文档库 最新最全的文档下载
当前位置:文档库 › 波罗的海芬兰湾各沿海监测站对反硝化和ANAMMOX过程中的季节性变化和短期变化的研究

波罗的海芬兰湾各沿海监测站对反硝化和ANAMMOX过程中的季节性变化和短期变化的研究

PRIMARY RESEARCH PAPER

Seasonal and short-term variation in denitri?cation

and anammox at a coastal station on the Gulf of Finland,Baltic Sea

Susanna Hietanen ?Jorma Kuparinen

Received:3November 2006/Revised:30May 2007/Accepted:16June 2007/Published online:10July 2007óSpringer Science+Business Media B.V.2007

Abstract Benthic processes were measured at a coastal deposition area in the northern Baltic Sea,covering all seasons.The N 2production rates,90–400l mol N m –2d –1,were highest in autumn-early winter and lowest in spring.Heterotrophic bacterial production peaked unexpectedly late in the year,indicating that in addition to the tem-perature,the availability of carbon compounds suitable for the heterotrophic bacteria also plays a major role in regulating the denitri?cation rate.Anaerobic ammonium oxidation (anammox)was measured in spring and autumn and contributed 10%and 15%,respectively,to the total N 2production.The low percentage did,however,result in a signi?cant error in the total N 2produc-tion rate estimate,calculated using the isotope pairing technique.Anammox must be taken into account in the Gulf of Finland in future sediment nitrogen cycling research.

Keywords Denitri?cation áAnammox áBenthic bacterial production áOxygen consumption áBaltic Sea

Introduction

The Gulf of Finland is a eutrophic,highly seasonal sub-estuary of the Baltic Sea.It is directly con-nected to the Baltic Proper at its western end and is under the in?uence of the Neva River at the eastern end.In the easternmost part of the Gulf,primary production is limited by phosphorus avail-ability,whereas the central and western parts are

nitrogen-limited (Kivi et al.,1993;Pitka

¨nen &Tamminen,1995).Nutrient loading into the Gulf has decreased in recent decades,due to the active protection of the Gulf and economic changes (depression)in the surrounding states of Russia

and Estonia (Pitka

¨nen et al.,2001).Still,120kt of nitrogen enter the Gulf of Finland every year (Kiirikki et al.,2003).Denitri?cation,the sequen-tial reduction of nitrate to nitrogen gas,is a process that removes nitrogen from the aquatic ecosystem.

Mass balance calculations (Perttila

¨et al.,1995)as well as ecosystem models (Kiirikki et al.,2006)indicate that about 70kt nitrogen is denitri?ed in the Gulf of Finland annually.Denitri?cation has been extensively measured in the open Baltic Sea depositional areas (Tuominen et al.,1998).How-ever,the rates measured have been lower than

Handling editor:J.Cole

S.Hietanen áJ.Kuparinen

Department of Biological and Environmental Sciences,University of Helsinki,P.O.BOX 65,Helsinki 00014,Finland

S.Hietanen (&)áJ.Kuparinen

Tva

¨rminne Zoological Station,University of Helsinki,Hanko 10900,Finland

e-mail:susanna.hietanen@helsinki.?

Hydrobiologia (2008)596:67–77DOI 10.1007/s10750-007-9058-5

predicted,and based on these measurements, denitri?cation has been calculated to remove only 45kt of nitrogen from the Gulf of Finland annu-ally.This estimate is based solely on measurements performed in the open Baltic Sea depositional areas,assuming that denitri?cation proceeds at the same rate throughout the entire basin.The shal-lower coastal areas are hypothesized to be sites of more intense denitri?cation due to differences in temperature and nitrate and carbon input.So far, no data have been published concerning coastal denitri?cation in the Gulf of Finland,except from the inner Neva estuary,where it was very low (Gran&Pitka¨nen,1999).Another natural process removing?xed nitrogen from the aquatic ecosys-tem,anaerobic ammonium oxidation(anammox), has recently been found in marine sediments also (Dalsgaard&Thamdrup,2002;Thamdrup& Dalsgaard,2002;Trimmer et al.,2003).No infor-mation on the importance of this process,in which ammonium is oxidized with nitrite to form nitrogen gas,is available from the Baltic Sea area.

To estimate seasonal and short-term variation in coastal nitrogen removal and carbon cycling, we measured denitri?cation and benthic bacterial production,oxygen consumption and oxygen penetration into the sediment at a coastal station in the northern Gulf of Finland.The processes were measured in May,August,October and December2003and in April2004.The contribu-tion of anammox to nitrogen reduction was estimated in May and August.

Methods

Study area and sampling

Samples were collected from a coastal station in the northern Gulf of Finland(Tva¨rminne Storfja¨rden, 59°51¢21,23°15¢56),representing a typical outer archipelago depositional area consisting of soft mud.The water depth at the sampling station is 33m,and the water column usually is thermally strati?ed from June to September.The highest bottom water temperatures,up to13°C,are found in late autumn when thermal strati?cation breaks, and the lowest,below2°C,in early spring when the water column has yet to stabilize after ice-out.Sedimentation at the station shows a typical pattern of about80%of the sedimenting carbon reaching the bottom at the end of the spring bloom in May, with little sedimentation during the rest of the year (Heiskanen&Leppa¨nen,1995;Heiskanen& Tallberg,1999).In an intensive study in1992,the total primary sedimentation at the station from March to October was34g C m–2(Heiskanen& Tallberg,1999),of which phytoplankton carbon contributed8.3g C m–2(Tallberg&Heiskanen, 1998).

In the present study,samples were collected throughout the year in1to2-week periods,with several sampling days in each period(Table1). Temperature and salinity of the near-bottom water were recorded daily using a CTD probe(SIS CTD plus100,Klausdorf/Schwentine,Germany).The sediment was sampled with a Gemini twin corer (ID of the cores80mm,length80cm).The oxygen and nitrate concentrations in the overlying water were measured from a single core,about2cm above the sediment surface,on every sampling day. The sediment dry weight and organic content(loss on ignition)were measured from a single core once every sampling period from the topmost1cm,and C%and N%were measured in the same samples in all except the April2004sampling period.The oxygen pro?les in the sediment were measured in October,December and April in undisturbed subsample cores(see denitri?cation),using Clark-type oxygen microelectrodes having100-l m tips (OX-100,Unisense A/S,Denmark),giving a spatial resolution of about200l m.

Denitri?cation and anaerobic ammonium oxidation

Denitri?cation was measured every sampling day, using the isotope pairing technique(IPT;Nielsen, 1992).Three replicate subsamples were taken in clear plastic(acrylic)cores(diameter 2.6cm, height9cm)so that about half the core was?lled with the sediment and half with the water from above.The samples were enriched with K15NO3 (98at.%labelling;Cambridge Isotope Laborato-ries,MA,USA)to a?nal concentration of100l M and incubated,with a magnetic stirrer on the lid of the cores,at in situ temperature in darkness for3h. Microbial activity was then terminated by adding

1ml of 100%ZnCl 2,the samples were mixed,and subsamples of the sediment-water slurry were transferred into gastight 12-ml glass vials (Exetain-er;Labco,High Wycombe,UK).These were sent to the National Environmental Research Institute,Silkeborg,Denmark,for analysis of N 2isotopic composition,using a gas chromatographic column coupled to a triple-collector isotopic mass ratio spectrometer (RoboPrep G +in line with Tracer-Mass,Europa Scienti?c,Crewe,UK).In May and August,the validity of the IPT at this coastal site was evaluated by testing a major assumption behind the method,namely the independency of the rate of denitri?cation of the 15NO 3–concentra-tion used in the incubations (Nielsen,1992).Brie?y,in sediments where denitri?cation is the only N 2-producing process,the estimated dinitro-gen (28N 2)production rate,based on naturally occurring 14NO 3–,is independent of the incubation concentration of the added 15NO 3–,whereas the production rate of labelled compounds (29N 2and 30

N 2)is linearly dependent on the concentration added.If anammox is present,both the 28N 2production rate and the production rate of labelled compounds correlate positively with the 15NO 3–concentration used in the experiment.If this is the case,the true rate of 28N 2production must be

estimated from the 14NO 3–/15

NO 3–ratios in the reducing zone and the ratios of labelled compounds produced at different 15NO 3–incubation concentra-tions,using revised equations (r-IPT;Risgaard-Petersen et al.,2003,2004b ).The resulting new 28

N 2production estimate is lower than the estimate calculated using the classical IPT,since part of the observed 29N 2production is attributed to anammox instead of denitri?cation.Three sets of samples were incubated with different concentrations of 15

NO 3–(40,100and 400l M)using randomized

blocks design.The results from these experiments

were ?rst analysed for signi?cant differences between rates in different concentrations using one-way randomized blocks ANOVA (a =0.05)and then further recalculated according to r-IPT.Benthic bacterial production

Benthic bacterial production was measured on every sampling day (except one)in the topmost 1cm of the sediment,using the leucine incorpora-tion method modi?ed for sediment samples (Hietanen et al.,1999).In short,100-l l sediment samples were slurried with ?ltered near-bottom water in microcentrifuge tubes.At the beginning of every sampling period,the saturation level of the 14C-leucine (3.7MBq/ml,Perkin Elmer Life Sciences,MA,USA)was measured by incubating samples with different 14C-leucine concentrations.The measured saturating concentration was then used in all the following incubations,run in three replicates and one blank.The samples were incu-bated at in situ temperature for 40–60min (tested for linearity of the uptake)and killed with 10%TCA.The unincorporated isotope was removed by repeated centrifugation after washing once with 80%ethanol and twice with 10%TCA.The samples were then suspended in a scintillation cocktail (Instagel Plus;Packard Instruments,Frankfurt,Germany)and gel was formed by adding water according to the manufacturer’s instructions.Radioactivity was recorded in a scintillation coun-ter (WALLAC 1414LSC;Wallac,Turku,Finland).Isotope dilution was measured once every sampling period,except in May 2003,by adding increasing amounts of unlabelled leucine to samples incubated with a constant amount of 14C-leucine (at saturation level)and using the reciprocal plot for calculation

Table 1Sampling periods,number of measurements and

environmental conditions 5cm above the sediment surface within periods

May-03

Aug-03Oct-03Dec-03Apr-04Denitri?cation 3

8883Anammox

11000Benthic bacterial production 38873Sediment oxygen consumption 07880O 2pro?les

009213Temperature (°C) 2.0 3.0 5.9 4.4 2.6Salinity 6.35 6.83 6.62 6.46 5.82O 2(l M)

33095310380390NO 2–+NO 3–

-N (l M)

0.29

1.40

1.64

2.26

0.29

(Findlay,1993).Leucine incorporation was con-verted to carbon production according to Simon& Azam(1989),using the measured isotope dilution factor.

Diffusive oxygen consumption in sediment

The sediment oxygen consumption was calculated in August,October and December from the con-centration change during incubation in plastic (acrylic)chambers similar to those used for the denitri?cation measurements,but equipped addi-tionally with a sampling tube at the side,1cm higher than the middle of the chamber.A series of 3–6samples were incubated in the dark,with one sample killed at the beginning of the incubation and thereafter every45min.The oxygen concentration was measured using Winkler titration.Oxygen diffusion into the chambers through the walls was measured in August.Sterile(0.2-l m?ltered)sea-water was bubbled with nitrogen gas until the ambient90-l M O2concentration was attained.The incubation chambers were?lled with the bubbled seawater,incubated in the coldroom the same way as the samples and the concentration increase in the sterile water was followed over time by Winkler titration.Diffusion of oxygen into the chambers through the walls was50l M O2h–1.This was taken into account in calculating the oxygen consumption rates in August.During all the other measuring periods the ambient oxygen concentration was approximately at saturation level and,according to Fick’s First law,no diffusion into the chambers was expected.After incubation the sediment sam-ples were sieved(mesh size100l m)to check for the presence of macrofauna.The few samples with animals,mainly Macoma baltica(L.),were omitted from the?nal calculations.Therefore the calculated rates represent diffusive oxygen consumption,not total sediment uptake.

Results

Annual variation in hydrography and oxygen conditions

The temperature in the near-bottom water varied from1.1°C to6.5°C between the sampling peri-ods,showing the typical annual dynamics of a coastal station.The water column was completely mixed in the?rst sampling period in May2003, with good oxygen conditions(330l M O2)in the bottom water,and strati?ed by temperature and salinity in August2003,with a clearly lowered oxygen level(95l M O2).By October2003,the strati?cation had deteriorated and the mixing had replenished the depleted oxygen stores(Table1). The average depth of oxygen penetration into the sediment was 3.2mm in October(SD0.3), 3.6mm in December(SD0.7)and 2.5mm in April(SD1.3).

Seasonal and short-term variability in

denitri?cation

There was wide and statistically signi?cant varia-tion in denitri?cation activity between seasons, whereas the short-term variation between the days within a sampling period was not signi?cant,except in December when a value from one day was exceptionally high(ANOVA,a=0.05,P<0.01). Denitri?cation was highest in October–December and lowest in April and May(Fig.2b).The bulk of denitri?cation was always coupled with nitri?cation (Fig.2b).Coupled nitri?cation-denitri?cation(Dn) was positively correlated(P<0.05)with sediment oxygen consumption and bacterial carbon produc-tion,as well as with temperature and nitrate concentration.Denitri?cation based on the nitrate available in the water column(Dw)correlated positively with nitrate availability and bacterial carbon production,but was not signi?cantly corre-lated with temperature.Neither Dn nor Dw was correlated with the O2concentration. Contribution of anammox to nitrogen reduction

In the experiments with increasing15NO3–con-centrations,both14NO3–reduction(28N2produc-tion)and15NO3–reduction(29N2and30N2 production)correlated with the concentration added(May P=0.00and0.00,August P=0.01 and0.00,respectively,Fig.1).Therefore the contribution of anammox was calculated accord-ing to the r-IPT.The rate of anammox was about 10l mol N m–2d–1,corresponding to10%of the total N2production rate in May,and about

30l mol N m–2d–1,corresponding to14%in August.The anammox caused the IPT to overes-timate the N2production rate by80%in May and 150%in August,at the routinely used100l M 15NO

3

–incubation concentration(Fig2a,b).Since we have no reason to believe that anammox would disappear for the rest of the year,the results from the IPT(shown uncorrected in Fig.2a)were also corrected for the effect of anammox outside the measured seasons.We used a conservative estimate of10%contribution to the total N2production(ra)as measured in May to recalculate the results from October,Decem-ber and April(Fig.2b),because we have no

information on the seasonality of the process in the Baltic Sea.However,if the increase in relative importance from May to August were correlated with the overall increase in activity caused by the rising temperature and proceeding of the miner-alization of the sedimented spring bloom,the higher ra levels could have lasted for the rest of the year and,consequently,the values given here for the N2production could still be overestimates.On the other hand,if the percentage of anammox would for some reason decrease from October to April,these new values would be underestimates of the true N2production.The effect is clear when the annual N2production in the Gulf of Finland is calculated by multiplying the rates measured at the coastal station(which are similar to the rates measured in the open sea(Tuominen et al., 1998))for the entire area of the Gulf of Finland

(29,600km2).Using10%anammox,90%deni-tri?cation for May(measured),October,Decem-ber and April and15%anammox,85% denitri?cation for August(measured)gives 39,100t N removed per year(Fig.2b).Using the same data so that10%anammox,90% denitri?cation are used for May(measured)and 15%anammox,85%denitri?cation for August (measured),and no anammox is assumed for October,December and April when it was not measured,gives43,100t N.If anammox is totally overlooked and only the results from classical IPT are used,denitri?cation removes53,800t N annually from the Gulf of Finland(Fig.2a). Seasonal and short-term variability in benthic bacterial production

Benthic leucine uptake became saturated at about 4l M in all seasons.The isotope dilution,mea-sured in all but the May samples,varied from no dilution(factor1)in April to the highest dilution (factor5.2)in December.Benthic bacterial pro-duction was low in the early spring and increased towards the end of the year(Fig.1).Assuming no isotope dilution in May2003(none occurred in April2004),bacterial production increased from

6.5mmol C m–2d–1in May to84mmol

C m–2d–1in December.It varied in a statistically signi?cant manner(a=0.05,P<0.01)daily with-in a season except in April2004(when there were only3sampling days)and between the seasons as well.Benthic bacterial carbon production corre-lated with denitri?cation(Dn and Dw),sediment oxygen consumption,temperature and nitrate concentration.

Sediment oxygen consumption

Oxygen consumption did not vary in a statistically signi?cant manner(a=0.05,P>0.01)daily with-in a season except in October(P<0.01),but varied between the seasons(Fig.1),showing the lowest respiration rates in low oxygen concentra-tions in August(average5.4mmol O2m–2d–1at 95l M O2).There was no difference between the rates in October and December(averages10.1 and11.5mmol O2m–2d–1at310and380l M O2).Oxygen consumption correlated positively with anammox and Dn(but not with Dw),benthic bacterial carbon production,temperature and oxygen concentration.Unfortunately it was only measured in August,October and December, leaving the low-activity season,early spring, unaccounted for.

In August,live animals were found in some of the subsamples almost every day.In these sam-ples the average oxygen consumption was twice the diffusive oxygen consumption.Surprisingly, while the oxygen concentration increased towards the end of the year(Table1),the amount of live macrofauna decreased,so that in October only eight animals were found in the63subsamples and in December only three in45subsamples.In these rare samples with animals the oxygen consumption was increased by about40%and 75%,respectively,compared with the diffusive oxygen uptake.

Discussion

Seasonal variation in N2production

Rates of N2production at the coastal depositional bottom studied,90–400l mol N m–2d–1(excep-tion:one day in December550l mol N m–2d–1), were slightly lower than the rates measured in the central Gulf of Finland(100–650l mol N m–2d–1, Tuominen et al.,1998).The N2production,of which denitri?cation contributed85–90%,fol-lowed an annual cycle similar to that of the open Baltic Sea areas,with low spring values and higher late summer–early winter rates.The driv-ing forces behind the seasonal variation in deni-tri?cation in the open Baltic Sea areas are presumably organic carbon(sedimentation),tem-perature,nitrate concentration and oxygen avail-ability in the sediments.Carbon sedimentation has a2-fold impact,since it increases the activity of the denitrifying heterotrophic bacteria through substrate availability,but also causes a decline in the oxygen concentration.Sedimentation of car-bon in the study area was much higher than in the open Gulf of Finland(study area34g C m–2in an 8-month study(Heiskanen&Tallberg,1999),vs. station GF2,21g C m–2in a6-month study (Leivuori&Vallius,1998)).Still,denitri?cation

was lower in the coastal area.The carbon content of the sediment was measured in May,August, October and December2003,with values decreasing from6.5%in the spring to5.5%in December.At the same time,denitri?cation tended to increase.Therefore,the absolute car-bon sedimentation and content alone could not explain the observed denitri?cation rates.Instead, a key to the denitri?cation dynamics may be the availability of carbon compounds suitable for the heterotrophic denitrifying bacteria.In the study area,most of the annual sedimenting carbon reaches the sea?oor immediately after the spring bloom,in the form of diatoms(Heiskanen& Leppa¨nen,1995;Tallberg&Heiskanen,1998). Tallberg(1999)found that68%of the spring diatoms disappeared within1month in9–12°C lake sediments.Mineralization of the diatom cells at the coastal station is most likely slower and can support benthic processes up to late summer.The increasing leucine isotope dilution factors sug-gested that there were abundant mineralization products available for the bacteria in autumn, indicating increased substrate supply for the heterotrophic denitri?cation bacteria.Why deni-tri?cation peaked in October rather than in December,when the bacterial carbon production did,may be related to the decreasing tempera-ture.

Being microbial processes,both denitri?cation and anammox are temperature-dependent,but apparently respond differently to changes in environmental temperature.In the permanently cold(<–1°C year-round)sediments of Greenland, anammox was maximal at12°C,whereas denitri-?cation exhibited maximum activity at24°C (Rysgaard et al.,2004).In the Skagerrak,where the annual temperature variation is from4°C to 6°C,the optimal temperature for anammox was 15°C and the activity decreased sharply above 25°C,whereas denitri?cation had a wider optimal range(15–32°C)and was still detectable at45°C (Dalsgaard&Thamdrup,2002).In the open Gulf of Finland the annual variation is limited to a few degrees around3°C,and the denitri?cation rates measured showed no temperature dependency (Tuominen et al.,1998).In the study area,tem-peratures ranged from near zero in spring to 6.5°C in autumn,and all the measured process rates(N2production,bacterial production and oxygen consumption)correlated positively with temperature.The denitri?cation rate doubled and anammox rate tripled from May to August,while at the same time the temperature rose from2°C to3°C.Denitri?cation nearly doubled again and anammox rate increased by30%(since lower ra levels were used in the calculations)from August to October,while the temperature doubled to 6°C.This suggests that although the increase in the rate in summer may have been related to the small increases in temperature,other factors such as carbon and O2concentration(through nitri?-cation)apparently co-limit the rates.In Decem-ber,when bacterial production and sediment oxygen consumption peaked,the N2production rates were already decreasing,as was the tem-perature.

The availability of nitrate in the bottom water had only a minor effect on the denitri?cation rate. While the uncoupled denitri?cation(Dw)was enhanced by higher nitrate concentrations,the amount of total denitri?cation was closely con-nected to the nitrate formed by nitri?cation in the sediment(Dn).Nitri?cation,in turn,is largely regulated by O2availability in the sediment,and therefore the anoxic denitri?cation process does not simply increase with decreasing O2concen-tration.In Storfja¨rden,the percentage of Dw in total denitri?cation was about5%for May, October and December,and as low as0.4%in April,but increased to10%in August when the O2concentration was low.This indicates either that the nitri?cation/denitri?cation ratio de-creased or that nitri?cation was concentrated in a shallower layer closer to the sediment surface, leading to nitrate diffusion into the water column and thereby uncoupling from denitri?cation. Unfortunately,there were no measurements of oxygen penetration in August.The surface of the sediment,however,was oxidized in all sampling seasons,as demonstrated by the light brown layer covering the darker,deeper,reduced layers.This oxidized layer was thinner,but still present,in August.We calculated the approximate oxygen penetration depth,using the oxygen consumption rate,oxygen concentration in the bottom water and oxygen diffusion coef?cient into the sediment in August;the depth was about 1.6–1.9mm,

which is half the depth measured during good oxygen conditions in the bottom water.Similarly, the Dn rates were40–50%lower than the rates in October and December when much higher O2 concentrations and consumption rates were mea-sured(Fig.2b,Table1).A direct linear relation-ship between denitri?cation and sediment oxygen demand exists in a wide variety of estuarine, freshwater and continental shelf sediments(Sei-tzinger,1987;Seitzinger&Giblin,1996).A positive correlation between oxygen consumption and Dn(but not Dw)could also be seen in the present study in the late summer–winter period. Kemp et al.(1990)found that the nitri?cation rates in Chesapeake Bay were negligible at O2 concentrations<125l M,because the sediment O2consumption exceeded O2diffusion into the sediment and restricted nitri?cation to the sedi-ment surface.In Storfja¨rden,the O2concentra-tion dropped to95l M in August,but the sediment did not become totally anoxic,because the O2consumption also decreased.Clearly the oxygen de?ciency did not totally block nitri?ca-tion at the concentrations observed,since the denitri?cation values were high in August.Previ-ous exposure to low O2concentrations or even anoxia can also cause adaptations in nitrifying communities,so that bacteria repeatedly experi-encing such conditions have higher af?nity for O2 than bacteria from permanently oxic environ-ments(Bodelier et al.,1996).This may also be the case in the Storfja¨rden area.

Spatial variation in N2production

So far,all the published denitri?cation data from the Gulf of Finland have been obtained from depositional areas.Extrapolation from these to the entire Gulf resulted in an estimate of30% removal of the annual nitrogen loading to the Gulf of Finland(Tuominen et al.,1998,this study).However,only25–35%of the Gulf of Finland bottom can be classi?ed as depositional areas(H.Kankaanpa¨a¨,Finnish Institute of Marine Research;H.Vallius,Geological Survey of Finland,https://www.wendangku.net/doc/49560234.html,m.)and thus the present estimates for the Gulf of Finland may be biassed, since no approximation of the variability between different(transport or erosion)bottoms can be given.Stockenberg&Johnstone(1997)measured denitri?cation in the Bothnian Bay in accumula-tion as well as transportation areas,?nding that the denitri?cation capacity of transportation bot-toms was only30%of that of the accumulation basins.If this is the case in the Gulf of Finland as well,the nitrogen removal via denitri?cation and anammox would only cover15–20%of the annual loading,further illustrating the discrepancy between the measured and modelled removal rates.

Anaerobic ammonium oxidation(anammox)

In the present study,the presence of anammox was explored for the?rst time in the Gulf of Finland.Anammox produced10–15%of the total N2production at the coastal station studied.The relative contribution of anammox to the overall nitrogen reduction is often minor in coastal environments with high-denitri?cation rates and increases with depth,as the rate of denitri?cation decreases(Thamdrup&Dalsgaard,2002;Risg-aard-Petersen et al.,2004a;Engstro¨m et al., 2005).Accordingly,a higher relative contribution in this study could have been expected in May, when denitri?cation was low,than in August, when denitri?cation was maximal.However,the absolute rate of anammox tripled from May to August,while the denitri?cation rate doubled.A concomitant increase of1°C(from2°C to3°C)at these low temperatures may have had a larger effect on anammox than on denitri?cation (Dalsgaard&Thamdrup,2002,Rysgaard et al., 2004),causing an increase in the relative percent-age of anammox from10%to15%of the total N2 production.A trend similar to the one observed here—increase in importance of anammox with increasing overall activity—was described in the Thames Estuary(Trimmer et al.,2003)and in subtropical mangrove sediments in Australia (Meyer et al.,2005).In the Thames Estuary, anammox was positively correlated with the organic carbon content,whereas in the subtrop-ical mangrove sediments,nitrite and nitrate availability regulated anammox https://www.wendangku.net/doc/49560234.html,anic carbon may control the autotrophic anammox community in the Thames Estuary by enhancing heterotrophic denitri?cation,which in turn

produces nitrite for the anammox bacteria(Trim-mer et al.,2003).At low nitrate concentration (below10l M),not only the relative contribution but also the absolute rate of anammox diminishes, probably as a consequence of competition for substrate with heterotrophic nitrate and nitrite reducers(Trimmer et al.,2005).In the present study the concentrations of combined nitrate and nitrite were most of the year below2l M and never exceeded3l M,which supports the?ndings of low anammox activities in the area.

Two methods are currently used to estimate the contribution of anammox to the total N2produc-tion in sediments where both processes exist.The site-speci?c,intact core method(r-IPT,Risgaard-Petersen et al.,2003,2004b)used in this study gives the best estimates of anammox and denitri-?cation activity because it does not call for destruction of the natural strati?cation in the sediment.It also measures the activity of the entire sediment core instead of a selected layer. However,it requires minimal sediment heteroge-neity,because high scatter in the raw data can mask signi?cant differences in rates(Trimmer et al.,2006).The slurry incubations method (Thamdrup&Dalsgaard,2002)is based on collection of the active surface/subsurface layer of sediment for anoxic incubation with different combinations of labelled and unlabelled nitrogen compounds(NO2–,NO3–,NH4+).The method breaks the chemical strati?cation of the sediment, and the processes are not necessarily measured in the layer in which they are most active.Therefore, it is prone to giving underestimates of the processes(Trimmer et al.,2006.)At the coastal station studied here,the macrofauna was limited to a few small Macoma baltica mussels.These were found occasionally(not even daily)in the samples,and the results from these samples were always omitted from the calculations.Therefore the intact core method probably gave a reliable approximation of the N2production in the study area.The calculated contribution of10–15% caused a dramatic80–150%overestimate in the N2production when the classical IPT was used, due to the high15NO3–incubation concentration used.This indicates a need to verify the measure-ments performed earlier in the Gulf of Finland using the IPT and high15NO3–concentrations,since no data are yet available on the bias anammox may have caused in the denitri?cation estimates.

Conclusions

Coastal denitri?cation,measured here for the ?rst time in the northern Baltic Sea,is of similar magnitude as denitri?cation in the open Baltic Sea depositonal areas.It follows a clear seasonal cycle of low rates in early spring,high rates from late summer to late autumn and diminishing rates again in winter.This variation is strongly related to temperature and mineralization of the sedi-mented spring diatom bloom,the main carbon source to the sediment in the basin studied. Anammox was explored for the?rst time in the Gulf of Finland.It was measured in spring and autumn and contributed less than10%to the total N2production.The low percentage did,however, cause a signi?cant error in the total N2production rate estimate,calculated using the classical IPT. Therefore we recommend that anammox be taken into account in future research in Gulf of Finland sediment nitrogen cycling.Since no data on the seasonal and spatial variability of anam-mox rates from the Gulf of Finland are yet available,the true N2production rates cannot be reliably estimated.Both N budgets and models, however,indicate that some70,000–86,000t N are removed from the Gulf of Finland annually (Perttila¨et al.,1995;Savchuk,2005;Kiirikki et al.,2006).The N2production rates measured in this project release39,100t N annually,leaving 30,900–46,900t N to be removed by other pro-cesses,or by more ef?cient N2production in some areas.Since some of the highest N2production values have been measured from coastal and river estuarine basins(Silvennoinen et al.,2007),these seem likely places to begin looking for the ‘‘mysteriously disappearing nitrogen’’.The high spatial and temporal variability in the sediment processes,caused by heterogeneity in the bottom topography,?ow rates,environmental conditions and interannual changes in these,leave room for speculation.Clearly,there are still large gaps in our understanding of the nitrogen dynamics of the Gulf of Finland.

Acknowledgements We thank S.Hauta-aho(University of Helsinki)warmly for the oxygen consumption data.This study was funded by the Academy of Finland BIREME programme,and conducted through the SEGUE Consortium.

References

Bodelier,P.L.E.,J.A.Libochant,C.W.P.M.Blom&

https://www.wendangku.net/doc/49560234.html,anbroek,1996.Dynamics of nitri?cation and

denitri?cation in root-oxygenated sediments and adaptation of ammonia-oxidizing bacteria to low-oxygen or anoxic habitats.Applied and Environ-mental Microbiology62:4100–4107.

Dalsgaard,T.&B.Thamdrup,2002.Factors controlling anaerobic ammonium oxidation with nitrite in marine sediments.Applied and Environmental Microbiology 68:3802–2808.

Engstro¨m,P.,T.Dalsgaard,S.Hulth&R.C.Aller,2005.

Anaerobic ammonium oxidation by nitrite(anam-mox):Implications for N2production in coastal mar-ine sediments.Geochimica Cosmochimica Acta69: 2057–2065.

Findlay,S.,1993.Thymidine incorporation into DNA as an estimate of sediment bacterial production.In: Kemp P.F.,B.F.Sherr,E.B.Sherr&J.J.Cole(eds), Handbook of Methods in Aquatic Microbial Ecology.

Lewis Publishers,Boca Raton,USA,505–508. Gran,V.&H.Pitka¨nen,1999.Denitri?cation in estuarine sediments in the eastern Gulf of Finland,Baltic Sea.

Hydrobiologia393:107–115.

Heiskanen,A.S.&J.M.Leppa¨nen,1995.Estimation of export production in the coastal Baltic Sea:effect of resuspension and microbial decomposition on sedi-mentation measurements.Hydrobiologia316:211–224. Heiskanen,A.S.&P.Tallberg,1999.Sedimentation and particulate nutrient dynamics along a coastal gradient from a fjord-like bay to the open sea.Hydrobiologia 393:127–140.

Hietanen,S.,L.Tuominen&J.Kuparinen,1999.A modi?ed14C-leucine uptake method to measure benthic bacterial production in the northern Baltic Sea.Aquatic Microbial Ecology20:13–20.

Kemp,W.M.,P.Sampou,J.Caffrey&M.Mayer,1990.

Ammonium recycling versus denitri?cation in Ches-apeake Bay sediments.Limnology and Oceanography 35:1545–1563.

Kiirikki,M.,J.Lehtoranta, A.Inkala,H.Pitka¨nen, S.Hietanen,P.O.J.Hall,A.Tengberg,J.Koponen& J.Sarkkula,2006.A simple sediment process description suitable for3D-ecosystem model-ling—development and testing in the Gulf of Finland.

Journal of Marine Systems61:55–66.

Kiirikki,M.,P.Rantanen,R.Varjopuro,A.Leppa¨nen, M.Hiltunen,H.Pitka¨nen,P.Ekholm,E.Moukha-metshina,A.Inkala,H.Kuosa&J.Sarkkula,2003.

Cost effective water protection in the Gulf of Finland.

Focus on St.Petersburg.The Finnish Environment 632.Edita Publishing Ltd.,Vantaa,Finland.Kivi,K.,S.Kaitala,H.Kuosa,J.Kuparinen,E.Leskinen, R.Lignell, B.Marcussen&T.Tamminen,1993.

Nutrient limitation and grazing control of the Baltic plankton community during annual succession.Lim-nology and Oceanography38:893–905.

Leivuori,M.&H.Vallius,1998.A case of seasonal vari-ation in the chemical composition of accumulating suspended sediments in the central Gulf of Finland.

Chemosphere36:2417–2435.

Meyer,R.L.,N.Risgaard-Petersen&D.E.Allen,2005.

Correlation between anammox activity and micro-scale distribution of nitrite in subtropical mangrove sediment.Applied and Environmental Microbiology 71:6142–6149.

Nielsen,L.P.,1992.Denitri?cation in sediment deter-mined from nitrogen isotope pairing.FEMS Micro-biology Ecology86:357–362.

Perttila¨,M.,L.Niemisto¨&K.Ma¨kela¨,1995.Distribution, development and total amounts of nutrients in the Gulf of Finland.Estuarine Coastal and Shelf Science 41:345–360.

Pitka¨nen,H.&T.Tamminen,1995.Nitrogen and phos-phorus as production limiting factors in the estuarine waters of the eastern Gulf of Finland.Marine Ecology Progress Series129:283–294.

Pitka¨nen,H.,J.Lehtoranta&A.Ra¨ike,2001.Internal nutrient?uxes counteract decreases in external load: the case of the estuarial eastern Gulf of Finland.

Ambio30:195–201.

Risgaard-Petersen,N.,R.L.Meyer,M.Schmid,M.S.M.

Jetten,A.Enrich-Prast,S.Rysgaard&N.P.Revsb-ech,2004a.Anaerobic ammonium oxidation in an estuarine sediment.Aquatic Microbial Ecology36: 293–304.

Risgaard-Petersen,N.,L.P.Nielsen,S.Rysgaard,T.

Dalsgaard&R.L.Meyer,2003.Application of the isotope pairing technique in sediment where anam-mox and denitri?cation coexist.Limnology and Oceanography Methods1:63–73.

Risgaard-Petersen,N.,L.P.Nielsen,S.Rysgaard,T.

Dalsgaard&R.L.Meyer,2004b.Erratum:applica-tion of the isotope pairing technique in sediment where anammox and denitri?cation coexist.Limnol-ogy and Oceanography Methods2:315–315. Rysgaard,S.,R.N.Glud,N.Risgaard-Petersen& T.Dalsgaard,2004.Denitri?cation and anammox activity in Arctic marine sediments.Limnology and Oceangraphy49:1493–1502.

Savchuk,O.,2005.Resolving the Baltic Sea into seven subbasins:N and P budgets for1991–1999.Journal of Marine Systems56:1–15.

Seitzinger,S.P.,1987.Nitrogen biogeochemistry in an unpolluted estuary:The importance of benthic denitri-?cation.Marine Ecology Progress Series41:177–186. Seitzinger,S.P.&A.E.Giblin,1996.Estimating denitri-?cation in North Atlantic continental shelf sediments.

Biogeochemistry35:235–260.

Silvennoinen H.,S.Hietanen,A.Liikanen,C.F.Stange, R.Russow,J.Kuparinen&P.J.Martikainen,2007.

Denitri?cation in the River Estuaries of the Northern Baltic Sea.Ambio,(in press).

Simon,M.&F.Azam,1989.Protein content and protein synthesis rates of planktonic marine bacteria.Marine Ecology Progress Series51:201–213. Stockenberg,A.&R.W.Johnstone,1997.Benthic deni-tri?cation in the Gulf of Bothnia.Estuarine Coastal and Shelf Science45:835–843.

Tallberg,P.,1999.The magnitude of Si dissolution from diatoms at the sediment surface and its potential im-pact on P mobilization.Archiv fu¨r Hydrobiologie144: 429–438.

Tallberg,P.& A.S.Heiskanen,1998.Species-speci?c phytoplankton sedimentation in relation to primary production along an inshore-offshore gradient in the Baltic Sea.Journal of Plankton Research20:2053–2070.

Thamdrup,B.&T.Dalsgaard,2002.Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments.Applied and Environmental Microbiology68:1312–1318.Trimmer,M.,J. C.Nicholls& B.De?andre,2003.

Anaerobic ammonium oxidation measured in sedi-ments along the Thames estuary.Applied and Envi-ronmental Microbiology69:6447–6454.

Trimmer,M.,J.C.Nicholls,N.Morley,C.A.Davies& J.Aldridge,2005.Biphasic behaviour of anammox regulated by nitrite and nitrate in an estuarine sedi-ment.Applied and Environmental Microbiology71: 1923–1930.

Trimmer,M.,N.Risgaard-Petersen,J.C.Nicholls&P.

Engstro¨m,2006.Direct measurements of anaerobic ammonium oxidation(anammox)and denitri?cation in intact sediment cores.Marine Ecology Progress Series326:37–47.

Tuominen,L.,A.Heina¨nen,J.Kuparinen&L.P.Nielsen, 1998.Spatial and temporal variability of denitri?ca-tion in the sediments of the northern Baltic Proper.

Marine Ecology Progress Series172:13–24.

期货基本分析方法

期货基本分析方法 期货基本分析方法 本分析法是根据商品的产量、消费量和库存量(或者供需缺口),即通过分析期货商品的供求状况及其影响因素,来解释和预测期货 价格变化趋势的方法。基本面分析主要分析的是期货市场的中长期 价格走势,即所谓大势,并以此为依据中长期持有合约,不太注意 日常价格的反复波动而频繁地改变持仓方向。 期货基本分析方法之供给分析 供给是指在一定时间、一定地点和某一价格水平下,生产者或卖者愿意并可能提供的某种商品或劳务的数量。决定一种商品供给的 主要因素有:该商品的价格、生产技术水平、其他商品的价格水平、生产成本、市场预期等等。 商品市场的供给量则主要由期初库存量、本期产量和本期进口量三部分构成。 1、期初库存量 期初库存量是指上年度或上季度积存下来可供社会继续消费的商品实物量。根据存货所有者身份的不同,可以分为生产供应者存货、经营商存货和政府储备。前两种存货可根据价格变化随时上市供给,可视为市场商品可供量的实际组成部分。而政府储备的目的在于为 全社会整体利益而储备,不会因一般的价格变动而轻易投放市场。 但当市场供给出现严重短缺,价格猛涨时,政府可能动用它来平抑 物价,则将对市场供给产生重要影响。 2、本期产量 本期产量是指本年度或本季度的商品生产量。它是市场商品供给量的主体,其影响因素也甚为复杂。从短期看,它主要受生产能力

的制约,资源和自然条件、生产成本及政府政策的影响。不同商品 生产量的影响因素可能相差很大,必须对具体商品生产量的影响因 素进行具体的分析,以便能较为准确地把握其可能的变动。 3、本期进口量 本期进口量是对国内生产量的补充,通常会随着国内市场供求平衡状况的变化而变化。同时,进口量还会受到国际国内市场价格差、汇率、国家进出口政策以及国际政治因素的影响而变化。 期货基本分析方法具体内容 供求关系。期货交易是市抄济的产物,因此,它的价格变化受市场供求关系的影响。当供大于求,价格下跌;反之,价格就上升。反 映供给的变量有前期库存量、当期生产量和当期进口量三部分组成; 反应需求的变量有国内消费量、出口量及期末商品结存量三个部分 组成。 经济周期。在期货市场上,价格变动还受经济周期的影响,在经济周期的各个阶段,都会出现随之波动的价格上涨和下跌现象。 政府政策。各国政府制定的某些政策和措施会对期货价格带来不同程度的影响。 政治因素。期货市场对政治气候的变化非常敏感,各种政治性事件的发生常常对价格造成不同程度的影响。 社会因素。社会因素指公众的观念、社会心理趋势、传播媒介的信息影响。 季节性因素。许多期货商品,尤其是农产品有明显的季节性,价格亦随季节变化而波动。 心理因素。所谓心理因素,就是交易者对市场的信心程度,人称“人气”。如对某商品看好时,即使无任何利好因素,该商品价格 也会上涨;而当看淡时,无任何利淡消息,价格也会下跌。又如一些 大投机商品们还经常利用人们的心理因素,散布某些消息,并人为 地进行投机性的大量抛售或补进,谋取投机利润。

第章季节性施工方案及措施

第十章季节性施工方案及措施 第一节雨季施工方案 一、雨季施工准备 1.组织准备 1)成立以项目经理为第一责任人的领导小组,将方案编制、措施落实到人。料具供应、应急抢险等具体职责落实到部门,并明确责任人。 2)雨季施工主要以预防为主,采取防雨措施及加强排水手段,确保雨季时生产的正常进行,不受季节气候影响。 3)做好施工人员的雨季施工培训工作,组织相关人员进行施工现场的准备工作,并进行一次全面的施工现场的检查,包括检查临时设施、临时用水管道,临时用电,机械设备等各项工作。 4)加强雨季施工的信息反馈,对容易发生问题的要采取防范措施,设法排除隐患,同时合理的安排日常工作。 2.技术准备 1)资料准备 ①收集定安气象资料,了解雨期天气状况。 ②认真熟悉施工图纸,了解进入雨施的各单位工程设计状况及施工特点,提出针对性的雨期施工技术措施。对进入雨期施工但不适于雨施的项目及时与业主及设计院联系,共同研究解决。 ③收集同类工程雨季施工经验,选择合理的针对性的雨季施工措施。 2)雨期施工方案编制 我公司项目部将在开工前,编制并审批完成该工程更为详细的雨期施工方案,同时报业主或监理批准。该方案将根据具体施工图、实际工程进度及施工状况编制完成,提出切实可行的雨期施工技术措施。 3.技术交底 项目部将严格执行技术交底制度,将雨期各项技术要求从管理人员到分包及个人进行层层分级技术交底。 项目部各现场管理人员将对其责任范围内具体负责的工程项目向具体分包负责人或班组长进行具体技术交底。交底内容主要为针对性的具体施工工艺、操作要点、质量要求等内容。 项目部同时将严格监督检查班组对工人的现场及班前交底情况。 4.施工现场准备

农产品季节性与期货

如何分析农产品期货的季节性行情 农产品的共性就是具有固定的一年一度的播种、生长和收获季节性周期,也恰恰是农产品这种特有的季节性供求关系变化使得其价格波动在每年的一些特定时期内同向运动的趋势性十分明显。一般来说,我们可以根据这种季节性特征把农产品走势大体分为:播种生长阶段、收获季节、销售淡季和销售旺季等几个不同阶段。又因为期货价格是现货价格的指引,它们的基本面影响因素是一致的,走势基本是联动的,因此,下面我们以几个品种为例,从季节性影响因素这个角度分别对其期货价格走势进行对比分析: 首先拿大豆品种来说,根据自然规律从每年的4月开始,北半球的大豆主产国开始播种,当年9月份开始收割。从10月份开始,南半球的大豆主产国又开始播种,次年4、5月份收割。从这一种植生长周期可以总结出,每年的7、8月份属于全球大豆的供应淡季,大豆青黄不接,消费需求旺盛,因此价格多是高企;而每年的11月份左右是全球大豆的供应旺季,现货供应充足,价格多处年内低谷,这一规律从上图CBOT大豆行情长期走势中不难得到验证。 仔细观察以上CBOT和DCE大豆近年来季节性走势图,首先我们可发现,国内外大豆价格的相关性很强,纠其原因主要是:2000年以来人们膳食结构的调整使得我国大豆需求激增,国产大豆远远不能满足市场的消费。加之进口大豆出油率高,使得进口大豆数量出现大幅增长,导致国内外大豆价格走势联动性增强;其次,我们还可以发现:2000年至今,每年因季节性而形成的的阶段性高点多出现在5月-8月,主要是因为每年3-5月是销售旺季,而7、8月份又是供应淡季,这样高点出现在这期间就不足为奇;9-11月份进入大豆收获季节,受供应压力影响价格多处年内低点,产量确定后,随着消费的增加,库存的减少,价格有开始抬头趋涨。不过,每年二月份多是过节时期,市场交投清淡,谷物价格通常盘跌。这些规律都很好验证了大豆价格的季节性波动趋势。目前正处于8月份,正是供应淡季,又由于目前国内大豆主产区黑龙江省严重干旱,国内大豆减产基本定局,而美国大豆产区近期天气也是十分炎热干燥,大豆天气行情再度显现,在大豆收获季节来临前,有望走出一波上涨行情。因此依据这一特点可以估计在9--11月份供应压力前大豆可能会形成一个短期高点。 接着再看玉米品种,玉米与大豆的生长周期相差无几,从上图可发现玉米最明显的特征是仲夏到收获期间价格多是走跌。由于新年度玉米产量不确定性的影响,7月份的价格往往达到年内最高价格。即使在7月份中期之前价格开始跌落的年份,如果收获前景可观,价格仍可持续走低。每年10月正值收获季节,由于大量玉米集中上市,市场供应压力最大,价格往往会跌到一年中的最低水平。而后随着时间的推移和持续不断的消费,玉米库存量也越来越少,而价格也随着变化。农业部前期发布的《农业生物质能产业发展规划(2007~2015年)》(以下称《规划》),提出今后一个时期,我国农业生物质能产业要按照大力发展农村沼气,积极发展农作物秸秆固化成型和气化燃料,适度发展能源作物的发展战略,因地制宜地确定发展重点和产业布局。这对前期国内利用玉米发展燃料乙醇的炒做泼了一盆冷水,玉米期价也因此从1700元/吨上方连续回落至1500元/吨以下。由于过渡打压后,近期的东北农作物用地发生干旱灾害,导致玉米期价产生了"反季节"的上涨行情,但于8月10日将有"吉林省2007年轮换地方储备粮竞价销售交易会",届时将销售轮出省级储备玉米10万吨,这对于玉米期价将是一个压力。在供应季节来临前玉米产生大幅度反弹的行情较小,上涨空间有限。 最后转到国内外小麦品种上,以北半球冬小麦为例,其播种时间为10月上旬(寒露后)至下旬,收获期在5月下旬至6月初。小麦有两个明显的季节倾向:其中之一就是冬末到收获季节来临之前的春季这一时期惯于下跌。多数年景,小麦价格在1、2月份因资金回拢影响都会经历季节性疲弱期。又因每年冬麦上市后的7月份一般为小麦的供应旺季,价格多处年内最低点;另一个趋势就是从收获季节的低点到秋季或者冬初小麦消费逐渐进入旺季,价

季节性施工措施及特殊时期施工保证措施

季节性施工措施及特殊时期施工保证措施 第一节雨期施工措施 雨季施工以防雨防汛为依据,做好各项准备工作,在施工中要求做到: 1、编制施工组织计划时,要根据雨期施工的特点,不宜在雨期施工的分项工程提前或拖后安排。对必须在雨期施工的工程制定有效的措施,进行突击施工。 2、合理进行施工安排。做到晴天抓紧室外工作,雨天安排室内工作,尽量缩小雨天室外作业时间和工作面。

3、密切注意气象预报,做好抗台防汛等准备。必要时应及时加固在建的工程。 4、做好建筑材料防雨防潮工作。在雨期前应做好现场房屋、设备的排水防雨措施。 5、现场排水。施工现场的道路、设施必须做到排水畅通,尽量做到雨停水干,要防止地面水排入基础、地沟内。要做好危石的处理,防止滑坡和塌方。 6、原材料、成品、半成品的防雨。水泥应按“先收先发、后收后发“的原则,避免久存受潮而影响水泥的活性。木门窗等易受潮变形半成品应在室内堆放,其它材料也应注意防雨及材料四周排水。 7、备足排水需用的水泵及有关器材,准备适量的塑料布,油毡等防雨材料。 8、采取硬地施工,即施工现场临时道路采用150mm厚混凝土浇筑,这既给雨季施工带来很大的便利,给工人提供了良好的工作环境,又防止了尘土、泥浆被带到场外,保护了周边环境,加强了现场文明施工; 9、雨季施工期间搅拌站要随时测定砂、石含水率,及时调整混凝土的配合比,严格控制水灰比。 10、现场室外使用的中小型机械必须按规定加设防雨罩或搭设防雨棚,闸箱防雨,漏电接地保护装置应灵敏有效,定期检查线路的绝缘情

况。 11、大风天气,要做好大型高耸物件(塔吊、外用电梯)的防风加固措施,风力达到或超过6级塔吊禁止使用。 第二节冬季施工措施 本工程进入到冬期施工季节时,主要是钢筋、混凝土工程必须加强冬期施工,因此要严格按照规范规定和本公司关于冬期施工要求,编制专门的冬期施工方案。在能确保工程质量、方便施工、经济合理的前提下制定施工方案,确定冬期施工技术措施。 根据当地气象部门统计资料,室外日平均气温连续5天稳定低于5℃,混凝土工程应按冬期施工要求进行。在进入冬期施工初期,要事先做好防冻准备,并必须密切注意天气预报,如有寒流和霜冻出现,立即采取防冻措施。 1、材料要求 本工程冬期施工期间水泥采用早强带R水泥,做好水泥保温。砂采用中砂,含泥量不大于2%;石子采用砾石,施工暖棚中,水在锅中加热至80℃,混凝土搅拌后温度控制不超过35℃。 2、混凝土拌制

建筑工程季节性施工方案

建筑工程季节性施工方案 建筑工程季节性施工方案 本工程位于银川市。银川深居西北内陆高原,属中温带干旱气候区,四季分明,最显着的气候特点是干燥、风大、沙多,年平均气温在8-9℃之间。极端最低气温-36.6℃,由于冬季气温极低。保守估计12月中旬至2月底因气温极低无法施工。 一、雨季施工方案 银川雨季多集中在6-9月,银川的年降水量不多,一般在150-200毫米之间,但施工时也必须做好雨季施工注意事项: 1、必须认真执行原施工进度计划,做到计划在先,预防为主、防患未然。 2、劳动力安排,在遇大雨以上的天气时,不管黑夜白天都应该能调动劳动力到大坑或地下室入口、等易灌水部位看守,出现问题及时排除。 3、如果基础施工不能及时完成或完成但仍未打垫层,要防止平面积水灌入。 4、各种材料应用钢管加塑料布覆面进行临时封堵。 5、对于地表水,采取”堵”和”疏”结合的办法:在距基坑边180mm处砌筑挡水墙240mm 高,墙下设排水明沟,防止基坑外水灌入基坑,沿基坑四周距坑边1.5M埋设直径300mm 的排水管,埋深800mm:沿排水管每隔16米设一雨水井,井口加设铁篦子;在施工硬化地面时,向雨水口方向作成流水坡,坡度为:1%,将地表水引流至雨水井内。场地内应保持向外排水畅通,没有大坑洼或向建筑物一侧倒坡,同时应检查排水路线管道是否畅通。 一)、钢筋工程 钢筋堆放时,下部应垫起不小于200mm,防止雨水浸泡而锈蚀。进入施工现场的钢筋,合模前如有锈迹时应及时除锈,如锈蚀严重时应予以更换。 焊接施工:雨天现场焊接应停止作业,急需作业者必须搭设临时防雨棚,但中雨以上天气必须停止焊接作业,以防止焊接的热影响区由于淋雨而发生脆断。 二)、砼及砂浆施工 雨季施工需特别注意配合比的调整,以保证砼、砂浆的质量。 被雨水冲刷的施工缝,需剔除表面的浮浆、砂带石粒等,下次施工时需先浇筑同配合比水泥砂浆或扫素水泥浆,作接缝处理。 三)、模板工程 木工活等必须作好材料防雨、防潮和工作面的防雨、防潮工作,应提前作好准备。 大雨、大风后对模板架子等要及时检查:扣件有无松动滑移、架子和模板有无变形、地基有无沉陷等现象。检查完成后要及时修复,确定无安全隐患后方可继续使用。 a、机电安装施工中电、管、保温材料及其它引诱防锈、防潮要求的部位和材料在雨季施工期间必须作好防雨、防潮工作。 b、在雨季到来之前,各专业各工种必须做一次全面的有针对性的安全技术交底,在交底中必须有防雨、防雷、放触电、防坍塌及紧急遇大暴雨时的人员疏散和抢险措施。 c、雨季期间应定期、定人检查临电设施的绝缘状况,检查电源线是否有破损现象,发现问题及时处理。 d、室外配电箱内应加工制作成防雨型,电箱不规矩的应加设防雨罩。 e、配电箱内必须安装合格漏电保护装置,及时检查漏电保护装置的灵敏性,并随时关好电箱门。 f、从事电气作业人员必须持证上岗,佩带好劳动保护用品,并应两人同时作业,一人作业,一人监护。 g、外架特别是高塔处的外架已设计并安装了较完善的避雷装置。

商品期货价格的季节性研究

商品期货价格的季节性研究 中信建投期货刘超 季节性是季度或月度时间序列在正常年度中表现出来的季节规律性变化,对于商品期货来说,由于商品的供应、需求在不同的季节有明显的差异,所以其价格表现出明显的季节性特征。本文以原油、铜、天胶、大豆为研究对象,对其不同月份的价格表现进行了基本统计,分析了各品种季节性特征出现的基本面因素,并运用X12季节调整方法对各品种的季节因子进行了计算,以期为中长线投资者提供参考。 一、商品期货价格季节性的统计与分析 季节性因素是时间序列围绕趋势年复一年的重复出现的一种有规律的波动。随着生产商在期货交易中的参与程度日益广泛,期货和现货价格联系也日益紧密,大宗商品价格运动的季节性变化也越来越明显。供应淡季或者消费旺季时价格高企,而在供应旺季或消费淡季价格低落,成为商品期货价格波动的普遍规律。本文选择纽约原油(1983-2008)、伦铜(1977-2008)和沪铜(1995-2008)、日胶(1992-2007)和沪胶(1997-2008)、CBOT大豆(1989-2008)和连豆(1999-2008)为主要研究对象,主要考虑到这些品种的代表性较强,上市时间也较长,选取各品种的主力合约连续数据,每月的价格为该月各交易日收盘价的平均价。表1对各品种各月的表现进行了基本统计,其中,RP代表历史上该月的上涨概率(与上月相比),AR代表历史上该月的平均收益率(与上月相比),均用百分数表示。

数据来源:中信建投期货 从表1可以看出,各品种不同月份价格表现有明显差异,即有明显的季节性特征,具体来看,原油价格在每年3-5月,7-9月表现强势,而在11、12月下跌概率较大,夏季的价格上涨主要受汽车等需求增长推动,而秋季为飓风多发季节,9月份更是飓风出现最多的月份,对供应的担忧也引发油价的上涨。相对来说。伦铜的季节性比不上原油,每年2-3月、7-9月价格上涨概率较大,主要是为4月和9月的消费旺季(主要是建筑、汽车等)准备,而4月到6月表现偏弱,主要是因为此时是铜的消费淡季、供应旺季。沪铜和伦铜相关性大,季节特征类似。 对日胶来说,每年12月到次年2月,价格表现抢眼,而在3-8月表现疲软,前者主要是因为每年12月底至3月初,全球天胶供给逐步减少,更重要的是作为占全球消费大国的中国橡胶处于停割期,同时在该阶段全球需求逐步增加;后者主要是因为此时国内外主产区正好是产胶旺季,而消费却处于淡季。除以上规律外,沪胶在9、10月份也表现出强势,这与此时处于轮胎行业的销售旺季有关。 CBOT 大豆则在每年2-5月、11-12月表现强势,7-8月价格则多有下滑,主要是因为每年3-5月是大豆的销售旺季,而也是美国大豆播种的关键时期,加上对天气的炒作,很容易使得价格走高,而7、8月份大豆种植情况基本确定,受供应压力预期的影响价格有所下跌,之后10月份大豆收获后,随着消费的增加,库存的减少,价格也有可能趋涨。连豆与CBOT 大豆季节性表现基本类似。 我们从以上分析中也看到期货价格对供需有一定程度的提前反映。由于商品期货的价格走势关联到多种因素,有时期货价格甚至表现出反季节走势,而随着全球供给、消费结构的变化,商品价格的季节性也可能发生改变,因此动态地把握商品期货价格的季节性走势显得尤为重要,接下来我们通过运用季节调整的X12方法提取季节因子,以期对商品期货价格的季节性规律有更深的认识。 二、季节调整的X12方法 季节调整是指从时间序列中去除季节变动因素,从而得到序列潜在的趋势循环分量的一种统计技术。经季节调整后的时间序列能更多的反映价格运动的基本规律,以及各因素对价格的影响。同时,根据分离出的季节因子的变化规律,我们可以对价格波动有一个更清晰的认识。 目前比较常用的几种季节调整方法有:X12方法、X11方法、移动平均方法和Tramo/Seats 方法。1965年美国商务部人口普查局推出了基于移动平均法的X-11方法,它是基于移动平均方法,在计算过程中根据数据随机因素的大小,采用不同长度的移动平均方法,随机因素越大,移动平均长度越大。X11方法是通过几次迭代来进行分解的,每一次对组成因子的估算都进一步精化。美国商务部人口普查局后来又在X11的基础上发展出了X12方法,主要的改进包括:扩展了贸易日和节假日影响的调节功能,增加了季节、趋势循环和不规则要素分解模型的选择功能,增加了新的季节调整结果稳定性诊断功能,增加了X12-ARIMA 模型的建模功能等。 X-12方法假设时间序列t X 有四部分组成元素:趋势t T (Trend )、循环t C (Cycle )、季节t S (Seasonal )和不规则项t I (Irregular )。共有四种季节调整的分解方式:乘法、加法、伪加法和对数加法模型,乘法模型的一般形式为: Yt = t T ·t C ·t S ·t I 乘法模型以相对数表示季节要素,增强了不同经济变量之间的可比性,因此应用较为广泛。乘法模型的核心算法主要分为三个阶段,第一步,估计趋势;第二步,消除序列中的趋

季节性时间序列分析方法

第七章季节性时间序列分析方法 由于季节性时间序列在经济生活中大量存在,故将季节时间序列从非平稳序列中抽出来,单独作为一章加以研究,具有较强的现实意义。本章共分四节:简单随机时间序列模型、乘积季节模型、季节型时间序列模型的建立、季节调整方法X-11程序。 本章的学习重点是季节模型的一般形式和建模。 §1 简单随机时序模型 在许多实际问题中,经济时间序列的变化包含很多明显的周期性规律。比如:建筑施工在冬季的月份当中将减少,旅游人数将在夏季达到高峰,等等,这种规律是由于季节性(seasonality)变化或周期性变化所引起的。对于这各时间数列我们可以说,变量同它上一年同一月(季度,周等)的值的关系可能比它同前一月的值的相关更密切。 一、季节性时间序列 1.含义:在一个序列中,若经过S个时间间隔后呈现出相似性,我们说该序列具有以S为周期的周期性特性。具有周期特性的序列就称为季节性时间序列,这里S为周期长度。 注:①在经济领域中,季节性的数据几乎无处不在,在许多场合,我们往往可以从直观的背景及物理变化规律得知季节性的周期,如季度数据(周期为4)、月度数据(周期为12)、周数据(周期为7);②有的时间序列也可能包含长度不同的若干种周期,如客运量数据(S=12,S=7)2.处理办法: (1)建立组合模型; (1)将原序列分解成S个子序列(Buys-Ballot 1847) 对于这样每一个子序列都可以给它拟合ARIMA模型,同时认为各个序列之间是相互独立的。但是

这种做法不可取,原因有二:(1)S 个子序列事实上并不相互独立,硬性划分这样的子序列不能反映序列{}t x 的总体特征;(2)子序列的划分要求原序列的样本足够大。 启发意义:如果把每一时刻的观察值与上年同期相应的观察值相减,是否能将原序列的周期性变化消除?(或实现平稳化),在经济上,就是考查与前期相比的净增值,用数学语言来描述就是定义季节差分算子。 定义:季节差分可以表示为S t t t S t S t X X X B X W --=-=?=)1(。 二、 随机季节模型 1.含义:随机季节模型,是对季节性随机序列中不同周期的同一周期点之间的相关关系的一种拟合。 AR (1):t t S t S t t e W B e W W =-?+=-)1(11??,可以还原为:t t S S e X B =?-)1(1?。 MA (1):t S t S t t t e B W e e W )1(11θθ-=?-=-,可以还原为:t S t S e B X )1(1θ-=?。 2.形式:广而言之,季节型模型的ARMA 表达形式为 t S t S e B V W B U )()(= (1) 这里,?? ? ??----=----=?=qS q S S S pS P S S S t d S t B V B V B V B V B U B U B U B U X W ΛΛ2212211)(1)()(平稳。 注:(1)残差t e 的内容;(2)残差t e 的性质。 §2 乘积季节模型 一、 乘积季节模型的一般形式 由于t e 不独立,不妨设),,(~m d n ARIMA e t ,则有 t t d a B e B )()(Θ=?φ (2) 式中,t a 为白噪声;n n B B B B ???φ----=Λ22111)(;m m B B B B θθθ----=ΘΛ22111)(。 在(1)式两端同乘d B ?)(φ,可得: t S t d S t D S d S t d S a B B V e B B V X B U B W B U B )()()()()()()()(Θ=?=??=?φφφ (3) 注:(1)这里t D S S X B U ?)(表示不同周期的同一周期点上的相关关系;t d X B ?)(φ则表示同一周期内不同周期点上的相关关系。二者的结合就能同时刻划两个因素的作用,仿佛是显像管中的电子扫

(30)建筑工程季节性施工专项施工方案

目录 一、工程建设概况 1、结构设计概况 2、建筑设计概况 3、机电安装设计概况 二、编制依据 三、季节性施工组织机构 1、季节性施工领导小组 2、领导小组职责 四、季节性施工部署 1、季节性施工准备 2、季节性施工安排 五、季节性施工措施 (一)雨季施工措施 1、施工原则 2、施工安排 3、雨期施工准备 4、雨季防汛物资储备与配置 5、雨季施工原材料的储存和堆放 6、雨季施工中的防范措施 7、雨季施工中机电设备的保护措施 8、雨季机电设备检测与防护 9、临建工地雨季施工的措施 10、地基与基础工程雨季施工措施 11、钢筋工程雨季施工措施 12、模板工程雨季施工措施 13、脚手架工程雨季施工措施 14、砼工程雨季施工措施

15、砌筑工程雨季施工措施 16、屋面工程雨季施工措施 17、装饰、装修工程雨季施工措施 18、钢结构工程雨季施工措施 19、吊装工程雨季施工措施 (二)大风防台措施 1、大风防台施工安排 2、台风的介绍及等级划分 3、台风预警与预防 4、台风的防治措施 (三)高温防暑施工措施 1、施工安排 2、高温防暑施工措施与物资配置 3、做好环境卫生工作 4、做好用电管理 5、加强对易燃、易爆等危险品的贮存、运输和使用的管理 6、炎热高温期间职工健康注意事项 7、炎热高温期间工程施工注意事项 8、钢筋砼工程夏季施工措施 9、砌体工程夏季施工措施 10、抹灰工程夏季施工措施 11、屋面工程夏季施工措施 12、夏季高温紧急情况的处理方法 (四)冬季施工措施 1、冬季施工组织措施 2、冬季施工图纸审查 3、冬季施工现场准备 4、冬季施工技术准备

5、冬季施工资源准备 6、冬季施工机械准备 7、冬季施工的管理 8、冬季防毒、防火安全措施 9、主要分项工程冬季施工措施 10、冬季测量措施 11、工作面围挡措施 12、物资保证措施 13、冬季环保、安全措施 14、冬期施工消防安全要求 15、冬季机械、设备维护、保养措施 (五)大雾天气施工措施 (六)施工期间的防雷措施 1、防雷装置设置的要求 2、机械设备的防雷装置 3、塔式起重机的防雷装置 4、外用电梯的防雷装置 5、井字架及龙门架的防雷装置 6、外侧脚手架的防雷装置 (七)灾害天气预警系统及针对措施 (八)特殊时段保证措施 (九)防止施工扰民和民扰措施 六、冰雪灾害应急预案 1、编制目的 2、编制依据 3、工作原则 4、组织机构及职责分工 5、宣传与培训

国际农产品价格季节性波动规律研究

国际农产品价格季节性波动规律研究 作者:新湖期货 苗谨 2011-11-16 0:00:00 来源:原创 浏览:692 农产品价格的季节性波动规律稳定性在减弱,投资者以及相关品种的研究人员在适当参考农产品历史价格规律的基础上,需要更加灵活细致地分析当前供需情况,以适应越发复杂多变的市场环境。 由于商品的供需层面存在着某些季节性变化特点,即随着季节的转换商品供给或需求的增减趋势相对固定,这些商品的价格也因此带有季节性波动特性,我们将这种波动特性称为季节性波动规律。 就农产品而言,通常在一年中特定的季节播种,经过生长成熟之后,又在另一个季节收获,这种生长周期的循环使得农产品相比基础金属或者化工品具有更加明显的季节性波动规律。投资者和相关品种的研究人员在研判农产品价格走势时,经常会参照其季节性波动规律。但是,大宗商品市场近年来金融属性不断增强,而且农产品自身供需关系也在发生着潜移默化的改变。这些因素对农产品市场的季节性波动规律产生了怎样的影响,它是否依旧是可靠的研判工具? 为了更直观地反映价格的季节性波动规律,本文采用相对关联法来描述价格在月间的波动情况。相对关联法的主要计算步骤如下: (1)采用商品期货的连续合约收盘价格数据,计算每年各个月份的平均价格。 (2)将研究时段每个年度第一个月的价格定为基准价格,即为100%。 (3)将每年中每个月的平均价格与上一个月的月度平均价相比,分别得到每个月的百分比。 (4)综合研究时段的月度百分比数据,求解该时段相同月份的月度百分比的平均值。 (5)根据(4)步计算出的结果,画出一条月度百分比曲线。 国际大豆价格的 季节性波动规律 为了说明农产品价格季节性波动规律产生了哪些变化,本文采用两组具有一定时间间隔,而长度相当的数据,对比依据以上数据计算得到的季节性波动指数的变化情况。比如在对国际大豆价格的研究中,本文选用美国芝加哥期货交易所(CBOT)黄大豆连续合约1991—1995年,以及2005—2010年(剔除2008年)连续合约每日收盘价格数据。由于2008年全球经济环境突变,大宗商品价格波动异常剧烈,为了避免计算得到的季节性指数失真,故在计算中剔除2008年。由此得到的两份CBOT黄大豆期货季节性指数图如图1: 图1:国际大豆价格季节性指数图 1991—1995年的季节性指数走势印证了供需关系对大豆价格的影响作用。9、10月份通常是北半球新作大豆的集中上市时段,供给压力会导致价格出现约2%的跌幅。11月份大豆价格受需求带动迎来一波快速拉升行情,此后价格保

航空运输季节性分析报告报告材料

我国民航客货运输的季节性分析 受气候条件、突发事件、工农业生产生活、居民节假日等风俗习惯以及国民经济发展等因素的周期性影响,我国民航运输业客货运量呈现出季节性波动。 本文选取2003年、2005年以及2012年的我国民航客货运量月度统计作为研究对象,从而总结民航客货运的季节性特征。 一.突发事件 2003年民航客运量统计(万人) 通过上面的数据,我们可以看出由于受SARS的影响,2003年3-6月间我国民航旅客运输量大约损失了1290.1万人次。 2003年~2008年民航客运量统计图

纵观2003年到2008年的客运量统计,我国民航客运量在2003年有一个明显的下降。由此可以看出外界干扰因素(突发事件)对航空运输业的影响。 二.气候条件及节假日等风俗习惯 接下来,我们通过对2005、2012年的客货运量进行分析,可以看出气候条件和节假日等风俗习惯对民航客货运量的影响。 2005年民航客货运量 指标月份客运量(亿人)客运周转量 (亿人公里) 货运量(亿吨)货运周转量 (亿吨公里) 1 0.09 136.13 23.29 5.84 2 0.10 145.40 16.81 4.48 3 0.10 151.4 4 25.89 6.72

2012年民航客货运量 1月3月5月7月9月11月 通过上述表格与图形中的数据可以看出,航空旅客运输在一年之中的淡旺季比较明显。航空公司的大部分客运收入于每年的下半年获取,其中7-10 月4 个月的收入占全年总收

入的40%。从月份来看,1-3 月、12 月为淡季,7-10 月为旺季,4-6 月、11 月为平季。这与气候和节假日等因素密切相关:1-3月为元旦以后,春节之前,居民的出行意愿较低;12月气候寒冷,旅客出行的几率也降低,故客运量较少。7-10月是为期两个月的暑假和国庆小长假,是旅客外出旅行的高峰时期,故客运量激增。2-6月、11月虽气候适宜,但没有什么集中的假期,故客运量不高也不低。季节性的特性使航空公司的客运服务收入及盈利水平随着不同的季节而有所不同。 同旅客运输一样,航空货物运输也在时间上存在一定的波动性,根据所在城市的航空货物属性,航空货物在时间上存在周期性和季节性。但是,不同于航空客运市场的波动规律性,货运市场的波动一般很难找到一个通用的规律,各个地方的货运波动性不一,一般取决于某地土特产的丰收期或某类货物的需求高峰期。与旅客运输不同的是,货物运输的不确定性要小很多,因为一般货物运输都是提前订舱,并提前交付航空公司货仓或机场的货仓进行检验和存储,临时变更的可能性较小。 三.国民经济发展

X建筑工程季节性施工措施-冬季

X建筑工程季节性施工措施:冬季 某建筑工程季节性施工措施:冬季 第一节冬季施工措施 1 冬季屋面工程施工 1、屋面工程冬季施工,应选择无风晴朗天气进行,充分利用日照条件提高面层温度。在迎风面宜设置活动的挡风装置。 2、屋面各层施工前,应将基层上面的积雪、冰霜和杂物清扫干净。所用材料不得含有冰雪冻块。 3、用沥青胶结的整体保温层和板状保温层应在气温不低于-10℃时施工,用水泥、石灰或乳化沥青胶结的整体保温层和板状保温层应在气温不低于5℃时施工。如气温低于上述要求,应采取保温防冻措施。雪天和五级风以上天气不得施工。 4、找平层为水泥砂浆时,砂浆的强度等级不得小于M5,砂浆中可掺入氯化钠作防冻剂,掺量可参表1。 热源化钠的掺量(占用水量%)表1 项目室外气温(℃) 0~ -2-3~ -5-6~ -7 用于平面部位 用于檐口、天沟等部位2 34567 找平层为沥青砂浆时,基层应干燥平整,先满涂冷底子油1~2道,干燥后方可做找平层。沥青砂浆的施工温度见表2。 沥青砂浆施工温度(℃)表2 施工时室外气温搅拌温度铺设温度滚压完毕温度 5℃以上140~17090~12060 5~ -10℃160~180110~13040 6、防水层采用卷材时,可用热熔法或冷粘法施工。热熔法施工时气温不应低于-10℃,冷粘法施工时气温不应低于-5℃。当采用涂料做防水层时必须使用熔剂型涂料,施工时气温不应低于-5℃。 2 冬季混凝土工程施工 一、基本要求 1、混凝土工程的冬季施工,要从施工期间的气温情况、工程特点和施工条件出发,在保证质量、加快进度、节约能源、降低成本的前提下,选择适宜的冬季施工措施。 2、新浇筑的混凝土如果遭冻,由于拌合水冻结成冰,水结成冰后的体积增加约9%,同时水泥的水化作用也停止进行。在恢复正温养护以后,水泥浆体中的孔隙率将比正常凝结的混凝土显增加,从而使混凝土的各项物理力学性能全面下降。如抗压强度约损失50%,抗渗等级降低为零,混凝土与钢筋的粘结力也有大幅度的降低。因此遭受过冻害的混凝土不仅力学强度降低而且耐久性能严重劣化。如在施工时增加混凝土中的水泥用量提高混凝土的强度等级。虽然抗压强度可以相应增加,但耐久性仍得不到改善。因此从保证混凝土工程全面质量出发,在冬季施工中必须防止混凝土在硬化初期遭受冻害,并尽早获得强度。 3、混凝土的温度降至0℃前,其抗压强度不得低于抗冻临界强度。 抗冻临界强度规定如下: 硅酸盐水泥或普通硅酸盐水泥配制的混凝土,为设计的混凝土强度标准值的30%; 矿渣硅酸盐水泥配制的混凝土,为设计的混凝土强度标准值的40%,但C10及C10以

季节性施工安全措施

季节性施工安全措施 季节性指夏季、雨季、冬季。三季施工考虑到不同季节的气候对施工生产带来不同安全因素可能造成的各种突发性事故,而从防护上、管理上采取的防护措施。 一、夏季施工安全措施 夏季气候炎热,高温时间持续较长,主要是做好防止中暑工作。 1、采用多种形式,对职工进行防暑降温知识的宣传教育,使职工知道中暑症状,学会对中暑病人采取应急措施。 2、合理调整作息时间,避开中午高温时间工作,严格控制工人加班加点,高处作业工人的工作时间要适当缩短。保证工人有充足的休息和睡眠时间。 3、对在容器内和高温条件下的作业场所,要采取措施,搞好通风和降温。 4、对露天作业集中和固定场所搭设歇息凉棚,防止热幅射,并要经常洒水降温。 5、对高温、高处作业的工人,需经常进行健康检查,发现有作业禁忌症者,应及时调离高温和高处作业岗位。 6、要及时供应合乎卫生要求的茶水、清凉含盐饮料、绿豆汤等。 7、要经常组织医护人员深入现场进行巡回医疗和预防工作。重视年老体弱,患者中暑和血压较高的工人身体情况的变化。 8、及时给职工发放防暑降温的急救药品和劳动保护用品。 二、雨季施工安全措施 雨季进行作业,主要做好防触电、防雷、防坍塌和防台风的工作。

1、防触电。电源线不得用裸导线和塑料线,不得沿地面敷设。配电箱必须防雨、防水,电器布置符合规定,电器元件不应破损,严禁带电明露。机电设备的金属外壳,必须采取可靠的接地或接零保护。手持电动工具和机械设备使用时,必须安装合格的漏电保护器。工地临时照明灯、标志灯,其电压不超过36伏。电器作业人员应穿好绝缘鞋,戴绝缘手套。 2、防雷击。高出建筑物的塔吊、井架、脚手架等要有安全避雷装置。 3、防坍塌。搞好脚手架、井架、塔吊的排水工作,防止沉降倾斜。坑、槽、沟两边要放足边坡,危险部位要另外加支撑。搞好排水工作,一经发现紧急情况,应马上停止土方施工。 三、冬季施工安全措施 冬季进行作业,主要应做好防风、防火、防滑、防中毒工作。 1、六级以上大风或大雨,应停止高处作业和吊装作业,如要施工必须采取有效的安全技术措施。 2、搞好防滑措施,作业前要清除施工范围的冰、雪、霜,然后再进行作业,上跳板、斜道要钉好防滑条。 3、现场脚手架、安全网,暂设电器工程、土方、机械设备等安全防护,必须按有关规定执行。 4、加强用火申请和管理,遵守消防规定,防止火灾发生。 5、对亚硝酸钠要加强管理,严格发放制度,要按定量改革小包装,并加上水泥、细纱、粉煤灰等,将其改变颜色,以防止误食中毒。 6、必须正确使用个人防护用品。

PVC的季节性特征分析

PVC的季节性特征分析 PVC(聚氯乙烯)是用途最广泛的通用塑料之一。目前建筑业的需求占了我国PVC表观消费量的50%以上。作为上市的期货品种,PVC现货是一个淡旺季分明,每年都有明显波动的商品。每年1—3月份,PVC 的现货价格普遍较低,而从4、5月份开始,PVC的价格则开始回升,到了8、9月份,大都会出现一个年内的峰值。具体情况如下:每年1—3月份是我国春运繁忙时期,此时北方气候寒冷,交通运输不便,房地产的开工率明显下滑,导致北方地区塑料加工企业的开工率普遍较低,对PVC的需求也大幅减弱,打压了PVC的价格。因此,每年的1—3月份都会是PVC价格的低位。 而从4、5月份开始,随着气温回升。下游企业的开工率逐步上升,PVC的需求也逐步提升。此时PVC的价格就开始缓慢上涨,但此时PVC 企业的开工率也比较高,市场上现货供应较为宽裕。此时PVC基本呈现震荡走高的格局。 到了7—8月份,由于天气的原因,氯碱装置开工率会有所回落(这是由于氯碱装置在高温下运行,较易产生危险。因此装置检修时间一般都安排在高温天气),产量会呈现略微下降的趋势。对于塑料加工企业来说,7、8月份是传统需求的旺季。供应下降而需求大幅上升,就造成了现货市场供不应求的局面,容易导致价格在此时出现峰值。

而10月份后,也就进入了它的需求淡季,包括北方的建筑也开始停工。需求回软,但由于南方的需求仍在。所以十月份后PVC现货一般会有一个震荡回落的过程。 2017年PVC价格走势波动较大,在经过2016年年底的大幅下跌之后,年初出现小幅反弹,但反弹并没有持续较长时间,在2月下旬达到6985的上半年高点之后出现大幅下滑,4月中旬创下年内低点5455,此后商品出现了集体趋势性上行,6月份下旬开始PVC也进入了震荡上行的通道,在9月初达到年内高点7975之后快速回落,11月中旬在达到5905之后,开始触底反弹,年底维持区间震荡的走势。整体来看今年PVC的走势可以说是先扬后抑。2017年PVC现货市场价格走势与期货市场走势趋势基本相同,现货市场受期货市场影响越来越大。 自2016年12月底下跌成功破7以后,PVC市场2017新年开市继续下行,1月中旬,得力于备货需求支撑,加之受黑色系煤炭、钢铁等品种的爆发,期货市场大幅上涨,交投放量提振价格止跌反弹,整个国内PVC现货市场跌势有所缓解。 2月中旬至4月下旬,一方面由于氯碱企业利润较好,春季检修不断延后,多数推迟至4月-5月,另一方面,PVC行业库存高企,环保督查及两会的召开波及到河北地区制品企业,周边拉闸限电消息不断,企业被迫停产整顿较多,接货量明显减少使得下游消化不及预期,同时大宗商品集体转弱也是使得PVC价格接连下跌。

季节性时间序列分析方法

季节性时间序列分析方 法 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

第七章季节性时间序列分析方法 由于季节性时间序列在经济生活中大量存在,故将季节时间序列从非平稳序列中抽出来,单独作为一章加以研究,具有较强的现实意义。本章共分四节:简单随机时间序列模型、乘积季节模型、季节型时间序列模型的建立、季节调整方法X-11程序。 本章的学习重点是季节模型的一般形式和建模。 §1 简单随机时序模型 在许多实际问题中,经济时间序列的变化包含很多明显的周期性规律。比如:建筑施工在冬季的月份当中将减少,旅游人数将在夏季达到高峰,等等,这种规律是由于季节性(seasonality)变化或周期性变化所引起的。对于这各时间数列我们可以说,变量同它上一年同一月(季度,周等)的值的关系可能比它同前一月的值的相关更密切。 一、季节性时间序列 1.含义:在一个序列中,若经过S个时间间隔后呈现出相似性,我们说该序列具有以S为周期的周期性特性。具有周期特性的序列就称为季节性时间序列,这里S为周期长度。 注:①在经济领域中,季节性的数据几乎无处不在,在许多场合,我们往往可以从直观的背景及物理变化规律得知季节性的周期,如季度数据(周期为4)、月度数据(周期为12)、周数据(周期为7);②有的时间序列也可能包含长度不同的若干种周期,如客运量数据(S=12,S=7) 2.处理办法: (1)建立组合模型; (1)将原序列分解成S个子序列(Buys-Ballot 1847)

对于这样每一个子序列都可以给它拟合ARIMA 模型,同时认为各个序列之间是相互独立的。但是这种做法不可取,原因有二:(1)S 个子序列事实上并不相互独立,硬性划分这样的子序列不能反映序列{}t x 的总体特征;(2)子序列的划分要求原序列的样本足够大。 启发意义:如果把每一时刻的观察值与上年同期相应的观察值相减,是否能将原序列的周期性变化消除( 或实现平稳化),在经济上,就是考查与前期相比的净增值,用数学语言来描述就是定义季节差分算子。 定义:季节差分可以表示为S t t t S t S t X X X B X W --=-=?=)1(。 二、 随机季节模型 1.含义:随机季节模型,是对季节性随机序列中不同周期的同一周期点之间的相关关系的一种拟合。 AR (1):t t S t S t t e W B e W W =-?+=-)1(11??,可以还原为:t t S S e X B =?-)1(1?。 MA (1):t S t S t t t e B W e e W )1(11θθ-=?-=-,可以还原为:t S t S e B X )1(1θ-=?。 2.形式:广而言之,季节型模型的ARMA 表达形式为 t S t S e B V W B U )()(= (1) 这里,?? ? ??----=----=?=qS q S S S pS P S S S t d S t B V B V B V B V B U B U B U B U X W 2212211)(1)()(平稳。 注:(1)残差t e 的内容;(2)残差t e 的性质。 §2 乘积季节模型 一、 乘积季节模型的一般形式 由于t e 不独立,不妨设),,(~m d n ARIMA e t ,则有

建设工程季节性施工措施

目录 第一节雨季施工技术措施 (2) 第二节冬季施工技术措施 (2) 第三节夏季施工 (3) 第四节防风措施 (4)

第一节雨季施工技术措施 武汉地区经常阴雨绵绵,给本工程的施工带来很大的困难。为了确保工程的顺利进行,特提出如下雨季施工措施: 1、密切注意天气变化,避免雨天浇筑混凝土,如施工中遇大雨立即停止混凝土的浇筑,并及时对施工完的混凝土进行草包覆盖保护。 2、采用硬地施工,即施工现场临时道路采用150mm厚砼浇筑,这既给雨季施工带来很大的便利,给工人提供了良好的工作环境,又防止了尘土、泥浆被带到场外,保护了周围环境加强了现场文明施工。 3.雨季施工期间混凝土搅拌站要随时测定砂、石含水率,及时调整混凝土的配合比,严格控制水灰比。 4.现场室外使用的中大型机械必须按规定加设防雨罩或防雨棚,闸箱防雨,漏电接地保护装置应灵敏有效,定期检查线路的绝缘情况。 5.大风天气要做好大型高耸物件(塔吊、附墙吊)的防风加固措施,风力达到或超过6级塔吊禁止使用。 6. 现场临时尽量少备用灰料,如必须备用,则须做好如下防潮工作:下铺木板和两层彩条布,要求石灰袋下部离开地面的架空高度不小于500mm,石灰堆上铺一道彩条布,雨季增加一道。 7. 做好现场排水系统,将地面雨水及时排出场外。 第二节冬季施工技术措施 武汉地区的冬季为12、1、2月,尽管常年冬季气温不太高,冬季持续时间不长,但近年来冬季气温多呈反常现象,为保证工程能在冬季期间正常进行,采取如下措施: 1.确定冬季混凝土施工配合比,并按要求掺加抗冻剂,以提高混凝土的抗

冻性。搅拌站有可靠的冬季施工保证措施,能确保混凝土冬季施工的要求。 2.保证混凝土受冻前达到临界强度,拆模时,混凝土强度必须达到4Mpa,拆除时间以现场同条件试块抗压强度为准。 3.适当延长养护时间,砼达到足够强度后再拆模。 4.控制混凝土拌合物的出机温度,保证混凝土的入模温度不低于5 C。以防混凝土在输送过程中受冻或温度过快降低。搅拌砂浆材料中不得有冰冻块物,气候有冰冻现象时,材料利用塑料薄膜和草包覆盖。 5.混凝土在浇筑前,应清除模板和钢筋上的冰雪,采用地泵浇筑时,混凝土泵管外包保温被(层)。 6.建立冬季施工测温制度。在混凝土浇筑时按要求布置测温孔、并编号,按冬季施工要求进行测温工作。测温工作派专人负责,在混凝土强度未达到3.5N/mm2以前每2h测一次,以后每6h测一次。所有各项测量及检验结果,均应填写“混凝土施工记录”和“混凝土冬期施工日记”。 7.负温条件下焊接钢筋时,应根据当时气温条件,搭设挡风设施和适当延长保温时间。雨大禁止焊接工作。 第三节夏季施工 在夏季施工中,除严格遵守国家现行的施工规范及规程外,为保证施工质量特制定以下措施: 1.高温天气施工混凝土时,采取降温措施,保证混凝土入模时的温度。 2.高温天气施工的混凝土、砂浆,应注意测温,加强降温、养护工作。 3.对砼、砂浆面加强养护,用草袋加水覆盖。

相关文档
相关文档 最新文档