文档库 最新最全的文档下载
当前位置:文档库 › 空气中水份含量的计算方式

空气中水份含量的计算方式

空气中水份含量的计算方式
空气中水份含量的计算方式

空气中水份含量的计算方式

1.在百度文库中查到的不同温度下饱和湿空气含水量(单位:g/kg 干空气)

https://www.wendangku.net/doc/4b425199.html,/view/6d6e73707fd5360cba1adbd4.html

在百度文库中查到的空气密度表(单位:kg/ m 3)

https://www.wendangku.net/doc/4b425199.html,/view/777046848762caaedd33d4fe.html

如果按今天下午6点钟重庆市区温度37℃,相对温度50%,从上述两表可查到:37℃饱和湿空气含水量为41.679 g/kg 干空气,,干空气的密度为1.139kg/m 3,,可计算这一时刻重庆市空气中的含水量为: 50%*41.679*1.139=23.736克水/ m 3空气

如果按重庆市全年平均气温为25℃,平均相对湿度为80%,可计算出平均空气中含水量为:

80%*20.356*1.185=19.297克水/ m 3空气

2.也可通过经验公式

Hs=ηPs

P Ps -??.42218 其中:Hs-----空气中含水量,kg/ m 3

η-----相对湿度

Ps---某一温度下水的饱和压力,Pa

P----当地当时大气压力,一般可当做一个标准大气压101325Pa 今天下午6点钟重庆市空气中的水分含量为: Hs=0.56280

1013256280.42218-??=0.0265 kg/ m 3, 如果按重庆市平均气温和相对湿度,可计算出平均空气含水量:

Hs=0.83169

1013253169.42218-??=0.0207 kg/ m 3, 如果考虑温度变化导致空气密度、大气压力变化这与第一种方法计算相当。

如果按焦亚硫酸钠的风机为18000 m 3/h ,按宜化现在焚硫岗位所测定的炉气中水份为0.37~0.42mg/L(按0.4mg/L 计算,相当于0.4克/ m 3),那么每天从空气(水份按0.02 kg/ m 3计算)带入系统的水份为:

18000*24*(0.02-0.0004)=8367公斤/天

如果按夏天34℃,相对湿度为72%,空气中的含水量为: Hs=0.725307

1013255307.42218-??=0.031 kg/ m 3 每天带入系统的水分为:0.030*18000*24=12960公斤

化工原理复习题..干燥计算题

干燥 一、填空 1.在101.33kPa的总压下,在间壁式换热器中将温度为293K,相对湿度为80%的是空气加热,则该空气下列状态参数的变化趋势是:湿度:_____________,相对湿度:__________,露点t d_________。 2.在101.33kPa的总压下,将饱和空气的温度从t1降至t2, 则该空气下列状态参数的变化趋势是:湿度:_____________,相对湿度:__________,露点t d_________。 3.在实际的干燥操作中,常用____________来测量空气的湿度。 4.测定空气中水汽分压的实验方法是测量__________。 5.对流干燥操作的必要条件是___________________;干燥过程是__________相结合的过程。 6.在101.33kPa的总压下,已知空气温为40℃,其相对湿度为60%,且40℃下水的饱和蒸汽压为7.38kPa,则该空气的湿度为_____________kg/kg绝干气,其焓为_______kJ/kg 绝干气。 7.在一定的温度和总压强下,以湿空气做干燥介质,当所用空气的湿度减少时,则湿物料的平衡水分相应__________,其自由水分相应___________。 8.恒定的干燥条件是指空气__________,____________,_____________均不变的过程。9.恒速干燥阶段又称__________控制阶段,影响该阶段干燥速度的主要因素是_________; 降速干燥阶段又称_________控制阶段,影响该阶段干燥速度的主要因素是_________。 10.在恒速干燥阶段,湿物料表面的温度近似等于__________。 11. 在常温和40℃下,测的湿物料的干基含水量X与空气的相对湿度之间的平衡关系为:当相对湿度=100%时,结合水含量为0.26kg/kg绝干料;当相对湿度=40%时,平衡含水量X*= 0.04kg/kg绝干料。已知该物料的初始含水量X1=0.43kg/kg绝干料,现让该物料在40℃下与与相对湿度为40%的空气充分接触,非结合水含量为______kg/kg绝干料,自由含水量为__________kg/kg绝干料。 12. 干燥速度的一般表达式为___________。在表面汽化控制阶段,则可将干燥速度表达式为_______________________。 13. 在恒定干燥条件下测的湿物料的干燥速度曲线如本题附图所示。其恒速阶段干燥速度为_________kg水(m2.h),临界含水量为____________kg/kg绝干料,平衡含水量为____________kg/kg绝水量。 14. 理想干燥器或等焓干燥过程是指________________,干燥介质进入和离开干燥器的含焓值________________。 15. 写出三种对流干燥器的名称_________,_______________, _____________. 固体颗粒在气流干燥器中经历_______和_________两个运动阶段,其中_____是最有效的干燥区域。 二、选择题 1.已知湿空气的如下两个参数,便可确定其他参数( ) A. H,p B. H,t d C. H, t D. I,t as

相对湿度与露点对照表

室内温度25℃时露点与相对湿度对照表相对湿度露点相对湿度露点0.1% -51.75 4.0% -17.84 0.2% -46.08 4.1% -17.58 0.3% -42.62 4.2% -17.33 0.4% -40.11 4.3% -17.07 0.5% -38.12 4.4% -16.83 0.6% -36.47 4.5% -16.59 0.7% -35.06 4.6% -16.35 0.8% -33.82 4.7% -16.12 0.9% -32.72 4.8% -15.90 1.0% -31.73 4.9% -15.67 1.1% -30.82 5.0% -15.46 1.2% -29.99 6.0% -13.47 1.3% -29.22 7.0% -11.77 1.4% -28.50 8.0% -10.28 1.5% -27.82 9.0% -8.95 1.6% -27.19 10.0% -7.75 1.7% -26.59 11.0% -6.65 1.8% -26.03 1 2.0% -5.64 1.9% -25.49 13.0% -4.71 2.0% -24.98 14.0% - 3.83 2.1% -2 4.49 1 5.0% -3.02 2.2% -24.02 1 6.0% -2.25 2.3% -23.57 1 7.0% -1.15 2.4% -23.14 1 8.0% -0.83 2.5% -22.73 1 9.0% -0.15 2.6% -22.33 20.0% 0.50 2.7% -21.94 30.0% 6.24 2.8% -21.57 40.0% 10.48 2.9% -21.20 50.0% 1 3.86 3.0% -20.85 60.0% 16.70 3.1% -20.51 70.0% 19.15 3.2% -20.18 80.0% 21.31 3.3% -19.86 90.0% 23.24 3.4% -19.55 3.5% -19.25 3.6% -18.95 3.7% -18.67 3.8% -18.39 3.9% -18.11

怎样快速知道你所在地的空气中的含氧量

怎样快速知道你所在地的空气中的含氧量? 最近想了解我所居住的地方空气中的氧气含量,查了许多资料结论各异,差别很大。于是,自己根据有关理论计算出不同海拔高度使空气中的氧气含量,供朋友们参考。 地球周围包围着一层大气,总重量大约有5,130亿吨,形成大气压,每个平方米承受相当于10吨的压力。如以海平面为标准,这个压力相当于760毫米汞柱。大气由各种气体组成,其中78.09 %的体积为氮气,20.95 %的体积为氧气,剩下0.96 %的体积为二氧化碳和臭气。大气压即相等于氧分压与其他所有气体分压的总和。 大气的质量愈近海平面愈密集,大气压包括氧分压愈大;海拔越高,大气压及氧分压相应降低,即海拔每升高100米,大气压下降5.9毫米汞柱,氧分压下降约1.2毫米汞柱。 我根据以上原理计算:海拔高度为0时,氧分压为159.22毫米汞柱,一个毫米汞柱的氧分压相当于0.13%含氧量,海拔升高100米,大气压下降5.9毫米汞柱,氧分压下降约1.2毫米汞柱,氧含量下降0.16%,与海拔为0米时的氧含量相比,下降0.76%。 如海拔高度0米,空气含氧量下降0% ,空气含氧量20.95% 为0海拔含氧量的100%; 海拔高度100米,空气含氧量下降0.16%,空气含氧量20.79%, 为0海拔含氧量的99.2%; 海拔高度1000米, 空气含氧量下降1.6%,空气含氧量19.35%,为0海拔含氧量的92.4%;海拔高度5000米,空气含氧量下降8%, 空气含氧量12.95%, 为0海拔含氧量的61.8%; 海拔高度10000米,空气含氧量下降16% 空气含氧量4.95% , 为0海拔含氧量的23.6%; 海拔高度130930米,空气含氧量下降20.95%, 空气含氧量0%, 为0海拔含氧量的0%

空气温度湿度对照表

空气绝对湿度与空气相对湿度这两个物理量之间并无函数关系。例如,温度越高,水蒸发得越快,于是空气里的水蒸汽也就相应地增多。所以在一天之中,往往是中午的绝对湿度比夜晚大。而在一年之中,又是夏季的绝对湿度比冬季大。但由于空气的饱和水汽压也随着温度的变化而变化,所以又可能是中午的相对湿度比夜晚的小。由于在某一温度时的饱和水汽压可以从“不同温度时的饱和水汽压”表中查出数据,因此只要知道当前气温,算出当前空气中的水汽压,即可求出空气相对湿度来。 前言:空气有吸收水分的特征,PCB主料和辅料有相当部分也是对湿度十分敏感的材料,它们遇到空气中的相对湿度比工艺条件高或低时会吸湿或缩水造成自身形体变化,如黑菲林、重氮片、半固化片等。造成制程中不稳定的质量缺陷。今天我们来谈谈空气一个状态的参数——相对湿度。 生产中的相对湿度是由工业除湿机组和超声波加湿器自动调节的,当生产过程相对湿度局部出现小偏差,我们可以通过局部加减湿度来满足生产需求。例如直接喷水、开启超声波雾化加湿器设备、煮开水来增加空气湿度、开启除湿机及抽湿机,升温可以降低空气湿度。 湿度的概念是空气中含有水蒸气的多少。它有三种表示方法: 第一是绝对湿度,它表示每立方米空气中所含的水蒸气的量,单位是克/立方米;

第二是含湿量,它表示每千克干空气所含有的水蒸气量,单位是克/千克·干空气; 第三是相对湿度,表示空气中的绝对湿度与同温度下的饱和绝对湿度的比值,得数是一个百分比。(也就是指在一定时间内,某处空气中所含水汽量与该气温下饱和水汽量的百分比。) 相对湿度用RH表示。相对湿度的定义是单位体积空气内实际所含的水气密度(用d1 表示)和同温度下饱和水气密度(用d2 表示)的百分比,即RH(%)= d1/ d2 x 100%;另一种计算方法是:实际的空气水气压强(用p1 表示)和同温度下饱和水气压强(用p2表示)的百分比,即RH(%)= p1/ p2 x 100%。 前两种湿度表示它的计算结果是一个量化,并未能满足空气可利用的工艺状态,而我们工艺生产条件更注重空气状态,所以相对湿度是我们最常用衡量空气湿度的一种指标。饱和空气:一定温度和压力下,一定数量的空气只能容纳一定限度的水蒸气。当一定数量的空气在该温度和压力下最大限度容纳水蒸气,这样的空气称饱和空气;未能最大限度容纳水蒸气,这样的空气称未饱和空气。假如空气已达到饱和状态,人为的把温度下降,这时的空气进入一个过饱和状态,水蒸气开始以结露的形式从空气中分离出来变成液态水,这就是我们抽湿机的工作原理。

空气温度湿度对照表

单位体积空气中所含水蒸汽的质量,叫做空气的“绝对湿度”。它实际上就是水汽密度。它是大气干湿程度的物理量的一种表示方式。通常以1立方米空气内所含有的水蒸汽的克数来表示。单位为克/立方米或克/立方厘米。水蒸汽的压强是随着水蒸汽的密度的增加而增加的,所以,空气里的绝对湿度的大小也可以通过水汽的压强来表示。由于水蒸汽密度的数值与以毫米高水银柱表示的同温度饱和水蒸汽压强的数值很接近,故也常以水蒸汽的毫米高水银柱的数值来计算空气的干湿程度。空气中实际所含水蒸汽密度和同温度下饱和水蒸汽密度的百分比值,叫做空气的“相对湿度”。空气的干湿程度和空气中所含有的水汽量接近饱和的程度有关,而和空气中含有水汽的绝对量却无直接关系。例如,空气中所含有的水汽的压强同样等于1606.24pa(12.79毫米汞柱)时,在炎热的夏天中午,气温约35℃,人们并不感到潮湿,因此时离水汽饱和气压还很远,物体中的水分还能够继续蒸发。而在较冷的秋天,大约15℃左右,人们却会感到潮湿,因这时的水汽压已经达到过饱和,水分不但不能蒸发,而且还要凝结成水,所以我们把空气中实际所含有的水汽的密度ρ1与同温度时饱和水汽密度ρ2的百分比ρ1/ρ2×100%叫做相对湿度。也可以用水汽压强的比来表示露点温度是指空气在水汽含量和气压都不改变的条件下,冷却到饱和时的温度。形象地说,就是空气中的水蒸气变为露珠时候的温度叫露点温度。露点温度本是个温度值,可为什么用它来表示湿度呢?这是因为,当空气中水汽已达到饱和时,气温与露点温度相同;当水汽未达到饱和时,气温一定高于露点温度。所以露

点与气温的差值可以表示空气中的水汽距离饱和的程度。在100%的相对湿度时,周围环境的温度就是露点温度。露点温度越小于周围环境的温度,结露的可能性就越小,也就意味着空气越干燥,露点不受温度影响,但受压力影响。湿球温度的定义是在定压绝热的情况下,空气与水直接接触,达到稳定热湿平衡时的绝热饱和温度。

第05章 云中含水量的计算

第5章云中含水量的计算 在云雾物理中,含水量的“水”字,往往泛指固态水及液态水,在纯水云或纯冰云中,则分别指含液水量及含冰水量。 §5.1 绝热比含水量 §5.1.1 表示云中含水量的参量 云中含水量往往用两种参量表示。一种是“比含水量”,或叫“质量含水量”;另一种是“体积含水量”或“含水量”。 1. 比含水量的定义 比含水量是指每单位质量湿空气中含有多少质量的固体或(和)液体水。一般是用(克/千克或kg g)为单位的。 2. 体积含水量的定义 体积含水量是指每单位容积湿空气中含有多少质量的固体或(和)液体水,一般单位取(克/米3或3 g)。与大气中含水汽量的概念对应,第一种类似于“比 m 湿”的概念,第二种类似于“绝对湿度”的概念。 §5.1.2 上升空气的“绝热比含水量” 1. 绝热比含水量随高度的分布 当饱和空气按湿绝热抬升或上升时,必有多余的水汽(即过饱和部分的水汽)凝结出来,成为云中含水的部分。以比含水量来说,设有当从云底按湿绝热上升的1kg湿空气,它在云底时,因水汽正好饱和,无多余水汽可凝结为液水,故比含水量为零。随着空气上升,出现了过饱和状态,于是有多余的水汽凝结出来,具有了比含水量。如果这些凝结出的液水滴始终是随着气块上升而上升(请注意这个是前提条件),那末它的比含水量值,就会随着高度的增大而增大,直到其中水汽全部凝结出来时,比含水量变得最大;再上升,比含水量就不变了。在云内,上升空气并不一定将空气带到其中水汽全部凝结出来的程度。但只要带到空气不再上升的地方,而且在带到该处以前,凝结水并无成为降水而下降现象,虽然此时空气中仍保存有水汽,那里仍属于空气上升轨迹中比含水量极大的地方。如果此后空气下沉,则被携带的液水又会蒸发,使比含水量减少。这时,如果在云内不同高度探测,则所得的各比含水量值,必然正好是由云底上升到各该高度的空气因绝热膨胀冷却所凝结出的总比含水量。该含水量称为“(湿)绝热比含水

绝对湿度与相对湿度对照表

5%10%15%20%25%30%35%40%45%50%55% 60%65%70%75%80%85%90%95%100%5℃0.340.68 1.02 1.36 1.70 2.04 2.38 2.72 3.06 3.40 3.73 4.07 4.41 4.75 5.09 5.43 5.77 6.11 6.45 6.7910℃0.470.94 1.41 1.88 2.35 2.82 3.29 3.76 4.23 4.70 5.16 5.63 6.10 6.577.047.517.988.458.929.3915℃0.64 1.28 1.92 2.56 3.21 3.85 4.49 5.13 5.77 6.417.057.698.338.979.6210.2610.9011.5412.1812.8220℃0.86 1.73 2.59 3.45 4.32 5.18 6.04 6.917.778.649.5010.3611.2312.0912.9513.8214.6815.5416.4117.2725℃ 1.15 2.30 3.45 4.60 5.75 6.908.059.2010.3511.5112.6613.8114.9616.1117.2618.4119.5620.7121.8623.0130℃ 1.52 3.03 4.55 6.067.589.0910.6112.1213.6415.1616.6718.1919.7021.2222.7324.2525.7627.2828.7930.3135℃ 1.98 3.95 5.937.909.8811.8513.8315.8017.7819.7621.7323.7125.6827.6629.6331.6133.5835.5637.5339.5140℃ 2.55 5.107.6510.2012.7515.3017.8520.4022.9525.5028.0530.6033.1535.7038.2540.8043.3545.9048.4551.0045℃ 3.26 6.529.7813.0416.3019.5622.8226.0829.3432.6135.8739.1342.3945.6548.9152.1755.4358.6961.9565.2150℃ 4.138.2712.4016.5320.6624.8028.9333.0637.1941.3345.4649.5953.7257.8661.9966.1270.2574.3978.5282.6555℃ 5.1910.3915.5820.7825.9731.1736.3641.5646.7551.9557.1462.3367.5372.7277.9283.1188.3193.5098.70103.8960℃ 6.4812.9519.4325.9132.3938.8645.3451.8258.2964.7771.2577.7284.2090.6897.16103.63110.11116.59123.06129.5465℃8.0216.0324.0532.0640.0848.0956.1164.1272.1480.1588.1796.18104.20112.21120.23128.24136.26144.27152.29160.3070℃9.8519.6929.5439.3949.2459.0868.9378.7888.6298.47108.32118.16128.01137.86147.71157.55167.40177.25187.09196.9475℃12.0224.0336.0548.0660.0872.0984.1196.12108.14120.16132.17144.19156.20168.22180.23192.25204.26216.28228.29240.3180℃14.5729.1343.7058.2772.8387.40101.97116.53131.10145.67160.23174.80189.36203.93218.50233.06247.63262.20276.76291.3385℃17.5535.1052.6570.2087.75105.29122.84140.39157.94175.49193.04210.59228.14245.69263.24280.78298.33315.88333.43350.9890℃21.0242.0463.0584.07105.09126.11147.13168.14189.16210.18231.20252.22273.23294.25315.27336.29357.31378.32399.34420.3695℃25.0350.0675.09100.12125.15150.18175.21200.24225.27250.30275.33300.36325.39350.42375.45400.48425.51450.54475.57500.60100℃ 29.65 59.30 88.94 118.59 148.24 177.89 207.54 237.18 266.83 296.48 326.13 355.78 385.42 415.07 444.72 474.37 504.02 533.66 563.31 592.96 绝对湿度与相对湿度对应表(大气压:1bar) 相对湿度 (RH) 绝对湿度 g/m 3 温度

各类基准氧含量

1、氧含量:燃料燃烧后,烟气中含有的多余的自由氧,通常以干基容积百分数来表示。 2、基准氧含量浓度: 《生活垃圾焚烧污染控制标准》(GB18485-2014)规定:指在标准状态下以11%(V/V%)O2(干烟气)作为换算基准换算后的基准含氧量排放浓度。 制定基准氧含量的目的:在固定污染源排气监测中,规定基准氧含量主要是为了消除燃烧设备运行工况差异和人为因素的影响,必须用标准规定的基准氧含量或过量空气系数进行折算,以避免基准氧含量或过量空气系数过小造成“浓缩”,使排放浓度“增加”;或因基准氧含量值或过量空气系数过大造成“稀释”,使排放浓度“降低”造成达标排放的假像。所以只有通过折算为基准氧含量下的排放浓度才能进行合理的评价。 3、基准氧含量换算公式:(大气基准氧含量浓度)=(实测的大气污染物排放浓度)×【21-基准氧含量】÷【21-实测氧含量】 4、平时涉及到的污染标准及其对应的基准氧含量主要有: (1)《锅炉大气污染物排放标准》(GB13271-2014)中: 燃煤锅炉基准氧含量为9%; 燃气、燃油锅炉基准氧含量为3.5%; (2)《危险废物焚烧污染控制标准》(GB18484-2001)中: 基准氧含量为11%; (3)《水泥窑协同处置固体废物污染控制标准》(GB30485-2013)中: 基准氧含量为10%; (4)《生活垃圾焚烧污染控制标准》(GB18485-2014)中: 基准氧含量为11%; (5)《水泥工业大气污染物排放标准》(GB4915-2013)中: 水泥窑、窑尾余热利用系统:基准含氧量10%; 独立热源的烘干设备:基准含氧量8%; (6)《炼钢工业大气污染物排放标准》(GB28664-2012)中: 对于石灰窑、白云石窑废气:基准含氧量8%; (7)《火电厂大气污染物排放标准》(GB13223-2011)中: 燃煤锅炉基准氧含量为6%; 燃气、燃油锅炉基准氧含量为3%; 燃气轮机组基准氧含量:15%; (7)《陶瓷业排放标准》中:18%

空气中氧气含量

测定空气中氧气含量的几种常见装置 江苏省连云港市朐山中学赵美荣 序号装置实验操作 图 1 用凸透镜将太阳光聚焦到白磷,使白磷燃烧,一 段时间后,白磷燃烧。 燃烧完毕,待冷却至室温,打开弹簧夹,烧杯中 的水倒吸进入瓶内。 图 2 闭合电源开关,电阻丝发热,温度达到40℃时白 磷燃烧,产生大量白烟。 装置冷却后,由于左侧中氧气被消耗,气体压强 减小,水会在左侧中上升,且上升到1刻度处。 图 3 先关闭弹簧夹a,将螺旋状的铜丝在酒精灯的灼烧 后迅速插入大试管,接触试管底部的过量的白磷, 然后立即塞紧橡皮塞。 由于白磷的着火点低,白磷燃烧,产生大量的白 烟。 燃烧完毕,待冷却至室温,打开弹簧夹,烧杯中 的水倒吸进入瓶内。 图 4 用水浴加热的办法使白磷燃烧,足以使白磷着火 燃烧。 燃烧完毕,待冷却至室温,打开弹簧夹,烧杯中 的水倒吸进入瓶内。 图5 在一封闭的试管内放一颗白磷,用酒精灯微微加热白磷,白磷燃烧,有大量白烟生成,注射器被推向外侧(右侧)。 待装置冷却,注射器逐渐向内侧(左侧)移动,根据注射器停止时的位置,确定空气中氧气的体积。

图6 在一端封闭的粗玻璃管内放一颗白磷,用胶塞塞住,并推入到玻璃管中部,记下位置。 用酒精灯微微加热白磷,白磷燃烧,有大量白烟生成,胶塞被推向外侧(右侧)。 待装置冷却,胶塞逐渐向内侧(左侧)移动,根据胶塞停止时的位置,确定空气中氧气的体积。 图 7 用生石灰和水反应时放出的热量使白磷燃烧。 烧杯上方玻璃管(预先固定好)中部有一可左右滑 动的活塞,活塞左端管内密封有空气,活塞右端 的玻璃管口跟空气连通,实验开始前活塞处在刻 度5 cm处。 图8 在一个耐热活塞的底部放一小块(足量)白磷,然后迅速将活塞下压,使空气内能增大,温度达到40℃。 白磷燃烧,产生大量白烟,冷却至原来温度时,松开手,活塞最终将回到刻度4处。 图 10 在一玻璃管的两端,通过橡皮塞装上两只注射器, 玻璃管内装几团细的铜丝,把一个注射器内的空 气体积调到50mL的位置,另一只注射器不留空气 加热玻璃管的铜丝部位。 待铜丝被灼热后,把注射管缓慢地以2~3次/分的 速度左右推动。 大约3~4min之后停止加热。待玻璃管冷却至室温 后,注射器内空气减少。 图11 在滴管中盛适量的氢氧化钠溶液。将燃着的硫粉迅速插入集气瓶内,硫粉燃烧,发出淡蓝色的火焰。 燃烧完毕,待冷却至室温,打开弹簧夹,烧杯中的水倒吸进入瓶内。

如何计算压缩空气含水量

如何计算压缩空气含水 量 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

如何计算压缩空气含水量 关于压缩空气中含水值的计算与比较 1.在大气温度30℃,相对湿度70%的条件下,min的空压机: 24小时吸入水量=g1*70%**60*24=*70%**60*24=。 ( 由大气压力露点/水份含量表查出30℃下含水量g1为 m3) 2.通过冷冻式干燥机后的压力露点大概为15℃,在压力下: 通过冷干机后24小时含水量= g2**60*24=**60*24=38.63kg (在此温度下大气露点为-13℃,由大气露点/水份含量表查出g2为1.8764g/ m3。.) 3.通过吸附式干燥机后压力露点为-35℃,在压力 MPa下: 通过吸干机后24小时含水量=g3**60*24=**60*24=0.824kg (在此压力露点下大气露点为-53℃,由大气露点/水份含量表查出g3为0.04g/m3。.) 以上计算的是压缩空气中的饱和含水量,除了以上38.63Kg的水通过冷冻式干燥机进入后压缩空气管道外,其余378.93Kg水中除了一部分被过滤器、冷干机、贮气罐的排水阀排除外,还有相当一部分也进入了后压缩空气管道,经过温差的不断变化,冷冻式干燥机后除了潮湿的压缩空气以外,还有大量的液态水出现,对设备及生产带来了极大的危害。因此只有通过吸附式干燥机才能从根本上将压缩空气中的水份吸附排除,从而从根本上解决压缩空气中的水份对设备及生产的危害。 露点——指气体中的水份从未饱和水蒸气变成饱和水蒸气的温度。当未饱和水蒸气变 成饱和水蒸气时,有极细的露珠出现,出现露珠时的温度叫“露点”,表示气体中的含水量。 ? 露点分为压力露点和大气压力露点 压力露点——在该压力下水份凝结温度。 大气压力露点——在大气压力下水份的凝结温度。 露点与压力有关,与温度无关

氮气中含氧量的测定

氮气中含氧量的检测规程 1主题内容与适用范围: 本规程规定了氮气中氧含量的测定方法,通过分析及时了解产品质量,并且了解精馏塔的工作情况,也是做物料平衡计算的依据。 本规程适用于污氮气、污液氮含氧量的测定。 2方法原理 用焦性没食子酸碱性溶液的吸收法进行测定。样品氮气中氧被焦性没食子酸碱性溶液吸收,根据样品气体体积减少量读出氧含量,其反应为: 2C 6H 3(OK) 3+1/2O 2(OK) 3C 6H 2-C 6H 2(OK) 3+H 2O3试剂和溶液: 焦性没食子酸:分析纯; 氢氧化钾:分析纯;

硫酸:化学纯,5%(质量分数)水溶液; 甲基橙:分析纯0.1%(质量分数)水溶液; 液体石腊; 蒸馏水; 氯化钠:化学纯,饱和溶液; 吸收溶液:称取60g氢氧化钾,溶于40ml蒸馏水中,冷至室温。称取20g 焦性没食子酸,溶于100ml蒸馏水中。将上述两种溶液按1:1体积比混合均匀;封闭溶液:在氯化钠饱和溶液中,分别加入0.5%硫酸和0.1%甲基橙溶液3—5滴。 4仪器:奥氏气体分析器: 5准备工作: 1 5.1将仪器活塞洗净擦干,涂上少量活塞脂。 5.2吸收瓶中装入焦性没食子酸碱性溶液,液面用适量液体石腊封闭。 5.3套管中装满水,仪器用胶管连接后,从水准瓶加入封闭液。 5.4检查仪器气密性:将量气管和吸收瓶充满相应溶液至标线,关闭活塞,放低水准瓶,使仪器中形成负压。如仪器气密性好则量气管液面不应连续降低,吸收瓶液面不应连续升高。 6测定步骤: 6.1举高水准瓶,将量气管残气全部排出直至水封液从取样口溢出。 6.2取被分析气体30~50ml,清洗仪器管道2~3次后,于量气管中吸入稍多于100ml的分析气体,旋转三通活塞,使量气管和大气相通排出多余气体,将封闭液液面调至零刻度,关闭三通活塞。

空气温湿度参数

相对湿度 相对湿度(Relative Humidity)。 空气有吸收水分的特征,湿度的概念是空气中含有水蒸气的多少。它有三种表示方法: 第一是绝对湿度,它表示每立方米空气中所含的水蒸气的量,单位是千克/立方米; 第二是含湿量,它表示每千克干空气所含有的水蒸气量,单位是千克/千克·干空气; 第三是相对湿度,表示空气中的绝对湿度与同温度下的饱和绝对湿度的比值,得数是一个百分比。(也就是指在一定时间内,某处空气中所含水汽量与该气温下饱和水汽量的百分比。) 相对湿度用RH表示。相对湿度的定义是单位体积空气内实际所含的水气密度(用d1 表示)和同温度下饱和水气密度(用d2 表示)的百分比,即RH(%)= d1/ d2 x 100%;另一种计算方法是:实际的空气水气压强(用p1 表示)和同温度下饱和水气压强(用p2表示)的百分比,即RH(%)= p1/ p2 x 100%。 干球温度:指温度计测得的空气温度,常采用摄氏温度。在老式医疗用的温湿度计(现在CCTC 一厂还有在使用)左边那条温度计实测的温度即干球温度。 湿球温度:指湿球温度计测得的温度,常采用摄氏温度。在老式医疗用的湿温度计右边的那条温度计上面就写着湿球温度。可以发现它的构造,是在温度计的感温球包绕上一层棉纱,棉纱引到下面的水槽里,水槽注满水,水被棉纱吸上来包围着温度计的感湿球。水在常温下蒸发必须有外界的热能支持才能进行,热能的供给速度和水蒸发的速度达到一个稳定的平衡,而在这个平衡界面的湿度就是湿球温度。这湿球温度的大小将反映出空气相对湿度的大小。 温湿计:最原始的温湿计就像是老式医疗用的那种温湿度计,测定干球温度,然后与湿球温度比较差度,在刻度盘中查出现在实际的相对湿度的值,来得知现在空气的湿度状态。这刻度盘中的数据来自被誉为“空调之父”的美国人开利研制出的空气焓湿图。现在大部分采用特种感温感湿材料制成的温湿计,有的更加上机械旋转装置构成温湿自动记录仪,现在CCTC 普遍使用这种温湿记录仪。 绝对湿度 绝对湿度" 英文对照:absolute humidity; 1、绝对湿度是指每单位容积的气体所含水分的重量一般用mg/L作指标.相对湿度是指绝对湿度与该湿度饱和状态水蒸气含量之比用百分数表达. 2、绝对湿度是指单位体积的空气中含有水蒸汽重量的实际数值.饱和温度是指在一定的气压和一定的温度的条件下、单位体积的空气巾能够含有水蒸汽的极限数值. 3、绝对湿度是指在一定温度时,单位体积的空气中所含水蒸气的份量(gm.),相对湿度是指在一定温度时,空气中的实际水蒸气含量与饱和值之比,用百分比表示. 4、水汽含量是指一定体积空气内的水分总量,如水汽密度就是这些量值中的一个称为绝对湿度.相对湿度是空气样本内实际水汽含量与同温度下、同体积的饱和空气的水汽含量的百分比,是可直接观测的最普通的湿度量值. 5、在气体混合物单位体积中所含的水蒸气量称为绝对湿度.相对湿度是指在某个温度下,绝对湿度与完全饱和水蒸气最大湿度的比值,用百分数(%)来表示. 6、绝对湿度是指1立方米的空气呈水蒸气状态下的含水克数.1立方米空气所能吸收水蒸气的最大量叫作最大湿度或饱和点最大湿度很大程度上取决于温度.

可燃性气体含氧量安全限值的探讨

可燃性气体含氧量安全限值的探讨* 万成略** 汪莉*** (冶金部安全环保研究院)(北京科技大学) 【摘要】:焦炉煤气的安全含氧量目前存在一些异议,由此,提出如何确定可燃性气体氧含量安全限值的问题。本文提出了惰性气体对氧含量安全限值的影响。探讨了化学计算法和作图法对可燃性气体氧含量的简单确定,用此方法确定焦炉煤气的氧含量安全限值为4%。本文认为,焦炉煤气的安全氧含量可适当放宽,以2% 为参考值。 【关键词】可燃性气体氧含量安全限值 论述可燃性气体燃烧和爆炸的很多文献都提到燃烧和爆炸的三要素,即:可燃性气体处于一定的浓度范围,最低浓度以上的氧气需求,具有最小温度、能量、持续时间的点火源。工业生产中将可燃性气体的含氧量作为重要的控制指标。如GB6222—86《工业企业煤气安全规程》规定:发生炉煤气的含氧量大于1%时,禁止并入网路,水煤气含氧量达到0.8%时、高炉煤气含氧量达到1%时,立即切断电除尘器;转炉煤气含氧量达到2%时,立即停止回收。对于焦炉煤气,GB6222—86《工业企业煤气安全规程》和GB12710—92《焦化安全规程》都规定焦炉煤气含氧量达到1%时,电除尘器切断电源。然而可燃性气体安全含氧量控制到多少才是合适的,一直存在争论。文献[1、2、3]就认为焦炉煤气安全含氧量为1%定得太高,他们推算出焦炉煤气含氧量在14.7%之前不会发生爆炸。本文就可燃性气体含氧量安全限值的有关问题作如下探讨。 一、可燃性气体燃烧或爆炸含氧量限值的差异 文献[1、2、3]从焦炉煤气在空气中的爆炸下限为5.5%,爆炸上限为30%,推算出此时的空气浓度分别为94.5%和70%,按照空气中氧气的浓度为20.95%,而得出焦炉煤气爆炸下限时的氧含量为19.85%,爆炸上限时的氧含量为14.7%。然而,事实上,可燃性气体的含氧量安全限值却表明其不能这样简单推算。文献[4]列出部分气体不发生爆炸时的含氧量安全限值(表1),可见在不同惰性气体中含氧量安全限值不同,有的气体差别较大。文献[5]认为,加入的惰性气体的惰化作用与热容有关,二氧化碳比氮气更为有效。 下移许多。表2列出部分气体在空气中和氧气中的爆炸极限,可见空气中氮气的惰化作用。——————————— * 冶金部基础研究项目资助 ** 高级工程师 *** 副研究员

不同温度下空气中饱和水分含量及饱和蒸汽压..

不同温度下空气中饱和水分含量及饱和蒸汽压兰州真空设备有限责任公司 温度℃饱和水分含量 g/m3 饱和蒸汽压 Pa 温度℃ 饱和水分含量 g/m3 饱和蒸汽压 Pa 40 50.91 7368.624 -12 1.81 217.3824 38 46.00 6618.708 -14 1.52 181.2852 36 41.51 5935.392 -16 1.27 150.7824 34 37.40 5314.68 -18 1.06 125.0748 32 33.64 4483.512 -20 0.888 103.3632 30 30.30 4238.42 -22 0.736 85.248 28 27.20 3776.22 -24 0.590 70.0632 26 24.30 3357.972 -26 0.504 57.276 24 21.80 2981.016 -28 0.414 46.7532 22 19.40 2641.356 -30 0.340 38.0952 20 17.30 2336.33 -32 0.277 30.7692 18 15.36 2061.936 -34 0.226 24.9084 16 13.63 1815.516 -36 0.184 20.1132 14 12.05 1597.068 -38 0.149 16.1172 12 10.68 1401.264 -40 0.120 12.9204 10 9.35 1226.77 -42 0.096 10.2564 8 8.28 1072.26 -44 0.077 8.1252 6 7.28 933.732 -46 0.061 6.3936 4 6.39 812.52 -48 0.049 5.0616 2 5.60 704.628 -50 0.038 3.8628 0 4.85 609.923 -52 0.030 3.0636 -2 4.14 516.816 -54 0.024 2.3976 -4 3.52 436.896 -56 0.018 1.8648 -6 3.00 368.298 -58 0.014 1.4652 -8 2.54 309.8232 -60 0.011 1.0656 -10 2.14 259.74 -90 0.0093

空气温度湿度对照表

空气温度湿度对照表 相对湿度:空气中实际水汽压与同温度饱和水汽压之比值,称为相对湿度.其公式为f=e/E e为当时空气中的水汽压,E为当时干球温度下的饱和水汽压。 用于测定空气温度和湿度的一对并列装置的温度表,由两支规格相同的水银温度表或酒精温度表组成.其中一支球部扎有润湿纱布的称湿球温度表,没有包纱布的称干球温度表。 用干湿球温度表测定湿度时,按公式e=Et'-AP(t-t') 和f=(e/E)x100% 来计算此公式为干湿球温度表实用测湿公式. Et'为湿球温度下的饱和水汽压;A为干湿表测湿系数,随湿球周围的风速而变;P为当时气压;t 为干球温度;t'为湿球温度.用干湿球温度表测定空气湿度产生的误差,是由t',t,P的测量误差或A值引起的。 表1 室内空气质量标准 序号参数类别参数单位标准值备注 1 物理性温度℃ 22~28 夏季空调 16~24 冬季采暖 2 相对湿度% 40~80 夏季空调 30~60 冬季采暖 3 空气流速m/s 0.3 夏季空调 0.2 冬季采暖 4 新风量m3/h?人30a 5 化学性二氧化硫SO2 mg/m3 0.50 1h均值

6 二氧化氮NO2 mg/m3 0.24 1h均值 7 一氧化碳CO mg/m3 10 1h均值 8 二氧化碳CO2 % 0.10 1h均值 9 氨NH3 mg/m3 0.20 1h均值 10 臭氧O3 mg/m3 0.16 1h均值 11 甲醛HCHO mg/m3 0.10 1h均值 12 苯C6H6 mg/m3 0.11 1h均值 13 甲苯C7H8 mg/m3 0.20 1h均值 14 二甲苯C8H10 mg/m3 0.20 1h均值 15 苯并[a]芘B(a)P ng/m3 1.0 1h均值 16 可吸入颗粒物PM10 mg/m3 0.15 1h均值 17 总发挥性有机物TVOC mg/m3 0.60 8h均值 18 生物性菌落总数cfu/m3 2500 依据仪器定b 19 放射性氡222Rn Bq/m3 400 年平均值

04_云中含水量的计算

在云雾物理中,含水量的“水”字,往往泛指固态水及液态水,在纯水云或纯冰云中,则分别指含液水量及含冰水量。 §5.1 绝热比含水量 §5.1.1 表示云中含水量的参量 云中含水量往往用两种参量表示。一种是“比含水量”,或叫“质量含水量”;另一种是“体积含水量”或“含水量”。 1. 比含水量的定义 比含水量是指每单位质量湿空气中含有多少质量的固体或(和)液体水。一般是用(克/千克或kg g)为单位的。 2. 体积含水量的定义 体积含水量是指每单位容积湿空气中含有多少质量的固体或(和)液体水,一般单位取(克/米3或3 g)。与大气中含水汽量的概念对应,第一种类似于“比 m 湿”的概念,第二种类似于“绝对湿度”的概念。 §5.1.2 上升空气的“绝热比含水量” 1. 绝热比含水量随高度的分布 当饱和空气按湿绝热抬升或上升时,必有多余的水汽(即过饱和部分的水汽)凝结出来,成为云中含水的部分。以比含水量来说,设有当从云底按湿绝热上升的1kg湿空气,它在云底时,因水汽正好饱和,无多余水汽可凝结为液水,故比含水量为零。随着空气上升,出现了过饱和状态,于是有多余的水汽凝结出来,具有了比含水量。如果这些凝结出的液水滴始终是随着气块上升而上升(请注意这个是前提条件),那末它的比含水量值,就会随着高度的增大而增大,直到其中水汽全部凝结出来时,比含水量变得最大;再上升,比含水量就不变了。在云内,上升空气并不一定将空气带到其中水汽全部凝结出来的程度。但只要带到空气不再上升的地方,而且在带到该处以前,凝结水并无成为降水而下降现象,虽然此时空气中仍保存有水汽,那里仍属于空气上升轨迹中比含水量极大的地方。如果此后空气下沉,则被携带的液水又会蒸发,使比含水量减少。这时,如果在云内不同高度探测,则所得的各比含水量值,必然正好是由云底上升到各该高度的空气因绝热膨胀冷却所凝结出的总比含水量。该含水量称为“(湿)绝热比含水量”,或“饱和比含水量”。其值正好等于云底饱和比湿与各该高度饱和比湿之差,

空气中水分计算

空气中水份含量可通过查相关资料来计算 1.在百度文库中查到的不同温度下饱和湿空气含水量(单位:g/kg 干空气) https://www.wendangku.net/doc/4b425199.html,/view/6d6e73707fd5360cba1adbd4.html 在百度文库中查到的空气密度表(单位:kg/ m 3) https://www.wendangku.net/doc/4b425199.html,/view/777046848762caaedd33d4fe.html 如果按今天下午6点钟重庆市区温度37℃,相对温度50%,从上述两表可查到:37℃饱和湿空气含水量为41.679 g/kg 干空气,,干空气的密度为1.139kg/m 3,,可计算这一时刻重庆市空气中的含水量为: 50%*41.679*1.139=23.736克水/ m 3空气 如果按重庆市全年平均气温为25℃,平均相对湿度为80%,可计算出平均空气中含水量为: 80%*20.356*1.185=19.297克水/ m 3空气 2.也可通过经验公式 Hs=ηPs P Ps -??.42218 其中:Hs-----空气中含水量,kg/ m 3 η-----相对湿度 Ps---某一温度下水的饱和压力,Pa P----当地当时大气压力,一般可当做一个标准大气压101325Pa 今天下午6点钟重庆市空气中的水分含量为: Hs=0.56280 1013256280.42218-??=0.0265 kg/ m 3, 如果按重庆市平均气温和相对湿度,可计算出平均空气含水量:

Hs=0.83169 1013253169.42218-??=0.0207 kg/ m 3, 如果考虑温度变化导致空气密度、大气压力变化这与第一种方法计算相当。 如果按焦亚硫酸钠的风机为18000 m 3/h ,按宜化现在焚硫岗位所测定的炉气中水份为0.37~0.42mg/L(按0.4mg/L 计算,相当于0.4克/ m 3),那么每天从空气(水份按0.02 kg/ m 3计算)带入系统的水份为: 18000*24*(0.02-0.0004)=8367公斤/天 如果按夏天34℃,相对湿度为72%,空气中的含水量为: Hs=0.725307 1013255307.42218-??=0.031 kg/ m 3 每天带入系统的水分为:0.030*18000*24=12960公斤

增加居室含氧量对于人体健康的重要性

含氧量就是大气中所含氧气的比例,一般占20%左右,对人类生存来说,氧气甚至比水、食品更重要。每个成人每天需要氧气800克至1000克。在海平面,空气中的含氧量为20.95%;在海拔3000米处,空气中的含氧量约减少1/3;海拔5000米处,空气中含氧量约减少1/2。 《内经》认为:血液为五脏之精英。血液质量的好坏,是关系到人的健康与寿命,脑为精明之府,也要靠血来奉养,脑髓神经也要靠血液滋养而遍布全身,所以说血液是生命之本。 血液质量好,人就健康少病,血液质量不好人就多病不健康。所以不论男女老少增加血液的含氧量,提高血液流速,增加血液中的血红素才能有效提高血液的数量和质量,使人健康、少病多寿 现代人种田,使用大量化肥,造成粮食蔬菜有机物质缺乏,无机物质过盛,再加一些化学食品添加剂,造成现代人的血液质量下降,使人过四十众病峰起。医院也就成了中老年人最常去的地方,家家成了小药房。 这种现象说明,现代人的血液质量普遍降低,血中缺氧后造成的直接结果是血液流速下降,血中二氧化碳滞留时间过长,血液新陈代谢功能下降,因此很多人呈现亚健康状态,进而发展到不健康的状态。人体血液质量的好坏,是取决于血液中,血红素的多少。而血液中血红素的多少,又取决于血液中能与氧气产生化合物质的物质的多少,与氧气化合物质的物质多,血红素就多,与氧气化合物质的物质少,血红素就少,血红素少使血液中含氧量就少,血液中的含氧量少就造

成人体内血液流速下降,就造成人体血液一昼夜运行与五十周相距甚远。 血液一昼夜运行过于低于五十周就造成血液流速减慢,二氧化碳在血液内滞留时间过长,并影响了二氧化碳的排出,使一部分脑细胞仍处于半休眠状态,静下心来,就使人犯困,打瞌睡,同时,也影响了脑髓神经细胞的正常发育,使大脑记忆力下降。 所以不断地为血中补充氧化物质,增加血液中的血红素,增加血液能量,也就加速了血液合成物质的新陈代谢。冲刷体内一切稽留积聚,对人体内的任何毒瘤癌症都有一定预防治疗作用。由于血液的流速加快对高血压患者具有较强的回血降压作用。所以 《内经》五十营中谓之气血一昼夜运行五十周,身体就健康,血液充足,延缓衰老,永无肝风之病,并得天地之寿。 综合以上可以看出,只有对人体补充能与氧气产生化合物质的物质,才能使肺脏吸入的氧气与该物质产生有效的化合作用,才能化合产生出血红素,提高血液的含氧量加快血液流速,从而保证人体健康。但就当先环境来说,要想保证我们生活环境拥有足够的含氧量似乎并不容易。尤其是室内污染问题的频现更是使得我们无法畅享有氧健康呼吸,从而我们的健康也就无从保障。那么有什么方法能够保证我们生活环境的健康,畅享有氧健康呼吸呢?现在很多家庭都在选择健康环保的室内通风设备,来保证居室的含氧量。其中家用新风系统被很多人熟知。 新风系统是可实现建筑物室内外空气一天24小时,一年365天,

相关文档