段的TOA反射率数据和热红外的1个波段的亮度温度值。 实验步骤: (1)计算可见光至短波红外波段的7个波段的TOA反射率: Main menu →Basic Tools →Preprocessing →Calibration Utilities →Landsat Calibration→选择波段数为6的,点击 OK →Reflectance →Edit Calibration Parameters→输出文件名

图4.1.1 反射率参数设置 图4.1.2反射率转换结果图与原图对比 (7,4,3波段,左图为结果图,右图为原图) (2)转换成亮度温度值步骤: Main menu →Basic Tools →Preprocessing →Calibration Utilities →Landsat Calibration →选择波段数为2的,点击OK →Radiance →Edit Calibration Parameters→输出文件名

长江中下游遥感影像数据库

长江中下游遥感影像数据库文档 1.引言 1.1数据库名 长江中下游遥感影像数据库 1.2 编写目的 为了便于本数据库的方便查询与高效使用,特编写了本文档。1.3 定义 TM影像是指美国陆地卫星4~5号专题制图仪(thematic mapper)所获取的多波段扫描影像。有7个波段,其波谱范围:TM-1为0.45~0.52微米,TM-2为0.52~0.60微米,TM-3为0.63~0.69微米,以上为可见光波段;TM-4为0.76~0.90微米,为近红外波段;TM-5为1.55~1.75微米,TM-7为2.08~2.35微米,为中红外波段;TM-6为10.40~12.50微米,为热红外波段。影像空间分辨率除热红外波段为120米外,其余均为30米,像幅185×185公里2。每波段像元数达61662个(TM-6为15422个)。一景TM影像总信息量为230兆字节),约相当于MSS影像的7倍。因TM影像具较高空间分辨率、波谱分辨率、极为丰富的信息量和较高定位精度,成为20世纪80年代中后期得到世界各国广泛应用的重要的地球资源与环境遥感数据源。能满足有关农、林、水、土、地质、地理、测绘、区域规划、环境监测等专题分析和编制1∶10万或更大比例尺专题图,修测中小比例尺地图的要求。 2.数据库内容说明 2.1数据库内容一般描述(限200字) 该数据集包括长江中下游地区TM和MSS影像,包括长江三角洲Landsat MSS合成JPG影像、江苏及长江三角洲MSS镶嵌影像(合成JPG)、长江三角洲LandsatTM、ETM数据以及江苏及长江三角洲TM影像(合成JPG)。该数据主要分三个时期,分别为1980年、1990年和2000年,数据格式为JPG格式,数据量为14.4G。 2.2字段(要素)名称解释

国内外遥感资源卫星

国内外资源卫星 国外主要资源卫星: 1.美国资源卫星(Landsat ) 美国于1961 年发射了第一颗试验型极轨气象卫星,到70 年代,在气象卫星的基础上 研制发射了第一代试验型地球资源卫星(陆地―1、2、3)。这三颗卫星上装有返束光导摄像 机和多光谱扫描仪MSS,分别有 3 个和 4 个谱段,分辨率为80m 。各国从卫星上接收了约 45 万幅遥感图像。80 年代,美国分别发射了第二代试验型地球资源卫星(陆地―4、5)。卫 星在技术上有了较大改进,平台采用新设计的多任务模块,增加了新型的专题绘图仪TM,可通过中继卫星传送数据。TM 的波谱范围比MSS 大,每个波段范围较窄,因而波谱分辨率 比MSS 图像高,其地面分辨率为30m(TM6 的地面分辨率只有120m) 。陆地―5卫星是1984 年发射的,现仍在运行。 90 年代,美国又分别发射了第三代资源卫星(陆地―6,7) 。陆地―6卫星是1993 年发 射的,因未能进入轨道而失败。由于克林顿政府的支持,1999 年发射了陆地―7卫星,以保持地球图像、全球变化的长期连续监测。该卫星装备了一台增强型专题绘图仪ETM+ ,该设备增加了一个15m 分辨率的全色波段,热红外信道的空间分辨率也提高了一倍,达到 60m 。美国资源卫星每景影像对应的实际地面面积均为185km ×185km ,16 天即可覆盖全 球一次。使用15 米分辨率的图像,可用来制作1:10 万的矢量地形图。 2.法国遥感卫星(SPOT) 继1986 年以来,法国先后发射了斯波特―1、2、3、4 对地观测卫星。斯波特―1、2、3 采用832km 高度的太阳同步轨道,轨道重复周期为26 天。卫星上装有两台高分辨率可见 光相机(HRV) ,可获取10m 分辨率的全遥感图像以及20m 分辨率的三谱段遥感图像。这些 相机有侧视观测能力,可横向摆动27°,卫星还能进行立体观测。斯波特―4卫星遥感器增加了新的中红外谱段,可用于估测植物水分,增强对植物的分类识别能力,并有助于冰雪探测。该卫星还装载了一个植被仪,可连续监测植被情况。斯波特―5是新一代遥感卫星,其分辨率更高,即将向全世界提供服务。 3.依科诺斯(IKONOS) 依科诺斯卫星是美国Spaceimage 公司于1999 年9 月发射的高分辨率商用卫星,卫星飞 行高度680km ,每天绕地球14 圈,星上装有柯达公司制造的数字相机。相机的扫描宽度为

遥感计算题

遥感计算题 全色波段的探测元件长度为13um;焦距为1m; 轨道高度为822km; 计算:(1)地面的瞬时视场;(2)计算地面分辨率 f S H IFOV ?= S : 探测元件的边长 H : 遥感平台的航高 f : 望远镜系统的焦距 IFOV :瞬时视场。 2. 举例:某地TM 图像,增强前灰度最大值为62,最小值为10,选择0-255灰度级进行 y=kx+b 线性变换,则变换函数为: 109.4-=x y . 、 9.452/255)/()''(min max min max ==--=g g g g k 10100'-=-=-=ij ij kg g b 3.举例说明:在用RC-5拍摄的像片,已知航高2600m ,焦距210mm,红松K36号样地的海拔高为500m ,红松K40号样地海拔高为290m ,则M K36的比例尺分母为:10000. M K40的比例尺分母为:11000. 4.像片比例尺计算公式: H f M =1 | f 为焦距,H 为飞行器相对航高。 计算:f=70mm ,H=3500m ,则像片比例尺为1:50000。 5.已知航空摄影为中心投影下,其地面高差为1000米、摄影高度为500米、像片上像点a 到像主点的距离10cm :则地形起伏产生的航片上的像点位移δh 为多少20cm. δh 地形起伏产生的航片上的像点位移 H h r h ?= δ

r为像点a到像主点的距离;H为摄影航高;h为地面高差; < 6.利用以下平滑模板对以下数字图像进行平滑处理,写出增强处理过程及处理后的数字图像。对比两种模板说明对图像分别起到哪种增强效果对横向或纵向的边缘(或内部)产生哪些影响 ` 填写 ) 7.已知遥感图像的分类的精度评价的混淆矩阵,计算草类地物的总体精度、错分误差、漏分误差、生产精度(即制图精度)、用户精度。 (1)Overall Accuracy =总体精度= (131003/256000) | | 1012 4531 : 3 420 2012 数字图像 111 000 11> 1 模板2 | 模板1处理后数字图像 101 101 10。 1 模板1

遥感原理与应用复习题(Final Version)

遥感原理与应用复习题 一、名词概念 1. 遥感 广义:泛指一切无接触的远距离探测,包括对电磁场、力场、机械波(声波、地震波)等的探测。 狭义:是应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。 2. 传感器 传感器是遥感技术中的核心组成部分,是收集和记录地物电磁辐射能量信息的装置,如光学摄影机、多光谱扫描仪等,是获取遥感信息的关键设备。 3. 遥感平台 遥感平台是转载传感器进行探测的运载工具,如飞机、卫星、飞船等。按其飞行高度不同可分为近地平台、航空平台和航天平台。 4. 地物反射波谱曲线 地物的反射率随入射波长变化的规律称为地物反射波谱,按地物反射率与波长之间的关系绘成的曲线称为地物反射波谱曲线(横坐标为波长值,纵坐标为反射率) 5. 地物发射波谱曲线 地物的发射率随波长变化的规律称为地物的发射波谱。按地物发射率与波长之间的关系绘成的曲线称为地物发射波谱曲线。(横坐标为波长值,纵坐标为总发射) 6. 大气窗口 通常把通过大气而较少被反射、吸收或散射的透射率较高的电磁辐射波段称为大气窗口。 7. 瑞利散射 当微粒的直径比辐射波长小许多时,也叫分子散射。 8. 遥感平台 遥感平台:遥感中搭载传感器的工具统称为遥感平台。 遥感平台按平台距地面的高度大体上可分为地面平台、航空平台和航天平台三类。 9. TM 即专题测图仪,是在MSS基础上改进发展而成的第二代多光谱光学-机械扫描仪,采用双向扫描。 10. 空间分辨率 图像的空间分辨率指像素所代表的地面范围的大小,即扫描仪的瞬间视场或地面物体能分辨最小单元,是用来表征影像分辨地面目标细节能力的指标。通常用像元大小、像解率或视场角来表示。 11. 时间分辨率 时间分辨率指对同一地点进行遥感采样的时间间隔,即采样的时间频率,也称重访周期。 12. 波谱分辨率 波谱分辨率指传感器在接收目标辐射的波谱时能分辨的最小波长间隔,也称光谱分辨率。间隔愈小,分辨率愈高。 13. 辐射分辨率 指传感器接收波谱信号时,能分辨的最小辐射度差。 14. 传感器 传感器,也叫敏感器或探测器,是收集、探测并记录地物电磁波辐射信息的仪器。

遥感卫星影像数据采购知识要素

北京揽宇方圆信息技术有限公司 (一)遥感卫星数据类型有哪些? 北京揽宇方圆卫星公司可提供多种遥感数据类型供用户选择,目前来说是国内遥感数据最多的遥感数据中心,分辨率从0.3米到30米的光学卫星影像,还有各种极化方式的雷达卫星影像,高光谱卫星影像,还有解密的1960年至1980年的锁眼卫星影像,根据自己的情况来定,也可以把自己的卫星数据需求告诉我们,给您推荐合适的卫星数据类型。如果您想获取高程信息DEM、DLG等信息,需要购买的就是卫星影像立体像对数据,并不是所有卫星都有立体像对哦。 (二)遥感卫星数据影像有哪些级别? 卫星公司北京揽宇方圆销售的都是1A级别原始卫星影像,光学卫星影像原始数据都是以全色+多光谱捆绑形式提供,卫星影像一般可以经过一定的处理,形成各级别的影像数据,不同的级别可以针对不同的用户需求,在订购时需特别注意。 *名词(全色就是黑白数据,多光谱是指红绿蓝近红外) (三)遥感卫星数据影有没有最小数量起订的说法? 北京揽宇方圆提醒您在购买卫星影像时,都要确认购买面积大小或景数。对于高分辨率影像来说,一般是按面积大小来计算,单位为平方公里。但是往往有个最小购买面积,例如,WorldView影像的存档数据最低起购面积为25平方公里,且需要满足四边形两边相距大于等于5公里;而中低分辨率影像则往往按景数来计算,景是一幅卫星影像的通俗讲法,例如,一景高分一号卫星影像,范围大小为32.5×32.5公里。 (四)遥感卫星存档数据是指什么? 北京揽宇方圆详解遥感卫星存档数据:是指先前卫星已经拍摄过的某区域的影像数据,已存档在数据库中,是现成品。该种影像的购买价格相对较低,订购时间较快。但是订购前需要对既定需求区域做出确认,即确认所需区域是否有卫星影像数据存档、卫星影像存档数据的拍摄时间、拍摄质量(包含了云量、拍摄倾角等因素)等。 (五)遥感卫星编程数据是什么意思? 北京揽宇方圆遥感公司对遥感卫星编程数据的解释是指地面编程控制卫星对需求区域拍摄最新的影像,可以让用户得到需求区域最新的影像。但是编程影像的拍摄周期通常较长,订购初期需要先向卫星运营公司申请拍摄区域的拍摄周期,然后由卫星公司反馈计划拍摄周期。在这个拍摄周期中,并不能够保证拍摄成功,这与所拍摄地的天气情况、拍摄数据的优先级权重以及需求数据范围有关。 (六)遥感卫星影像数据价格如何一般是多少? 目前市面上的商业遥感卫星数量较多,北京揽宇方圆是国内遥感数据资源最多的公司,不同的行业根据自己的遥感项目业务要求,对各卫星影像的分辨率、波段数量、质量以及影像拍摄的时间要求各异,而卫星

遥感植被指数NDVI计算

本科学生综合性、设计性 实验报告 姓名宋国俊学号114130168 专业地理信息系统班级 实验课程名称遥感地学分析 实验名称NDVI计算 开课学期2011 至2012 学年下学期 云南师范大学旅游与地理科学学院编印 一、实验准备

1、实验目的和要求: 利用TM卫星数据,应用ENVI软件进行归一化植被指数的计算,及在此基础对研究 区进行植被覆盖率的提取,根据植被覆盖率进行一些应用分析。 2、实验材料及相关设备: 昆明影像数据(path/row:129/43(2002.02.09))ENVI及ArcGIS软件。 3、实验方法步骤及注意事项: 实验方法:利用ENVI及ArcGIS图像处理软件,参考软件的处理操作步骤,对图像进行处理。 注意事项:下载数据时应该严格遵照行列号来下载,下载的数据要包括完整的影像数据信息以便数据的预处理。 二、实验内容、步骤和结果(详细写清楚本次实验的完成的主要内容、具体 实施步骤和实验结果。) 1、实验内容 利用下载的昆明影像数据用ENVI进行NDVI计算,计算公式如下: NDVI=(NIR-R)/(NIR+R)(NIR为近红外波段,R为红光波段) 2、实验步骤 (1)对昆明影像数据进行辐射定标: Ⅰ、启动ENVI File→Open External File→Landsat→Geo TIFF with metadata→Enter Landsat MetaData Filenames(输入元数据) Ⅱ、Spectral→Preprocessing→Calibration utilities→Landsatcalibration→Landsat calibration input file→输 入第一步的元数据 Ⅲ、将辐射定标后的数据转化为BIL格式:

遥感影像数据下载

1.MODIS L1B 1km: https://www.wendangku.net/doc/3c18102770.html,/data/d ... _Level_1/index.html 免费注册,免费下载,daily data 2.https://www.wendangku.net/doc/3c18102770.html,/pub/imswelcome/ 3. https://www.wendangku.net/doc/3c18102770.html,/ https://www.wendangku.net/doc/3c18102770.html,ndsat etm+ and tm images for free https://www.wendangku.net/doc/3c18102770.html,/ortho/index.htm 5.EarthEtc ER MAPPER公司示范网站 https://www.wendangku.net/doc/3c18102770.html,/imagery.aspx该网站上可以欣赏世界各地的高清晰度卫星照片,以及覆盖全球的1990年版LANDSAT卫星拼图(NASA命名为Circa 1990)。该网站不提供文件下载,只能通过浏览器观看。 6.NASA已经将中国地区的卫星图像发表在其网站上,免费供公众下载。 https://https://www.wendangku.net/doc/3c18102770.html,/mrsid/mrsid.pl 7.ENVISAT ASAR数据 https://www.wendangku.net/doc/3c18102770.html,或者https://www.wendangku.net/doc/3c18102770.html, ENVISAT卫星是欧空局迄今为止研制的最大的环境监测卫星,其高级合成孔径雷达(ASAR)在C波段具有多极化、可变观测角度、宽幅成像等特性。其数据可以广泛应用于自然灾害监测、资源环境调查、雷达遥感教学与科研等领域。 8.美国航天飞机SRTM 高程数据 SRTM高程数据由NASA航天飞机上的雷达在2000年2月搜集,覆盖南纬56度到北纬60度之间的陆地区域。该数据分辨率为30米,但NASA出于“安全性”考虑将美国以外的地区缩减为90米分辨率。数据格式为HGT格式,采用ZIP压缩,文件名以经纬度网格的左上角点命名。该系列数据是“未完成”数据,里面有很多地方有数据空洞存在。 ftp://https://www.wendangku.net/doc/3c18102770.html,/srtm/Eurasia/ https://www.wendangku.net/doc/3c18102770.html,gs,gov/data/obtainingdata.html(“unfinished”Grade) https://www.wendangku.net/doc/3c18102770.html,gs,gov/products/elevation.html(“finished”Grade) Easy Download Site—GLCF ftp://https://www.wendangku.net/doc/3c18102770.html,/gl ... 0/SRTM_u03_n040e116 上述数据覆盖范围1*1度n040—北纬40度e116—东经116度 9.国家基础地理信息系统全国1:400万数据库

遥感在资源勘查中的应用

艾萨迪拉。玉苏甫资源08-2班 20082701418 2011-11-2

遥感在资源勘查中的应用 遥感技术是根据电磁波的理论,应用各种传感仪器对远距离目标所辐射和反射的电磁波信息,进行收集处理并最后成像,从而对地面的各种景物进行探测和识别的一种综合技术。 资源勘查工程是一个找矿的专业,由现代的遥感技术从多光谱遥感,高光谱遥感,空间分辨率遥感,雷达等一系列遥感数据,对于资源勘查有很大的应用。遥感技术有视域宽广,周期性覆盖,超出人类视觉范围波段的使用,多波段数据同时获取,利用计算机管理、处理数据,应用性强等一系列特点。 遥感技术在地质上的应用称之为遥感地质。它是综合应用现代遥感技术来研究地质规律,进行地质调查和资源勘察的一种探测方法。从宏观的角度来讲由空中取得的地质信息,即以各种地质体对电磁辐射的反应作地热等现象为基本依据,结合其他各种地质资料及遥感资料的综合应用,以分析、判断一定地区内的地质构造情况。地物对不同的电磁波波段具有不同的反射和发射的特性,这种特性称之为地物的波谱特性。 遥感在资源勘查中的应用很多,区域地质调查中判别大型的地质构造,地质填图,岩石的类型、表面特性,矿产资源的勘查,监视和阻止地质灾害,海洋研究方面,国土资源的应用和调查,地质工程等很多方面。在地质、矿产方面,遥感为地质研究和勘查提供了先进的手段,可为矿产资源调查提供重要线索和依据。卫星遥感为大区域甚至全球范围的地质调查、研究创造了有利的条件。遥感大大减小了野外工作量,节省了人力、物力、财力,加快了地矿勘测的速度,也提高了成果的精度。遥感图像有助于查明地质构造,并善于发现隐伏构造,便于揭示矿产普查勘探的方向,有利于在较短时间内探测到各种矿藏资源。在工程地质勘探中,遥感用于大型堤坝、厂矿及其它建筑工程的选址和道路选线,以及由地震、暴雨等造成的灾害性地质过程的预测方面。在水文地质勘探中,利用各种遥感资料(尤其是红外摄影和热红外扫描成像资料)查明区域水文地质条件,富水地貌部位,识别含水层及判断充水断层。在夏威夷岛,用红外遥感技术发现200多处地下水出露点,解决了该岛所需淡水的水源问题。此外,遥感还可监测火山、地震的活动和沙丘的移动等。 资源勘查工作中区域地质调查是首部工作。区域地质调查是在较大地区范围内为资源普查及勘探所进行的地质、地形、地貌调查并填地层剖面图。由于遥感图像从宏观卜细致地反映了地质构造、地貌、水文、植被和人类经济活动等各种信息,所以在找矿、水文地质调查、石油普查、地震地质调查,以及水利、道路、港口等工程地质勘测和环境地质调查等等许多地质工咋中,应用遥感技术都取得了很好的效果。所以在这工作上应用遥感技术来获取地图,能提高地质图的效率,数字化的地质填图,地质三维分析能加快工作速度。同时,遥感技术与物化探等地学学科,GIS、GPS等紧密融合,使区域地质调查中的遥感应用成为多学科、多技术互相渗透的综合应用体系。 我们可以下载或购买各种不同波段的遥感数据来组合成遥感影像。图像选择是根据专题的要求与特点选择适当的空间分辨率、适当的波谱分辨率和适当时相的遥感图像资料。 常用的遥感数据

遥感地学分析的重点知识

第1章绪论 一、遥感地学分析 遥感地学分析是以地学规律为基础对遥感信息进行的分析处理过程。 地学分析方法与遥感图像处理方法有机地结合起来,一方面可扩大地学研究本身的视域,提高对区域的认识水平;另一方面可改善遥感分析、处理、识别目标的精度。 二、遥感的分类 1、以探测平台划分;(地面、航空、航天、航宇) 2、按探测的电磁波段划分; 3、按电磁辐射源划分;(被动、主动) 4、按应用目的划分。(地质、农业、林业、水利、海洋等) 二、按探测的电磁波段划分 1、可见光遥感 2、红外遥感 3、微波遥感 4、多光谱遥感 5、紫外遥感 6、高光谱遥感 三、遥感信息定量化的定义 遥感信息定量化是指通过实验或物理模型将遥感信息与观测目标参量联系起来,将遥感信息定量地反演或推算为某些地学、生物学或大气等测量目标参量。 四、遥感信息的定量化两重含义 1、遥感信息在电磁波不同波段内给出的地标物质定量的物理量和准确的空间位置。 2、从定量的遥感信息中,通过实验或物理模型将遥感信息与地学参量联系起来,定量地反演或推算某些地学或生物学的参量。 3、定量化模型:分析模型、经验模型、半经验模型。 第2章地物光谱特征与遥感数字图像信息提取 一、地物的反射光谱特性 反射率——用来表示不同地物对入射电磁波的反射能力的不一样。 反射——当电磁辐射到达两种不同介质的分界面时,入射能力的一部分或全部返回原介质的现象。 光谱反射率——Ρ(λ)=E R(λ)/E I(λ) ↓↓↓ 反射率反射能入射能 一般地说,当入射电磁波长一定时,反射能力强的地物,反射率大,在黑白遥感图像上呈现的色调就浅。反之,反射入射光能力弱的地物,反射率小,在黑白遥感图像上呈现的色调就深。 判读遥感图像的重要标志——在遥感图像上色调的差异。

遥感的基本概念

一、遥感的基本概念 广义的含义:泛指各种非接触的、远距离的探测技术,根据物体对电磁波的反射和辐射特性,以获取物体信息的一种技术。 狭义遥感:通过遥感器这类对电磁波敏感的仪器,在远离目标和非接触目标物体条件下探测目标地物,获取其反射、辐射或散射的电磁波信息,对其进行处理、分析与应用的一门科学和技术。 二、遥感技术系统 遥感技术系统包括:遥感信息源(目标物);信息的获取;信息的接收与记录、信息的处理和信息应用五大部分。 遥感信息源(目标物)-----任何目标都具有发射、反射和吸收电磁波的性质,都是遥感的信息源。目标物与电磁波的相互作用,构成了目标物的电磁波特性,它是遥感探测的依据。 信息的获取-----主要由传感器来完成。接收、记录目标物电磁波特征的仪器,称为传感器。如扫描仪、雷达、报机、摄像机、辐射计等。 信息的接收、记录-----传感器接收到目标地物的电磁波信息,记录在数字磁介质或胶片上。胶片是由人或回收舱送到地面回收,而数字磁介质上记录的信息则可通过卫星上的微波天线传输给地面的卫星接收站。 信息的处理——硬件系统(计算机、显示设备、大容量存储设备、图像的输入输出设备)和软件系统(数据输入模块、几何校正模块、图像变换、图像融合、分类、分析、输出等模块) 信息的应用----遥感获取信息的目的是应用。这项工作由各专业人员根据不同的应用需要而进行。在应用过程中,也需要大量的信息处理和分析,如不同遥感信息的融合及遥感与非遥感信息的复合等。 三、遥感的分类 主动遥感和被动遥感: 主动遥感由探测器主动发射一定电磁波能量并接收目标的后向散射信号; 被动遥感的传感器不向目标发射电磁波,仅被动接收目标物的自身发射和对自然辐射的反射能量。 按遥感平台分: 地面遥感:传感器设置在地面平台上,如车载、船载、手提、固定或活动的高架平台上等。航空遥感:传感器设置于航空器上,主要是飞机、气球等; 航天遥感:传感器设置于环绕地球的航天器上,如人造地球卫星、航天飞机、空间站火箭等;航宇遥感:传感器设置于星际飞机上,指对地月系统外的目标的探测。 按传感器的探测波段分: 紫外遥感:探测波段在0.05-0.38um之间; 可见光遥感:探测波段在0.38-0.76um之间;摄影机、扫描仪、摄像仪等。 红外遥感:探测波段在0.76-1000um之间;摄影机、扫描仪等。 微波遥感:探测波段1mm-1m之间;扫描仪、微波辐射计、雷达、高度计等。 多波段遥感:把目标物辐射来的电磁辐射分割成若干个窄的光谱带,然后同步探测,同时得到一个目标物不波段的多幅图像。多光谱摄影机、多光谱扫描仪和反束光导管摄像仪等。四、遥感特点 大面积同步观测 多波段性:超越了人眼所能感受到的可见光的限制,延伸了人的感官 综合性:遥感探测所获取的是同一时段、覆盖大范围地区的遥感数据,这些数据综合地展现了地球上许多自然与人文现象,宏观地反映了地球上各种事物的形态与分布,真实地体现了

卫星影像数据库遥感卫星影像数据库

卫星影像---北京揽宇方圆信息技术有限公司高分遥感影你5折起. 北京揽宇方圆信息技术有限公司立足于国际,代理了国际主流高分卫星 1.美国Digital Globe公司的quickbird卫星worldview123卫星geoeye卫星ikonos卫星,worldview3全球最高高分辨率卫星数据0.3米的遥感数据产品,其中quickbird worldview geoeye是全球高分辨率卫星数据0.5米的遥感数据产品,IKONOS 1米高分辨率卫星数据。公司的销售服务网络向国内客户提供更及时、保障度更高的高分辨率遥感数据。 2.法国SPOT公司,SOPT1-SPOT6全系例遥感卫星影像数据,其中SOPT1-SOPT5,分辨率2.5到20米,时间是1986年至今,SPOT6卫星是1.5米分辨率卫星数据,2012年SPOT 公司又发射了pleiades卫星,这颗卫星是0.5米分辨率. 3.德国Rapideye卫星星座数据产品:由5颗相同的对地观测卫星组成的RapidEye卫星星座,空间分辨率5米,为全球首个能够提供“红边”波段的商业卫星,可通过5个光谱波段获取影像,这种获取方式可以监测植被变化情况,为植被分类以及植被生长状态监测提供有效信息。 4.美国军方解密锁眼卫星数据系例:锁眼(keyHole)卫星系列,即KH—1至KH—12型照相侦察卫星,锁眼卫星在世界先进的侦察卫星中可谓是大名鼎鼎,它们曾在在“海湾战争”和“科索沃战争”中立下汗马功劳。美国国家侦察局解密锁眼(keyHole)卫星系列遥感数据,目前解密年代的数据为1980年以前的历史数据。全色分辨率0.6米-10米。 5.日本的ALOS卫星数据,分辨率全色2.5米-多光谱10米,这颗卫星2011年4月停止运行了。 6.国内的高分卫星:资源3号和高分一号 7.智能化的遥感影像数据处理:-,融合匀色拼接等,二,地物地貌处理,三,生成正射影像,四,遥感解译等遥感技术应用服务。

资源环境遥感

资源环境遥感 第一讲遥感概述 遥感技术是20世纪60年代发展起来的对地观测综合性技术。它是在航空摄影测量的基础上,随着空间技术、电子计算机技术等当代科技的迅速发展,以及地学、生物学等学科发展的需要,发展形成的一门新兴的技术科学。 从以飞机为主要运载工具的航空遥感,发展到以人造地球卫星、宇宙飞船和航天飞机等为运载工具的航天遥感,大大地扩展了人们的观察视野及其观测领域,形成了对地球资源和环境进行探测和监测的立体观测体系,使地理学、环境科学等的研究和应用进入到一个崭新的阶段。 一.遥感的基本概念 遥感(Remote Sensing),通常有广义和狭义的理解。 1. 狭义遥感的定义 所谓遥感,是指不需要与探测目标直接的接触,运用现代化的运载工具和仪器,从一定的距离获得目标物体的从紫外波段到微波波段的电磁波辐射特征信息,通过信息的接收、传输以及处理过程,依据不同目标物体所具有的不同辐射特征,来识别和区分目标物体的性质,并分析研究它们在空间上、时间上和成因上的相互关系及其变化规律的整个综合探测过程。 2. 研究内容 (1)研究地物电磁辐射特性:其中包括各类电磁辐射的空间分布特性和随时间变化的特性。 (2)研究遥感信息的探测手段和传输方式: 主要是研究遥感传感器。 (3)研究遥感信息的处理系统:提高信息质量。 (4)研究遥感信息的应用:努力产生明显的经济效益和社会效益。 所以遥感技术是多学科组成的综合性学科,是现代科学技术的一个重要组成部分。 二. 遥感技术的特性 遥感技术具有如下的主要特性: 1.空间特性(广)—其探测范围大,具有宏观、综合的特点,可以实施大面积的同步观测。进行资源和环境调查时,大面积的同步观测所取得的数据是最宝贵的。 例如:一张23cm X 23cm的1/3.5万的航空像片,能包括60多平方公里的面积;一张1/100万的陆地卫星像片,能包括185km X 185km的面积(34225平方公里),相当于整个海南岛的面积。 2.波段特性(多)—其探测波段从可见光向两侧延伸,信息量大,数据可比性强,扩大了人们的视野,使得对地球的观测和研究走向全天时和全天候。 例如:紫外波段可以监测水面的油膜污染;红外波段能够探测地表温度;微波波段具有穿透云层、冰层和植被的能力。 3.时相特性(多)—其对同一地区能够进行重复探测成像,而且获取信息的速度快,重访周期短,有利于动态监测研究,大大提高了观测的时效性。 例如:陆地卫星对同一地区的重访周期为18天/次和16天/次;极轨气象卫星的重访周期为2次/天;SPOT卫星的重访周期为26天/次。 4.收集资料特性(便)—其不受地面条件的限制,不受国界的影响,收集资料十分方便,便于进行全球性的研究。 例如:对于那些无人区、高山峻岭、悬崖峭壁、海洋、荒漠等人到不了的地区,都能获得遥感资料。 5.经济特性—其可以大大地节省人力、物力、财力和时间,传统方法是无可比拟的;而且其应用范围广,具有很高的经济效益和社会效益;其强大的生命力展现出广阔的发展前景。 例如:据有关资料统计表明,象美国的陆地卫星的经济投入与其取得的效益比为1:80还多。 6.局限性—目前,在地球遥感中,还有一部分的电磁波段有待进一步的开发与利用。 三. 遥感技术的分类 遥感的分类方法很多,主要有以下几种: 1.按运载工具分类—有地面遥感、航空遥感、航天遥感和航宇遥感等。 其中航宇遥感就是宇宙遥感或叫星际遥感,是指利用星际飞船(如我国的神舟1-6号飞船)进行宇宙空间的物理遥感和太阳系行星的遥感。 2.按传感器的工作波段分类—有紫外遥感、可见光遥感、红外遥感、微波遥感和多波段遥感。

遥感数据的波段运算

遥感数据的波段运算 一、波段运算(Band Math) Band Math TM功能允许你处理导致单个波段输出的复杂表达式。这些数学表达式也可以 应用于一个多波段文件中的所有波段,providing “File Math”。 关于使用波段运算的更多信息,请参阅ENVI Programmer’s Guide 第 29 页的 “Band Math Basics”。 1.可利用的波段运算功能(Available Band Math Functions) Band Math 功能为用户提供一个灵活的图像处理工具,其中许多功能是无法在任何其它 的图像处理系统中获得的。该功能的能力与 IDL 语言的能力直接相关。可用的函数包括但 不仅限于表 4-2 中列出的数学表达式。 表 4-2: 一些可用的波段运算函数。 Series and Scalar 数学三角函数其它波段运算选项加(+)正弦(sin(x))关系运算符(EQ、NE、LE、LT、 GE、GT) 减(-)余弦(cos(x))逻辑运算符(AND、OR、XOR、 NOT) 乘(*)正切(tan(x))类型转换函数(byte, fix, long, float, double, complex)除(/)反正弦(asin(x))IDL 返回数组结果的函数最小运算符(<)反余弦(acos(x))IDL 返回数组结果的程序 最大运算符(>)反正切(atan(x))User IDL 函数和程序 绝对值(abs(x))双曲正弦(sinh(x))

平方根(sqrt(x))双曲余弦(cosh(x)) 指数(^)双曲正切(tanh(x)) 自然指数(exp(x)) 自然对数(alog(x)) 以10为底的对数(alog10 (x)) 注意 一些有效的 IDL 表达式要求整个输入数组存在于内存中,它可以不必与 ENVI tiling 操作相兼容。 2.Band Math 对话框 (1). 选择Basic Tools > Band Math. 将出现 Band Math 对话框。假如运算结果是一个二维数组,它将接受任何有效的 IDL 数学表达式、函数或程序。 (2). 在标签为 “Enter an expression:” 的文本框内,输入变量名(将被赋值到整个图像波段或可能应用到一个多波段文件中的每个波段)和所需要的数学运算符。 变量名必须以字符 “b” 或 “B” 开头,后面跟着 5 个以内的数字字符。 实例: 若你想计算三个波段的平均值,则在文本框“Enter an expression:”内输入数学方程式:(float(b1)+float(b2)+float(b3))/3.0 这时,变量b1、b2自动跳入”Previous band math expression”对话框中,可以输入到文本框中。该表达式中使用的三个变量,“b1” 是第一个变量,“b2” 是第二个变量,“b3” 是第三个变量。注意,在本例中,IDL 的浮点型函数用来防止计算时出现字节溢出错误。(3). 输入一个有效的表达式被输入,点击 “OK”处理。

《遥感原理与方法》习题库

第一章遥感概述 1、阐述遥感的基本概念。 2、 遥感探测系统包括哪几个部分? 3、与传统对地观测手段比较,遥感有什么特点?举例说明。 4、遥感有哪几种分类?分类依据是什么? 5、 试述当前遥感发展的现状及趋势。 第二章 遥感的物理基础 1、大气对通过其中传播的电磁波的散射有哪几类?他们各有什么特点。 2、 什么是大气窗口?常用于遥感的大气窗口有哪些? 3、 综合论述太阳辐射传播到地球表面又返回到遥感传感器这一整个过程中所发生的物理现象。 4、请绘出小麦、湿地、沙漠、雪的典型光谱曲线图,并分别对这些光谱反射率曲线的特征及其成因作出说明。 5、 遥感某火电厂冷却水的热污染(温度梯度为90-50度),试问在哪个波段、选用何种传感器,在每天什么时刻及天气状况下,遥感最为有利,为什么(b=2.898×10-3m.K,计算精确到0.1um)。 6、 熟悉颜色的三个属性。明度、色调、饱和度,选取自然界的某些颜色例如:树叶、鲜花、土地等,比较它们三种属性区别。 7、 光的合成怎样推算新颜色?用色度图说明。 8、加色法和减色法在原理上有什么不同?举例说明什么时候用加色法,什么时候用减色法? 9、 利用标准假彩色影像并结合地物光谱特征,说明为什么在影像中植被呈现红色,湖泊、水库呈蓝偏黑色,重盐碱地呈偏白色。 第三章

遥感图象获取原理 1、主要遥感平台有哪些,各有何特点? 2、摄影成像的基本原理是什么?其图像有何特征? 3、 扫描成像的基本原理是什么?扫描图像与摄影图像有何区别? 4、如何评价遥感图像的质量? 第四章 航空遥感与航空像片 1、按摄影机主光轴与铅垂线的关系,航空摄影可公为哪几类? 2、 影响航空像片比例尺的因素有哪些?怎样测定像片的比例尺? 3、比较航空摄影像片与地形图的投影性质有什么差别? 4、 什么是像点位移?引起像点位移的主要原因是什么? 第五章航天遥感与卫星图像 1、 试从技术特性和应用两方面,对航天(卫星)遥感与航空遥感作一比较。 2、航天遥感平台主要有哪些?各有什么特点? 3、 地球资源卫星主要有哪些?常用的产品有哪几类? 4、简述卫星图像的主要特征。 第六章遥感数字图像处理 1、数字图像的基本概念是什么? 2、 什么叫辐射误差,其主要来源有哪些? 3、什么叫大气校正?试说明回归分析和直方图校正的原理。 4、 几何校正过程中为什么要进行像元灰度重采样?有几种方法?各有何优劣?几何校正时对GCP有何要求? 5、

遥感影像数据预处理

北京揽宇方圆信息技术有限公司热线:4006019091 遥感影像数据预处理 影像融合不同传感器的数据具有不同的时间、空间和光谱分辨率以及不同的极 化方式。单一传感器获取的影像信息量有限,往往难以满足应用需要, 通过影像融合可以从不同的遥感影像中获得更多的有用信息,补充单一 传感器的不足。全色图影像一般具有较高空间分辨率,多光谱影像光谱 信息较丰富。为提高多光谱影像的空间分辨率,可以将全色影像融合进 多光谱图像,通过融合既提高多光谱影像空间分辨率,又保留其多光谱 特性。对卫星数据的全色及多光谱波段进行融合。包括选取最佳波段, 从多种分辨率融合方法中选取最佳方法进行全色波段和多光谱波段融 合,使得图像既有高的空间分辨率和纹理特性,又有丰富的光谱信息, 从而达到影像地图信息丰富、视觉效果好、质量高的目的。 影像匀色相邻的遥感图像,由于成像日期、季节、天气、环境等因素可能有差异, 不仅存在几何畸变问题,而且还存在辐射水平差异导致同名地物在相 邻图像上的色彩亮度值不一致。如不进行色调调整就把这种图像镶嵌起 来,即使几何配准的精度很高,重叠区复合得很好,但镶嵌后两边的影 像色调差异明显,接缝线十分突出,既不美观,也影响对地物影像与专 业信息的分析与识别,降低应用效果。要求镶嵌完的数据色调基本无差 异,美观。遥感影像匀色后保证影像整体色彩一致性。 影像镶嵌将不同的图像文件合在一起形成一幅完整的包含感兴趣区域的图像,通 过镶嵌处理,可以获得更大范围的地面图像。参与镶嵌的图像可以是不 同时间同一传感器获取的,也可以是不同时间不同传感器获取的图像, 但同时要求镶嵌的图像之间要有一定的重叠度。 影像去云雾影像数据常常有云雾覆盖,针对有云雾覆盖的影像,可以通过后期技术 处理去除薄云雾,达到影像最佳效果。 影像纠正依据控制点,利用相应软件模块对数据进行几何精校正,这一步骤包括 利用地面控制点(GCPs)找出实际地形,计算配准中控制点的误差,利 用DEM消除地形起伏引起的位移,然后对图像进行重采样等。形成符合 某种地图投影或图形表达要求的新影像。 即插即用无使用门槛,可与各类GIS软件系统无缝衔接 第1页

相关文档