文档库 最新最全的文档下载
当前位置:文档库 › 海——气作用

海——气作用

海——气作用
海——气作用

第四章海——气作用

第一节海——气相互作用及其影响

〖基础梳理〗

海海洋与大气之间进行着大量且复杂的物质和能量交换,其中的、交气换,对气候以至地理环境具有深刻的影响

互大气中约有的水汽由海洋提供,因此,是大气中水汽的最主要来源作

用能量来源:

水水汽交换:太阳辐射→海水→水汽进入→凝结→(降热水) →(径流)

换热量交换:太阳辐射→海洋→潜热和长波辐射等方式→大气

海维持全球水、热平衡的基础:与

气不同纬度间海洋对大气加热不同→(高低纬间) 相过程海洋和陆地对大气加热差异→

互大气运动和地转偏向力→

作基础:海洋通过蒸发向大气输送水汽

用水途径:海水运动和大气运动

与平过程:从海洋上蒸发的水汽随大气运动,大部分通过降水回到,水衡其余部分被大气运动带到上空形成降水落到陆地,热然后通过和回到海洋

平由于水循环运动,全世界蒸发和降水的总量基本保持平衡

衡途径:高低纬之间热量输送主要通过和共同实现的热0°~30°N地区:海洋输送的热量超过大气输送的热量

平在30°N以北地区:大气输送热量超过海洋输送的热量

衡50°N附近:海洋把热量输送给大气,再由大气环流向更高纬度输送

〖归纳总结〗要点一海一气相互作用与水热交换

1.图解海一气相互作用与水交换的过程

2.海一气相互作用与热交换的过程

3.影响海一气水热交换的因素

〖思考〗海洋与大气之间进行水热交换的形式

注:海洋对大气的作用是热力的,大气对海洋的作用是动力的。

4.海洋对大气温度的调节作用

〖例题1〗读“水循环示意图”,回答下列问题:

(1)写出图中各箭头所表示的水循环环节名称:

①,②,③,④,⑤。

(2)海洋与大气进行着物质与能量的交换,海上内循环中,蒸发与降水是海气间水分交换的重要方式。图中代表海洋向大气输送水分的数字是,而大气则通过的方式将水分还给海洋。

(3)在物质交换的同时,伴随着热量的传输和交换.过程①伴随着热量的,过程③伴随着热量的。

〖归纳总结〗

要点二海一气相互作用与水、热平衡

〖例题2〗读下图,水循环总量为100单位,按全球多年水量平衡规律推算,M、N分别为 ( )

A.7 16

B.16 7

C.7 23

D.23 7

〖例题3〗读“北半球海洋热量收支随纬度的变化图”,回答下列问题:

(1)图中a曲线为,海水中热

量主要来自,其随纬度分布的规

律是,产生的原因

是。

(2)b曲线为,其纬度分布规律

是。在副热带

海区盐度为最高值的原因主要是

(3)C点表示的意义是,

d区域表示,e区域表示。

一年中,世界海洋的热量收支基本上是平衡的,但不同海区海水热量收支状况不同,的运动使高低纬度之间的热量进行了交换。

〖自主练习〗

1.海水对气温的调节作用可以 ( )

A.使温差减小

B.使温差增大

C.使气温升高

D.使气温降低

下图为“某大洋部分海区年平均每日从海洋输入大气的总热量分布图”,读图回答2~4题。

2.该等值线分布图反映的是两者之间的热量补给关系 ( )

A.太阳和陆地

B.海洋和大气

C.太阳和大气

D.太阳和海洋

3.图中A处的值可能是w/m2( )

A.230

B.180

C.110

D.90

4.图中A海区表层海水热量的直接来源是( )

A.太阳辐射

B.洋流

C.陆地

D.大气

5.读“2月大洋表面海水等温线分布图”,回答下列问题。

(1)图中A处海区等温线比B处海区等温线稠密,说

明A海区海水的温度,原因是

。图中C、D、E、F四处海域

盐度最高的是。

(2)与大洋西岸等温线相比,大洋东岸等温线在甲处

海域向 (南、北)方向凸出,在乙处海域向 (南、

北)凸出,主要是甲处受 (洋流名称)的

影响,乙处受 (洋流名称)的影响。

(3)试分析洋流对甲、乙两海区沿岸气候的影响。

〖思考题参考答案〗

思考(P37)1.一般来说,海水温度越高,蒸发量越大,向大气输送的热量越多,海——气间的热量交换越活跃。低纬度海区和有暖流流经的海区,特别是热带海区,海面蒸发旺盛,空气湿度大,降水也较丰富,海——气间的水分交换也较为活跃。

2.中低纬度太平洋东、西岸海区输入大气的热量差异,主要受洋流因素和大气环流的影响。太平洋东岸海区受寒流及三圈环流影响,西岸海区受暖流及季风环流影响。中高纬度亦同理。

思考(P40)1.海洋热量的收入,主要是来自太阳辐射;海洋热量的支出,主要是海水的蒸发。一年中,世界海洋热量的收入和支出,基本上是平衡的。但是,各个海区的热量收支并不平衡。在0°~30°N地区,海洋热量收入大于热量支出;在30°N地区,海洋热量收入等于热量支出,热量收支平衡;在30°N~90°N地区,海洋热量收入小于热量支出。

2.在地球表面,低纬度地区获得的净辐射能多于高纬度地区,要保持热量平衡,必须有热量从低纬度地区向高纬度地区输送。地球上高低纬度间的热量输送主要是通过大气运动和洋流共同实现的。在0°~30°N地区,海洋输送的热量超过大气输送的热量;在30°N以北地区,大气输送的热量超过海洋输送的热量;在50°N附近,海洋把相当多的热量输送给大气,再由大气环流向更高纬度输送。通过海——气的相互作用和对热量的全球输送,维持了地球上的热量平衡。

第二节 厄尔尼诺和拉尼娜现象

〖基础梳理〗

含义:通过海~气的热量交换,在赤道附近 上空,形成接近东西向 沃

的 环流。称为沃克环流

克 成因:东南信风→赤道暖流 运动

环 东岸海水上涌,加上寒流气温 流 西岸暖流堆积下沉,气温

意义:沃克环流的 变化,是判断厄尔尼诺和拉尼娜现象的重要依据

含义:有些年份, 附近 中东部的海面温度异常升高

厄 太平洋东部,下沉气流减弱或消失,甚至出现 气流,气候由干燥少 尔 影 雨变成多雨,引发洪涝灾害

尼 响 太平洋西部:上升气流减弱或消失,气候由湿润多雨转变为干燥少雨,引发 诺

现 全球气候异常,对全球广大范围产生影响,具有不确定性

象 成因:东南信风 ,赤道逆流 ,温暖的海水被输送到东太平

洋,南美洲西岸的寒流被暖流取代

拉 含义:赤道附近中东太平洋海面温度异常 的现象

尼 太平洋东部温度降低,降水减少,加剧 灾害

娜 影响 太平洋西部温度增高,降水增多,加剧 灾害

现 全球气候异常,水旱灾害增多

象 与厄尔尼诺现象的关联性:一般发生在 现象之后

〖归纳总结〗

要点一 沃克环流

要点二 厄尔尼诺现象

热力环流

要点三厄尔尼诺和拉尼娜对沃克环流影响

要点四列表对比厄尔尼诺与拉尼娜现象

〖例题1〗沃克环流是指正常情况下发生在赤道附近太平洋洋面上的一种热力环流。若某些年份赤道太平洋东部(秘鲁附近)海水大范围持续异常变冷,海水表层温度低出气候平均值0.5℃以上,则称为“拉尼娜”现象。读下面“沃克环流示意图”,回答(1)~(3)题。

(1)在沃克环流中 ( )

A.甲地为高压

B.乙地为低压

C.水平气流由乙吹向甲

D.甲地垂直方向气流下沉

(2)当“拉尼娜”现象出现时,下列地区降水可能增加的是 ( )

①秘鲁沿海②我国南方③北美南部④印度尼西亚

A.①②

B.③④

C.①③

D.②④

(3)我国2008年1月底2月初出现的暴雪冰冻天气主要受现象影响。〖例题2〗读图,甲图为“正常年份南太平洋部分海区水温分布图”,乙图为“厄尔尼诺”现象年的南太平洋部分海区水温分布图”,分析后按要求完成下列问题。

(1)据图说明正常年份,澳大利亚东部海域降水多还是少。降水,海面水温,原因是。

(2)据图说明正常年份,南美西部海域的洋流成因及类型:类型是,成因是。

(3)“厄尔尼诺”年中,秘鲁西岸受 (洋流)的影响,海洋表层水温,可能盛行气流,出现等异常天气。

(4)中国在“厄尔尼诺”年,一般干旱,下游一带多雨;常出现低温冻害,减产;南方梅雨期入梅偏迟或;在“厄尔尼诺”的下一年,一带多雨,下游则干旱。

〖思考题参考答案〗

思考(P41) 1.在东岸,由于表层海水被风吹走,下层的冷海水会上涌补充,沿岸还有自高纬度流来的寒流,使该海区表层海水的温度较低,较干旱。在西岸,赤道暖流堆积下沉,形成深厚的暖水层,比较湿润。

2.在赤道附近的大西洋上空也会形成类似的沃克环流,且方向相同。(在赤道附近的大西洋表层水温分布与太平洋相似,不过大西洋东西岸之间海水温差小于太平洋,海区面积也小于太平洋,形成的沃克环流不如太平洋上空的显著。)

思考(P44) 1.拉尼娜现象发生后,赤道附近太平洋东西部的温度差异增大,沃克环流增强,同样会引起气候异常和水旱灾害。在赤道附近的太平洋东岸水温偏低,下沉气流强度加大,会引发旱灾;在赤道附近的太平洋西岸地区的上升气流的强度增加,会引发水灾。

2.与厄尔尼诺现象在赤道附近的太平洋两岸地区引发的水旱灾害相比,拉尼娜现象引发的水旱灾害相对较轻。

〖自主练习〗

下图表示某海域水温与正常年份相比较的状

况。读图回答1~4题。

1.关于图示海域水温的叙述,正确的是 ( )

A.根据水温可知该海域位于高纬度地区

B.该海域水温比正常年份水温偏高

C.南极臭氧空洞在扩大,到达地面的太阳紫外线

辐射增强

D.全球平均气温升高

2.该海域水温分布状况 ( )

A.是大气逆辐射增强造成的

B.导致全球气压带、风带北移

C.导致该海域热量收支失衡

D.可扰乱全球水热输送和交换

3.受图示海域水温影响 ( )

A.马来群岛出现持续多雨天气

B.智利北部出现台风活动

C.美国西南部降水增多

D.秘鲁渔场产量大幅增长

4.图中甲处海域水温 ( )

A.低于一2℃

B.高于一2℃

C.比多年平均值低2℃以上

D.无法判断

5.目前人类为减少厄尔尼诺和拉尼娜现象所带来的损失采取的主要措施有 ( )

A.人工降雨

B.监测和治理

C.国际合作

D.控制和疏导

6.许多科学家认为,“厄尔尼诺”现象的产生是由于 ( )

A.东北信风的减弱

B.东南信风的减弱

C.东北信风的增强

D.东南信风的增强

7.许多科学家认为,“拉尼娜”现象的产生可能是由于 ( )

A.沃克环流增强

B.东南信风的减弱

C.沃克环流减弱

D.东南信风的增强

8.“拉尼娜”现象发生后,在赤道附近太平洋西岸地区会产生 ( )

A.水灾

B.旱灾

C.火灾

D.蝗灾

9.读图,回答问题。

(1)图中M处为“5℃”,对其含义理解正确的是 ( )

A.M处海面水温为5℃

B.M处海面水温比同纬度地区高5℃

C.M处海面水温比海底高5℃

D.M处海面比常年平均水温偏高5。C

(2)与厄尔尼诺相反的现象称为现象。

(3)下图中,表示厄尔尼诺现象的海水

运动图是图。厄尔尼诺对南美

西岸降水的影响是

(4)下图是世界某三地“大陆边缘向洋盆过渡示

意图”,M处地形剖面与a、b、C中的对应。

a、b、C三地中多火山、地震的可能是和,

判断的理由是。

配气机构答案

一、填空题 1.充气效率越高,进人气缸内的新鲜气体的量就__多_____,发动机研发出的功率就__高____。 2.气门式配气机构由__气门组___ 和___气门传动组______组成。 3.四冲程发动机每完成一个工作循环,曲轴旋转__2___周,各缸的进、排气门各开启___1____ 次,此时凸轮轴旋转___1___周。 4.气门弹簧座是通过安装在气门杆尾部的凹槽或圆孔中的___锁片____或___锁块____ 固定的。 5.由曲轴到凸轮轴的传动方式有下置式、上置式和中置式等三种。 6.气门由__头部___和 ___杆身____两部分组成。 7.凸轮轴上同一气缸的进、排气凸轮的相对角位置与既定的___配气相位____相适应。 8.根据凸轮轴___旋向_____和同名凸轮的 ____夹角____可判定发动机的发火次序。 9.汽油机凸轮轴上的斜齿轮是用来驱动__机油泵___和__分电器____的。而柴油机凸轮轴上的斜齿轮只是用来驱动___机油泵____的。 10.在装配曲轴和凸轮轴时,必须将___正时标记____对准以保证正确的___配气相位__。 二、判断题 1.充气效率总是小于1的。 ( √ ) 2.曲轴正时齿轮是由凸轮轴正时齿轮驱动的。 ( X ) 3.凸轮轴的转速比曲轴的转速快1倍。 ( X ) 4.气门间隙过大,发动机在热态下可能发生漏气,导致发动机功率下降。( √ ) 5.气门间隙过大时,会使得发动机进气不足,排气不彻底。 ( √ ) 6.对于多缸发动机来说,各缸同名气门的结构和尺寸是完全相同的,所以可以互换使用。 ( X ) 7.为了安装方便,凸轮轴各主轴径的直径都做成一致的。 ( X ) 8.摇臂实际上是一个两臂不等长的双臂杠杆,其中短臂的一端是推动气门的。 ( X ) 9.非增压发动机在进气结束时,气缸内压力小于外界大气压。( X ) 10.发动机在排气结束时,气缸内压力小于外界大气压。( X ) 11.进气门迟闭角随着发动机转速上升应加大。( X ) 12.气门重叠角越大越好。( X )

干气密封的特性及主要工作原理

干气密封的特性及主要工作原理 一、干气密封概述 早在20世纪60年代末期,奠定在气体动压轴承应用的基础上,干气密封发展起来,并成为一种全新的非接触式密封。该密封利用流体动力学原理,通过在密封端面上开设动压槽而实现密封端面的非接触性运行。最初,采用干气密封形式,主要为了改善高速离心压缩机的轴封问题。由于密封采取非接触性的运行方式,因此其密封的摩擦副材料基本不会受到PV值的任何影响,尤其在高压设备、高速设备中应用,具有良好前景。随着我国密封技术的飞速发展,再加上干气密封的广泛应用,彻底解决了困扰高速离心压缩机运行中的轴封问题,密封使用寿命及性能都得到了很大提高,为机组稳定,长周期运行提供了保证,因此该技术的应用范围进一步扩大,凡使用机械密封的场合均可采用干气密封。 干气密封图 二、干气密封与机械密封性能比较

机械密封是一种传统的密封型式,其特点是密封结构简单,技术成熟,加工精度要求不太高。其缺点是泄漏率高,故障频发。 干气密封是目前最先进的一种非接触密封型式,与传统的机械密封形式相比较,采用干气密封技术,主要具备以下优势: 1)采用干气密封技术,可有效提高密封的质量与使用时间,确保设备安全、可靠、稳定运行。 2)采用干气密封技术,能源消耗较小。 3)干气密封技术应用到的辅助系统较为可靠,操作简单,在使用过程中不需要任何维护手段。 4)采用干气密封技术,泄漏量较少,应用效果良好。 三、干气密封工作原理 一般来讲,典型的干气密封技术,包含了静环、动环(旋转环)、副密封O 形圈、静密封、弹簧和弹簧座等。静环位于弹簧座内,用副密封O形圈密封。弹簧在密封无负荷状态下使静环与固定在轴上动环(旋转环)配合。 这类密封与机械密封的区别在于,它是一种气膜润滑的流体动、静压相结合的非接触式机械密封。动环与静环配合表面具有很高的平面度和光洁度,通常在动环表面上加工有一系列的特种槽。随着转动,气体被向内泵送到槽的根部,根部以外的无槽区称为密封坝。密封坝对气体流动产生阻力作用,增加气体膜压力。配合表面之间产生的压力,使静环表面与动环脱离,保持一个很小的间隙。当由气体压力和弹簧力产生的闭合压力与气体膜的开启压力相等时,便建立了稳定的平衡间隙。在有效确保动力平衡的基础上,密封中产生的作用力状况。 闭合力Fc,即弹簧力与气体压力之间的总和。其中,开启力Fo通过端面之间分布的压力,对端面的面积形成积分。在平衡状态下,Fc=Fo;其中运行的间隙约3微米。如果由于受到干扰作用,造成密封的间隙逐渐降低,此时端面之间的压力就会有所升高,此时Fc>Fo,端面之间的间隙也会有所降低,则密封就会达到一种全新平衡状态。通过该机制的运行,可在动环组件与静环组件之间形成较

干气密封操作规程

干气密封操作规程 干气密封作为精密,贵重的设备附件,操作过程中,必须加强责任心,并精心操作方能使其处于完好状态。采用自产保护氮气操作注意事项如下 一、干气密封说明 二、操作细则 1.启动前先确认干气机械密封氮气瓶压力必须满足≥ 2.0MPa,同时备用氮气钢 瓶应当是满瓶。 2.检查氮气钢瓶减压阀是否完好,氮气密封气连接管线是否完好无泄漏。 3.检查氮气仪表箱内的压力表,流量计,调节阀是否完好。 4.启动循环泵前将氮气控制箱内压力调节阀压力调至0.7MPa之间,同时将氮 气钢瓶出口压力表与氮气控制箱内的调节阀后压力表进行对比,如偏差较大应进行校对或更换新表。 5.检查并确认氮气流量计后端的压力表是否完好,指示读数是否准确,同时再 与压力调节阀上的压力表进行对比,并定期进行校验。 6.调节氨气控制箱内的流量计调节阀,确保保护气流量充足,(理论上轴径小 于25mm的单端面干气密封的保护气流量应小于0.5~1.33L/min(0.03~0.08m 3/h)氮气不能过小,将会造成免气气量不足,分不开密封端面,造成密封端面损坏;密封气流量也不要过大,以免泵运行起来后造成进入系统的气量过多,形成气蚀现象或空管现象。 7.启动循环泵之前,开启10分钟干气密封氮气。(目的,确保干气密封的密封 面被气压吹起分离,防止密封面磨损),再向泵内灌料,让泵内先充满物料,打开自循环阀门,再启动泵,待泵运行稳定后,再开M702进料泵,并慢慢关闭自循环阀门。 8.泵密封气电接点压力开关已经设定在0.5MPa,如果系统氮气压力低于 0.5MPa,循环泵P704将自行停泵,压力高于0.5MPa时,才可以接通压力开 1

干气密封基本原理及投用步骤Word版

1、干气密封基本原理 干气密封动静环表面平面度和光洁度很高,动环组件配合表面上有一系列的螺旋槽,随着转动,气体被内泵送到螺旋槽的根部,根部以外的一段无槽区称为密封坝。密封坝对气体流动产生阻力作用,增加气体膜压力。该密封坝的内侧还有一系列的反向螺旋槽,这些反向螺旋槽起着反向泵送、改善配合表面压力分布的作用,从而加大开启静环与动环组件的能力。反向螺旋槽的内侧还有一段密封坝,对气体流动产生阻力作用,增加气体膜压力。配合表面间的压力使静环表面与动环组件脱离,保持一个很小的间隙,一般为3微米左右。当由气体压力和弹簧力产生的闭合压力与气体膜的开启压力相等时,便建立了稳定的平衡间隙。 2、干气密封投用步骤 注意事项:a、严禁在不投用干气密封的情况下,打开压缩机的出入口阀。 b、干气密封应依次投用一级密封气,二级密封气,后置隔离气。 c、严禁在不投用干气密封的情况下,启动压缩机润滑油泵。 d、必须确保排放火炬和放空的背压小于进入干气密封的密封气 压力。 e、在开机后应尽量避免在干气密封在低于3000转以下长时间 运行。 f、严禁在增压泵活塞杆漏气大于50KPa的情况下启动增压泵。 步骤:干气密封系统安装后,在一级,二级,后置隔离气入口法兰端口处接上洁净的仪表风或低压氮气连续吹扫4~6小时以上,直到用细纱漂白布贴近六个出口吹扫5分钟以上,用眼仔细观察确无灰尘、油污、水分等杂质为合格。吹扫干净后关闭所有阀门,处于待命状态。 打开系统所有常开取压阀,投用现场压力表、变送器、压力开关,液位计等并检查各管线,活接头连接情况。 打开低压N气去干气密封系统阀门,充分脱液后进行氮气置换,时间为

四小时,并通过一级密封气和平衡管差压控制阀 调节一级密封高低压端流量不低于117Nm3/h(柴油不低于250Nm3/h) 二级密封高低压端流量不低于2.9Nm3/h(柴油不低于6.5Nm3/h)排放火炬流量7-11Nm3/h,(柴油5-8Nm3/h),并通过自力调节阀使阀后压力不低于0.185MPa(柴油0.1 MPa) 后置隔离气高低压端,流量不低于42.81 Nm3/h,(柴油15 Nm3/h),并通过自力调节阀使阀后压力不低于0.068MPa(柴油不低于0.01 MPa)。待一级密封气高低压流量表为0时,打开压缩机底部排液阀进行置换并气密。在此换过程中

干气密封系统介绍

干气密封系统: (1)简介 干气密封是一种气膜润滑的流体动、静压结合型非接触式机械密封,主要应用于天然气管线、炼油、石油化工、化工等行业的透平压缩机、透平膨胀机等旋转机械。干气密封最早是由螺旋槽气体轴承转化而来的,和其他机械密封相比,其主要区别是在旋转环或静止环端面上(或者同时在这两个端面上)刻有浅槽,当密封运转时,在密封端面形成气膜,使之脱离接触,因而端面几乎无磨损。其可靠性高,使用寿命长,密封气泄漏量小,功耗极低,工艺回路无油污染,工艺气也不污染润滑油系统。 (2)工艺流程及说明 (a)氮气流程 氮气从氮气罐引出经粗滤器与精滤器,过滤精度达到1u后分为四路。 两路前置密封气(缓冲气):一路经孔板进入高压端密封腔,另一路经孔板进入低压端密封腔。进入前置密封腔体内氮气主要是防止机体内介质气污染密封端面,用孔板控制氮气消耗量。两路主密封气:一路经流量计进入高压端主密封腔,另一路经流量计进入低压端主密封腔。压缩机运转时,依靠刻在动环上螺旋槽的泵送作用,打开密封端面并起润滑、冷却作用。一套主密封氮气正常消耗量≤1NM3/h。 (b)仪表风流程 仪表风从装置仪表风管网引出经过滤器,过滤到3u精度后,至干气密封柜,作为隔离气。两路后置密封气(隔离气):一路经孔板进入低压端后置密封腔,另一路经孔板进入高压端后置密封腔。进入后置密封腔体内仪表风主要是防止润滑油污染密封端面,用孔板控制仪表风消耗量。 (3)报警联锁说明 主密封气与前置缓冲气压差正常值:≥0.3Mpa;低报:0.1Mpa;低低报:0.05Mpa。 (4)操作规程 干气密封投用: (a)运行前要对管路进行彻底吹扫,防止管内焊渣等杂质进入、密封腔,清洁度lu,并将所有阀门关闭,处于待命状态。 (b)在机组油运前至少十分钟,必须先通后置隔离气,且在机组运行中不可中断,在机组进气前,投用缓冲气,当机组进气后,前置密封气压力应比平衡管处压力高0.05 Mpa。 (c)开机前必须投用主密封气。 干气密封停用: (a)压缩机停车后需降低润滑油总管压力防止润滑油进入密封腔,造成密封损坏。 (b)压缩机正常停车后,缓冲气及主密封气不能立即停用,须等机体内无压力后,且介质气置换完全后,才可停用。 (c)压缩机正常停车后,后置密封隔离气必须在润滑油循环停止十分钟后,才可关闭。 精密流量计投用: 投用顺序:流量计副线阀开—流量计下游阀开一流量计上游阀开一流量计副线阀关(5)日常操作要求 过滤器差压是测量粗过滤器与精过滤器是否堵塞,差压为60Kpa报警,此时需更换过滤器芯;更换前应先打开另一路过滤器前后的阀门,再关闭己堵过滤器前后的阀门,放空后既可更换。 (6)干气密封事故处理 停氮气:则干气密封停机联锁动作,按紧急停气压机组处理。

干气密封操作法(2010.9.28)

C4102干气密封操作 一、干气密封系統的吹扫 1、检修完后在投用前一定要用氮气吹扫干气密封管线,为了保证足够的吹扫气体流量, 吹扫前要折流量孔板(回装时要注意孔板流向)和干气密封管与机壳的连接法兰后进行吹扫,必要时可进行管线爆破吹扫,吹扫干净后管线复位。 2、吹扫前拆开的进机体法兰口一定要用干净胶布封扎好,防止杂质进入干气密封。 3、所有氮气系统在投用前,要进行排液操作,将导淋阀打开排放30分钟左右,以防止 氮气带液进入到干气密封系统。 二、主密封的静压试验 1、检修完的机组,从主密封气引入4.0MPa氮气缓慢充压到1.0MPa做静态密封 试验,控制PDIC4786主密封平衡管差压30kpa至60KPa(付线要求全关), 将机体放空阀关闭,并将干气密封泄漏气到火炬的管线阀门前法兰拆开(这 样才能保证后路畅通),同时,关闭二级密封氮气压力PIA4790。观察泄漏量 与原厂实验报告上的实验数据进行比较。(若需泄压要缓慢,不能超过 2MPa/min)。实验完毕后将管线拆开部位恢复投用。 注:在有润滑油运行的时候,隔离氮(PIA4780)绝对不能关闭(以防止润滑 油窜入干气密封)。停用润滑油系统后20分钟,才能关闭隔离氮。 三、干气密封系统低压气密 1、在进行主密封的静压试验时同步进行干气密封系统气密。 2、联系仪表投用有关的设备。 3、对所有干气密封管线、法兰、仪表表头、排空线、仪表引线、所有接头等进 行全面气密。 三、投用干气密封系统 1、干气密封必须通入干燥、清洁并经过滤的气体(过滤精度5um)。所用气体的温 度不能低于它们各自的露点温度。(要求控制在98℃以上) 2、干气密封管线保温完好,伴热蒸汽畅通,干气密封电加热器投用,保证密封气 温度要大于其露点温度。 注:因为电加热器有自动保护功能,到达一定的温度后会自停,外操检查现场指示 灯,发现停运要及时投用,内操监控好电加热器温度,发现不加热时,及时通知外 操检查电加热器运行情况,保证电加热器的正常使用。 3、检修完的机组,从主密封气引入4.0MPa氮气控制PDIC4786主密封平衡管差压 60KPa(付线要求全关),并将机体放空阀打开,手动启动增压泵后,一级密封 进气量PDIA4784、4785的压差为35KPa(9-140KPa之间)。 注:氮气分子量比氢气大,在孔板前后压差相同时,氮气工况的差压变送器体 积流量要小得多,约为氢气工况的三分之一。 4、一级密封泄漏量PDIA4793、4794正常范围值是在0~38KPa。 注:一级密封泄漏PDIA4793、4794孔板前压力≥350KPa时,爆破片会被击 穿。 四、投用二级密封氮和隔离氮 1、引入1.0MPa氮气入仪表控制盘,投用一组过滤器。从过滤器底部排液吹扫 干静后关放空伐。 2、PIA4780数值为70KPa,数值可以在±10%范围波动(异常情况可增大,但不能

汽车摇臂、配气机构的功用及组成

汽车摇臂、配气机构的功用及组成 气门式配气机构由气门组和气门传动组两部分组成,每组的零件组成则与气门的位置、凸轮轴的位置和气门驱动形式等有关。现代汽车发动机均采用顶置气门,即进、排气门置于气缸盖内,倒挂在气缸顶上。凸轮轴的位置有下置式、中置式和上置式3种。如果不了解,可以上https://www.wendangku.net/doc/3718415710.html,看看。 一、凸轮轴下置式配气机构 凸轮轴置于曲轴箱内的配气机构为凸轮轴下置式配气机构。其中气门组零件包括气门、气门座圈、气门导管、气门弹簧、气门弹簧座和气门锁夹等;气门传动组零件则包括凸轮轴、挺柱、推杆、摇臂、摇臂轴、摇臂轴座和气门间隙调整螺钉等。下置凸轮轴由曲轴定时齿轮驱动。发动机工作时,曲轴通过定时齿轮驱动凸轮轴旋转。当凸轮的上升段顶起挺柱时,经推杆和气门间隙调整螺钉推动摇臂绕摇臂轴摆动,压缩气门弹簧使气门开启。当凸轮的下降段与挺柱接触时,气门在气门弹簧力的作用下逐渐关闭。四冲程发动机每完成一个工作循环,每个气缸进、排气一次。这时曲轴转两周,而凸轮轴只旋转一周,所以曲轴与凸轮轴的转速比或传动比为2∶1。 二、凸轮轴中置式配气机构

凸轮轴置于机体上部的配气机构被称为凸轮轴中置式配气机构。与凸轮轴下置式配气机构的组成相比,减少了推杆,从而减轻了配气机构的往复运动质量,增大了机构的刚度,更适用于较高转速的发动机。 有些凸轮轴中置式配气机构的组成与凸轮轴下置式配气机构没有什么区别,只是推杆较短而已,如YC6105Q、6110A、依维柯8210.22S和福特2.5ID等发动机都是这种机构。 三、凸轮轴上置式配气机构 凸轮轴置于气缸盖上的配气机构为凸轮轴上置式配气机构(OHC)。其主要优点是运动件少,传动链短,整个机构的刚度大,适合于高速发动机。由于气门排列和气门驱动形式的不同,凸轮轴上置式配气机构有 多种多样的结构形式。气门驱动形式有摇臂驱动、摆臂驱动和直接驱动三种类型。 1.摇臂驱动、单凸轮轴上置式配气机构凸轮轴推动液力挺柱,液力挺柱推动摇臂,摇臂再驱动气门;或凸轮轴直接驱动摇臂,摇臂驱动气门。 2.摆臂驱动、凸轮轴上置式配气机构由于摆臂驱动气门的配气机构比摇臂驱动式刚度更好,更有利于高速发动机,因此在轿车发动机上的应用比较广泛。如CA4883、SH680Q、克莱斯勒A452、奔驰QM615、奔驰M115等发动机均为单上置凸轮轴(SOHC)摆臂驱动式配气机构;而本田B20A、尼桑VH45DE、三菱3G81、富士EJ20等发动机都是双上置凸轮轴(DOHC)摆臂驱动式配气机构。

配气机构答案教学文案

单元三配气机构 一、填空题 1.充气效率越高,进人气缸内的新鲜气体的量就__多_____,发动机研发出的功率就__高____。 2.气门式配气机构由__气门组___ 和___气门传动组______组成。 3.四冲程发动机每完成一个工作循环,曲轴旋转__2___周,各缸的进、排气门各开启 ___1____ 次,此时凸轮轴旋转___1___周。 4.气门弹簧座是通过安装在气门杆尾部的凹槽或圆孔中的___锁片____或___锁块____ 固定的。 5.由曲轴到凸轮轴的传动方式有下置式、上置式和中置式等三种。 6.气门由__头部___和___杆身____两部分组成。 7.凸轮轴上同一气缸的进、排气凸轮的相对角位置与既定的___配气相位____相适应。 8.根据凸轮轴___旋向_____和同名凸轮的____夹角____可判定发动机的发火次序。 9.汽油机凸轮轴上的斜齿轮是用来驱动__机油泵___和__分电器____的。而柴油机凸轮轴上的斜齿轮只是用来驱动___机油泵____的。 10.在装配曲轴和凸轮轴时,必须将___正时标记____对准以保证正确的___配气相位__。 二、判断题 1.充气效率总是小于1的。( √) 2.曲轴正时齿轮是由凸轮轴正时齿轮驱动的。( X) 3.凸轮轴的转速比曲轴的转速快1倍。( X) 4.气门间隙过大,发动机在热态下可能发生漏气,导致发动机功率下降。( √) 5.气门间隙过大时,会使得发动机进气不足,排气不彻底。( √) 6.对于多缸发动机来说,各缸同名气门的结构和尺寸是完全相同的,所以可以互换使用。( X) 7.为了安装方便,凸轮轴各主轴径的直径都做成一致的。( X) 8.摇臂实际上是一个两臂不等长的双臂杠杆,其中短臂的一端是推动气门的。 ( X) 9.非增压发动机在进气结束时,气缸内压力小于外界大气压。(X) 10.发动机在排气结束时,气缸内压力小于外界大气压。(X)

配气机构的作用及组成

1.配气机构的作用及组成 一、功用: 是按照发动机每一气缸内所进行的工作循环或发火次序的要求,定时开启和关闭各气缸的进、排气门,使新鲜可燃混合气或空气得以及时进入气缸,废气得以及时从气缸排出。 二、组成: 气门组:气门及与之关联的零件; 气门传动组:从正时齿轮到推动气门动作的所有零件。 2.为什么要预留气门间隙?什么是气门间隙?为什么要留气门相位? 在气门杆尾端与摇臂端(侧置式气门机构为挺杆端)之间留有气门间隙,是为补偿气门受热后的膨胀之需的. 发动机发动时,气门将因气温升高而膨胀。如果气门以其传动件之间在冷态时无间隙或间隙过小,则在热态下,气门及其传动件的受热膨胀势必引起气门关闭不严,造成发动机在压缩和作功行程中的漏气,从而使功率下降,严重时甚至不易启动。为了消除这种现象,通常在发动机冷态装配时,在气门与其传动机构中预留一定的间隙,以补偿气门受热后的膨胀量。这一间隙被称为气门间隙。 但是,如果气门间隙留得太大,冷态下传动零件之间以及气门和气门座之间产生撞击,而且加速磨损,同时使得气门开启的持续时间减少,汽缸的充气情况变坏。 所以高级轿车上都采用液压挺柱,挺柱长度能自动变化,随时补偿气门的热膨胀量,故不需要预留气门间隙。 3.为什么有的配气机构中采用两个套装的气门弹簧 你所指两套装置的气门弹簧我可否理解成控制气门开闭的弹簧。 所有的气门弹簧都是大簧套小簧;并且是是旋向相反。 采取这种结构的原因是防止因为气门弹簧旋向的原因产生谐振,造成气门关闭不严,所以设置成旋向相反的两个气门弹簧,让它们的谐振频率相反进行抵消,消除谐振引起的气门关闭不严的现象 4.什么是点火提前角,其过大或过小有什么危害 点火提前角:从点火时刻起到活塞到达压缩上止点,这段时间内曲轴转过的角度称为点火提前角。 点火过早,会造成爆震,活塞上行受阻,效率降低,磨损加剧。点火过迟,气体做功效率低,排气声大。不论点火过早或过迟,都会影响转速的提升。 若点火提前角过大,则活塞还在向上止点运动时,气体压力已达很大的数值,活塞受到迎面而来的反向压力的作用,压缩行程的负功增加使发动机功率下降,甚至有时造成曲轴反转使发动机不能工作。而且点火提前角过大也易于发生不正常燃烧--爆燃。 若点火提前角过小,混合气的燃烧将在逐渐增大的容积内进行,因而燃烧最高压力降低,而且补燃增加,热损失增大,于是发动机功率下降,油耗增加,并使发动机过热 5.膜片弹簧式离合器特点? 6.从动盘摩擦片上的铆钉为什么要沉入摩擦片平面以下? 如果不沉头,摩擦的就不是摩擦片,而是铆钉了。 五、问答题 1.汽油机燃料供给系的作用是什么? 2.化油器的作用是什么? 3.主供油装置的作用是什么?它在哪些工况下参加供油? 4.为什么把加浓装置称为省油器? 5.在加速泵活塞与连接板之间为什么利用弹簧传力?

干气密封工作原理

干气密封工作原理及结构布置 山东省东营市油田分公司油气集输总厂东营压气站 王玉军 [摘 要]详尽阐述了干气密封的工作原理,端面结构。指出根据现场实际工况及环境保护法要求,可分别采用的三种 典型布置,以及干气密封在使用时的维护,为用户在干气密封选择上提供指导。[关键词]机械密封 干气密封 螺旋槽 零泄漏 零溢出 作为一种非接触式机械密封,干气密封以其使用寿命长、无泄漏、节能、环保、运行维护费用低等一系列技术优势,逐渐在石油、化工以及冶金等工业的大型离心式压缩机和转子泵上得到广泛应用[1-2]。本文主要论述了干气密封,特别是螺旋槽干气密封的工作原理,结构特征以及使用时的维护,可为用户在干气密封选择、使用及维护方面提供借鉴。 1、工作原理 干气密封是基于现代流体动压润滑理论的一种新型非接触式气膜密封。气膜密封动环或静环端面上通常开出微米级流槽,主要依靠端面相对运转产生的流体动压效应在两端面间形成流体动压力来平衡闭合力,实现密封端面非接触运转。工程实际中使用较为广泛的流槽形式有雷列台阶式、斜平面式和螺旋槽面式, 其中尤以螺旋槽面式密封性能最佳。 螺旋槽干气密封工作原理如图1所示。动环端面上开有螺旋槽,整个端面分为槽区、台区和坝区。槽区主要提供必需的流体动压力,坝区主要阻挡气体向内侧流动以实现气体被压缩形成动压效应,增大气膜刚度,还可在密封停车时起密封作用。干气密封工作原理为:当动环按图示逆时针方向旋转时,由于粘性作用气体以速度V 进入螺旋槽;速度V 可分解为垂直于螺旋槽速度和与螺旋槽相切速度,其中主要提供流体动压力,而气流以速度运动到坝区后被压缩体积减小压力升高使密封面打开,从而实现非接触运转。干气密封正常工作时,端面间气膜一方面提供开启力来平衡闭合力,另一方面可起润滑冷却作用,因而省去复杂的封油系统 。图示干气密封为泵入式(气体从上游向下游流动)结构。 理想设计工况下,密封端面气膜开启力等于闭合力(密封介 质压力和弹簧力)。若密封受到外界扰动端面间隙减小,则流体动压效应增强,开启力大于闭合力,密封增大间隙重新恢复原来工作状态;反之,如果在外界干扰下间隙增大,则流体动压效果减弱,开启力小于闭合力,密封减小间隙并恢复到设计工作状态。如果设计合理,密封受到外界扰动可以自行恢复到原来工作状态,可见螺旋槽干气密封对外界扰动不敏感。 2、典型端面 近年来,国内外学者对螺旋槽干气密封端面结构形式作了 大量研究工作,以期能从结构形式改变来改善密封性能,其研究主要集中于如图2所示的螺旋槽及其组合结构形式[3-4]。 图2中黑色部分为螺旋槽。图2a 为外径侧开槽泵入式结构,当密封环逆时针旋转时,外径侧高压阻塞气体被泵入到端面间并形成一层稳定气膜从而使端面分离,阻塞气体既可润滑密封表面,又可防止工艺气体向外径侧泄漏。 图2b 为内径侧开槽泵出式结构,当端面顺时针旋转时,端面螺旋槽像一个个小容积泵一样,可将内径低压流体泵送到外径高压侧,从而实现工艺流体零泄漏或零逸出。 图2c 与图2a 不同之处在于密封坝上设置均匀分布的节流孔。节流孔可以将开槽环背面高压流体引入密封端面间,利用高压流体在密封端面间形成的静压效应提高端面气膜承载能力并增大气膜刚度。 图2d 所示密封环中间开槽,内外径侧均设置密封坝。其特点是可以实现端面双向旋转:当密封环顺时针旋转时就像图2b 所示螺旋槽泵出式结构,而当密封环逆时针旋转时就如图2a 中所示螺旋槽泵入式结构。内外径侧密封坝既可减少工艺气体泄漏,又可增大气膜刚度。 此外,还有Y 形槽和人字形槽等组合结构以及内外径开槽中间设置密封坝等多种结构形式。通常,通过在密封端面设计不同形式流槽以期改善端面流体流动状况,增强气体动压效应,促进端面热循环,保证密封动力学稳定性及挠性安装环具有良好追随性,从而获得性能优越并能适应特殊工况的密封端面结构。 3、结构布置 螺旋槽干气密封结构布置主要取决于密封工况条件(包括被密封气体组分、压力、温度,轴的转速等)、安全性以及环保要 — 072—

配气机构概述教案

配气机构概述教案 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

配气机构概述教案一、教学内容分析 本次课的内容对汽车专业的学生在今后的学习和实践动手操作中起着重要的作用,前面学习了发动机曲柄连杆机构的结构、作用和工作过程,通过对配气机构的学习,能使学生了解发动机内部的基本结构,使学生能更加深刻理解发动机的工作原理和工作过程。 二、三维目标: 知识与技能: 1、掌握配气机构的组成、作用、工作过程; 2、掌握配气机构的类型。 过程与方法: 通过这节课的学习,同学们将了解配气机构的组成和作用,和各部分的主要作用。在讲解这部分内容的时候以多媒体的方式来进行教学,通过课件上的图片、动画、视频的展示,以加强学生对配气机构知识的理解。 情感态度与价值观: 通过任务驱动和教师的引导,让学生自主探究学习和小组协作学习,在了解配气机构和各部件过程中,树立学习信心,增强对本专业的热爱。 三、教学重难点 1、教学重点:配气机构的组成、作用、工作过程; 配气机构的类型; 顶置气门式配气机构的布置及传动。

2、教学难点:配气机构的组成及工作过程。 四、教学方法:讲授法、讨论法、多媒体演示法 五、课时安排: 1课时 六、教学过程: 配气机构概述 复习旧课:回顾发动机的组成部分和曲柄连杆机构相关知识,用提问的方式检验学生的掌握程度。 设计意图: 1)通过提问,可以让同学们集中注意力; 2)通过提问,让学生回顾发动机组成和曲柄连杆机构有关知识,将有利于学生对配气机构这部分内容的学习。 引入新课:在本课教学开始,利用上个环节的提问内容来引出本次课将学的内容,并提醒学生本次课内容的重点。 一、配气机构的功用、组成 1、观看活塞连杆组相关视频。 学生带着问题观看相关视频,问题如下: (1)、同学们从视频中看到了什么? (2)、配气机构的作用和组成是什么? 2、小组讨论: 引导学生通过观看视频回答问题。 (1)、组成:气门组和气门传动组组成。

干气密封基本原理及使用分析

压缩机干气密封基本原理及使用分析 一、引言 干气密封是一种新型的无接触轴封,由它来密封旋转机器中的气体或液体介质。与其它密封相比,干气密封具有泄漏量少,磨损小,寿命长,能耗低,操作简单可靠,维修量低,被密封的流体不受油污染等特点。因此,在压缩机应用领域,干气密封正逐渐替代浮环密封、迷宫密封和油润滑机械密封。干气密封使用的可靠性和经济性已经被许多工程应用实例所证实。 目前,干气密封主要用在离心式压缩机上,也还用在轴流式压缩机、齿轮传动压缩机和透平膨胀机上。干气密封已经成为压缩机正常运转和操作可靠的重要元件,随着压缩机技术的发展,干气密封正逐步取代浮环密封、迷宫密封和油润滑密封。 本文针对德国博格曼公司的干气密封产品进行了研究,结合压缩机的工作特点,重点论述压缩机干气密封的原理、结构特点、密封材料、使用要求和制造等方面的内容。 二、干气密封工作原理分析 干气密封的一般设计形式是集装式,图1表示出了压缩机干气密封的具体结构。 图1压缩机干气密封示意图 干气密封和普通平衡型机械密封相似,也由静环和动环组成,其中:静环由弹簧加载,并靠O型圈辅助密封。端面材料可采用碳化硅、氮化硅、硬质合金或石墨。 干气密封与液体普通平衡型机械密封的区别在于:干气密封动环端面开有气

体槽,气体槽深度仅有几微米,端面间必须有洁净的气体,以保证在两个端面之间形成一个稳定的气膜使密封端面完全分离。气膜厚度一般为几微米,这个稳定的气膜可以使密封端面间保持一定的密封间隙,间隙太大,密封效果变差;而间隙太小会使密封面发生接触,因干气密封的摩擦热不能散失,端面间无润滑接触将很快引起密封端面的变形,从而使密封失效。 气体介质通过密封间隙时靠节流和阻塞的作用而被减压,从而实现气体介质的密封,几微米的密封间隙会使气体的泄漏率保持最小。 动环密封面分为两个功能区(外区域和内区域)。气体进入密封间隙的外区域有空气动压槽,这些槽压缩进来的气体。为了获得必要的泵效应,动压槽必须被开在高压侧。密封间隙内的压力增加将保证即使在轴向载荷较大的情况下也将形成一个不被破坏的稳定气膜。 干气密封无接触无磨损的运行操作是靠稳定的气膜来保证的,稳定的气膜是由密封墙的节流效应和所开动压槽的泵效应得到的。 密封面的内区域(密封墙)是平面,靠它的节流效应限制了泄漏量。干气密封的弹簧力很小,主要目的是为了当密封不受压时确保密封面的闭合。 选择干气密封时,决定性的判断是动环上所开动压槽的几何形状。对于压缩机的某些操作点,如启动和停车时,一套串联密封在低速或无压操作的情况下,旋转的动压槽必须在密封面之间产生一个合适的压力。此力靠特殊措施——三维的、弧形的槽来获得。 压缩机干气密封设计和使用为两种槽型:双向的(U形)和单向的(V形)槽型。两种槽型的特性见表1。 表1 V形槽和U形槽的特性 *注意:DGS在低于那些被采用的值以下操作仍能被保证,但是一个分离层是必要的。 三、密封材料分析 1.端面材料 干气密封的操作极限与密封各个元件的许用载荷有关。温度和压力极限由所用的辅助密封橡胶和端面材料决定。使用的端面材料对干气密封的工作起着决定

配气机构的功用及组成

配气机构的功用及组成 创建时间:2010年10月5日(星期二) 下午3:41 | 分类:未分类| 字数:1345 | 发送到我的Qzone | 另存为... | 打印 配气机构的功用及组成 气门式配气机构由气门组和气门传动组两部分组成,每组的零件组成则与气门的位置、凸轮轴的位置和气门驱动形式等有关。现代汽车发动机均采用顶置气门,即进、排气门置于气缸盖内,倒挂在气缸顶上。凸轮轴的位置有下置式、中置式和上置式3种。 一、凸轮轴下置式配气机构 凸轮轴置于曲轴箱内的配气机构为凸轮轴下置式配气机构。其中气门组零件包括气门、气门座圈、气门导管、气门弹簧、气门弹簧座和气门锁夹等;气门传动组零件则包括凸轮轴、挺柱、推杆、摇臂、摇臂轴、摇臂轴座和气门间隙调整螺钉等。下置凸轮轴由曲轴定时齿轮驱动。发动机工作时,曲轴通过定时齿轮驱动凸轮轴旋转。当凸轮的上升段顶起挺柱时,经推杆和气门间隙调整螺钉推动摇臂绕摇臂轴摆动,压缩气门弹簧使气门开启。当凸轮的下降段与挺柱接触时,气门在气门弹簧力的作用下逐渐关闭。四冲程发动机每完成一个工作循环,每个气缸进、排气一次。这时曲轴转两周,而凸轮轴只旋转一周,所以曲轴与凸轮轴的转速比或传动比为2∶1。 二、凸轮轴中置式配气机构 凸轮轴置于机体上部的配气机构被称为凸轮轴中置式配气机构。与凸轮轴下置式配气机构的组成相

比,减少了推杆,从而减轻了配气机构的往复运动质量,增大了机构的刚度,更适用于较高转速的发动机。 有些凸轮轴中置式配气机构的组成与凸轮轴下置式配气机构没有什么区别,只是推杆较短而已,如YC6105Q、6110A、依维柯8210.22S和福特2.5ID等发动机都是这种机构。 三、凸轮轴上置式配气机构 凸轮轴置于气缸盖上的配气机构为凸轮轴上置式配气机构(OHC)。其主要优点是运动件少,传动链短,整个机构的刚度大,适合于高速发动机。由于气门排列和气门驱动形式的不同,凸轮轴上置式配气机构有多种多样的结构形式。气门驱动形式有摇臂驱动、摆臂驱动和直接驱动三种类型。 1.摇臂驱动单凸轮轴上置式配气机构凸轮轴推动液力挺柱,液力挺柱推动摇臂,摇臂再驱动气门;或凸轮轴直接驱动摇臂,摇臂驱动气门。 2.摆臂驱动凸轮轴上置式配气机构由于摆臂驱动气门的配气机构比摇臂驱动式刚度更好,更有利于高速发动机,因此在轿车发动机上的应用比较广泛。如CA488 3、SH680Q、克莱斯勒A452、奔驰QM615、奔驰M115等发动机均为单上置凸轮轴(SOHC)摆臂驱动式配气机构;而本田B20A、尼桑 VH45DE、三菱3G81、富士EJ20等发动机都是双上置凸轮轴(DOHC)摆臂驱动式配气机构。

干气密封操作规程

干气密封控制操作规程 一)干气密封启动前的准备工作 在调试系统前应将取压阀及三阀组中的所有阀门打开,将其余工艺管线上的阀门关闭,然后按以下顺序进行操作: 1)、将开车气体(氮气)入口阀门V3打开,开车气体经单向阀V4进入控制系统。将密封气过滤器F2打开(开启球阀V5,V6),密封气过滤器F1处于备用状态(球阀V7,V8处于关闭状态),然后关闭PdT0671对应三阀组上的常闭阀使压差变送器PdT0671处于工作状态。 2)、开启球阀V9、V10(针形阀V11处于关闭状态),关闭PdT0672对应三阀组上的常闭阀,使气动薄膜调节阀PCV0672处于工作状态,通过启动薄膜调节阀的调节,使调节阀后与平衡管保持0.3Mpa的压差。 3)、缓慢调节针型阀V12、V13的开度,使流量计FI0671、FI0672的显示值保持在75Nm3/h左右。 4)、将缓冲气、隔离气管线氮气管网阀V14打开,低压氮气进入缓冲气、隔离气控制管线;再将精过滤器F4打开(开启球阀V16、V17), 另一端过滤器(F3)处于备用状态(球阀V18、V19处于关闭状态)。5)、调节缓冲器、隔离气自力式调节阀V23(球阀V20、V21打开,针形阀V22处于关闭状态),使输出电压保持在0.2Mpa(G)(PI0673显示值)。 6)、调节针形截止阀V24、V25的开度,使缓冲气的用量保持在2Nm3/h

(流量表FI0673、FI0674显示值)。此时干气密封一级泄漏孔板前压力应为0.04Mpa(PT0671、PT0672显示值)左右。 注:干气密封一级泄漏排放管线孔板后不应产生背压,必须保证一级泄漏的畅通排放。 注:干气密封二级泄漏放空管线应直接排,不应产生背压,以避免后面管道压力或液体串入干气密封第二级密封与隔离气梳齿密封T之间,第二级密封形成反压,造成干气密封破坏。 隔离气投用后,方可开启润滑油泵进行油运,若密封气未投用可先将隔离气投用进行油运,但不可进行盘车。 7)、观察干气密封静态时的一次泄漏,与成都一通提供的实验数据对比,并记录下该数据;该泄漏量用压力变送器(PT0671,PT0672显示)监控,同时压力表(PI0676.PI0677)也可显示,参考值为0.04Mpa-0.05Mpa左右;如果该值过大(即超过0.15MPa)表明干气密封安装或密封气本身有问题,密封需拆卸检查或重新安装。 以上仪表显示正常后,方可进行盘车操作。 注:机组进行盘车前必须保证密封气压力>缓冲气压力>二级泄漏放空管线压力。 二)干气密封的启动、 1)、当干气密封启动前的准备工作就绪后,启动条件满足可启动压缩机。该压缩机干气密封启动时所需开车气体压力应高于压缩机密封腔压力,当气动薄膜调节阀PCV0672后与压缩机平衡管压差小于0.1Mpa时,差压变送器PdT0672发出压差报警连锁信号,压缩机被

配气机构的功用、组成、原理、类型等

配气机构的功用、组成、原理、类型等 配气机构的功用 配气机构的功用是按照发动机的工作需要,定时地开启或关闭进气门、排气门,使混合气(汽油机)或空气(柴油机)及时进入汽缸,或使汽缸的废气及时排除。 配气机构的组成及各部分包括的零件 发动机配气机构的基本组成可分为两部分:气门组和气门传动组。 气门组的组成大致相同,与配气机构的形式基本无关,主要零件包括气门、气门座、气门弹簧、气门导管等。 气门传动组包括驱动气门动作的所有零件,其组成视配气机构的形式不同而异,主要零件包括正时齿轮(或正时链轮和链条,或正时带轮和传动带)、凸轮轴、挺杆、推杆、摇臂轴和摇臂等。 配气机构的工作原理 发动机工作时,曲轴通过正时齿轮驱动凸轮轴旋转,使凸轮轴上的凸轮凸起部分通过挺杆和推杆推动摇臂绕摇臂轴摆转,摇臂的另一端便向下推开气门,并使气门弹簧进一步压缩。当凸轮的顶点转过挺杆后,便逐渐减小对挺杆的推力,气门在其弹簧弹力作用下,开度逐渐减小,直至最后关闭。 为防止发动机工作中,配气机构零件受热膨胀而导致气门关闭不严,摇臂与气门尾端有一定的间隙(气门间隙)。在装有液力挺杆的配气机构中,不需留气门间隙。 由于四冲程发动机每完成一个工作循环,曲轴转两圈,而各缸只进、排气一次,也即凸轮轴只需转一圈,所以曲轴与凸轮轴的传动比为2:1。 配气机构的类型 发动机配气机构形式多种多样,其主要区别在于气门布置形式和数量、凸轮轴布置形式和驱动方式。

现代汽车发动机一般采用顶置气门式配气机构,即气门安装在燃烧室顶部。每个汽缸一般安装2~~5个气门,气门一般沿发动机纵向排成一列或两列。凸轮轴的驱动方式有齿轮传动、链传动和带传动三种。配气机构通常按凸轮轴的安装位置不同分为下置凸轮轴式、侧置凸轮轴式和顶置凸轮轴式。 什么是配气相位 实际发动机的工作中,为使进气充分、排气干净,进气门和排气门均存在早开晚关的情况,进气门和排气门的开启持续时间也大于180摄氏度曲轴转角。发动机进气门实际开启或关闭的时刻和开启持续时间,称为配气相位,通常用曲轴转角来表示。 配气相位对发动机性能有很大的影响,即使同一台发动机,随转速的不同,对配气相位的要求也不同,转速提高时,要求气门提前开启角和迟后关闭角增大,反之则要求减小。 什么是可变配气相位控制机构 目前,发动机一般都是根据性能的要求,通过试验来确定某一常用转速下较合适的配气相位,在装配时,对正凸轮轴驱动装置中的正时标记,即可保证已确定的配气相位。在发动机使用中,已确定的配气相位是不能改变的。发动机性能只有在某一常用转速下最好,而在其他转速下工作时,发动机的性能则较差。为解决上述问题,在有些汽车发动机上采用了可变配气相位控制机构.。 由于进气门配气相位对发动机性能的影响比排气门大,所以各种多功能发动机装用的可变配气相位控制机构一般只控制进气门配气相位,以免使配气机构过于复杂。此外配气相位取决于凸轮的形状及凸轮轴与曲轴的相对位置,在发动机工作中,变换驱动凸轮或改变凸轮轴与曲轴的相对位置,均可实现配气相位的调节。

配气机构概述教案

配气机构概述教案 一、教学内容分析 本次课的内容对汽车专业的学生在今后的学习和实践动手操作中起着重要的作用,前面学习了发动机曲柄连杆机构的结构、作用和工作过程,通过对配气机构的学习,能使学生了解发动机内部的基本结构,使学生能更加深刻理解发动机的工作原理和工作过程。 二、三维目标: 知识与技能: 1、掌握配气机构的组成、作用、工作过程; 2、掌握配气机构的类型。 过程与方法: 通过这节课的学习,同学们将了解配气机构的组成和作用,和各部分的主要作用。在讲解这部分内容的时候以多媒体的方式来进行教学,通过课件上的图片、动画、视频的展示,以加强学生对配气机构知识的理解。 情感态度与价值观: 通过任务驱动和教师的引导,让学生自主探究学习和小组协作学习,在了解配气机构和各部件过程中,树立学习信心,增强对本专业的热爱。 三、教学重难点 1、教学重点:配气机构的组成、作用、工作过程; 配气机构的类型; 顶置气门式配气机构的布置及传动。 2、教学难点:配气机构的组成及工作过程。 四、教学方法:讲授法、讨论法、多媒体演示法 五、课时安排:1课时 六、教学过程: 配气机构概述 复习旧课:回顾发动机的组成部分和曲柄连杆机构相关知识,用提问的方式检验学生的掌握程度。 设计意图: 1)通过提问,可以让同学们集中注意力; 2)通过提问,让学生回顾发动机组成和曲柄连杆机构有关知识,将有利于学生对配气机构这部分内容的学习。 引入新课:在本课教学开始,利用上个环节的提问内容来引出本次课将学的内容,并提醒学生本次课内容的重点。 一、配气机构的功用、组成 1、观看活塞连杆组相关视频。 学生带着问题观看相关视频,问题如下: (1)、同学们从视频中看到了什么? (2)、配气机构的作用和组成是什么 2、小组讨论: 引导学生通过观看视频回答问题。 (1)、组成:气门组和气门传动组组成。 (2)、功用:适时开启、关闭各个气门,使可燃混合气进入气缸,并将废气排出。 3、充气效率:

干气密封使用注意事项

不能反压; 干气密封是利用下游泵送原理,在转动时将上游(高压侧)密封气体泵送到端面间的螺旋槽内,在坝的阻挡作用下形成气膜,打开密封端面。如果上游压力低于下游,则气体不能进入螺旋槽内,形不成气膜,端面打不开,密封很快就会损坏。 (干气密封投用时先投一级密封气,后投二级密封气,停干气密封时,先停二级密封气,后停一级密封气;压缩机开停车N2置换时,要求密封气调节阀后压力高于压缩机缸体压力。) 密封气不能带颗粒; 密封端面打开间隙很小,一般为3微米左右,颗粒进入后会在密封端面上划痕,使泄漏量增加,同时,长期使用不洁密封气,微小的颗粒会填平螺旋槽,影响气膜形成,最终使端面损坏。 (压缩机置换时,要求投用干气密封,一般一二级都投用,防止未经过滤的压缩机内气体带颗粒进入干气密封端面,开车时损坏端面。) 密封气不能带液体; 液体进入密封端面,由于液体粘度远大于气体,端面对液体的搅拌与切割将产生大量热量,使密封因温度急剧升高而损坏。此外,即使是微小的液滴进入端面,也会使密封不能长期稳定运行,因为微小的液滴在端面间会因温度升高而发生爆破现象,使端面间隙瞬时增大,泄漏量出现波动。 (油系统开车时,要先投用后置隔离气,一般要求20分钟以上,才可以建立油循环。停止油循环时,要求后置隔离气继续运行20分钟

以上,防止润滑油进入干气密封,损坏干气密封或者影响使用寿命。) 不能反转; 对于单向设计的密封,严禁反转,因为反转时端面不但打不开,反而会越转越紧,密封会由于干摩擦温度升高而损坏。当然,对于设计为双向旋转的密封可以克服反向旋转带来危害,但在同等条件下,双向旋转的端面产生的气膜刚度小,抗干扰能力差。 (一般压缩机进出口都有快开阀门,停机后,阀门迅速打开均压,防止压差大,压缩机反转,损坏干气密封。尤其两端以上压缩的,二段入口带有气液分离器或者缓冲罐的压缩机,缓冲罐容积较大,可储存一定量的压力比一段入口较高的气体) 干气密封监控、连锁: 连锁启动: 低压缸低压端一级密封泄漏量正常≥5 Nm3/h 低压缸高压端一级密封泄漏量正常≥5 Nm3/h 一级密封与低压缸平衡管或放火炬线差压正常≥0.1 MPa 高压缸高压端一级密封泄漏量正常≥5 Nm3/h 高压缸低压端一级密封泄漏量正常≥5 Nm3/h 一级密封气与高压缸平衡管差压正常≥0.1 MPa 连锁停车: 低压缸低压端一级密封泄漏量大≥13 Nm3/h 低压缸高压端一级密封泄漏量大≥13 Nm3/h

相关文档