文档库 最新最全的文档下载
当前位置:文档库 › PECVD-的原理与分析

PECVD-的原理与分析

PECVD-的原理与分析
PECVD-的原理与分析

PECVD-的原理与分析

摘要:薄膜制备工艺在超大规模集成电路技术中有着非常广泛的应用,按照其成膜方法可分为两大类:物理气相沉积(PVD)和化学气相沉积(CVD)。等离子增强型化学气相淀积(PECVD)是化学气相淀积的一种,其淀积温度低是它最突出的优点。PECVD淀积的薄膜具有优良的电学性能、良好的衬底附着性以及极佳的台阶覆盖性,正由于这些优点使其在超大规模集成电路、光电器件、MEMS等领域具有广泛的应用。本文简要介绍了PECVD工艺的种类、设备结构及其工艺原理,根据多年对设备维护的经验,介绍了等离子增强型化学气相淀积(PECVD)设备的基本结构,总结了这类设备的常见故障及解决措施。

1PECVD的种类

1.1射频增强等离子体化学气相淀积(RF-PECVD)

等离子体化学气相淀积是在低压化学气相淀积的同时,利用辉光放电等离子对过程施加影响,在衬底上制备出多晶薄膜。这种方法是日本科尼卡公司在1994年提出的,其等离子体的产生方法多采用射频法,故称为RF-PECVD。其射频电场采用两种不同的耦合方式,即电感耦合和电容耦合[1]。

1.2甚高频等离子体化学气相淀积(VHF-PECVD)

采用RF-PECVD技术制备薄膜时,为了实现低温淀积,必须使用稀释的硅烷作为反应气体,因此淀积速度有限。VHF-PECVD技术由于VHF激发的等离子体比常规的射频产生的等离子体电子温度更低、密度更大[2],因而能够大幅度提高薄膜的淀积速率,在实际应用中获得了更广泛的应用。

1.3介质层阻挡放电增强化学气相淀积(DBD-PECVD)

DBD-PECVD是有绝缘介质插入放电空间的一种非平衡态气体放电(又称介质阻挡电晕放电或无声放电)。这种放电方式兼有辉光放电的大空间均匀放电和电晕放电的高气压运行特点,正逐渐用于制备硅薄膜中[3]。

1.4微波电子回旋共振等离子体增强化学气相淀积(MWECR-PECVD)

MWECR-PECVD是利用电子在微波和磁场中的回旋共振效应,在真空条件下形成高活性和高密度的等离子体进行气相化学反应。在低温下形成优质薄膜的技术。这种方法的等离子体是由电磁波激发而产生,其常用频率为2450MHz,通过改变电磁波光子能量可直接改变使气体分解成粒子的能量和生存寿命,从而对薄膜的生成和膜表面的处理机制产生重大影响,并从根本上决定生成膜的结构、特性和稳定性[4]。

2PECVD设备的基本结构

2.1PECVD工艺的基本原理

PECVD技术是在低气压下,利用低温等离子体在工艺腔体的阴极上(即样品放置的托盘)产生辉光放电,利用辉光放电(或另加发热体)使样品升温到预定的温度,然后通入适量的工艺气体,这些气体经一系列化学反应和等离子体反应,最终在样品表面形成固态薄膜。其工艺原理示意图如图1所示。

在反应过程中,反应气体从进气口进入炉腔,逐渐扩散至样品表面,在射频源激发的电场作用下,反应气体分解成电子、离子和活性基团等。这些分解物发生化学反应,生成形成膜的初始成分和副反应物,这些生成物以化学键的形式吸附到样品表面,生成固态膜的晶核,晶核逐渐生长成岛状物,岛状物继续生长成连续的薄膜。在薄膜生长过程中,各种副产物从膜的表面逐渐脱离,在真空泵的作用下从出口排出。

2.2PECVD设备的基本结构

PECVD设备主要由真空和压力控制系统、淀积系统、气体及流量控制、系统安全保护系统、计算机控制等部分组成。其设备结构框图如图2所示。

2.2.1真空和压力控制系统

真空和压力控制系统包括机械泵、分子泵、粗抽阀、前级阀、闸板阀、真空计等。为了减少氮气、氧气以及水蒸气对淀积工艺的影响,真空系统一般采用干泵和分子泵进行抽气,干泵用于抽低真空,与常用的机械油泵相比,可以避免油泵中的油气进入真空室污染基片。在干泵抽到一定压力以下后,打开闸板阀,用分子泵抽高真空。分子泵的特点是抽本体真空能力强,尤其是除水蒸汽的能力非常强。

2.2.2淀积系统

淀积系统由射频电源、水冷系统、基片加热装置等组成。它是PECVD的核心部分。射频电源的作用是使反应气体离子化。水冷系统主要为PECVD系统的机械泵、罗茨泵、干泵、分子泵等提供冷却,当水温超过泵体要求的温度时,它会发出报警信号。冷却水的管路采用塑料管等绝缘材料,不可用金属管。基片加热装置的作用使样品升温到工艺要求温度,除掉样品上的水蒸气等杂质,以提高薄膜与样品的附着力。

2.2.3气体及流量控制系统

PECVD系统的气源几乎都是由气体钢瓶供气,这些钢瓶被放置在有许多安全保护装置的气柜中,通过气柜上的控制面板、管道输送到PECVD的工艺腔体中。

在淀积时,反应气体的多少会影响淀积的速率及其均匀性等,因此需要严格控制气体流量,通常采用质量流量计来实现精确控制。

3常见问题及影响工艺主要因素

3.1设备常见问题及处理措施

3.1.1无法起辉

无法起辉原因和处理措施:

(1)射频电源故障,检查射频源电源功率输出是否正常。

(2)反应气体进气量小,检查气体流量计是否正常,若正常,则加大进气量进行试验。

(3)腔体极板清洁度不够,用万用表测量腔体上下极板的对地电阻,正常值应在数十兆欧以上,若异常,则清洁腔体极板。

(4)射频匹配电路故障,检查射频源反射功率是否在正常值范围内,若异常,则检查匹配电路中的电容和电感是否损坏。

(5)真空度太差,检查腔体真空度是否正常。

3.1.2辉光不稳

(1)电源电流不稳,测量电源供电是否稳定。

(2)真空室压力不稳定,检查腔体真空系统漏率是否正常,检查腔体进气量是否正常。

(3)电缆故障,检查电缆接触是否良好。更多防水请访问纳米防水网

3.1.3成膜质量差

(1)样片表面清洁度差,检查样品表面是否清洁。

(2)工艺腔体清洁度差,清洗工艺腔体。

(3)样品温度异常,检查温控系统是否正常,校准测温热电偶。

(4)膜淀积过程中压力异常,检查腔体真空系统漏率。

(5)射频功率设置不合理,检查射频电源,调整设置功率。

3.1.4淀积速率低更多防水请访问纳米防水网

(1)射频输入功率不合适,调整射频功率。

(2)样品温度异常,检查冷却水流量及温度是否正常。

(3)真空腔体压力低,调整工艺气体流量。

3.1.5反应腔体压力不稳定

(1)检查设备真空系统的波纹管是否有裂纹。

(2)检查气体流量计是否正常。

(3)手动检查蝶阀开关是否正常。

(4)真空泵异常,用真空计测量真空泵的抽速是否正常。

3.2影响工艺的因素

影响PECVD工艺质量的因素主要有以下几个方面:

3.2.1极板间距和反应室尺寸

PECVD腔体极板间距的选择要考虑两个因素:

(1)起辉电压:间距的选择应使起辉电压尽量低,以降低等离子电位,减少对衬底的损伤。更多防水请访问纳米防水网

(2)极板间距和腔体气压:极板间距较大时,对衬底的损伤较小,但间距不宜过大,否则会加重电场的边缘效应,影响淀积的均匀性。反应腔体的尺寸可以增加生产率,但是也会对厚度的均匀性产生影响。

3.2.2射频电源的工作频率

射频PECVD通常采用50kHz~13.56MHz频段射频电源,频率高,等离子体中离子的轰击作用强,淀积的薄膜更加致密,但对衬底的损伤也比较大。高频淀积的薄膜,其均匀性明显好于低频,这时因为当射频电源频率较低时,靠近极板边缘的电场较弱,其淀积速度会低于极板中心区域,而频率高时则边缘和中心区域的差别会变小。

3.2.3射频功率

射频的功率越大离子的轰击能量就越大,有利于淀积膜质量的改善。因为功率的增加会增强气体中自由基的浓度,使淀积速率随功率直线上升,当功率增加到一定程度,反应气体完全电离,自由基达到饱和,淀积速率则趋于稳定。

3.2.4气压

形成等离子体时,气体压力过大,单位内的反应气体增加,因此速率增大,但同时气压过高,平均自由程减少,不利于淀积膜对台阶的覆盖。气压太低会影响薄膜的淀积机理,导致薄膜的致密度下降,容易形成针状态缺陷;气压过高时,等离子体的聚合反应明显增强,导致生长网络规则度下降,缺陷也会增加。

3.2.5衬底温度

衬底温度对薄膜质量的影响主要在于局域态密度、电子迁移率以及膜的光学性能,衬底温度的提高有利于薄膜表面悬挂键的补偿,使薄膜的缺陷密度下降。

衬底温度对淀积速率的影响小,但对薄膜的质量影响很大。温度越高,淀积膜的致密性越大,高温增强了表面反应,改善了膜的成分。

4结束语

以上是对PECVD设备遇到问题的一些体会,PECVD工艺是一门复杂的工艺,要保证淀积薄膜的质量,除了要保证设备的稳定性外,还必须掌握和精通其工艺原理及影响薄膜质量的各种因素,以便在出现故障时,能迅速分析出导致故障的原因。另外,对设备的日常维护和保养也非常重要。

参考文献:

[1]陈建国,程宇航,吴一平,等.射频-直流等离子体增强化学气相淀积设备的研制[J].真空与低温,1998,4(1):30-34.

[2]H.Nakaya,M.Nishida,YTakeda,etal.PolycrystallineSiliconSolarCells[Z].1192,345-356.

[3]陈萌炯.RF-PECVD和DBD-PECVD制备a-Si:H薄膜的性能研究及其比较

[D].浙江:浙江大学,2006.

[4]刘国汉,丁毅,朱秀红,等.HW-MWECR-CVD法制备氢化微晶硅薄膜及其微结构研究[J].物理学报,2002,55(11):6147-6150.

PECVD工艺原理及操作

---------------------------------------------------------------最新资料推荐------------------------------------------------------ PECVD工艺原理及操作 目录一.基本原理二.工艺流程三.设备结构四.基本操作五.异常处理工艺部报告人:2 1/ 42

基本原理?PECVD: Plasma Enhanced Chemical Vapour Deposition 等离子增强化学气相沉积?等离子体:气体在一定条件下受到高能激发,发生电离,部分外层电子脱离原子核,形成电子、正离子和中性粒子混合物组成的一种形态,这种形态就称为等离子态即第四态。 工艺部报告人:3

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 基本原理电阻加热真空蒸发感应加热电子束加热激光加热直流溅射? 物理气相沉积(PVD)溅射沉积射频溅射磁控溅射离子束溅射直流二极型离子镀离子镀射频放电离子镀等离子体离子镀报告人:工艺部 3/ 42

基本原理?工作原理3SiH4+4NH3 → Si3N4+12H2↑利用低温等离子体作能量源,利用一定方式使硅片升温到预定的温度,然后通入适量的反应气体,气体经一系列化学反应和等离子体反应,在硅片表面形成固态薄膜。 PECVD方法区别于其它CVD方法的特点在于等离子体中含有大量高能量的电子,它们可以提供化学气相沉积过程所需的激活能。 电子与气相分子的碰撞可以促进气体分子的分解、化合、激发和电离过程,生成活性很高的各种化学基团,因而显著降低CVD薄膜沉积的温度范围,使得原来需要在高温下才能进行的CVD过程得以在低温下实现。 工艺部报告人:5

PECVD的工作原理

PECVD的工作原理 2009-03-13 21:11 PECVD PECVD--等离子体化学气相沉积法 是借助微波或射频等使含有薄膜组成原子的气体电离,在局部形成等离子体,而等离子体化学活性很强,很容易发生反应,在基片上沉积出所期望的薄膜。为了使化学反应能在较低的温度下进行,利用了等离子体的活性来促进反应,因而这种CVD称为等离子体增强化学气相沉积(PECVD). 实验机理: 辉光放电等离子体中:电子密度高(109~1012/cm3) 电子气温度比普通气体分子温度高出10-100倍 虽环境温度(100-300℃),但反应气体在辉光放电等离子体中能受激分解,离解和离化,从而大大提高了参与反应物的活性。 因此,这些具有高反应活性的中性物质很容易被吸附到较低温度的基本表面上,发生非平衡的化学反应沉积生成薄膜。 优点:基本温度低;沉积速率快;

成膜质量好,针孔少,不易龟裂。 缺点:1.设备投资大、成本高,对气体的纯度要求高; 2.涂层过程中产生的剧烈噪音、强光辐射、有害气体、金属蒸汽粉尘等对人体有害; 3.对小孔孔径内表面难以涂层等。 例子:在PECVD工艺中由于等离子体中高速运动的电子撞击到中性的反应气体分子,就会使中性反应气体分子变成碎片或处于激活的状态容易发生反应。衬底温度通常保持在350℃左右就可以得到良好的SiOx或SiNx薄膜,可以作为集成电路最后的钝化保护层,提高集成电路的可靠性。 几种PECVD装置 图(a)是一种最简单的电感耦合产生等离子体的PECVD装置,可以在实验室中使用。 图b)它是一种平行板结构装置。衬底放在具有温控装置的下面平板上,压强通常保持在133Pa左右,射频电压加在上下平行板之间,

PECVD的原理与分析

P E C V D的原理与分析集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

摘要:薄膜制备工艺在超大规模集成电路技术中有着非常广泛的应用,按照其成膜方法可分为两大类:物理气相沉积(PVD)和化学气相沉积(CVD)。等离子增强型化学气相淀积(PECVD)是化学气相淀积的一种,其淀积温度低是它最突出的优点。PECVD淀积的薄膜具有优良的电学性能、良好的衬底附着性以及极佳的台阶覆盖性,正由于这些优点使其在超大规模集成电路、光电器件、MEMS等领域具有广泛的应用。本文简要介绍了PECVD工艺的种类、设备结构及其工艺原理,根据多年对设备维护的经验,介绍了等离子增强型化学气相淀积(PECVD)设备的基本结构,总结了这 1PECVD的种类 1.1射频增强等离子体化学气相淀积(RF-PECVD) 等离子体化学气相淀积是在低压化学气相淀积的同时,利用辉光放电等离子对过程施加影响,在衬底上制备出多晶薄膜。这种方法是日本科尼卡公司在1994年提出的,其等离子体的产生方法多采用射频法,故称为RF-PECVD。其射频电场采用两种不同的耦合方式,即电感耦合和电容耦合[1]。 1.2甚高频等离子体化学气相淀积(VHF-PECVD) 采用RF-PECVD技术制备薄膜时,为了实现低温淀积,必须使用稀释的硅烷作为反应气体,因此淀积速度有限。VHF-PECVD技术由于VHF激发的等离子体比常规的射频产生的等离子体电子温度更低、密度更大[2],因而能够大幅度提高薄膜的淀积速率,在实际应用中获得了更广泛的应用。 1.3介质层阻挡放电增强化学气相淀积(DBD-PECVD) DBD-PECVD是有绝缘介质插入放电空间的一种非平衡态气体放电(又称介质阻挡电晕放电或无声放电)。这种放电方式兼有辉光放电的大空间均匀放电和电晕放电的高气压运行特点,正逐渐用于制备硅薄膜中[3]。 1.4微波电子回旋共振等离子体增强化学气相淀积(MWECR-PECVD) MWECR-PECVD是利用电子在微波和磁场中的回旋共振效应,在真空条件下形成高活性和高密度的等离子体进行气相化学反应。在低温下形成优质薄膜的技术。这种方法的等离子体是由电磁波激发而产生,其常用频率为2450MHz,通过改变电磁波光子能量可直接改变使气体分解成粒子的能量和生存寿命,从而对薄膜的生成和膜表面的处理机制产生重大影响,并从根本上决定生成膜的结构、特性和稳定性[4]。 2PECVD设备的基本结构

PECVD-的原理与分析

摘要:薄膜制备工艺在超大规模集成电路技术中有着非常广泛的应用,按照其成膜方法可分为两大类:物理气相沉积(PVD)和化学气相沉积(CVD)。等离子增强型化学气相淀积(PECVD)是化学气相淀积的一种,其淀积温度低是它最突出的优点。PECVD淀积的薄膜具有优良的电学性能、良好的衬底附着性以及极佳的台阶覆盖性,正由于这些优点使其在超大规模集成电路、光电器件、MEMS 等领域具有广泛的应用。本文简要介绍了PECVD工艺的种类、设备结构及其工艺原理,根据多年对设备维护的经验,介绍了等离子增强型化学气相淀积(PECVD)设备的基本结构,总结了这类设备的常见故障及解决措施。 1PECVD的种类 1.1射频增强等离子体化学气相淀积(RF-PECVD) 等离子体化学气相淀积是在低压化学气相淀积的同时,利用辉光放电等离子对过程施加影响,在衬底上制备出多晶薄膜。这种方法是日本科尼卡公司在1994年提出的,其等离子体的产生方法多采用射频法,故称为RF-PECVD。其射频电场采用两种不同的耦合方式,即电感耦合和电容耦合[1]。 1.2甚高频等离子体化学气相淀积(VHF-PECVD) 采用RF-PECVD技术制备薄膜时,为了实现低温淀积,必须使用稀释的硅烷作为反应气体,因此淀积速度有限。VHF-PECVD技术由于VHF激发的等离子体比常规的射频产生的等离子体电子温度更低、密度更大[2],因而能够大幅度提高薄膜的淀积速率,在实际应用中获得了更广泛的应用。

1.3介质层阻挡放电增强化学气相淀积(DBD-PECVD) DBD-PECVD是有绝缘介质插入放电空间的一种非平衡态气体放电(又称介质阻挡电晕放电或无声放电)。这种放电方式兼有辉光放电的大空间均匀放电和电晕放电的高气压运行特点,正逐渐用于制备硅薄膜中[3]。 1.4微波电子回旋共振等离子体增强化学气相淀积(MWECR-PECVD) MWECR-PECVD是利用电子在微波和磁场中的回旋共振效应,在真空条件下形成高活性和高密度的等离子体进行气相化学反应。在低温下形成优质薄膜的技术。这种方法的等离子体是由电磁波激发而产生,其常用频率为2450MHz,通过改变电磁波光子能量可直接改变使气体分解成粒子的能量和生存寿命,从而对薄膜的生成和膜表面的处理机制产生重大影响,并从根本上决定生成膜的结构、特性和稳定性[4]。 2PECVD设备的基本结构 2.1PECVD工艺的基本原理 PECVD技术是在低气压下,利用低温等离子体在工艺腔体的阴极上(即样品放置的托盘)产生辉光放电,利用辉光放电(或另加发热体)使样品升温到预定的温度,然后通入适量的工艺气体,这些气体经一系列化学反应和等离子体反应,最终在样品表面形成固态薄膜。其工艺原理示意图如图1所示。

pecvd的原理与分析

1PECVD的种类 射频增强等离子体化学气相淀积(RF-PECVD) 等离子体化学气相淀积是在低压化学气相淀积的同时,利用辉光放电等离子对过程施加影响,在衬底上制备出多晶薄膜。这种方法是日本科尼卡公司在1994年提出的,其等离子体的产生方法多采用射频法,故称为RF-PECVD。其射频电场采用两种不同的耦合方式,即电感耦合和电容耦合[1]。 甚高频等离子体化学气相淀积(VHF-PECVD) 采用RF-PECVD技术制备薄膜时,为了实现低温淀积,必须使用稀释的硅烷作为反应气体,因此淀积速度有限。VHF-PECVD技术由于VHF激发的等离子体比常规的射频产生的等离子体电子温度更低、密度更大[2],因而能够大幅度提高薄膜的淀积速率,在实际应用中获得了更广泛的应用。 介质层阻挡放电增强化学气相淀积(DBD-PECVD) DBD-PECVD是有绝缘介质插入放电空间的一种非平衡态气体放电(又称介质阻挡电晕放电或无声放电)。这种放电方式兼有辉光放电的大空间均匀放电和电晕放电的高气压运行特点,正逐渐用于制备硅薄膜中[3]。 微波电子回旋共振等离子体增强化学气相淀积(MWECR-PECVD) MWECR-PECVD是利用电子在微波和磁场中的回旋共振效应,在真空条件下形成高活性和高密度的等离子体进行气相化学反应。在低温下形成优质薄膜的技术。这种方法的等离子体是由电磁波激发而产生,其常用频率为2450MHz,通过改变电磁波光子能量可直接改变使气体分解成粒子的能量和生存寿命,从而对薄膜的生成和膜表面的处理机制产生重大影响,并从根本上决定生成膜的结构、特性和稳定性[4]。 2PECVD设备的基本结构 工艺的基本原理 PECVD技术是在低气压下,利用低温等离子体在工艺腔体的阴极上(即样品放置的托盘)产生辉光放电,利用辉光放电(或另加发热体)使样品升温到预定的温

PECVD RF系统原理和故障改善

55中国 设备 工程Engineer ing hina C P l ant 中国设备工程 2019.05 (上)随着显示技术的快速发展,PECVD 技术(等离子增强 化学气相淀积)作为非金属薄膜沉积工艺,应用越来越广泛 ,它利用低压下气体辉光放电过程来激活分子,从而降低了 化学气相淀积的温度。在当前各种等离子放电装置中,射频 电源通常采用固定频率为13~14MHz 、输出阻抗恒定50~ 75Ω的功率源。通常PECVD 反应室的负载阻抗与功率源的阻 抗相等的几率是极小的,并且负载的阻抗随着工艺条件如气体,压力等改变发生非线性变化,射频功率源与负载间的阻 抗存在不同程度的失配现象,导致射频传输线上存在反射功 率,射频功率源产生的功率无法有效传输至负载,能量被耗 散。如图1所示,需将匹配器连接于射频电源与反应室之间, 通过改变匹配器阻抗值大小,使匹配器能够补偿射频电源输 出阻抗与真空反应室负载阻抗之间的差值,达到阻抗完全匹 配的目的,从而使射频电源的输出功率能够有效地传输到反 应室中进行等离子体激发。图1?射频阻抗匹配系统示意图1?PECVD?RF 系统1.1?PECVD?RF 系统构成PECVD G8.5设备 RF 系统构成如图2,包括RF Generator ,RF match ,反应腔室。RF Generator:射频发生器,频率13~14MHz 可变。PECVD?RF 系统原理和故障改善 周立,杨晓东,金哲山,董杰,周东淇,张猛,胡毓龙,李应胜 (北京京东方显示技术有限公司,北京?100176) 摘要:本文介绍了PECVD?G8.5设备RF 系统的结构和工作原理。结合PECVD 设备在实际生产过程中反射功率过高的问题,通过RF?Generator 设置,RF?match 电容配比实验,设备故障以及备件管理的分析,制定了相应的解决对策,从而实现RF 系统阻抗匹配,降低RF 系统故障发生率。 关键词:PECVD;阻抗匹配;反射功率;射频发生器;匹配器 中图分类号:O484 文献标识码:A 文章编号:1671-0711(2019)05(上)-0055-02 RF Match:射频匹配器,由Load 电容和Tune 电容并联构成,Load 电容实现负载电阻匹配,Tune 电容实现负载相位匹配,与反应室串联。Process chamber:反应腔室薄膜沉积的环境,plasma 在上下极板中产生,可看成一个平行板电容器。1.2?RF 系统匹配原理现假设RF Generator 阻抗为Z S =R S +jX S ,负载阻抗Z L = R L -jX L ,其中R 为电阻实部,X 为电抗,j 为虚数单位,如图 3。当RF Generator 内部阻抗Z S 与外端阻抗Z L 相等时射频 功率传递效率最高。但是外部条件是随时变化的,为保证输 出稳定,RF generator X S 变化进行补偿,所以良好的工作 状态满足:R S +jX S =R L -jX L 。负载X L 包括反应气体、压力等能 引起负载变化条件,当RF generator X S 不能匹配外部的变 化程度,即Z S ≠Z L 时反射功率达到上限(3000)时发生反 射功率高报警。 2?RF 故障改善 2.1?RF?Generator 参数优化 在实际生产过程中,工艺条件不是固定不变的,随工 术部门、财务部门、项目部门等,为了规范各个部门的支出,一定要做到成本消耗的全面管控,不能依赖单一的部门进行成本的控制,这样才能确保成本的最大化缩减;②应用于技 术实施。在工程建设的过程中,应用科学合理的施工技术不 仅能够提升施工质量,还能够降低施工成本,进而提升工程 项目的整体效益。研究表明,实行技术成本控制,能够缩减 20%以上的投入成本。可见施工技术的筛选有助于成本控制, 其是缩减工程整体投入成本的核心内容;③应用于经济管理。 通常工程项目的实施需要消耗大量的时间和人力,为了保障 经济效益,就要做好经济管理工作。其中包括人工费、材料费、 机械费等费用的控制。尽可能缩减各项费用的支出,进而实 现成本投入的控制。4?结语 综上所述,在工程建设的管理过程中,应用BIM 技术 和成本控制能够有效提升工程的整体质量和经济效益。参考文献:[1]李晨阳.BIM 技术与成本控制在工程管理中的应用与分析[J].建材发展导向(下),2017,(3).[2]于景飞,谢宇晨.BIM 技术在工程管理与施工成本控制中的应用[J].山东农业大学学报(自然科学版),2017,(2).[3] 陈燕宇,叶红松.BIM 技术在工程管理与施工成本控制中的应用 [J].城市建设理论研究(电子版),2017(34). 图2?PECVD?RF 系统构成研究与探索Research?and?Exploration?·维护与修理

PECVD的工作原理

PECVD的工作原理 单字面意思为:等离子(P)增强(E)化学气相淀积(CVD)。反应气体在设备射频(RF)作用下转变成等离子体从而进行化学反应生成需要的膜材料。相对来说反应温度较低。成膜致密性比炉管差。但效率高易维护。 你可以针对现在的工作提点相关的问题可能进步更快。 一般说来,采用PECVD 技术制备薄膜材料时,薄膜的生长主要包含以下三 个基本过程: 首先,在非平衡等离子体中,电子与反应气体发生初级反应,使得反应气 体发生分解,形成离子和活性基团的混合物; 其二,各种活性基团向薄膜生长表面和管壁扩散输运,同时发生各反应物 之间的次级反应; 最后,到达生长表面的各种初级反应和次级反应产物被吸附并与表面发生 反应,同时伴随有气相分子物的再放出。

我来个专业的原理介绍:制程气体(如SiH4,NH3,N2等)在射频电源的作用下电离成离子;经过多次碰撞产生了大量的SiH3-,H-等活性基;这些活性基被吸附在基板上或者取代基板表面的H原子;被吸附的原子在自身动能和基板温度的作用下在基板表面迁移,选择能量最低的点稳定下来;同时基板上的原子不断脱离周围原子的束缚,进入等离子体中,以达到动态平衡;当原子沉积速度大于逃逸速度后就可以不断在基板表面沉积成我们所需要的薄膜了。 热电偶工作原理 热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热是阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。 与热电偶的测温原理不同的是,热电阻是基于电阻的热效应进行温度测量的,即电阻体的阻值随温度的变化而变化的特性。因此,只要测量出感温热电阻的阻值变化,就可以测量出温度。目前主要有金属热电阻和半导体热敏电阻两类。 金属热电阻的电阻值和温度一般可以用以下的近似关系式表示,即Rt=Rt0[1+α(t-t0)] 式中,Rt为温度t时的阻值;Rt0为温度t0(通常t0=0℃)时对应电阻值;α为温度系数。

相关文档