文档库 最新最全的文档下载
当前位置:文档库 › 高速高精度调整参数

高速高精度调整参数

高速高精度调整参数
高速高精度调整参数

(3)人工智慧輪廓控制(AICC)

●依照機器形式需要調整的參數

●不需要調整及可以將之固定的參數

(5)高精度輪廓控制(HPCC)

●依照機器形式需要調整的參數

●不需要調整及可以將之固定的參數

中国移动TD-LTE无线参数设置指导优化手册-华为分册

中国移动TD-LTE无线参数设置指导优化手册 -华为分册 (征求意见稿)

目录TABLE OF CONTENTS 1 前言 (3) 2上行资源分配 (7) 3上行ICIC (7) 4下行资源分配 (8) 5下行MIMO (9) 6移动性管理 (10) 7LC(过载控制) (11) 8功控算法 (12) 9信道配置&链路控制 (13) 10数传算法 (13) 11传输TRM算法 (14) 12 SON (14) 13附件:华为ERAN3.0参数列表 (14) 14《LTE无线网优参数集》 (14) 15《TD-LTE无线参数指导优化手册》 (15)

1 前言 1.1 关于本书 1.1.1目的 本文主要介绍了华为TD-LTE系统eRAN3.0版本的各个专题的相关参数,对参数进行介绍和分析,旨在帮助读者理解和使用系统中的参数,提高系统性能。 1.1.2读者对象 本手册适用于TD-LTE系统的基本概念有一定认识的华为公司内部工程师。 1.1.3内容组织 本手册是基于TD-LTE产品eRAN3.0版本的参数介绍,其内容组织如下: 第一章:对本手册的目的,读者对象,内容组织进行介绍。 第二章上行资源分配:介绍Sounding RS资源分配和上行调度的参数配置及调整影响。 第三章上行ICIC:介绍上行ICIC相关参数配置及其调整影响。 第四章下行资源分配:介绍PUCCH资源分配、下行CQI调整、下行调度和下行物理控制信道的参数配置及调整影响。 第五章下行ICIC:介绍下行ICIC相关参数的配置及其调整影响。 第六章下行MIMO:介绍下行MIMO(含Beamforming)与CQI模式的参数配置方法及其调整的影响。 第七章移动性管理:介绍切换、重选的参数配置及其调整影响。 第八章LC(过载控制):介绍负载控制算法、随机接入控制算法、系统消息SIB映射、移动性负载平衡算法、准入控制算法的参数配置及其调整影响。 第九章功控算法:介绍影响上行功率控制算法、下行功率控制算法的相关参数及其调整影响。 第十章信道配置&链路控制:介绍影响DRX控制算法、上行定时控制算法、上行无线链路检测算法的相关参数及其调整影响。

基于几何绕射理论模型高精度参数估计的多频带合成成像

第35卷第7期 电 子 与 信 息 学 报 Vol.35No.7 2013年7月 Journal of Electronics & Information Technology Jul. 2013 基于几何绕射理论模型高精度参数估计的多频带合成成像 田 彪* 刘 洋 徐世友 陈曾平 (国防科技大学ATR 重点实验室 长沙 410073 ) 摘 要:针对多频带信号融合成像的相干化处理,论文提出一种基于几何绕射理论模型高精度参数估计的多频带合成算法。该方法利用不同频带的全极点模型中极点及散射中心幅度的相位差异来估计非相干量,通过缺损数据幅度相位联合估计算法对相干化处理后的频带数据进行填补,利用全频带数据对几何绕射-全极点模型参数进行精确估计,得到融合数据。实验表明,由融合数据得到的1维距离像和ISAR 像的分辨率高于单个频带数据得到的结果,从而验证了该方法的有效性。 关键词:雷达图像处理;多频带合成;相干化;缺损数据幅度相位联合估计;几何绕射-全极点模型 中图分类号:TN957.52 文献标识码: A 文章编号:1009-5896(2013)07-1532-08 DOI : 10.3724/SP.J.1146.2012.01364 Multi-band Fusion Imaging Based on High Precision Parameter Estimation of Geometrical Theory of Diffraction Model Tian Biao Liu Yang Xu Shi-you Chen Zeng-ping (ATR Key Laboratory, National University of Defense Technology , Changsha 410073, China ) Abstract : This paper focuses on multi-band fusion imaging. A method based on high-precision parameter estimation of Geometrical Theory of Diffraction (GTD) model is given. It makes use of the phase difference of pole and scattering coefficient between the all-pole model of each sub-band to estimate the incoherent components. The gapped-data amplitude and phase estimation algorithm is adopted to fill up the gapped band. Finally, fusion data is gained by high precision parameter estimation of geometrical theory of diffraction -all-pole model with full-band data. The simulation indicates that the resolution of 1D range profile and 2D ISAR image based on this method is better than that of sub-band. In this way, the effectiveness of the method is verified. Key words : Radar image processing; Multi-band fusion; Coherent processing; Gapped-data amplitude and phase estimation; Geometrical Theory of Diffraction (GTD) -all-pole model 1 引言 当多部雷达同时观测目标时,回波信号之间存在不相干,这主要包括依赖于距离项的不相干和依 赖于角度项的不相干[2], 因此需对信号进行相干化处理。相干化处理的精度决定了各子带信号相干匹配 雷达的高分辨率1维距离像可以更精细地反映目标的1维结构特征,广泛应用于导弹防御和目标识别等领域。传统雷达系统往往通过增大带宽来提高距离分辨率,但通过改善硬件来增大带宽面临着成本昂贵、设计制造困难以及单雷达性能上限等局限。近年来,随着信息处理技术的发展,多雷达信号的融合处理逐渐成为一种趋势。多频带融合成像技术在不改变单部雷达硬件的前提下,将多部工作在不同频带的雷达目标频率响应融合成为一个更高带宽的频响[1],有效提高距离分辨率,更为精确地获取散射中心类型等信息,进而提高2维ISAR 成像质量。 2012-10-23收到,2013-01-18改回 *通信作者:田彪 tbncsz@https://www.wendangku.net/doc/3618735579.html, 的程度以及2维融合成像的质量,是多频带融合成像的关键。文献[3]提出基于非均匀正交匹配追踪的多雷达融合成像方法,但是仅考虑了数据相干的情况;文献[4]提出基于最小熵的相干化处理,但仍需对数据进行外推;文献[5]提出一种基于数据相关的相干配准方法,不需对雷达数据分别建模。上述文献均采用理想散射点模型对回波信号建模,不考虑散射系数随频率的变化,这在雷达相对带宽较小的时候是合适的,但随着超宽带雷达以及频带合成技术的发展应用,该模型已经不能完全正确反映目标的散射特性。 针对上述问题,本文提出一种基于几何绕射理论(GTD)模型高精度参数估计的多频带合成算法。首先,对雷达回波进行去斜脉冲压缩、高速补偿以及运动补偿等预处理后近似成一种基于GTD 的全极点模型。其次,利用不同频带的全极点模型中极点及散射中心幅度的相位差异估计非相干量,避免传统相干化处理所必须进行的频谱外推过程,减小

铣床、加工中心高速、高精加工的参数调整

铣床、加工中心高速、高精加工的参数调整 (北京发那科机电有限公司王玉琪) 使用铣床或加工中心机床加工高精度零件(如模具)时,应根据实际机床的机械性能对CNC系统(包括伺服)进行调整。在FANUC的AC 电机的参数说明书中叙述了一般调整方法。本文是参数说明书中相关部分的翻译稿,最后的“补充说明”叙述了一些实际调试经验和注意事项,仅供大家参考。 对于数控车床,可以参考此调整方法。但是车床CNC系统无G08和G05功能,故车床加工精度(如车螺纹等)不佳时,只能调整HRV参数和伺服参数。Cs控制时还可调整主轴的控制参数。 目录 使用αi电机…………………………………………………P 2 使用α电机……………………………………………………P22 补充说明………………………………………………………P24 1 3.4.1伺服HRV控制的调整步骤 ⑴概述 i系列CNC(15i/16i/18i)的伺服因为使用了HRV2和HRV3控制(21i为选择功能),改善了电流回路的响应,因此可使速度回路和位置回路设定较高而稳定的增益值。

图 3.4.1(a) 使用伺服HRV控制后的效果 速度回路和位置回路的高增益,可以改善伺服系统的响应和刚性。因此可以减小机床的加工形状误差,提高定位速度。 由于这一效果,使得伺服调整简化。HRV2控制可以改善整个系统的伺服性能。伺服用HRV2调整后,可以用HRV3改善高速电流控制,因此可进行高精度的机械加工。 若伺服HRV控制与CNC的预读(Look-ahead)控制,AI轮廓控制,AI纳米轮廓控制和高精度轮廓控制相结合,会大大改善加工性能。关于这方面的详细叙述,请见3.4.3节“高速、高精加工的伺服参数调整”。 2 图3.4.1(b) 伺服HRV控制的效果实例 ⑵适用的伺服软件系列号及版本号 90B0/A(01)及其以后的版本(用于15i,16i,18i和21i,但必须使用320C5410伺服卡)。

高精度数模转换器

选择和使用高精度数模转换器 时间:2011-05-10 23:17:40 来源:作者:叶子 很多应用 (包括精密仪器、工业自动化、医疗设备和自动测试设备) 都需要高准确度数模转换。在 16 位分辨率时要求准确度好于约±15ppm 或±1LSB 的电路中,设计师传统上一直被迫使用大量校准,以在所有情况下保持准确度。新型高精度 DAC 使得能够采用一个单片式 DAC 来实现±4ppm 准确度或±1LSB (在 18 位分辨率条件下),而无需校准。在本文中我们将对高精度数模转换器的选择和使用过程中所涉及的问题进行研究。 DAC 的架构对于 DAC 的技术规格及其对电路板设计师的要求均有影响。为了实现最佳性能,需要谨慎地考虑 DAC 上的电源、基准和输出放大器所产生的影响。 过采样或增量累加 DAC 过采样或ΔΣ ADC 采用一个低分辨率 DAC (通常仅 1 位),在其前后分别布设一个噪声整形数字调制器和一个模拟低通滤波器。最准确的商用增量累加 DAC 实现±15ppm 的准确度,但是需要 15ms 才能稳定,并要承受相对较高的 1μV/√Hz 噪声密度。其它可购得的过采样 DAC 在 80us 内稳定,但是INL 较差,大约为 240 ppm。 合成 DAC 通过结合两个较低分辨率的单片 DAC,有可能构成一个高分辨率的合成 DAC。请注意,粗略 DAC 的分辨率和精细 DAC 的范围需要重叠,以确保所有想要的输出电压都可实现。粗略 DAC 的准确度和漂移一般将限制合成 DAC 的最终准确度,因此要提高准确度,就需要对合成 DAC 转移函数的特性和软件进行校正。也可能需要频率校准,以校正随温度、时间、湿度和机械压力产生的变化导致的漂移。 电阻串 DAC 电阻串 DAC 采用具有 2N 个分接点的一系列电阻分压器,以实现 N 位分辨率。采用电阻串架构的单片 16 位 DAC 一般含有一个较低分辨率的电阻串 DAC 和一个范围较小的 DAC,范围较小的 DAC 用于插入串器件之间,以实现 16 位分辨率。这种串+内插器方法的一个优点是,DAC 输出具有固有的单调性,无需微调或校准。 这类 DAC 的基准输入阻抗一般很高 (50KΩ~ 300kΩ),而且不受输入代码的影响,从而有可能使用一个非缓冲型基准。因为电阻串的输出阻抗随输入代码变化,所以大多数电阻串 DAC 含有集成的输出缓冲器放大器,以驱动电阻性负载。 尽管电阻串 DAC 的 DNL 本身非常好,但是 INL 由串联电阻器件的匹配决定,而且可能由于含有大量的独立器件而难以控制。直到最近,这类 DAC 的准确度一直限制在约±180ppm。最近的进步已经使得准确度提高到了±60ppm。例如,LTC2656 在 4mm x 5mm 封装中集成了 8 个 DAC 通道,在 16 位分辨率时具有±4LSB 的最大 INL。 阻性梯形或 R-2R 型 DAC 阻性梯形或 R-2R DAC 采用一种类似于图 2 所示的三端子结构,电阻器在 A 端和 B 端之间切换。请注意,A 端和 B 端上的阻抗与代码的相关性很高,而 C 端则具有一个固定阻抗。电阻器与开关的匹配情况将会影响这种结构的单调性和准确度。此类 DAC 一般经过修整或在出厂时经过校准,而且,具±1LSB INL 和 DNL 的单调 16 位阻性梯形电路 DAC 上市已有很长时间了。 电压输出 R-2R DAC 一种常见类型的 R-2R DAC 将C 端用作 DAC 输出电压,而 A 端连接到基准,B 端连接到地。输出阻抗相对于输入代码是恒定的,从而有可能以非缓冲方式驱动电阻负载。例如,LTC2641 16 位 DAC 能以非缓冲方式驱动 60kΩ负载,同时保持±1LSB 的 INL 和 DNL,并消耗不到 200μA 的电源电流。 这种方法的一个缺点是,基准阻抗随着输入代码大幅变化。由于 R-2R 梯形电路的本质,甚至DAC 输出电压中很小的变化也可能在基准电流中引起 1mA 或更大的阶跃变化。为此,必须由一个高性能放

无线网络优化参数调整

无线网络优化的BSC和小区参数调整1.1 一致性检查 ?小区参数是网络最佳性能的基础。优化过程中,不断地进行一致性检查以发现不一致设置的存在。总体上进行了以下检查: 1.1.1 小区定义单向 ?在别的BSC 中发现有相邻关系定义,在反向却没有,这意味着切换只能单向进行,除了特殊情况外反向相邻关系都应添加。 1.1.2 NCCPERM设置 ?如果NCCPERM的设置与NCC不同,则没有切换能进入这些小区。 NCCPERM是以8位BIT MAP的形式编码,0为不允许,1为允许。 例如: 允许NCC=1,编码为二进制00000010,NCCPERM=2(十进制) 允许NCC=0和1,编码为二进制00000011,NCCPERM=3(十进制) 1.1.3 MBCCHNO设置 ?相邻小区的MBCCHNO没有定义,会使得这些小区的切换也无法进行;而MBCCHNO定义过多,又会影响小区的切换准确性和及时性。 1.1.4 BCCH, BSIC, CGI定义有误 ?外部小区的参数定义正确性对外部切出切换成功率至关重要。如果BCCH, BSIC 和CGI其中一个定义有误, 对这些小区的切换同样无法进行。 1.1.5 邻小区同BCCH同BSIC ?这将严重影响切换成功率和随机接入性能(在同一BSC内最好不要存在相同BCCHNO和BSIC的小区)。 1.1.6 本小区与邻小区同BCCH ?产生BCCH干扰,会造成掉话高,并影响切换指标。 1.1.7 BCCH与TCH或TCH与TCH间的同邻频干扰 ?会造成掉话高,并影响切换指标(内切换频繁),影响网络的总体性能。 2 无线功能参数 和小区数据调整 2.1 空闲模式行为的参数调整 ?空闲模式是指手机开机但没有分配专用信道 ?空闲模式行为主要是小区重选 2.1.1 ACCMIN ?ACCMIN定义手机接入网络的最低下行接受电平。ACCMIN设置为–110 即-110dBm或低于,许多手机可以接入网络确不能建立有效链接,以致浪费SDCCH资源并增加SDCCH及TCH掉话。如果

FANUC高速高精加工的参数调整图文稿

F A N U C高速高精加工 的参数调整 文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

铣床、加工中心高速、高精加工的参数调整 (北京发那科机电有限公司王玉琪) 使用铣床或加工中心机床加工高精度零件(如模具)时,应根据实际机床的机械性能对CNC系统(包括伺服)进行调整。在FANUC的AC电机的参数说明书中叙述了一般调整方法。本文是参数说明书中相关部分的翻译稿,最后的“补充说明”叙述了一些实际调试经验和注意事项,仅供大家参考。 对于数控车床,可以参考此调整方法。但是车床CNC系统无G08和G05功能,故车床加工精度(如车螺纹等)不佳时,只能调整HRV参数和伺服参数。Cs控制时还可调整主轴的控制参数。 目录 ⑴概述 i系列CNC(15i/16i/18i)的伺服因为使用了HRV2和HRV3控制(21i为选择功能),改善了电流回路的响应,因此可使速度回路和位置回路设定较高而稳定的增益值。 图使用伺服HRV控制后的效果 速度回路和位置回路的高增益,可以改善伺服系统的响应和刚性。因此可以减小机床的加工形状误差,提高定位速度。 由于这一效果,使得伺服调整简化。HRV2控制可以改善整个系统的伺服性能。伺服用HRV2调整后,可以用HRV3改善高速电流控制,因此可进行高精度的机械加工。 “高速、高精加工的伺服参数调整”。 2

图伺服HRV控制的效果实例 ⑵适用的伺服软件系列号及版本号 90B0/A(01)及其以后的版本(用于15i,16i,18i和21i,但必须使用320C5410伺服卡)。 ⑶调整步骤概况 HRV2和HRV3控制的调整与设定大致用以下步骤: ①) 电流回路的周期从以前的250μs降为125μs。电流响应的改善是伺服性能改善的基础。 ②) 进行速度回路增益的调整时,对于速度回路的高速部分,应该使用速度环比例项的高速处理功能。 电流环控制周期时间的降低使电流响应得以改善,使用振荡抑制滤波器使可消除机械的谐振,这样可提高速度回路的振荡极限。 ③ 机床可在某个频率下产生谐振。此时,用消振滤波器消除某一频率下的振荡是非常有效的。 ④ 当伺服系统的响应较高时,可能会出现加工的形状误差取决于CNC指令的扰动周期的现象。这种现象可用精细加/减速功能消除。 速度环使用尽可能高的回路增益可以改善整个伺服系统的性能。 ⑤ 使用预读功能的前馈,可以消除伺服的时滞,从而可减小加工的形状误差。一般,前馈系数为97%—99%。 ⑥*6)

用普通单片机实现低成本高精度AD与DA转换

用普通单片机实现低成本高精度A/D与D/A转换(之一) 摘要:用普通单片机实现低成本的多路A/D与D/A转换,其转换结果为8bit或更高。 关键词:单片机A/D转换D/A转换PWM(脉冲宽度调制)比较器 目前单片机在电子产品中已得到广泛应用,许多类型的单片机内部已带有A/D转换电路,但此类单片机会比无A/D转换功能的单片机在价格上高几元甚至很多,本文给大家提供一种实用的用普通单片机实现的A/D转换电路,它只需要使用普通单片机的2个I/O脚与1个运算放大器即可实现,而且它可以很容易地扩展成带有4通道A/D转换功能,由于它占用资源很少,成本很低,其A/D转换精度可达到8位或更高,因此很具有实用价值。 其电路如图一所示: 500) {this.resized=true; this.width=500; this.alt='点击查看原图';}; this.style.cursor='hand'" onclick="if(!this.resized) {return true;} else {window.open('https://www.wendangku.net/doc/3618735579.html,/blog/u/40/1144027076.jpg');}" border="0" width="500"> 图一 其工作原理说明如下: 1、硬件说明: 图一中“RA0”和“RA1”为单片机的两个I/O脚,分别将其设置为输出与输入状态,在进行A/D 转换时,在程序中通过软件产生PWM,由RA0脚送出预设占空比的PWM波形。RA1脚用于检测比较器输出端的状态。 R1、C1构成滤波电路,对RA0脚送出的PWM波形进行平滑滤波。RA0输出的PWM波形经过R1、C1滤波并延时后,在U1点产生稳定的电压值,其电压值U1=VDD*D1/(D1+D2),若单片机的工作电压为稳定的+5V,则U1=5V*D1/(D1+D2)。 图一中的LM324作为比较器使用,其输入负端的U1电压与输入正端的模拟量电压值进行比较,当U1大于模拟量输入电压时,比较器的输出端为低电平,反之为高电平。 2、A/D转换过程: 如果使RA0输出PWM波形,其占空比由小到大逐渐变化,则U1的电压会由小到大逐渐变化,当U1电压超过被测电压时,比较器的输出端由高电平变为低电平,因此可以认为在该变化

无线网络优化的bsc和小区参数调整

无线网络优化的bsc和小区参数调整 1.1一致性检查 小区参数是网络最佳性能的基础。优化过程中,不断地进行一致性检查以发现不一致设置的存在。总体上进行了以下检查: 1.1.1小区定义单向 在别的BSC 中发现有相邻关系定义,在反向却没有,这意味着切换只能单向进行,除了特殊情况外反向相邻关系都应添加。 1.1.2NCCPERM设置 如果NCCPERM的设置与NCC不同,则没有切换能进入这些小区。? ?NCCPERM是以8位BIT MAP的形式编码,0为不允许,1为允许。 ?例如:?允许NCC=1,编码为二进制00000010,NCCPERM=2(十进制)?允许NCC=0和1,编码为二进制00000011,NCCPERM=3(十进制) 1.1.3MBCCHNO设置 相邻小区的MBCCHNO没有定义,会使得这些小区的切换也无法进行;而MBCCHNO定义过多,又会影响小区的切换准确性和及时性。 1.1.4BCCH, BSIC, CGI定义有误 外部小区的参数定义正确性对外部切出切换成功率至关重要。如果BCCH, BSIC和CGI其中一个定义有误, 对这些小区的切换同样无法进行。 1.1.5邻小区同BCCH同BSIC 这将严重影响切换成功率和随机接入性能(在同一BSC内最好不要存在相同BCCHNO和BSIC的小区)。 1.1.6本小区与邻小区同BCCH 产生BCCH干扰,会造成掉话高,并影响切换指标。 1.1.7BCCH与TCH或TCH与TCH间的同邻频干扰 会造成掉话高,并影响切换指标(内切换频繁),影响网络的总体性能。 2 无线功能参数和小区数据调整 2.1 空闲模式行为的参数调整 空闲模式是指手机开机但没有分配专用信道 空闲模式行为主要是小区重选 C1 标准

正弦信号的直接FFT参数估计与相位差分法对比研究

第32卷第3期电子与信息学报Vol.32No.3 2010年3月 Journal of Electronics & Information Technology Mar.2010 正弦信号的直接FFT参数估计与相位差分法对比研究 李辉①②王岩飞① ①(中国科学院电子学研究所北京 100190) ②(中国科学院研究生院北京 100039) 摘要:该文研究了基于FFT的正弦信号参数估计问题,揭示了频率与初相估计间的相互联系,并对相位差分法的估值误差公式进行了推导和仿真验证。两种算法的对比说明相位差分法运算量小,可以在不高的信噪比下获得彼此独立的高精度参数估值,因此更加有利于工程的实现。 关键词:直接FFT参数估计;对分迭代搜索;相位差分法;估值误差 中图分类号:TN911.72 文献标识码:A 文章编号:1009-5896(2010)03-0544-04 DOI: 10.3724/SP.J.1146.2008.01006 The Contrastive Study between Direct FFT and Phase Difference in Parameter Estimation of Sinusoidal Signal Li Hui①② Wang Yan-fei① ①(Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China) ②(Graduate University of the Chinese Academy of Sciences, Beijing 100039, China) Abstract:This paper firstly studies parameter estimation issue directly based on FFT. Thereby, the relationship between the frequency and phase estimation is exposed. Subsequently, the estimation error formula of phase difference arithmetic are deduced and validated by computer simulation. The compare of two methods shows that phase difference arithmetic possesses lesser calculation quantity. Simultaneously, it can gain highly accurate, mutually independent parameter estimation under low SNR. So phase difference arithmetic is easy to realize in engineering field much more. Key words: Direct FFT parameter estimation; Half-divided repetition search; Phase difference arithmetic; Estimation error 1引言 正弦信号的参数(频率或初相)估计在雷达、声纳以及电子对抗等领域都有着极其广泛的应用。例如在雷达探测中,回波的频率和初相估计精度直接决定了被测物体的径向速度和距离测量精度。最直接的正弦信号频率估计就是在信号FFT之后,首先搜索到谱峰,再进一步运用对分法等迭代搜索算法以得到频率的精确估计。在此基础上将频率估值代入FFT的计算式就可以得到对应的初相估计[1]。这种方法的好处就是直接利用FFT的概念完成正弦信号参数的估值,无需进一步复杂的推导和证明,直观明了,但是在实际的工程应用中却不是最优的。这是因为在此种算法中频率估计的误差直接影响初相估计的精确性,而获得频率的精确估值就需要足够多的迭代次数,这样就往往不能满足系统对实时性 2008-08-14收到,2009-12-30改回 通信作者:李辉 wudalihui@https://www.wendangku.net/doc/3618735579.html, 的要求。相位差分法是在FFT粗测结果上的进一步校正,这种算法无需在频谱的最大和次大谱线间进行频率的搜索,只需对采样点分组后进行两次FFT 就可以在不高的信噪比下获得精度相当高的频率和初相估值,而且初相和频率的估计精度是彼此独立的,十分有利于工程的实现[2]。本文首先分析了直接使用FFT进行参数估计时频率估计误差对初相估计的影响,并利用数值分析的方法对实际工程中特定频点的参数估值问题进行了研究,定量地给出了频率和初相估值误差间的对应关系。文章第2节对高斯白噪声环境中的相位差分参数估计算法进行了严密的数学推导,得出了估值误差与采样点数和信噪比之间严格的解析关系,利用MATLAB得到的仿真结果证明了理论推导的正确性。两种算法的对比说明相位差分法无需频率的迭代逼近,只需两次FFT就可以在不高的信噪比下获得彼此独立的高精度频率和初相估值,在运算量上具有很大的优势,尤其适用于实时性要求高的场合。

FANUC高速、高精加工的参数调整

铳床、加工中心高速、高精加工的参数调整 (北京发那科机电有限公司王玉琪) 使用铳床或加工中心机床加工高精度零件(如模具)时,应根据实际机床的机械性能对CNC系统(包括伺服)进行调整。在FANUC勺AC电机的参数说明书中叙述了一般调整方法。本文是参数说明书中相关部分的翻译稿,最后的“补充说明”叙述了一些实际调试经验和注意事项,仅供大家参考。 对于数控车床,可以参考此调整方法。但是车床CNC系统无G08和G05功能,故车床加工精度(如车螺纹等)不佳时,只能调整HRV参数和伺服参数。Cs控制时还可调整主轴的控制参数。 目录 使用a i电机......................................... P 2 使用a电机.............................................. P22 补充说明................................................ P24 3.4.1伺服HRV空制的调整步骤 ⑴概述 i系列CN Q15i/16i/18i )的伺服因为使用了HRV2和HRV3控制(21i为选择功能), 改善了电流回路的响应,因此可使速度回路和位置回路设定较高而稳定的增益值。 Employment of high-sperd serve DSP

且— Curn*nl Icop lespon&e Lmpfmerr^iit D — Hitler vrilo^ty loop j

用比较器进行高精度模数转换

一种高精度单斜率AD 及其单片机实现 摘要:介绍了一种利用MSP430 F1121单片机构成的采用类似于Σ-Δ技术的高精度的单斜率AD 。分析了工作原理和参数计算。提供了分辨率,精度,线性度,稳定性等性能的测试结果,并讨论了它们的影响因素和应用。 关键词:MSP430单片机 单斜率AD 一 引言 AD 转换最常用的方法是逐次逼近法(SAR ),转换时间固定且快速是其最大特点,但要明显提高分辩率有一定困难。积分型AD 有较强的抗干扰能力,但转换时间较长。而过采样Σ-ΔA/D 由于其高分辩率,高线性度及低成本的特点正得到越来越多的应用。TI 公司的MSP430F1121单片机内带有一个模拟比较器,因此,只须外接一只电阻和电容即可构成一个类似于Σ-Δ技术的高精度单斜率AD 。 二 测量电路及过程 MSP430于F1121是16位RISC 结构的FLASH 型单片机。有14个双向I/O 口并兼有中断功能。一个16位定时器,兼有计数和定时功能。一个模拟电压比较器。 测量电路如图2-1所示。 MSP430F1121工作电压为1.8-3.6V 。I/O 口输出高电平时电压接近Vcc ,低电平时接近Vss ,因此,一个I/O 口可以看作一位DAC ,具有PWM 功能。测量时P2.4引脚接被测电压。P2.0口输出一串占空比为50%,脉宽为Tp 的脉冲。当电容充电到Vout=Vin 时,比较器输出将翻转,这一过程称为预充电。此后为维持Vout=Vin ,P2.0继续输出脉冲。程序开始对总的输出脉冲数N 和输出为高的 脉冲数n 进行计数。P2.0口根据比较器的输出状态来决定是输出高还是低电平,如果比较器输出为低,表示Vout>Tp ,则在一定精度内可以认为充放电过程是线性的。其波形如图3-1。 图2-1 测量电路图

无线温度参数设置

参数设置及数据协议解析 无线温度采集系统中接收器作为最终的数据接收终端,在数据与电脑或外部设备数据交换中起到了过度作用,一般接收到数据后传给电脑或者传个,然后处理器对数据做存储管理和处理。而与电脑或者数据交换的接口一般是\\。所以,为了方便用户使用,我们的无线采集接收器也同样提供\\三种形式。以下将一一介绍。PLC PLC RS232RS485USB RS232RS485USB 维恩科技 Rfinchina RS -485 无线接收器简介 第一页 参数设置软件简介 第二页 参数设置流程 第三页 参数设置及数据协议解析 WWW .RFINCHINA .COM WWW .RFINCHINA . COM 指令型数据包格式 优点:RS485接口在工程中比RS232更实用 标准RS485接口接收器,结构合力外观大气 配吸盘天线效果图 有效数据包格式 第五页 第六页 通过以上数据格式和指令,用户结合具体案例情况自行设计上位机软件, 注意:温度值、温度下限、温度上限均是有符号数,以二进制补码形式构成,其他数据格式均为无符号数,。若用户已了解二进制补码计算过程,则可忽略以下计算示例或直接使用我们提供C程序代码即可。下述如无特殊说明,以0b开头数字为2进制表达形式,以0x开头数字为16进制表达形式。例1: 若温度值1(TMP1)为0xFF,温度值0(TMP0) 为0x83,温度换算步骤如下: a) 则温度值 U_TMP = 0xFF83,即0b1111 1111 1000 0011,其最高位即位15为1则按序执行b) b) 将U_TMP的16位数据按位取反后得,N_TMP = ~U_TMP = ~0xFF83 = 0x007C,即0b0000 0000 0111 1100c) 将N_TMP +1,即 N_TMP = N_TMP +1 = 0x007C + 0x0001 = 0x007D = 125(十进制)d) 由U_TMP可知,其最高位即位15为1,则温度为负值,即S_TMP = N_TMP = 125(十进制)e) 将S_TMP / 10,即S_TMP = S_TMP / 10 = 125 / 10 = 12.5 ℃例2: 若温度值1(TMP1)为0x0D,温度值0(TMP0) 为0x0C a) 则温度值 U_TMP = 0x0D0C,即0b0000 1101 0000 1100,其最高位即位15为0则跳转执行d)b) 空c) 空 d) 由U_TMP可知,其最高位即位15为0,则温度为正值,即S_TMP = U_TMP = 0x0D0C = 3340(十进制)e) 将S_TMP / 10,即S_TMP = S_TMP / 10 = 3340 / 10 = 334.0 ℃ 温度值、温度下限、温度上限,三者运算原理一致,故不赘述。由上述两例可总结得出C程序算法(仅参考):算法1:(熟悉单片机等微处理器开发人员容易接受此算法,但此算法效率低) unsigned char tmp1 = 0xFC;Unsigned char tmp0 = 0xEB; unsigned short u_tmp = (tmp1<<8) + 0xEB;signed short s_tmp;if(u_tmp & 0x8000) s_tmp = - (~u_tmp+1) ; //负值Else s_tmp = u_tmp; //正值 算法2:(精通C语言的开发人员更容易接受此算法,且此算法运算效率高) unsigned char tmp1 = 0xFC;unsigned char tmp0 = 0xEB; unsigned short u_tmp = (tmp1<<8) + 0xEB;signed short s_tmp = (signed short) u_tmp;s_tmp = s_tmp / 10; 反馈型数据包格式型号:RX01L39-485BZ 模块尺寸:长:100mm 宽:70mm 高度:24mm 两侧带固定翼状态指示: 绿色指示灯为电源指示灯(常亮), 红色指示灯为信号指示灯(当发送或接收完一次数据时亮,无数据收发时为灭)数据接口:RS485(从左至右) 天线接口: 默认配备可弯折天线,也可选配带延长线的吸盘天线便于工程安装数据协议:8-N-1 默认波特率38400 反馈值数据包格式 为了便于数据管理开发,我们开放通讯协议,以下描述数据类型和格式,对与想直接使用的用户,直接使用即可,具体细节欢迎交流. 我们主要推出无线温、湿度采集器主要有三种外形结构,以下对对应的设置开关和电源开关做出说明 表带型(如上中图):SET为设置开关(拨到左方为设置模式,拨到右方为采集模式),POWER为电源开关(拨到左方为开启,拨到右方为关闭)密封型(如上右图):打开外壳为SET设置开关(拨到->方向为设置模式),POWER为电源开关(拨到->方向为开启电源) 采集器设置(从机配置)步骤 1.关闭采集器电源,设置开关调整到参数设置模式然后上电,此时指示灯为长亮,表示已经进入设置模式 2.接收端串口与电脑相连,然后打开电源,然后打开设置软件,点读取可以读取才采集器的信息,注意软件最下方会显示状态信息。 3.如果要设置修改参数,先选择参数,然后点<写入配置>,注意设置软件下方会有状态提示信息,如果想验证可以再读取信息来比对 4.关闭采集器电源,设置开关调整到正常收发模式,,然后上电,即可按新的参数进行采集了,每次发送时指示灯会闪烁一次 中继器设置(如上左图)步骤 1.需要开关设置,上方为设置开关(拨到下方为设置模式,拨到上方为采集模式),下方为电源开关(拨到下方为开启,拨到上方为关闭) 2.接收端串口与电脑相连,然后上电,然后打开设置软件,第一次不要先点读取参数 3.如果要设置修改参数,先选择参数后点<写入配置>,注意设置软件下方会有提示信息,如果想验证可以再读取信息来比对 4.重启接收器就有效 备注:接收器的组编号、频率一定要跟该组的采集器的组编号一致。

西南科技大学精度设计与检测复习题答案

西南科技大学精度设计与检测复习题答案 单项选择题: 1.5650h S φ是 C 。 A 、过渡配合 B 、间隙配合 C 、过盈配合 D 、任何配合 2.某机床主轴转速为50、63、80、100、125、…单位min r ,它们属于 B 系列。 A 、R5 B 、R10 C 、R40 D 、R80 3.一般说来,同一要素的形状误差 B 位置误差。 A 、大于 B 、小于 C 、大于或者小于 D 、没有关系 4.某轴对于基准轴线的径向全跳动误差为0.08mm ,则该轴对于此基准轴线的同轴度误差__A _。 A 、小于等于0.08mm B 、大于等于0.08mm C 、A 和B 均有可能 6.承受旋转负荷的滚动轴承套圈与轴(孔)的配合应比承受定向负荷的配合 B 。 A 、松些 B 、紧些 C 、松紧程度一样 D 、松紧都可以 7.工件的最大实体实效尺寸是___ C __。 A 、测量得到的 B 、装配时产生的 C 、设计给定的 D 、加工后形成的 8. 公差带的大小有 D 决定。 A 、基本偏差 B 、基本尺寸 C 、公差等级 D 、标准公差 10. 量块按级使用比按等使用精度__ B __。 A 、高 B 、低 C 、一样 11.下面为基孔制过盈配合的公差带表示方法的是 A 。 A 、67u H .; B 、78h H ; C 、67k H ; D 、67h U 12. 下列配合中配合性质完全相同的是 A 和 D 。 A 、6730g H φ; B 、7630h G φ ; C 、7630G h φ; D 、 6730h G φ; 14.在一般情况下,工作表面比非工作表面应选用_ B ____的表面粗糙度值。 A 、较大 B 、较小 C 、相同 D 、都可以 15. 平键联结中键与键槽宽和轮毂宽的配合采用 B __。 A 、基孔制 B 、基轴制 C 、间隙配合 D 、过盈配合 17. 国标规定优先选用基孔制配合,是____ C _ 。 A 、为了减少孔和轴的公差等级数量 B 、因为孔比轴难加工 C 、为了减少定尺寸孔用刀、量具的规格数量 D 、孔可以先加工 18. 设置基本偏差的目的是将___A__加以标准化,以满足各种配合性质的需要。 A 、公差带相对于零线的位置 B 、公差带的大小 C 、各种配合 19.对读数装置和分度机构的齿轮,在选择时,主要要求是 A 性能。

高精度Delta-Sigma AD转换器的原理及其应用

高精度Delta-Sigma A/D转换器的原理及其应用 本次在线座谈主要介绍TI的高精度Delta-Sigma A/D转换器的原理及其应用,Delta-Sigma转换器的特点是将绝大多数的噪声从动态转移到阻态,通常Delta-Sigma转换器被用于对成本与精度有要求的低频场合。本文首先将对TI的高精度Delta-Sigma A/D转换器进行综述性介绍,而后将介绍噪声的测量及芯片ADS1232等。 Delta-Sigma转换器综述 Delta-Sigma转换器是采用超采样的方法将模拟电压转换成数字量的1位转换器,它由1位ADC、1位DAC与一个积分器组成,见图1。Delta-Sigma转换器的优点表现在低成本与高分辨率,适合用于现在的低电压半导体工业的生产。 Delta-Sigma转换器组成 Delta-Sigma转换器由差分放大器、积分器、比较器与1位的DAC组成,输入信号减去来自1位DAC 的信号将结果作为积分器的输入,当系统得到稳定工作状态时,积分器的输出信号是全部误差电压之和,同时积分器可以看作是低通滤波器,对噪声有-6dB的抑制能力。积分器的输出用1位ADC来转换,而后比较器将输出数字1和0的位流。DAC将比较级的输出转换为数字波形,回馈给差分放大器。 Delta-Sigma转换器原理详述 积分器将量化噪声伸展到整个频带宽度,从而使噪声成型,而滤波器可以过滤掉绝大多数的成型噪声。有几个误差源会降低整个系统的效果,为了满足ADC的输入范围,很多信号要求一些放大电路和电平偏移电路,有时放大器在ADC的内部,有时使用外部放大器。无论是哪一种情况,放大器电压、电压漂移、输入偏置电流或采样噪声将引入误差信号。为了得到精确的ADC转换结果,放大器的误差应该通过调整来消除或减少。积分器对输入低频或直流信号内置一个低通滤波器,从而极大地降低了通道内的噪声。 典型的半导体放大器的噪声分为两个部分,1/F噪声和对地噪声,Delta-Sigma ADC的主要应用是在低频场合,因此1/F噪声的影响占主要地位。选择合适的放大器可以控制1/F噪声。由噪声频谱图可知(见图2),器件的噪声在高频主要是背景噪声,而在低频主要是1/F噪声,当越接近我们想要得到的直流信号时,1/F噪声越大。人们通常把1/F噪声想象成漂移,它是一个非常低频率的现象,常用的解决方法是采用窄波输入。

相关文档
相关文档 最新文档