文档库 最新最全的文档下载
当前位置:文档库 › 惯性导航基础知识 第二章

惯性导航基础知识 第二章

惯性导航基础知识 第二章
惯性导航基础知识 第二章

特别说明

此资料来自豆丁网(https://www.wendangku.net/doc/3818782628.html,/)

您现在所看到的文档是使用下载器所生成的文档

此文档的原件位于

https://www.wendangku.net/doc/3818782628.html,/p-45011134.html

感谢您的支持

抱米花

https://www.wendangku.net/doc/3818782628.html,/lotusbaob

自动驾驶技术IMU的基础知识和应用场景

自动驾驶技术IMU的基础知识和应用场景 前面我们介绍了MEMS 陀螺仪的一些基本概念,也说明了陀螺仪和加速度计是构成IMU惯性测量单元的主要部件。在查找IMU的过程中,我们经常会看到DOF,自由度的概念,今天我们就从DOF开始进一步理解IMU的基础知识和应用场景。 想象一个笛卡尔坐标系,形下图所示,具有x轴、y轴和z轴,传感器能够测量各轴方向的线性运动,以及围绕各轴的旋转运动。这就是所有惯性测量单元的根本出发点,所有惯性导航系统都是据此而构建。 这些器件带有一个三轴加速度计,显然这是指x轴、y轴和z轴。加速度计会测量线性速度的变化,也会响应重力。加速度计会根据其方向而对重力作出响应,如下图所示,这使得我们能够基于非常简单的三角公式估算其方向。利用arcsin公式,我们可以使用一个轴,而利用arctan公式,我们可以将笛卡尔坐标系中两个彼此正交的轴合并。二者的主要区别在于:arcsin方法能够测量+/- 90度,而arctan方法能够测量+/- 180度,也就是全部360度,这样您将知道您在哪一个象限。 陀螺仪对旋转角速率进行积分,您就能估算角位移。大致上说,加速度计具有很好的长期偏置稳定性和长期精度,但会对线性振动作出响应。当进行角度估计时,线性振动会表现出来,有时候需要滤波,这会给其他方面带来负担,或者有时候振动太高,超出加速度计测量范围,从而完全破坏角度估计。 因此,陀螺仪没有对线性振动的一阶响应,但因为它对输出进行积分,所以任何偏置误差都会转换为角度估计的漂移。任何系统的基本调整空间在于使用此类传感器的根本出发点。加速度计的长期稳定性更好,但易受振动影响。陀螺仪不易受振动影响,但长期稳定性较差,会导致估算更快地漂移。 IMU应用实例之工业检查系统 想象屏幕上方的灰色条是生产车间的天花板。天花板安装了某种摄像或照相设备,该设备

惯性导航作业

惯性导航作业

一、数据说明: 1:惯导系统为指北方位的捷连系统。初始经度为116.344695283度、纬度为39.975172度,高度h为30米。初速度 v0=[-9.993908270;0.000000000;0.348994967]。 2:jlfw中为600秒的数据,陀螺仪和加速度计采样周期分别为为1/100秒和1/100秒。 3:初始姿态角为[2 1 90](俯仰,横滚,航向,单位为度),jlfw.mat中保存的为比力信息f_INSc(单位m/s^2)、陀螺仪角速率信息wib_INSc(单位rad/s),排列顺序为一~三行分别为X、Y、Z向信息. 4: 航向角以逆时针为正。 5:地球椭球长半径re=6378245;地球自转角速度wie=7.292115147e-5;重力加速度g=g0*(1+gk1*c33^2)*(1-2*h/re)/sqrt(1-gk2*c33^2); g0=9.7803267714;gk1=0.00193185138639;gk2=0.00669437999013;c33=sin(lat纬度); 二、作业要求: 1:可使用MATLAB语言编程,用MATLAB编程时可使用如下形式的语句读取数据:load D:\...文件路径...\jlfw,便可得到比力信息和陀螺仪角速率信息。用角增量法。 2:(1) 以系统经度为横轴,纬度为纵轴(单位均要转换为:度)做出系统位置曲线图; (2) 做出系统东向速度和北向速度随时间变化曲线图(速度单位:m/s,时间单位:s); (3) 分别做出系统姿态角随时间变化曲线图(俯仰,横滚,航向,单位转换为:度,时间单位:s); 以上结果均要附在作业报告中。 3:在作业报告中要写出“程序流程图、现阶段学习小结”,写明联系方式。

导航系统

第1 章绪论 1.1 导航的基本概念 导航是引导运载体到达预定目的地的过程。导航分两类:(1)自主式导航,用飞行器或船舶上的设备导航,有惯性导航、多普勒导航和天文导航等;(2)非自主式导航,用于飞行器、船舶、汽车等交通设备与有关的地面或空中设备相配合导航,有无线电导航、卫星导航。在军事上,导航还要配合完成武器投射、侦察、巡逻、反潜和援救等任务。高效、高精度的导航系统更是我国这种发展中国家赶超发达国家的战略性资源和倍能器。在军用方面,随着新时期军事战略方针的转变及高新技术武器装备的发展,导航定位定向系统已经成为我军现代化建设中一项不可缺少的重要军事技术装备,其重要性表现在:它是信息战必不可少的基础设备,是建立战场统一坐标的前提,是快速、准确火力部署的保障,同时又是实现武器精确打击能力的必要条件。所以,导航定位定向系统对迅速提高我军的综合作战能力,加快数字化部队建设至关重要;在民用方面,国外的导航定位定向系统己在大地测量、定向钻并、隧道掘进、地面车辆导航、飞机进场着陆、航天航空遥感、机载重力测量、公路监测、地下油气管道监测、矿井监测、激光断面监测等方面得到广泛地的应用,并取得了巨大的经济效益。 在日常生活中我们经常接触到的导航是车载导航,车载导航属于非自主式导航,车载导航是利用车载GPS(全球定位系统)配合电子地图来进行的,汽车GPS导航系统由两部分组成:一部分由安装在汽车上的GPS接收机和显示设备组成;另一部分由计算机控制中心组成,两部分通过定位卫星进行联系。 1.2 惯性导航(INS)概述 通常说的惯性技术,是惯性器件、惯性测量、惯性导航、惯性制导和惯性稳定等技术的统称。惯性技术既是一门学科,也是一门工程技术,在陆、海、空、天各个领域有着广泛应用。惯性器件(陀螺仪和加速度计)、惯性仪表、惯性导航系统都是以牛顿力学定律为基础的。惯性导航系统通过加速度计实时测量载体运动的加速度,经积分运算得到载体的实时速度和位置信息。 惯性技术是对载体进行导航的关键技术之一,惯性技术是利用惯性原理或其它有关原理,自主测量和控制运载体运动过程的技术,惯性测量和惯性敏感器技。

酒店基础知识课程标准

《酒店基础知识》课程标准 课程名称:酒店基础知识 适用专业:酒店管理 一、课程定位和设计思路 (一)课程定位 《酒店基础知识》学习领域课程是酒店管管理专业的专业必修课之一,本课程的授课对象是酒店管理专业大一新生。该课程由有着丰富行业经验及酒店一线挂职经验的专兼职教师团队合力开发,通过本学习领域课程的学习,培养学生酒店职业习惯,“酒店新概念”,初步了解酒店“是什么”,“酒店服务礼仪”,开始构建“酒店职业”的语境;“酒店运行的流程”,对酒店的运行有全面了解,酒店职业技能训练,“酒店服务的技能”,知道“怎么做”以及“做什么”。 (二)设计思路 本课程的设计思路是依据酒店业素质要求,结合学生实习就业最广泛的部门,同时兼顾酒店管理专业学生全方位能力的培养,从态度、技能、意识、管理综合能力为目的导向,在授课内容的安排和选择上做了一系列调整,突破了传统教学中知识点安排与实际相脱节的状态。倡导任务驱动型教学模式,让学生在教师的指导下,通过感知、体验、实践,参与与合作等方式,实现任务目标,感受成功。在授课学习过程中进行情感和策略调整,以期形成积极地学习态度。 遵照以上设计理念,本课程逐步形成了以下设计思路: 第一、教学内容情景化 《酒店基础知识》课程内容要注重与工作真实场景相结合,选取前厅部、餐饮部、客房部为主要还原场景,剖析各部门在经营过程中的难点,掌握工作流程和工作标准,提高学生职业素养和职业敏感度,强化学生服务意识。 第二,教学方法任务化 本课程将采用任务驱动教学模式,突出强调学生的动手、动脑调查能力。根据课程所涉及的理论内容,精心设计实践任务与其相匹配,用实践去带动学生对于理论的理解。教学团队通过对实践任务的实施监控,来解决学生在实践中遇到的问题和疑惑,使学生在实践中的获取知识,得到提升。 第三,教学结果成果化 在教学过程中,让学生带着任务去学习,让他们在相应的课时内完成阅读、实践、调研,最终教学团队将相应调研结果汇总、分析,以调研报告形式集结成册,或汇编成文,以辅助教学。 本课程总学时:32学时,其中理论占20学时,实践占12学时;总学分:2学分。 二、工作任务和课程目标 (一)工作任务 本课程所针对的任务内容具体包括: 1. 酒店前厅部认知 2. 酒店客房部认知 3. 酒店餐饮部认知 (二)课程目标 通过理论与实践相结合的教学,使学生能比较全面地掌握酒店业的服务流程、岗位职责、操作标准,建立良好的酒店服务态度,提高学生行业认知,为以后的酒店实习和就业打下坚实

北航惯性导航大作业

惯性导航基础课程大作业报告(一)光纤陀螺误差建模与分析 班级:111514 姓名: 学号 2014年5月26日

一.系统误差原理图 二.系统误差的分析 (一)漂移引起的系统误差 1. εx ,εy ,εz 对东向速度误差δVx 的影响 clc;clear all; t=1:0.01:25; g=9.8; L=pi/180*39; Ws=2*pi/84.4*60; Wie=2*pi/24; R=g/(Ws)^2; e=0.1*180/pi; mcVx1=e*g*sin(L)/(Ws^2-Wie^2)*(sin(Wie*t)-Wie*sin(Ws*t)/Ws); mcVx2=e*((Ws^2-(Wie^2)*((cos(L))^2))/(Ws^2-Wie^2)*cos(Ws*t)-(Ws^2)*((sin(L))^2)*cos(Wi e*t)/(Ws^2-Wie^2)-(cos(L))^2); mcVx3=(sin(L))*(cos(L))*R*e*((Ws^2)*cos(Wie*t)/(Ws^2-Wie^2)-(Wie^2)*cos(Ws*t)/(Ws^2-Wi e^2)-1); plot(t,[mcVx1',mcVx2',mcVx3']); title('Ex,Ey,Ez 对Vx 的影响'); xlabel('时间t'); ylabel('Vx(t)'); 0,δλδL ,v v δδ

legend('Ex-mcVx1','Ey-mcVx2','Ez-mcVx3'); grid; axis square; 分析:εx,εy,εz对东向速度误差δVx均有地球自转周期的影响,εx,εy还会有舒勒周期分量的影响,其中,εy对δVx的影响较大。 2.εx,εy,εz对东向速度误差δVy的影响 clc;clear all; t=1:0.01:25; g=9.8; L=pi/180*39; Ws=2*pi/84.4*60; Wie=2*pi/24; R=g/(Ws)^2; e=0.1*180/pi; mcVy1=e*g*(cos(Wie*t)-cos(Ws*t))/(Ws^2-Wie^2); mcVy2=g*sin(L)*e/(Ws^2-Wie^2)*(sin(Wie*t)-Wie/Ws*sin(Ws*t)); mcVy3=g*cos(L)*e/(Ws^2-Wie^2)*(sin(Wie*t)-Wie/Ws*sin(Ws*t)); plot(t,[mcVy1',mcVy2',mcVy3']); title('Ex,Ey,Ez对Vy的影响'); xlabel('时间t'); ylabel('Vy(t)'); legend('Ex-mcVy1','Ey-mcVy2','Ez-mcVy3'); grid; axis square;

INS-J4光纤惯性导航系统

INS-J4光纤惯性导航系统技术指标 1 系统启动 1.1码头启动条件:提供码头位置信息,精度优于5m; 1.2码头启动时间:≤1h,启动后30分钟可保精度输出姿态信息,1小时后可保精度输出全量导航参数; 1.3海上启动条件:连续提供外部位置信息,精度优于5m,数据更新率不低于1HZ; 1.4海上启动时间:≤1h,启动后30分钟可保精度输出姿态信息,1小时后可保精度输出全量导航参数精度; 1.5海上启动舰艇机动限制时间:≤0.5h,前0.5h内舰艇匀速直航。 2 水平定位精度 2.1自主定位误差≤2.0nmile/8h(PEAK),1.0mile/8h(TRMS); 2.2和GPS组合的定位精度优于GPS精度。 3 航向精度 3.1独立惯导航向误差≤0.05。secФ(8h,RMS); 3.2和GPS组合的系统航向误差≤0.01。secФ(RMS)。 4 水平姿态精度 4.1独立惯导水平姿态误差≤0.028。(RMS);

4.2和GPS组合系统水平姿态误差≤0.0028。(RMS)。 5 垂向位移精度 5.1与GPS组合系统的垂向位移误差≤0.02m(RMS)。 6 水平速度精度 6.1独立惯导水平速度误差≤0.6Kn(RMS); 6.2组合系统水平速度误差≤0.02m/s(RMS)。 7 升沉速度精度 7.1独立惯导升沉速度误差≤0.6Kn(RMS); 7.2组合系统升沉速度误差≤0.02m/s(RMS); 8 适用范围 8.1地理范围:南北纬70度之内保精度工作; 8.2航向角速率≤40。/s; 8.3纵摇角速率≤30。/s; 8.4横摇角速率≤30。/s; 8.5航速范围:-10到60Kn; 9 环境指标 满足GJB1060-1991《舰船环境条件要求》和GJB4000-2000《舰艇通用规范》的要求。

全球卫星导航定位技术的原理及应用论文概要.doc

浅析全球卫星导航定位技术原理及应用 一、前言 导航定位的需求,可以说不是历来就有的,在人类早期物质生产活动中以牧猎为主,日出而作,日落而息。当时人们离不开森林和水草,或是随着水草的兴衰而漂泊不定,根本不需要什么明确的定位。但是,随设社会的发展,到了农业时代,在人们开发农田,兴修水利等相应活动中就逐渐产生了测绘定位的需求,可以说在这时,导航定位就在慢慢酝酿之中。等到了工业时代,人类的活动遍及全球,而一些工程比如航海、航空、洲际交通工程,通信工程,矿产资源勘探工程,地球生态及环境变迁的研究,就需要精确地定位。这些需求促使导航定位技术的发展,并把这项技术带到一个前所未有的发展时期,它的手段也从光学机械过渡到光电子精密机械仪器的时代。社会是不断发展的,科技是不断进步的,20世纪末,出现了电子计算器技术、半导体技术、激光技术、航天科学技术,它们的出现,把人类带到了电子信息时代和航天探索时代。当1957年前苏联发射了人类第一颗人造地球卫星,人类跟踪无线电信号中发现了卫星无线电信号的多普勒频移现象,这预示着一种全新的天空定位技术的可行性,由此,人类进入了卫星定位和导航的时代。 二、简介 1:全球卫星导航定位系统(global navigation and positioning satellite system采用极轨道星座和无源定位方式为美国提供全球覆盖的导航及定位系统。简称GPS。其轨道高度约为2×104 km,在6条轨道上运行有24颗卫星,每12 h绕地球一周,能保证地球上任何地点的用户都能至少同时看到4颗卫星。它属于非静止卫星定位系统。移动用户利用导航定位接收机来接收4颗(或4颗以上卫星的导航定位信号,并测量不同信号的到达时间,求出移动用户的三维空间坐标,自动给出经度和纬度显示,从而实现用户的自主定位。也可通过无线传输手段将用户定位信息传送到调度中心,实现对移动用户的调度控制。 GPS向用户广播的导航信号为双频,分别为1 575.42MHz 和1 226.60MHz。采用多种直接序列扩频码的码分多址和伪码测距技术。直接序列扩频码主要有P码

把握课型科学定位

科学定位把握课型 ——以一次普通话训练公开课为例 海南外国语职业学院公共教学部语文教研室王振 2012年2月3日星期五 关键词:课型理论课训练语音教学 内容提要:要科学定位各类课型,认识清楚理论知识在专业技能训练中的地位和作用,要大胆为理论课正名,就是要传播理论知识方法论知识,培育理论思维,用理论指导实训的。高职教育教学不仅要着眼于学生当前的就业,更要着眼学生未来可持续的职业人生发展,这才是内涵打造的应有之义。引导学生学会观察思考,学会用理论去科学指导实践变被动训练为主动学习。在课堂活动中基础知识和技能训练有机结合起来,以职业技能培养为目标,以技术为基点,以能力培养为目标,以素质提高为根本,才能培养现代社会职业发展需要的高职人才。 提升质量是教育的永恒话题,打造内涵的根本在于课堂教学。课堂是教师成长的舞台,课堂是科研的阵地。课堂是教师求真、求美、求善的园地。为此,2011年10月3日,星期一上午第三节,张琳老师在11级(1)班教室为全体教研室同志上了一堂精彩的公开课。课题是《语音的性质》。这一节课的主要内容是教语音的概念及语音的物理属性、生理属性、社会属性等概念。张老师教风自然稳健,基本功扎实,善于使用例子对比,在课堂上进行较多的普通话训练,体现训练为主的特色。课堂气氛活跃。张老师把这一课定位为理论课是恰当的。从课程知识的编排看,这一课是为学生语音训练提供必要的理论基础的。这一课既然是定位为理论课,课堂教学就要围绕着基本的语音理论概念去展开,引导学生正确掌握这些基本概念,用这些概念指导自己的普通话语音训练,自觉纠正方音的错误,从而取得举一反三的效果。要严格按照知识逻辑,而不是按照技能发展的逻辑去上课,更不可在理论与技能实训之间游移不定,造成实际的教学操作过程中目标不清。很多教师对于技能实训课把握的不错,但对于理论教学往往是不自觉地往实训课的教法靠拢。特别是当前要谨防出现这样的倾向。当下很多人一提高职的教学,往往开口就提倡要突出实训。就整体而言,高职教学要如此,但不是说不要基础的理论知识。过犹不及,过份强调技能往往会造成轻视理论知识的学习传授。适度进行理论学习,对于技能学习、后继的发展是有益的。这是探索高职课堂教学中需要旨意的。否则,高职教育只是等同于职业培训。高职教育首先是高等教育,是成就人的教育,然后才是职业教育。它必须有一定的深度和广度,它不仅考虑学生当前的职业诉求,

惯性导航系统发展综述报告

惯性导航系统发展综述报告 学号:姓名: 摘要:本文介绍了惯性导航系统的主要组成、基本原理、分类以及优缺点。列举了惯性导航系统在当前的主要应用领域及发展趋势。 关键词:惯性导航系统、陀螺仪、加速度计、GPS、组合导航 一.引言 美国《防务新闻》网站报道称,美军正在研制新型导航定位设备,以替代现在广泛使用的GPS卫星定位导航系统。GPS之所以被美军诟病,主要是由于该系统过于依赖脆弱的天基卫星系统。卫星在战时极易被干扰、破坏,或受到网络攻击,自身安全性难以得到有效保证。为有效解决GPS安全性问题和美军对精确定位、导航、授时服务的需求之间难以调和的矛盾,美军开始积极寻求GPS 的替代品。据称,基于现代原子物理学最新成就的微型惯性导航技术是未来代替GPS的一个重要的技术解决方案。 惯性导航系统是人类最早研发明的导航系统之一。早在1942年德国在V-2火箭上就率先应用了惯性导航技术。从2009年,美国国防部先进研究项目局就深入进行新一代微型惯性导航技术的研发与测试工作。据悉,这种新一代导航系统主要通过集成在微型芯片上的三个原子陀螺仪、加速器和原子钟精确测量载体平台相对惯性空间的角速率和加速度信息,利用牛顿运动定律自动计算出载体平台的瞬时速度、位置信息并为载体提供精确的授时服务。 美军也对该系统的未来发展充满信心。安德瑞·席克尔认为,就像30年前人们没有预想到GPS会发展到目前如此程度一样,在未来20年新一代微型惯性导航系统的发展程度也是无可限量的。 从此报道中可以看出研究惯性导航技术的重要作用。 二.惯性导航系统的概念 惯性导航(inertial navigation)是依据牛顿惯性原理,利用惯性元件(加速度计)来测量运载体本身的加速度,经过积分和运算得到速度和位置,从而达到

飞机导航基础知识

飞机导航基础知识 7.1航向 即飞机机头的方向(航向角是由飞机所在位置的经线北端顺时针测量到航向线的角度); 航向角的大小由飞机纵轴的水平投影线与地平面上某一基准线之间的夹角来度量。 【基准线:为真子午线(地理经线)的叫真航向; 基准线:为磁子午线(地理磁线)的叫磁航向; 基准线:为真子午线(地理磁场与金属机体磁场的合成磁场的水平分量)的叫罗航向】 7.2方位角 以经线北端为基准,顺时针转到水平面上某方向线的夹角。 分为电台方位角、飞机磁方位角、相对方位角 7.3航迹与航迹角 飞机重心在地面投影点移动的轨迹,叫航迹。 以飞机经线北端顺时针转至航迹的角度饺子航迹角。 7.4偏流角 当有侧风时,飞机的实际航迹就会与飞机的航向不一致; 航向线与航迹线之间的夹角称为偏流角;航迹线偏向航向的右侧叫正偏流角,反之为负偏流角。 7.5偏航距离 从飞机实际位置到飞机航段两个航路点连线间的垂直距离。 7.6地速 飞机在地面投影点移动的速度,即飞机相对于地面的水平移动速度。 7.7空速 飞机相对于周围空气的运动速度。 7.8风速与风向 指飞机当前位置处于相对地面的大气运动速度和方向; 空速、地速与风速三者之间的关系: 地速(Sg)=空速(Sa)+风速(Sw) 7.9航路点 飞机的飞行目的地、航路上可用于改变航向、高度、速度等或向空中交通管制中心报告的明显位置,叫做航路点。 7.10侧滑角 飞机所在位置的空速于飞机纵轴平面的夹角

无线电导航与导航参量 无线电导航的实现----接收和处理无线电信号: 导航台位置精确已知 接收并测量无线电信号的电参量 电参量与导航参量的对应关系---根据有关的电波传播特性,电参量转换成导航需要的、接收点相对于该导航台坐标的导航参量。 导航参量—表示飞机位置与基准点(一般为导航台)之间关系的一些参数。 典型导航参数:位置、高度、方向、距离、距离差等 位置线的定义 在无线电导航中,通过无线电导航系统 测得的电信号中的某一电参量(如幅度、 频率、相位及时间延迟等),可获得相应 的导航参量,对接收点而言,某导航参 量(如方向、高度、距离、距离差等) 为定值的点的轨迹线叫做位置线。 几何定位方法——用几何线或面相交来完成定位的方法 无线电定位普遍采用的一种方法 是无线电导航原理的一个重要组成部分 空间导航与平面导航 飞机导航—严格讲都是空间导航问题 空间导航的定位喜爱通过位置面相交来实现 飞机的空间导航问题可以转化为平面导航问题 在远距离导航中,飞机的高度同它到最近导航台的距离相比较是很小的,可以近似按平面导航来处理; 即使是近距离导航,飞机是装有数据计算机和有高度数据输入的情况下,可以通过计算修正来测得飞机的地平面位置。 位置线的类型:直线、圆、等高线、双曲线。 相应地,可以吧导航系统划分为: #侧向系统,如VOR、ADF的位置线是直线; #测距系统,如DME的位置线是平面上的圆; #测高系统,如LRRA(以地心为圆心的圆);

基础教育的目标定位

基础教育的目标定位: 我们看到的实情是,知识的授受作为教育的中心已成为一个非常基本和普遍的现象。知识的授受占据了教育的绝大部分的时空,消耗着教师和学生的大量时间、精力。这种单纯的知识教学很容易发展成为灌输一记忆式的教学。而这是造成现行教育诸多问题的一个直接原因。基础教育的对象是儿童和青少年,是还未成年的学生。基础教育给予每个人最初的生活体验。在这个时期的学生大部分的时间是在学校里度过的,学校生活是他们一生中一个极为丰富、极为重要的时期。基础教育中比知识授受更重要的是让儿童和青少年身心健康发展,让他们有健康的体质、正常的智力、正确的审美观以及丰富的情感,这是对生命最起码的尊重。我们有充分的理由确信,授受知识是有价值的,但我们有更多的理由确信,在基础教育中还有远比知识授受更值得关注的事。基础教育到底应该培养什么,是人才还是公民? 人才并不是基础教育的培养目标。但是在实践中这个问题却显得很模糊,少数尖子生的选拔与培养成了学校的全部工作,基础教育被办成了单纯的升学预备教育。为青少年儿童成为具有良好素质、健康人格的合格公民打下基础,它是教育的第一层次。而专业教育、职业教育则是教育的第二层次。培养具有良好素质、健康人格的合格公民,是基础教育的底线,以此为目标的教育评价,是基础教育的底线评价。首先,培养人才的倾向违背了基础教育的基础性和全面性。其次,培养人才的倾向违背了基础教育的公平性。人应该是先成人再成才,换言之,基础教育要先教会学生成人才切合基础教育中“基础”二字之义。基础教育应该教会学生怎么做人,做一个认同社会,又能被社会所认可的人。这实际上就是培养合格公民的过程。我们的学生就象是工厂流水线上生产出的标准产品,预先制定了产品的质量标准,然后按规格统一生产。于是我们的学生也就分为了两种:学业成绩好的和学业成绩差

北航惯性导航综合实验一实验报告

实 验一 陀螺仪关键参数测试与分析实验 加速度计关键参数测试与分析实验 二零一三年五月十二日 实验一陀螺仪关键参数测试与分析实验 一、实验目得 通过在速率转台上得测试实验,增强动手能力与对惯性测试设备得感性认识;通过对陀螺仪测试数据得分析,对陀螺漂移等参数得物理意义有清晰得认识,同时为在实际工程中应用陀螺仪与对陀螺仪进行误差建模与补偿奠定基础。 二、实验内容 利用单轴速率转台,进行陀螺仪标度因数测试、零偏测试、零偏重复性测试、零漂测试实验与陀螺仪标度因数与零偏建模、误差补偿实验。 三、实验系统组成 单轴速率转台、MEMS 陀螺仪(或光纤陀螺仪)、稳压电源、数据采集系统与分析系统。

四、实验原理 1.陀螺仪原理 陀螺仪就是角速率传感器,用来测量载体相对惯性空间得角速度,通常输出与角速率对应得电压信号。也有得陀螺输出频率信号(如激光陀螺)与数字信号(把模拟电压数字化)。以电压表示得陀螺输出信号可表示为: (1-1)式中就是与比力有关得陀螺输出误差项,反映了陀螺输出受比力得影响,本实验不考虑此项误差。因此,式(1-1)简化为 (1-2)由(1-2)式得陀螺输出值所对应得角速度测量值: (1-3) 对于数字输出得陀螺仪,传感器内部已经利用标度因数对陀螺仪模拟输出进行了量化,直接输出角速度值,即: (1-4)就是就是陀螺仪得零偏,物理意义就是输入角速度为零时,陀螺仪输出值所对应得角速度。且 (1-5) 精度受陀螺仪标度因数、随机漂移、陀螺输出信号得检测精度与得影响。通常与表现为有规律性,可通过建模与补偿方法消除,表现为随机特性,可通过信号滤波方法抵制。因此,准确标定与就是实现角速度准确测量得基础。 五、陀螺仪测试实验步骤 1)标度因数与零偏测试实验 a、接通电源,预热一定时间; b、陀螺工作稳定后,测量静止情况下陀螺输出并保存数据;

基础知识与技能训练的关系

四、对专业课教学中基础知识与技能训练关系研究的几点体会。 (1)基础知识与技能训练相互渗透,相互促进,不可分割。专业基础知识与专业技能训练是一个有机的整体。任何专业基础知识都来源于专业技术实践,应该说是长时间技术实践的经验总结,因此这一理论是具有科学性的,而且随着技术实践的不断发展,其理论必定会不断得到完善,最终成为一个科学体系。科学的理论必定能够科学地指导实践,只有在科学理论指导下的实践才是正确。教学中,我们只有用专业理论去界定每一个技能,去分解每一个动作,去指导每一次训练,才能做到理解的准确化,掌握的标准化,训练的统一化,结果的效率化。从理论到实践,再上生到理论去科学地指导实践,必然使学生学会观察、学会总结、学会用理论指导实践的科学方法,这可以使学生由被动地接受训练发展为主动地进行学习,由自然状态向自由王国发展,为其不断完善自己,不断发展自己提供良好的方法。 (2)文化科学知识是专业技能训练的重要基础。 ①经过长时间不断完善的专业技术本身就符合科学的原理,就蕴含着科学的内涵,只有揭示出它们之间的内在关系,用其指导专业教学,才能避免专业技术教与学的盲目性,才能使技能训练建立在科学的基础上。 ②将文化科学知识触于专业技能教学之中,技能训练将不再是对动作机械的摹仿和简单的重复,而是能使学生站在一定的高度来学习专业技术,他们获得的不仅仅是专业技术,而且还有丰富的文化科学知识。他们在训练中,不仅知其然,而且知其所以然,能以科学的态度去继承专业技术,也必将会促进专业技术的发展和创新。 ③文化基础知识的掌握,能为学生观察问题、思考问题、解决问题提供了更广阔的思维空间,他们将会用更新更科学的方法进行专业技术的学习,其自身素质也会得到很大提高,为他们成为专业技术人才奠定了基础。 2.正确处理基础知识与技能训练的关系。 (1)教学中要避免重理论轻实践和重实践轻理论的倾向,二者不可偏废。重理论轻实践会造成专业技能的萎缩,最终华而不实,纸上谈兵,而不能适应劳动实践的需要;而重实践轻理论会造就出现代的熟练工,他们没有相应的知识做基础,缺乏可塑造性和发展的潜力,这是不适应现代企业对技术人才的需要的。 (2)在专业教学中,应以理论分析为线,以技能训练为面,将基础知识始终贯穿于技能训练之中,不能将二者孤立开来。在强调基础知识指导作用的同时,重点在于应用,只有应用于实践中并能指导实践的理论,才是有用的。因此,只有把二者融为一体,才能相互促进,共同发展。综上理论研究与教学实验,我们以为,在专业教学中,只有把基础知识与技能训练有机地结合起来,以技术学习为基点,以能力培养为目标,以素质提高为根本,才能培养出适应现代食饮企业需要的烹饪技术人才,也才能使烹饪这一悠久的文化艺术绽放出时代的光彩。

捷联式惯性导航系统

1 绪论 随着计算机和微电子技术的迅猛发展,利用计算机的强大解算和控制功能代替机电稳定系统成为可能。于是,一种新型惯导系统--捷联惯导系统从20世纪60年代初开始发展起来,尤其在1969年,捷联惯导系统作为"阿波罗"-13号登月飞船的应急备份装置,在其服务舱发生爆炸时将飞船成功地引导到返回地球的轨道上时起到了决定性作用,成为捷联式惯导系统发展中的一个里程碑。 捷联式惯性导航(strap-down inertial navigation) ,捷联(strap-down)的英语原义是“捆绑”的意思。因此捷联式惯性导航也就是将惯性测量元件(陀螺仪和加速度计)直接装在飞行器、舰艇、导弹等需要诸如姿态、速度、航向等导航信息的主体上,用计算机把测量信号变换为导航参数的一种导航技术。现代电子计算机技术的迅速发展为捷联式惯性导航系统创造了条件。惯性导航系统是利用惯性敏感器、基准方向及最初的位置信息来确定运载体的方位、位置和速度的自主式航位推算导航系统。在工作时不依赖外界信息,也不向外界辐射能量,不易受到干扰破坏。它完全是依靠载体自身设备独立自主地进行导航,它与外界不发生任何光、声、磁、电的联系,从而实现了与外界条件隔绝的假想的“封闭”空间内实现精确导航。所以它具有隐蔽性好,工作不受气象条件和人为的外界干扰等一系列的优点,这些优点使得惯性导航在航天、航空、航海和测量上都得到了广泛的运用[1] 1.1 捷联惯导系统工作原理及特点 惯导系统主要分为平台式惯导系统和捷联式惯导系统两大类。惯导系统(INS)是一种不依赖于任何外部信息、也不向外部辐射能量的自主式导航系

统,具有隐蔽性好,可在空中、地面、水下等各种复杂环境下工作的特点。 捷联惯导系统(SINS)是在平台式惯导系统基础上发展而来的,它是一种无框架系统,由三个速率陀螺、三个线加速度计和微型计算机组成。平台式惯导系统和捷联式惯导系统的主要区别是:前者有实体的物理平台,陀螺和加速度计置于陀螺稳定的平台上,该平台跟踪导航坐标系,以实现速度和位置解算,姿态数据直接取自于平台的环架;后者的陀螺和加速度计直接固连在载体上作为测量基准,它不再采用机电平台,惯性平台的功能由计算机完成,即在计算机内建立一个数学平台取代机电平台的功能,其飞行器姿态数据通过计算机计算得到,故有时也称其为"数学平台",这是捷联惯导系统区别于平台式惯导系统的根本点。由于惯性元器件有固定漂移率,会造成导航误差,因此,远程导弹、飞机等武器平台通常采用指令、GPS或其组合等方式对惯导进行定时修正,以获取持续准确的位置参数。如采用指令+捷联式惯导、GPS+惯导(GPS/INS)。美国的战斧巡航导弹采用了GPS+INS +地形匹配组合导航。 惯导系统基本工作原理是以牛顿力学定律为基础,通过测量载体在惯性参考系的加速度,将它对时间进行积分,之后将其变换到导航坐标系,得到在导航坐标系中的速度、偏航角和位置信息等。对捷联惯导系统而言,平台的作用和概念体现在计算机中,它是写在计算机中的方向余弦阵。直接安装在载体上的惯性元件测得相对惯性空间的加速度和角加速度是沿载体轴的分量,将这些分量经过一个坐标转换方向余弦阵,可以转换到要求的计算机坐标系内的分量。如果这个矩阵可以描述载体和地理坐标系之间的关系,那么载体坐标系测得的相对惯性空间的加速度和角速度,经过转换后便可得到沿地理坐标系的加速度和角速度分量,有了已知方位的加速度和角速度分量之后,导航计算机便

导航定位技术原理及应用__复习资料

1试说明GPS全球定位系统的组成以及各个部分的作用。 (1) 空间星座 GPS卫星星座由24颗(3颗备用)卫星组成,分布在6个轨道内,每个轨道4颗。 基本功能:接收和存储由地面监控站发出的导航信息,接收并执行监控站的控制指令;利用卫星的微处理机,对部分必要的数据进行处理;通过星载原子钟提供精密时间标准;向用户发送定位信息;在地面监控站的指令下,通过推进器调整卫星姿态和启用备用卫星。 (2) 地面监控 地面监控部分由分布在全球的5个地面站组成,包括5个监测站,1个主控站,3个信息注入站。 监测站:对GPS卫星进行连续观测,进行数据自动采集并监测卫星的工作状况。 主控站:协调和管理地面监控系统,主要任务:根据本站和其它监测站的观测资料,推算编制各卫星星历、卫星钟差和大气修正参数,并将数据传送到注入站;提供全球定位系统时间基准;各监测站和GPS卫星原子钟,均应与主控站原子钟同步,测出其间的钟差,将钟差信息编入导航电文,送入注入站;调整偏离轨道的卫星,使之沿预定轨道运行;启用备用卫星代替失效工作卫星。 注入站:在主控站控制下,将主控站推算和编制的卫星星历、钟差、导航电文和其它控制指令等,注入到相应卫星的存储系统,并监测注入信息的正确性。 (3) 用户设备 由GPS接收机硬件和数据处理软件以及微处理机和终端设备组成。 GPS接收机硬件主要接收GPS卫星发射的信号,以获得必要的导航和定位信息及观测量,并经简单数据处理而实现实时导航和定位。GPS软件主要对观测数据进行精加工,以便获得精密定位结果。 2试说明我国北斗导航卫星系统与GPS的区别 一是使用范围不同。“北斗一号”是区域卫星导航系统,只能用于中国及其周边地区,而GPS是全球导航定位系统,在全球的任何一点只要卫星信号未被遮蔽或干扰,都能接收到三维坐标数据。二是卫星的数量和轨道是不同的。“北斗一号”有3颗,位于高度近3.6万千米的地球同步轨道。三是定位原理不同。“北斗一号”是用户首先发射要求服务的信号,通过卫星转发至地面控制中心,地面控制中心计算出用户机的位置后再通过卫星答复用户,而GPS只需要4个卫星的位置信息,由用户接收机解算出三维坐标,由于“北斗一号”本身是二维导航系统,仅靠2颗星的观测信号尚不能定位,观测信号的获得需要具有转发或收发信号功能,而通信功能是GPS不具备的。 3 GPS相较其他导航定位系统的特点 1.功能多,用途广.可以用于导航,测时,测速,测量及授时. 2.定位精度高. 3.实时定位. 天球:以地球质心为中心,半径r为任意长的一个假想的球体。 大地经纬度:大地经度是指通过参考椭球面上某一点的大地子午面与本初子午面之间的二面角,大地纬度是指过参考椭球面上某一点的法线与赤道面的夹角 天文经纬度:天文经度是指本初子午面与过观测点的子午面所夹的二面角,天文纬度是指过某点的铅垂线与赤道平面之间的夹角。 黄道:地球公转的轨道面与天球相交的大圆即地球绕太阳公转时,地球上观测者所见到太阳在天球上运动的轨迹春分点:当太阳在黄道上从天球南半球向北半球运行时,黄道与天球赤道的交点 赤经:从春分点沿着天赤道向东到天体时圈与天赤道的交点所夹的角度 赤纬:从天赤道沿着天体的时圈至天体的角度

(完整)北航惯性导航作业二.

(完整)北航惯性导航作业二. 编辑整理: 尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)北航惯性导航作业二.)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)北航惯性导航作业二.的全部内容。

惯性导航作业

一、数据说明: 1:惯导系统为指北方位的捷连系统.初始经度为116。344695283度、纬度为 39.975172度,高度h为30米。初速度v0=[—9。993908270;0.000000000; 0.348994967]。 2:jlfw中为600秒的数据,陀螺仪和加速度计采样周期分别为为1/100秒和1/100秒。 3:初始姿态角为[2 1 90](俯仰,横滚,航向,单位为度),jlfw。mat中保存的 为比力信息f_INSc(单位m/s^2)、陀螺仪角速率信息wib_INSc(单位rad/s),排列 顺序为一~三行分别为X、Y、Z向信息. 4:航向角以逆时针为正. 5:地球椭球长半径re=6378245;地球自转角速度wie=7。292115147e-5;重力加速度 g=g0*(1+gk1*c33^2)*(1-2*h/re)/sqrt(1—gk2*c33^2);g0=9.7803267714; gk1=0。00193185138639;gk2=0。00669437999013;c33=sin(lat纬度); 二、作业要求: 1:可使用 MATLAB语言编程,用MATLAB编程时可使用如下形式的语句读取数据: load D:\..。文件路径。。.\jlfw,便可得到比力信息和陀螺仪角速率信息。用角增 量法。 2:(1) 以系统经度为横轴,纬度为纵轴(单位均要转换为:度)做出系统位置曲线图; (2)做出系统东向速度和北向速度随时间变化曲线图(速度单位:m/s,时间单位:s); (3) 分别做出系统姿态角随时间变化曲线图(俯仰,横滚,航向,单位转换为:度,时间单位:s); 以上结果均要附在作业报告中. 3:在作业报告中要写出“程序流程图、现阶段学习小结”,写明联系方式。 (注意程序流程图不是课本上的惯导解算流程,而是你程序分为哪几个模块、是 怎样一步步执行的,什么位置循环等,让别人根据该流程图能够编出相应程序)

卫星导航与定位技术学科发展研究论文

卫星导航与定位技术学科发展研究论文 一、引言 卫星导航与定位技术是利用各种用户终端接收由卫星导航定位系统播发的、并沿着视 线方向传送的信号,对目标进行导航、定位和授时。将卫星导航与定位技术与传统的导航 定位技术相比较可知,卫星导航与定位技术具有高时空分辨率、全天候、连续地提供导航、定位和定时的特点。经过几十年的发展,卫星导航与定位技术取得了巨大的进步,已经成 为当今世界高技术群中对现代社会最具影响力的技术之一,并且已然渗透到国民经济的各 个领域,应用于海上舰船、陆地车辆、航空与航天飞行器的导航,以及大地测量、石油勘探、精细农业、精密时间传递、地球与大气科学研究以及移动通信等多领域。未来卫星导 航与定位技术将进入以保障地球系统环境安全、发展战略性新兴空间信息产业、探索地球 系统的新阶段。 卫星导航与定位技术是事关国民经济社会发展、国家科技进步、国家安全等方面的综 合技术领域,是国家科技实力与竞争力的重要标志之一。世界主要军事大国以及经济体都 竞相发展独立自主的全球卫星导航系统Global Navigation Satellite System,GNSS,包括:美国的GPSGlobal Positioning System、俄罗斯的GLONASS Global Navigation Satellite System,欧盟的GALILEOGalileo Navigation Satellite System以及中国的北斗卫星导航系统BDSBeiDou NavigationSatellite System。 当前,卫星导航与定位技术正在从单一的GPS时代转变为多星座并存兼容的GNSS新 时代,卫星导航体系全球化和增强多模化;从以卫星导航为应用主体转变为PNT定位、导航、授时移动通信和Internet等信息载体融合的新阶段。BDS的逐步建成为我国卫星导航与定位技术的进一步发展提供了良好契机。我国应该抓住这一机遇,大力推进卫星导航与 定位学科的进一步发展,为培养大量高精尖专业技术人才,争夺卫星导航与定位的国际市 场奠定良好基础。本文旨在调研国内外卫星导航与定位技术学科的发展现状,对国内外最 具代表性的高校和研究机构进行了对比分析,为我国卫星导航与定位技术学科的发展提出 若干建议。 二、卫星导航与定位技术学科发展 目前,国内研究卫星导航与定位技术的高校和机构主要包括:武汉大学、同济大学、 中南大学、河海大学、山东科技大学、长安大学、上海天文台、中国测绘科学研究院和中 国科学院测量与地球物理研究所等。本文以武汉大学作为国内卫星导航与定位学科的研究 代表。武汉大学卫星导航定位技术研究中心始建于1998年,以建设世界一流学科为目标,经过十余年的努力,在卫星导航及相关领域开展了广泛深入的研究,为我国自主卫星导航 系统的新技术、新方法和新应用的发展做出了巨大贡献。

网球基础知识和基本技能

网球基本教程之网球基础知识 一.网球装备 网球服装:传统的颜色,以白色为主;男性以短袖、短裤,女性以短袖、无袖、短裤或短裙 ( 有领之上衣 ) ;服装以舒适轻便,能伸缩吸汗的衣料为优。平底鞋,不可有钉子或颗粒之鞋底,会破坏场地表面。球袜需着较厚且易伸缩、吸汗的袜为主,尤其在坚硬的地面上,更需留意足部的受伤及水泡。 球拍:选购时依各人的臂力、握力、手腕力之强度来选择,依东方人的体型,为减轻手臂持拍的负担,应持较轻的球拍为宜;尤其初学者,为使球拍挥摆顺畅更应持较轻之球拍学习。握把之大小应与各人之手掌大小配合。 二.握拍法 1.东方式握拍法:亦称『握手式』握拍法。 优点:适合于反弹球打法,是底线战术最佳的打击法,尤其处理反弹至腰高的来球。 缺点:反手击球时握拍位臵必须移动,击球瞬间需作交换握拍位臵。 2. 大陆式握拍法:对于较低的反弹球及低截击极为适合,同时此握拍法无正反拍握法之分,处理截击、发球异常方便;但此种握拍法必须要具备强劲的腕力来配合击球时机,否则呈反效果。 3.西方式握拍法:很适合于正手强劲上旋球的打法,但反手击球非常不便;由于反手不易击球,一般选手不乐于执握此种握法。 三.球的旋转与种类 除平击球外,无论是正手拍或反手拍,在整个动作的过程中,若用劲打球,都会使球产生某种旋转,球的旋转方向与飞行拋物线及反弹后的方向,都有密切的关系,以下叙述欲使球旋转的动作: 正旋球(Topspin) 或称上旋球、高旋球(Overspin)--- 从球之下方往上抽,动作由低而高的往前推动,即产生正旋,球速加快,向移动方向迅速旋转,在空中急速落下,不易出界,且落地后反弹高而快,将使对手较难还击,此种打法需要腕力、臂力、腰力,充分配合,不断累积练习,方能体会其中诀窍。 反旋球(Backspin) 或称下旋球(Underspin)--- 与正旋球相反,从球之上方往下切,动作由高而低的往前击出,球是背向飞行方向旋转,过网球速较慢,故上飘非行距离长,入射角小所以反弹得低,原地弹起或直线落下,低空滑过地面,乃依打击强弱度,拍面角度,动作长短来定。 切击球(Chop shot)--- 使球拍成垂直,从上往下挥动,击打球之斜下方或正方,使球下坠的打法,通常此种打法是用在吊短球的战术。 平击球(Flat shot)--- 以水平方式向前推动,加以下压,为快速球击法,较难控制,容易出界。 四.步伐 在所有的球类活动中,步伐是占重要因素之一,尤其是手握球拍的运动,如果步伐运行正确熟练,处理来球必能得心应手,唯有稳健的步伐才有正确的打击,网球运动乃具挑战性,每一球都必须靠正确的判断和敏捷的步伐来击球,正确的脚步动作可使手臂发挥击球的效果,脚步快速与正确,可保持身体的平衡并使重心转移之动作圆滑,如何在急跑,急停中,掌握时机迎击来球,是打好网球之要件,一般而言,是用以碎步、滑步、快步、侧步来调整击球位臵,尤其是碎步,当球离身体很远需大步来移动,在接近时应改为小步,才能顺利取得深体与球间的距离。

相关文档