文档库 最新最全的文档下载
当前位置:文档库 › 一种脱硫废液的氧化除杂装置

一种脱硫废液的氧化除杂装置

一种脱硫废液的氧化除杂装置
一种脱硫废液的氧化除杂装置

一种脱硫废液氧化除杂装置

技术领域

本发明涉及利用焦炉煤气脱硫废液技术领域,具体为一种脱硫废液氧化除杂装置。

背景技术

目前国内部分焦化厂采用PDS湿式法脱硫脱氰工艺。该工艺具有脱硫脱氰效率高、设备投资小、操作简便等优点。PDS湿式氨法脱硫脱氰工艺所产生的废液中主要含有硫氰酸铵、硫代硫酸铵及硫酸铵。其中,硫氰酸铵占16.5%~20.5%,硫酸铵占10.0%~14.5%,而硫代硫酸铵仅占0.5%~1.5%,含量相对较少。回收利用脱硫废液中的有用成份硫氰酸铵及硫酸铵,减少排放,增加企业收益成为必需。而回收利用脱硫废液中的硫氰酸铵及硫酸铵,首先需要去除脱硫废液中的硫代硫酸铵杂质。

发明内容

本实用新型所解决的技术问题在于提供一种脱硫废液氧化除杂装置,以解决上述背景技术中的需要。

本实用新型采用的技术方案为:一种脱硫废液氧化除杂装置,包括氧化釜,所述氧化釜出口端连接有尾气吸收塔;

氧化釜外有夹套,夹套上设有蒸汽进口及冷凝水出口;

釜体上设置有进料口及出料口,并带有独立搅拌,配有锚式搅拌器;

釜体上部设有视镜;浓缩釜顶部接有空气进入口。

尾气吸收塔上部设置有吸收液进口,下部设置有吸收液出口。

本实用新型有益效果为:本装置解决了背景技术中的需求,将脱硫废液,在氧化釜中由经气体分配器进入的空气的氧化作用下,分解为硫酸氨及硫,过程中产生的尾气进入尾气吸收塔,回收利用。装置除杂速度快,除杂彻底,提高后期产品硫氰酸铵纯度;除杂步骤无尾气排放,降低环境污染。

附图说明:

图1为本发明的装置的结构示意图;

图中: 1、氧化釜,2、尾气吸收塔,3、蒸汽进口及4、冷凝水出口,

5、混液进料口,

6、混液出料口;,

7、锚式搅拌器,

8、视镜,

9、空气

进气口,10、尾气出口,11、吸收液进口,12、吸收液出口。

具体实行方式:

参见图1,一种脱硫废液氧化除杂装置,包括氧化釜1,所述氧化釜的连接有尾气吸收塔2;

氧化釜外都有夹套,夹套上设有蒸汽进口3及冷凝水出口4;

氧釜体上设置有混液进料口5及混液出料口6;

釜内都带有独立搅拌,配有锚式搅拌器7;釜体上部都设有视镜8;

浓缩釜顶部接有空气进气口9及尾气出口10。

尾气吸收塔上部设置有吸收液进口11,下部设置有吸收液出口12。

工作原理:脱硫废液进入氧化釜1内,脱硫废液中的硫代硫酸胺在由进气口进入的氧气的作用下,氧化分解为硫酸氨及硫磺,分解过程中产生的尾气进入尾气吸收塔进行回收利用。

以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

权利要求书

一种脱硫废液氧化除杂装置,包括氧化釜,所述氧化釜尾气出口端连接有尾气吸收塔;

氧化釜外有夹套,夹套上设有蒸汽进口及冷凝水出口;

釜体上设置有进料口及出料口,并带有独立搅拌,配有锚式搅拌器;

釜体上部设有视镜;浓缩釜下端接有空气进气口。

尾气吸收塔上部设置有吸收液进口,下部设置有吸收液出口。

一种脱硫废液氧化除杂装置,包括氧化釜,所述氧化釜出口端连接有尾气吸收塔。脱硫废液进入氧化釜内,脱硫废液中的硫代硫酸胺在由进气口进入的氧气的作用下,氧化分解为硫酸氨及硫磺,分解过程中产生的尾气进入尾气吸收塔进行回收利用。

图 1

摘要附图

脱硫废液处理方案

100吨/天焦化脱硫废液资源化处理项目 可行性报告 东北师大学 2013年3月

第一章脱硫废液的产生、危害及利用价值自带氨前脱硫工艺近几年在焦化行业焦炉气脱硫已得到普遍的应用。这一工艺采用煤气中自带氨作碱源,以酞菁钴类(PDS)化合物为主要成分作为脱硫脱菁催化剂,脱硫运行成本较低,投资较小,工艺操作简单,脱硫脱氰效率高,而且不用外加碱源,是目前焦化行业普遍采用的脱硫工艺,据不完全统计,全国已有二百家以上企业采用该法脱硫,均取得了较好的效果。 但是,由于脱硫过程存在副反应,致使该脱硫过程生成硫氰酸铵、硫代硫酸铵、硫酸铵等副盐,并且不断地积累。当这些副盐在脱硫液中含量超过250g/L时,就会对脱硫效果产生影响,能耗增高,脱硫效率下降,副盐含量越高脱硫效率就越差。为了保证脱硫效率,不得不外排一部分脱硫液,补充一部分新脱硫液来降低脱硫系统中的副盐含量。年产100万吨焦炭的焦炉气脱硫系统每天大约需外排脱硫液50m3以上,才能基本保证脱硫液中副盐含量不大于250g/L。目前,国大多数焦化厂采用拌煤焚烧法处理脱硫废液,即将脱硫废水拌如煤中送入焦炉,但存在降低煤的发热量,焚烧后产生大量的有害气体,腐蚀焦炉设备,同时由于废水中氨等物质气味大,在煤输送过程中操作环境极差。另外,脱硫废水送至配煤过程中,不可能全部滞留于煤中,有近半数的脱硫废水会渗透至地表,造成和地下污染,产生重的二次污染,这种法并没有真正解决脱硫废水污染问题。 从另一个面看,这些物质也是附加值很高的化工产品。因此,从

外排脱硫液中回收附加值高的产品,即可平衡脱硫系统中的副盐,保证脱硫效率,又能消除环境污染,还可产生一定的经济效益,是处理外排脱硫液切实可行的法。 第二章脱硫废液付盐提取技术现状 脱硫废液处理目前国外开展了一些研究工作。日本专利认为从脱硫废液中回收硫氰酸铵是极为困难的,原因是硫代硫酸铵和硫氰酸铵都极易溶解于水且溶解度相差极小,利用溶解度不同来进行分离是不可能的,因此日本专利提出了电渗析法,此法虽能制得硫氰酸铵.但因处理过程复杂,装置成本高,耗电量大而未能实现工业化生产。 目前,国有少部分焦化厂采用梯度结晶提盐法,脱硫废液先蒸氨后,根据溶解度不同加热浓缩进行分步结晶提盐,可提出硫氰酸铵、硫代硫酸铵、硫酸铵三种盐。但由于硫代硫酸铵和硫氰酸铵溶解度相差极小,提盐纯度很低,含量在50-70%。投资高,操作复杂。特别是提出的硫代硫酸铵量大且纯度低没有市场消耗,基本上是没有用途的废物,所以此法还是没有解决污染问题,是不可行的。 还有一种法是溶剂萃取法,通过用有机化学溶剂对脱硫废液进行萃取,从而提取出硫酸铵、硫代硫酸铵和硫氰酸铵,并将其初步分离,纯度在90-95%之间。此种法的缺点极其明显,首先是使用有机溶剂进行萃取,不仅成本较高而且萃取后的溶液因含有机溶剂,在蒸馏过程中造成的污染比较重,废气排放无法达标仍需进行二次处理;其次有机溶剂属于易燃易爆,政府管制非常厉,运输、存储都有巨大隐患;第三,提取出的化工原料纯度不高,不能达到最低标准,市场销售价

脱硫废液提盐装置

脱硫废液提盐装置 本技术采用溶剂法分离,分离出脱硫废液中的硫氰酸盐、硫代硫酸盐并加以回收,对提取过程中产生的脱硫液进行循环利用。从根本上解决脱硫废液的污染,废物副盐回收利用,直接做成工业产品销售,变废为宝。 生产工艺方案 1、工艺流程 ?本项目硫氰酸铵提取主要是一个物理变化过程,通过脱色、过滤、浓缩、过滤、结晶、过滤等过程完成硫氰酸铵产 品的提取。 ?硫酸铵和硫磺提取包括物理变化和化学反应,通过氧化脱色、过滤、氧化、精制、浓缩、过滤、结晶、过滤等过程 完成产品的提取 2、工艺流程示图

4、硫氰酸铵提取 ●将脱硫系统排出的脱硫废液进行预处理,通过降温、静置沉淀及过滤,去掉其中的悬浮硫、硫泥、煤灰等杂质; ●向预处理液中加入一定量的活性炭,通过加温、搅拌、过滤等措施进行处理,得到合格清液,并分离出废活性炭。废活性炭由活性炭生 产企业回收再生或加入到配煤中焚烧,清液进入清液储槽供下工序使用; ●对脱硫清液进行减压浓缩。浓缩时,根据工艺要求慢慢补入脱硫清液或甩后母液,逐步提高浓缩液中副盐的浓度,当浓缩到一定温度和 浓度时,对浓缩液进行离心分离和热过滤,分离出其中的硫代硫酸铵和硫酸铵等混合盐。 ●对过滤后的浓缩液进行冷却结晶,达到一定温度时析出硫氰酸铵晶体,再通过离心机进行固液分离,得到硫氰酸铵作为主导产品外卖; 甩后母液补入到浓缩釜中,与脱硫清液一起继续进行浓缩,循环使用。 5、硫代转化处理 ●将硫代粗盐在溶解槽中溶解完全,然后输送至氧化脱色釜,加入一定量的活性炭进行脱色氧化,待反应完全后过滤得滤液。 ●把上述滤液输送至氧化釜进行氧化处理,通过离心机进行固液分离,得产品硫磺,滤液经过精制处理后,暂存于储罐中。 ●把清液输送至浓缩釜进行减压浓缩,浓缩时,根据工艺要求慢慢补入清液,当浓缩到一定温度和浓度时,把浓缩液输送至结晶釜。 ●对浓缩液进行冷却结晶,达到一定温度时析出硫酸铵晶体,再通过离心机进行固液分离,得到硫酸铵产品外卖;甩后母液循环利用。 6、经济效益 ●直接经济效益 以240万吨/年焦炭产能为例,全年处理22000吨脱硫液,回收2000吨硫氰酸铵,全年生产(每立方米废液耗电55度,耗蒸汽0.8吨,电价按每度0.65元,蒸汽按每吨100元计)

焦化厂脱硫废液提盐方案

焦化厂脱硫废液提盐工艺选择 一、背景 焦化厂脱硫都为湿法脱硫;湿法脱硫工艺大致有两种;一是真空碳酸钾法,此方法生产的硫磺纯度高,为精硫磺,好销售;而且此工艺还能生产硫酸产品等,但是此工艺投资大,占地大;采用后脱硫,用工业碳酸钠做碱源,脱硫废液中的副盐就是,硫氰酸钠和硫代硫酸钠,还有少量的硫酸钠。即钠盐;钠盐的市场经济效益比铵盐要好。 二是催化氧化法,此方法生产的硫磺为黑硫磺,即粗硫磺;硫磺纯度底,渣子多,市场销售困难;此工艺为前脱硫,即:PDS法脱硫,前脱硫采用氨作为碱源,脱硫废液中的副盐就是,硫氰酸铵;硫代硫酸铵;还有少量的硫酸铵,即铵盐;。 脱硫废液中三种负盐总和不得超过250g/L,即; 硫氰酸钠(铵)130g/ L, 硫代硫酸钠(铵)90g/L,硫酸钠(铵)30g/ L。脱硫废液中副盐 超过250g/L 就必须的外排,更新脱硫液,否则煤气就无法吸收煤气 中的硫化氢,因此脱硫液中的副盐始终保持在250g/L以内;外排 的部分液体称脱硫废液,里面还有较高的副盐,无法循环使用,必须把副盐提取后方可回用。 二、脱硫废液现状 焦化厂采用PDS法脱除焦炉煤气中H2S和HCN,全部投产运行后,预计每天需要外排脱硫废液50吨/天,(本方案设计日处理量约为5 0吨/天,设计富余为20%,实际处理量为60吨/天),年产生约19800 吨脱硫废液。(按330天计算已考虑运行过程中检修、故障、保养等因素),脱硫废液中含有大量的硫代硫酸铵(NH4)2S2O3、硫氰酸铵4 NH CNS及其他杂质, 这些脱硫废液的去处一直是行业里的难题。 般的焦化厂脱硫废液处理办法就是,将其喷洒在煤堆上,有的将脱硫废液送到熄焦池进行湿法熄焦用,这两种方法虽然解决了脱硫废液的 去处,表面看起来没有废液外排,但并没有从根本上解决问题,实际

焦化脱硫催化剂

脱硫催化剂说明 目前,我国用于焦炉煤气的湿法脱硫工艺主要有湿式氧化和湿式吸收工艺两种,而用于湿式氧化工艺的脱硫催化剂有十余种,概括起来可分为两大类:第一类是酚-醌转化(活性基团转化),用变价离子催化,如ADA、对苯二酚、栲胶、F/R法中的苦味酸(PIA)和TAKAHAX 法中的1,4-萘醌2-磺酸钠等。上述脱硫催化剂虽能满足某些工艺要求,但也存在一些缺点,如不能脱除有机硫,总脱硫效率低,硫泡沫不易分离,堵塞设备,适应H2S范围小,脱硫成本较高等。第二类是近年来发展起来的磺化酞菁钴复合金属离子类脱硫催化剂,这类脱硫催化剂与第一类不同的是脱硫催化剂本身是载氧体,通过本身携带的原子氧完成氧化再生作用。 Z L脱硫催化剂属于第二类催化剂,但它吸收了第一类催化剂的优点,是一种新型的复合型脱硫催化剂,已成功用于多家焦炉煤气的湿式氧化脱硫工艺,特别是在氨法HPF脱硫工艺中的应用,显示了其优异的性能特点,取得了显著的社会效益。 1.Z L催化剂的性能特点和催化氧化原理 1.1性能特点 理论和生产实践都表明,Z L脱硫催化剂用于HPF脱硫工艺具有以下性能特点。 1)该产品适合高、中、低含硫量的焦炉煤气,并且脱硫脱氰速度快、效率高,脱硫效率可达98%以上;脱氰效率可达90%以上。 2)在脱除无机硫的同时,可同时脱除有机硫。 3)在同等工艺条件下,ZL催化剂和其他催化剂相比具有硫泡沫颗粒大,易分离、不堵塞设备的特点,且用量少、运行成本低。 4) ZL催化剂对于硫磺的生成具有较好的选择性,所以付盐生长速度慢,废液排量小,处理费用低,环境污染小。 1.2催化氧化反应原理 1)吸收反应

硫化氢(H2S)、硫醇(RHS)、羰基硫(COS)、二硫化碳(CS2)等与碱性溶液反应生成相应的化合物: 由上述吸收反应可知,在一定的工艺条件下,若使吸收反应进行彻底,需使体系中的S2-被氧化成单质硫而分离。 2)脱硫反应 由于ZL催化剂的特殊分子结构具有携氧能力,在脱硫过程中,其不断释放出具有较高氧化活性的原子氧,能迅速将体系中的S2-氧化成单质硫,大大强化了脱硫效果,主要反应过程为: 3)再生反应 脱硫反应中,催化剂所携带的氧被消耗,鼓入空气使其再生: 研究表明,ZL催化剂的作用机理如下。 a:ZL脱硫催化剂在碱性溶液中将溶解的O2吸附活化,形成高活性大离子; b:当遇到H2S等含硫化合物时,将其吸附到高活性的大离子微观表面,在生产条件下,使H2S等含硫化合物中的硫氧化成单质硫或多硫化物; c:单质硫或多硫化物从ZL脱硫催化剂表面解吸而离去; d:ZL脱硫催化剂经重新获得氧而再生.反应过程如下:

焦化厂脱硫废液提盐方案说明

苏州乔发环保科技股份有限公司 焦化厂脱硫废液提盐工艺 一、背景 焦化厂脱硫都为湿法脱硫;湿法脱硫工艺大致有两种;一是真空碳酸钾法,此方法生产的硫磺纯度高,为精硫磺,好销售;而且此工艺还能生产硫酸产品等,但是此工艺投资大,占地大;采用后脱硫,用工业碳酸钠做碱源,脱硫废液中的副盐就是,硫氰酸钠和硫代硫酸钠,还有少量的硫酸钠。即钠盐;钠盐的市场经济效益比铵盐要好。 二是催化氧化法,此方法生产的硫磺为黑硫磺,即粗硫磺;硫磺纯度底,渣子多,市场销售困难;此工艺为前脱硫,即:PDS法脱硫,前脱硫采用氨作为碱源,脱硫废液中的副盐就是,硫氰酸铵;硫代硫酸铵;还有少量的硫酸铵,即铵盐;。 脱硫废液中三种负盐总和不得超过250g/L,即; 硫氰酸钠(铵)130g/L,硫代硫酸钠(铵)90g/L,硫酸钠(铵)30g/L。脱硫废液中副盐超过250g/L就必须的外排,更新脱硫液,否则煤气就无法吸收煤气中的硫化氢,因此脱硫液中的副盐始终保持在250g/L以内;外排的部分液体称脱硫废液,里面还有较高的副盐,无法循环使用,必须把副盐提取后方可回用。 二、脱硫废液现状 焦化厂采用PDS法脱除焦炉煤气中H2S和HCN,全部投产运行后,预计每天需要外排脱硫废液50吨/天,(本方案设计日处理量约为50吨/天,设计富余为20%,实际处理量为60吨/天),年产生约19800吨脱硫废液。(按330天计算已考虑运行过程中检修、故障、保养等因素),脱硫废液中含有大量的硫代硫酸铵(NH4)2S2O3、硫氰酸铵NH4CNS及其他杂质,这些脱硫废液的去处一直是行业里的难题。 一般的焦化厂脱硫废液处理办法就是,将其喷洒在煤堆上,有的

脱硫液提盐操作规程20180405

脱硫液提盐操作规程 一、基本原理 将脱硫废液先进行脱色处理,然后作负压蒸发浓缩,再经过冷却结晶,用离心机使废液结晶分离,制成硫代硫酸铵、硫氰酸铵混盐产品。 二、工艺流程 本项目共分脱色、蒸发、结晶、压滤、离心机操作等工序。从脱硫工段过来的脱硫液进入脱硫液储槽,然后用脱硫液泵打入脱色釜,从人孔往釜内装入适量活性炭脱色剂,用蒸汽间接加热到95℃时,保温2-3小时后关闭蒸汽阀门,打开循环降温水进出口阀门降温至45℃左右时准备放料。打开釜底放料阀,用泵打入压滤机进行分离,脱硫液进入到脱色清液储槽。 第一次刚开工时,用泵将脱色清液打入蒸发釜和补液槽,在真空负压(0.08-0.085Mpa)搅拌装态下用蒸汽间接加热至65-80℃,汽相经冷却器冷却后进入蒸发清液槽(地下槽),釜内脱硫液被蒸发浓缩,根据蒸发釜液位变化及时从补液槽往釜内补液(自吸)。蒸发结束后放至硫代硫酸铵结晶釜内用冷却水间接冷却结晶,冷却到55-60℃再用泵打入板框压滤机进行分离,滤液进入半地下槽,用泵打入中间釜,进一步冷却结晶,再经板框压滤机压滤,滤液进入半地下槽,用泵打入硫氰结晶釜,两次压滤产品硫代硫酸铵装袋入库。 硫氰酸铵结晶釜,在搅拌状态下用冷冻水进行间接冷却,当釜内物料冷却到30℃后,放到离心机内离心分离,产品为硫氰酸铵盐,离心机分离后的滤液进入半地下槽,然后用泵打到母液槽。蒸发清液槽(地下槽)内清液用泵送往化产车间脱硫工段循环使用。

正常生产时,把母液槽内母液打往蒸发釜,脱色清液打往补液槽。 三、工艺流程简图 四、脱硫液提盐设备表 序号 设备名称 型号及技术规格性能 单位 数量 备 注 1 脱色釜 Ф2600 V=20m3 外径Ф2800 V=F20000L n= 63 r/min 防爆电机18.5k ,减速机摆线针轮,浆式搅拌器,测温杆用厚壁加固筋,212-95单端面机封(动环:石墨填充料 静环:氧化铝) 1 台 夹套搪玻璃 2 蒸发釜 Ф2200 V=10m3 外径Ф2400 V=K10000L n=23 r/min 防爆电机15kw ,减速机摆线针轮,框式搅拌器,测温杆用厚壁加固筋,212-95单端面机封(动环:石墨填充料 静环:氧化铝) 2 台 夹套搪玻璃 3 硫代结晶釜 Ф2200 V=8m3 外径Ф2200 V=K8000L n=41 r/min 防爆电机15kw ,减速机摆线针轮,框式搅拌器,测温杆用厚壁加固筋,212-95单端面机封(动环:石墨填充料 静环:氧化铝) 2 台 夹套搪玻璃 4 中间釜 Ф2200 V=10m3 外径Ф2400 V=F10000L n=41r/min 防爆电机15kw ,减速机摆线针轮,浆式搅拌器,测温杆用厚壁加固筋,212-95单端面机封(动环:石墨填充料 静环:氧化铝) 1 台 夹套搪玻璃 5 硫氰结晶釜 Ф1750 V=5m3 外 外径Ф1900 V=K5000L 防爆电机7.5KW ,减速机摆线针轮,4#机型,测温杆用厚壁加固筋,框 式搅拌器(转速23转/分钟)。212-95单端面机 封(动环:石墨填充料 静环:氧化铝) 5 台 夹套搪玻璃 6 活性炭板框 过滤面积30㎡ 箱式、暗流、人工卸料 1 台 7 硫代板框 过滤面积60㎡ 箱式、暗流、人工卸料 1 台 8 二次压滤板框 过滤面积15㎡ 箱式、暗流、人工卸料 1 台 9 热水离心泵 立式管道热水泵IRG50-160 流量12.5m 2/h ,扬程32米 4kw 2 台 10 卧式离心泵 IH65-50-160流量25m 2 /h ,扬程32米, 5.5kw 14 台 304(耐酸碱)

脱硫废液处理方案

脱硫废液处理方案标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

100吨/天焦化脱硫废液 资源化处理项目 可行性报告 东北师范大学 2013年3月 第一章脱硫废液的产生、危害及利用价值 自带氨前脱硫工艺近几年在焦化行业焦炉气脱硫已得到普遍的应用。这一工艺采用煤气中自带氨作碱源,以酞菁钴类(PDS)化合物为主要成分作为脱硫脱菁催化剂,脱硫运行成本较低,投资较小,工艺操作简单,脱硫脱氰效率高,而且不用外加碱源,是目前焦化行业普遍采用的脱硫工艺,据不完全统计,全国已有二百家以上企业采用该法脱硫,均取得了较好的效果。 但是,由于脱硫过程存在副反应,致使该脱硫过程生成硫氰酸铵、硫代硫酸铵、硫酸铵等副盐,并且不断地积累。当这些副盐在脱硫液中含量超过250g/L时,就会对脱硫效果产生影响,能耗增高,脱硫效率下降,副盐含量越高脱硫效率就越差。为了保证脱硫效率,不得不外排一部分脱硫液,补充一部分新脱硫液来降低脱硫系统中的副盐含量。年产100万吨焦炭的焦炉气脱硫系统每天大约需外排脱硫液50m3以上,才能基本保证脱硫液中副盐含量不大于250g/L。目前,国内大多数焦化厂采用拌煤焚烧法处理脱硫废液,即将脱硫废水拌如煤中送入焦炉,但存在降低煤的发热量,焚烧后产生大量的有害气体,腐蚀焦炉设备,同时由于废水中氨等物质气味大,在煤输送过程中操作环境极差。另外,脱硫废水送至配煤过程中,不可能全部滞留于煤中,有近半数的脱硫废水会渗透至地表,造成大地和地下污染,产生严重的二次污染,这种方法并没有真正解决脱硫废水污染问题。

从另一个方面看,这些物质也是附加值很高的化工产品。因此,从外排脱硫液中回收附加值高的产品,即可平衡脱硫系统中的副盐,保证脱硫效率,又能消除环境污染,还可产生一定的经济效益,是处理外排脱硫液切实可行的方法。 第二章脱硫废液付盐提取技术现状 脱硫废液处理目前国内外开展了一些研究工作。日本专利认为从脱硫废液中回收硫氰酸铵是极为困难的,原因是硫代硫酸铵和硫氰酸铵都极易溶解于水且溶解度相差极小,利用溶解度不同来进行分离是不可能的,因此日本专利提出了电渗析法,此法虽能制得硫氰酸铵.但因处理过程复杂,装置成本高,耗电量大而未能实现工业化生产。 目前,国内有少部分焦化厂采用梯度结晶提盐法,脱硫废液先蒸氨后,根据溶解度不同加热浓缩进行分步结晶提盐,可提出硫氰酸铵、硫代硫酸铵、硫酸铵三种盐。但由于硫代硫酸铵和硫氰酸铵溶解度相差极小,提盐纯度很低,含量在50-70%。投资高,操作复杂。特别是提出的硫代硫酸铵量大且纯度低没有市场消耗,基本上是没有用途的废物,所以此方法还是没有解决污染问题,是不可行的。 还有一种方法是溶剂萃取法,通过用有机化学溶剂对脱硫废液进行萃取,从而提取出硫酸铵、硫代硫酸铵和硫氰酸铵,并将其初步分离,纯度在90-95%之间。此种方法的缺点极其明显,首先是使用有机溶剂进行萃取,不仅成本较高而且萃取后的溶液因含有机溶剂,在蒸馏过程中造成的污染比较严重,废气排放无法达标仍需进行二次处理;其次有机溶剂属于易燃易爆,政府管制非常严厉,运输、存储都有巨大隐患;第三,提取出的化工原料纯度不高,不能达到国家最低标准,市场销售价格低廉。 第三章脱硫废液催化转化副盐提取技术的研发

焦化厂化工车间脱硫废液提盐操作规程

提盐操作规程 1.工艺流程 从脱硫系统送来的脱硫废液先打入原料槽,经静置分离12小时以上,部分夹带的悬浮硫和不溶物沉淀原料槽底部(定期人工清理),脱硫液用原料泵打入装有活性炭并带有搅拌器的脱色釜中进行脱色,脱色釜带有蒸汽夹套加热(6-8小时,80-85℃)。脱色釜气相部分经冷凝冷却器用低温水冷却后,进入脱硫地下槽。脱色后脱硫液经过滤器过滤,与活性炭分离,滤液进入脱色液槽,废活性炭送配煤。脱色液槽内脱硫液由脱色液泵打入蒸发釜中,蒸发釜通过外置的加热器经蒸发釜循环泵给脱硫液循环加热,启动真空泵系统,保持蒸发釜内真空度-0.090~-0.098MPa,蒸发釜内液位保持70%-80%高度。蒸发釜顶蒸汽经蒸发釜冷凝冷却器用低温水冷却后,冷凝液进入真空槽。真空槽内液体定期排入脱硫地下槽。当蒸发釜内液位不再下降后,停止补料。打开循环泵出口管支管阀门,将料液打入1#结晶釜中(通过软管)。启动1#结晶釜搅拌器,打开低温水入口阀门,控制结晶釜冷却速率,冷却至55-60℃。打开1#结晶釜釜底阀门,将结晶液放入离心机内进行固液分离。固体为硫代硫酸铵和硫酸铵,液体由真空系统抽入2#结晶釜,启动2#结晶釜搅拌器,打开低温水入口阀门,控制2#结晶釜冷却速率,将结晶液缓慢冷却至大约25℃,打开2#结晶釜釜底阀门,将结晶液放入离心机内进行固液分离。固体为硫氰酸铵,液体流入离心液槽。将硫氰酸铵结晶手工装入干燥器,打开干燥器真空管阀门,干燥器通蒸汽进行干燥。干燥后即为产品硫氰酸铵。离心液槽

内液满打入脱色液槽 2.岗位职责 2.1 负责本岗位所属设备的全部操作。熟悉设备的构造、工作原理、作用及管道走向。做到熟练操作,会保养、会排除故障。 2.2 定期巡回检查本岗位所属设备的压力、温度、流量、液位、仪表及设备运转情况,并及时进行调整,保证各项技术指标达到工艺要求。 2.3 负责电机、泵的维护保养,做好生产记录和工具保管。 2.4 负责本岗位的安全工作,搞好设备及环境卫生,严格交接班制度。 2.5 负责及时向原料槽打脱硫液,定期排出真空槽液体和每天出盐等工作。 2.6 发现异常或紧急情况时,果断处理,并及时与段长进行联系。 2.7 完成段长、车间领导交办的临时工作。 3.交接班制度 3.1 接班到岗后与交班者共同检查各设备运转、安全生产及其它情况是否正常。 3.2交班者要详细向接班交待当班生产、设备运转及问题的处理情况。 3.3如交接班时正在开、停工或事故处理时,双方共同处理后再交接班。 3.4交接班时如接班者未到岗位或其它人来接班,交班者不可离岗,待来人接班时方准离岗。

关于焦化厂HPF法脱硫工艺方案

关于焦化厂HPF法脱硫工艺方案 1

关于焦化厂HPF法脱硫工艺方案 近年来,各焦化厂的煤气净化系统中普遍采用了流程短、投资省的HPF法脱硫工艺,但熔硫装置普遍运行不正常,甚至被迫改用板框压滤机生产硫膏。经过对各厂生产实际的分析,在沙钢的设计中作了许多改进,经过1年的生产实践,成功地实现了连续熔硫。 1.HPF法煤气脱硫的现状 已投产的4×55孔6m焦炉,年产焦炭220万t,煤气处理量10万m3/h,由2套5万m3/h的HPF法脱硫装置并联操作,备用设备共用。第1套设备投产已1年,生产正常,能够连续熔硫,脱硫塔前煤气含硫量为 8g/m3,脱硫塔后煤气含硫量<300mg/m3,硫磺纯度>80%,销路很好。第2套设备已生产近半年,也很正常。。 2.工艺改进及效果 (1)初冷器分上下两段喷洒,以除煤气中的焦油和萘,有效避免了预冷塔的堵塞。 (2)增设了剩余氨水除焦油器,保证了蒸氨塔的正常运行,确保氨汽能连续进入预冷塔,使脱硫液碱度适宜。 (3)增加了预冷塔,保证脱硫塔入口温度在30~40℃,系统温度稳定。 (4)增加清液回送冷却器,避免了由熔硫釜排出的温度较高的清液进入脱硫液系统。 (5)终冷塔上段加碱,进一步净化煤气,使塔后煤气含硫量<200mg/m3。 (6)增加泡沫槽回流管,有效防止了泡沫至熔硫釜的管道堵塞。 (7)熔硫釜硫磺出口管改为直管段,避免了堵塞,且易操作。 (8)脱硫塔底加1个直径133mm的清扫排液口,防止塔底沉积。 (9)脱硫液泵出口加1个直径50mm的管道至废液槽底部,一则防止废液槽堵塞,二则可冷却和稀释熔硫釜排出的清液。 3.注意事项 (1)液气比(脱硫液与压缩空气的比例)对脱硫效率的影响。增加液气比可使传质面迅速更新,同时可降低脱硫液中硫化氢的分压差,有利于提高吸收推动力。但液气比不宜过大,否则,脱硫效率的增加不明显,还有可能造成脱硫液进入煤气管道。 (2)再生空气量。氧化lkg硫化氢理论上需要的空气量虽不足2m3,但在实际生产中,考虑到浮选硫泡沫的需要,再生塔的鼓风强度比理论计算要高。我厂的单塔空气量控制在1500m3/h左右,风量对硫泡沫及脱硫液的质量影响很大。我们的经验是一定要保持稳定的风量和压力,及时将脱硫液中的悬浮硫吹出。 2

焦化厂脱硫废液提盐方案说明

焦化厂脱硫废液提盐方案 说明 This model paper was revised by the Standardization Office on December 10, 2020

苏州乔发环保科技股份有限公司 焦化厂脱硫废液提盐工艺 一、背景 焦化厂脱硫都为湿法脱硫;湿法脱硫工艺大致有两种;一是真空碳酸钾法,此方法生产的硫磺纯度高,为精硫磺,好销售;而且此工艺还能生产硫酸产品等,但是此工艺投资大,占地大;采用后脱硫,用工业碳酸钠做碱源,脱硫废液中的副盐就是,硫氰酸钠和硫代硫酸钠,还有少量的硫酸钠。即钠盐;钠盐的市场经济效益比铵盐要好。 二是催化氧化法,此方法生产的硫磺为黑硫磺,即粗硫磺;硫磺纯度底,渣子多,市场销售困难;此工艺为前脱硫,即:PDS法脱硫,前脱硫采用氨作为碱源,脱硫废液中的副盐就是,硫氰酸铵;硫代硫酸铵;还有少量的硫酸铵,即铵盐;。 脱硫废液中三种负盐总和不得超过250g/L,即; 硫氰酸钠(铵)130g/L,硫代硫酸钠(铵)90g/L,硫酸钠(铵)30g/L。脱硫废液中副盐超过250g/L就必须的外排,更新脱硫液,否则煤气就无法吸收煤气中的硫化氢,因此脱硫液中的副盐始终保持在250g/L以内;外排的部分液体称脱硫废液,里面还有较高的副盐,无法循环使用,必须把副盐提取后方可回用。 二、脱硫废液现状 焦化厂采用PDS法脱除焦炉煤气中H 2 S和HCN,全部投产运行后,预计每天需要外排脱硫废液50吨/天,(本方案设计日处理量约为50吨/天,设计富余为20%,实际处理量为60吨/天),年产生约19800吨脱硫废液。(按330天计算已考虑运行过程中检修、 故障、保养等因素),脱硫废液中含有大量的硫代硫酸铵(NH 4) 2 S 2 O 3 、硫氰酸铵NH 4 CNS及 其他杂质,这些脱硫废液的去处一直是行业里的难题。 一般的焦化厂脱硫废液处理办法就是,将其喷洒在煤堆上,有的将脱硫废液送到熄焦池进行湿法熄焦用,这两种方法虽然解决了脱硫废液的去处,表面看起来没有废液外排,

焦化脱硫废液资源化技术的应用进展_王雨薇

?专题报道 [收稿日期] 2016 - 06 - 08;[修改稿日期] 2016 - 07 - 01。 [作者简介] 王雨薇(1991—),女,湖北省黄冈市人,博士生,电邮 wangyw0719@https://www.wendangku.net/doc/401044081.html, 。联系人:雷晓东,电话 010 - 64455357,电邮 leixd@https://www.wendangku.net/doc/401044081.html, 。 [基金项目] 国家自然科学基金联合基金项目(U1407130);国家重点基础研究发展计划项目(2014CB932104)。 DOI :10.3969/j.issn.1000-8144.2016.10.002 焦化脱硫废液资源化技术的应用进展 王雨薇1,孔祥贵1,李 慧2,雷晓东1 (1. 北京化工大学 化工资源有效利用国家重点实验室,北京 100029; 2. 宁波钢铁有限公司,浙江 宁波 315800) [摘要] 综述了本课题组近年来在焦化脱硫废液资源化技术方面的研究进展,介绍了以焦化脱硫废液中“硫氰酸盐的纯化提取和水回用”为核心而集成的几种主要技术,主要包括多功能选择性吸附材料、耐高温耐腐蚀的亚微米级多孔金属复合膜及高效分离除杂技术和脱硫废液中硫氰酸盐的纯化提取及水回用工艺技术。本技术的成功产业化,在彻底解决焦化脱硫废液严重污染环境问题的同时,实现了脱硫废液的高效资源化及产品的高值化,让企业在提高环保水平的前提下获得明显的经济效益,促进了焦化行业的清洁生产和健康发展,开辟了焦化和钢铁行业环境保护的新途径。 [关键词] 焦化;脱硫;废液;资源化;多功能选择性吸附材料;多孔金属复合膜 [文章编号] 1000 - 8144(2016)10 - 1160 - 07 [中图分类号] TQ 09 [文献标志码] A Progresses in the resourceful treatment of waste liquid from desulfurization of coke oven gas Wang Yuwei 1,Kong Xianggui 1,Li Hui 2,Lei Xiaodong 1 (1. State Key Laboratory of Chemical Resource Engineering ,Beijing University of Chemical Technology ,Beijing 100029, China ;2. Ningbo Iron & Steel Co. Ltd.,Ningbo Zhejiang 315800,China ) [Abstract ] The progresses of our group in the resourceful treatment of waste liquid from the desulfurization of coke oven gas in recent years were reviewed. Aimed at extracting inorganic salts from the waste liquid and reusing water ,three technologies ,namely a multifunctional selective-adsorption material ,composite porous metal membrane with high temperature tolerance and corrosion resistance ,and the extraction and puri ? cation of thiocyanate with water reuse ,were introduced. The successful industrialization of these technologies would not only solve the serious pollution problems ,but also achieve the ef ? cient utilization of the desulfurization wastewater and high economic bene ? t. [Keywords ] coking ;desulfurization ;waste liquid ;resourceful treatment ;multifunctional selective-adsorption material ;composite porous metal membrane 钢铁冶金是国民经济的重要支柱产业,而焦化为其提供必不可少的焦炭,但每生产1 t 焦炭会产生10 kg 脱硫废液。在炼焦过程中产生的废液成分复杂,属于典型难降解、有毒有害的高浓度废水,含有大量的高毒、高腐蚀性硫氰酸盐等无机盐以及硫磺、焦油和催化剂等数十种杂质,这种废液的 滥排易造成周边水生态、土壤和植被的破坏[1-4]。 2014年中华人民共和国工业和信息化部修订的《焦 化行业准入条件》规定了严格的焦化脱硫废液的处理标准,并已列入2016年6月颁布的国家危险废物名录(代码HW 11-252-014-11)。该废液是世界公认的焦化行业污染最严重、最难处理的废水,严

脱硫废液提盐方案一

脱硫废液提盐方案一 本技术采用硫酸铜法分离,分离出脱硫废液中的硫氰酸盐和硫酸盐并加以回收,对提取过程中产生的脱硫液进行循环利用。从根本上解决脱硫废液的污染,废物副盐回收利用,直接做成工业产品销售,变废为宝。 一、实验设备 二、实验材料和药品

三、工艺流程 利用焦化厂脱硫废液制备硫氰酸盐和硫酸盐的方法,包括如下步骤:将硫酸铜配成饱和溶液,并与脱硫废液混合加热、搅拌;固液分离,得固体和硫酸盐液体;在固体中加入碱溶液,并在温度为50~98℃下加热,搅拌使其反应10~120分钟;对加热反应后所得浆料进行固液分离;得到的液体进行浓缩、冷冻结晶和干燥后,即可得到高纯度硫氰酸盐产品;再对获得的固体进行煅烧,然后加入硫酸溶液,搅拌,重新生成硫酸铜循环使用;将活性炭加入上述硫酸盐液体并曝气氧化,使硫酸盐纯化;然后进行浓缩、结晶和干燥后即可得到高纯度硫酸盐产品。该方法解决了脱硫废液对环境的污染问题,同时生产高纯度硫氰酸盐和硫酸盐产品,使污染物成为有价值的产品。 四、硫氰酸盐提取实验过程 ●1、氧化沉淀:在50~95℃下将硫酸铜配成饱和溶液,并与脱硫废液混合搅拌,其中,硫酸铜饱和溶液与脱硫废液混合的体积比例为1∶1~2.5;混合搅拌的反应温度为40~95℃;搅拌时间10~80分钟,得到pH为0~3的含有硫氰酸亚铜的浆料; ●2、固液分离:分离步骤1反应后的含有硫氰酸亚铜的浆料,得到硫氰酸亚铜固体和硫酸盐溶液;

● 3、硫氰酸盐生成:将步骤2固液分离获得的固体中加入碱溶液,并在温度为50~98℃下加热,搅拌使其反应10~120分钟,得到含有氧化亚铜固体的固液混合的浆料;其中,加入的碱溶液与脱硫废液的体积比为1∶5~12; ●4、固液分离:对步骤3反应后所得浆料进行固液分离,得到氧化亚铜固体和硫氰酸盐溶液; ●5、硫氰酸盐产品精制:对步骤4固液分离得到的硫氰酸盐溶液进行浓缩、冷冻结晶和干燥后即可得到高纯度硫氰酸盐产品。 五、硫代硫酸盐回收过程 ●6、氧化剂再生:对步骤4获得的氧化亚铜固体进行煅烧,然后加入浓度为15%~60%硫酸溶液,搅拌,重新生成硫酸铜循环使用; ● 7、脱色和气体氧化:将活性炭加入步骤2分离得到的液体中,活性炭加入量为1~50kg/吨脱硫废液,然后使用碱调节pH为3~7,再进行曝气10~360分钟,使低价含硫阴离子转化为SO42-; ●8、固液分离:分离步骤7反应后的固体和液体,得到的固体为吸附后的活性炭,液体为硫酸盐溶液; ● 9、硫酸盐产品精制:对步骤8得到的硫酸盐进行浓缩、冷冻结晶和干燥后即可得到高纯度硫酸盐产品。

一种焦化脱硫废液提纯硫代硫酸钠的装置

本实用新型公开了一种焦化脱硫废液提纯硫代硫酸钠的装置,包括溶解釜、板框压滤机、精密过滤器、清液罐、循环冷却结晶机、结晶釜、离心机、烘干机、溶解泵、上液泵;所述溶解釜包括搅拌电机、进料口第一、搅拌器、蒸汽进口、排污口第一、蒸汽冷凝水、出料口第一。本实用新型溶解釜采用蒸汽温控系统和多层搅拌的设计,保证固体物料在釜内均匀混 合充分溶解;板框压滤机存渣量大,可自动卸料;精密过滤器采用微孔过滤,保证滤液质量;循环冷却结晶机采用强制循环制冷,精确控制降温速率保证结晶粒度,并将底部细小晶核提取至顶部重结晶;结晶釜采用间壁冷却,继续养晶;烘干机采用真空干燥,防止硫代硫酸钠受热分解并保证烘干效果。

权利要求书 1 、一种焦化脱硫废液提纯硫代硫酸钠的装置,其特征在于,包括溶解釜、板框压滤机、精密过滤器、清液罐、循环冷却结晶机、结晶釜、离心机、烘干机、溶解泵、上液泵;所述溶解釜包括搅拌电机、进料口第一、搅拌器、蒸汽进口、排污口第一、蒸汽冷凝水、出料口第一;溶解釜顶部中间安装搅拌电机,溶解釜顶部两侧分别安装进料口第一和出料口第一;溶解釜内部安装有搅拌器;溶解釜底部中间安装排污口第一,溶解釜底部一侧安装有蒸汽进口,另一侧连接有溶解泵,溶解泵上依次连接有板框压滤机、精密过滤器和清液罐,所述清液罐包括呼吸口、人孔、进料口第二、出料口第二、排污口第二,清液罐顶部两侧分别安装有呼吸口和人孔,清液罐罐体侧面上部安装进料口第二,侧面下部安装有出料口第二,清液罐底部一侧安装排污口第二,另一侧连接有上液泵,上液泵上依次连接有循环冷却结晶机、结晶釜、离心机和烘干机,所述循环冷却结晶机包括循环泵、冷却器、进料口第三、出料口第三,循环冷却结晶机顶部安装有进料口第三,循环冷却结晶机底部安装出料口第三,循环冷却结晶机侧面分别 连接有循环泵和冷却器,其中循环泵连接在冷却机上。

碱法参考资料脱硫废液处理提盐方案

焦炉煤气脱硫液处理技术方案 80万吨焦炭/年的焦化企业,脱硫系统采用纯碱作为碱源,每天消耗纯碱约10吨,脱硫剂约10公斤,每天脱硫系统需置换外排脱硫废液约25吨/天。脱硫废液中含有大量无法生化的化学物质、且毒性物质比较多,不允许外派也无法进入公司污水处理系统,只能进煤场进行配煤。脱硫废液含有腐蚀性极强的物质,腐蚀设备,且经配煤燃烧后,污染物继续叠加进入脱硫废液,势必造成脱硫碱耗、催化剂消耗增加,所以脱硫废液必须进行有效处理。脱硫废液处理将给企业带来如下间接效益(减损效益): 1.减少设备腐蚀及维修费10万元/年。 2.减少脱硫运行费用:如果将脱硫废液配煤,硫化物焚烧后又进入到煤气中,增加脱硫的负荷量,使脱硫催化剂(目前公司催化剂每年费用10*300*365=110万元,碱耗:10*2400*365=876万元)使用量明显增加。并且由于钠盐难挥发,增加焦炭的灰分;还有一部分钠盐进入到煤焦油中,影响煤焦油的质量。其带来的综合影响大约在30万元/年。 3.减少排污费:废液处理后,每年可节水8000吨,节水及少交排污费5万元/年。 4.节省煤气:焦煤中虽然需要配水,但加入含有2000吨混合钠盐的脱硫废液后,将2000吨钠盐分解气化需要多耗煤气量相当于500吨标煤,折价30万元/年。合计减损收益是设备维修、运行费、排污费、催化剂、煤气之和:10+30+5+30=75万元 针对脱硫废液的处理,拟采用以下几种方案,供贵方选择! 一、方案一:将脱硫废液运出请专业厂家处理: 1.1方式:公司按一定的价格将置换的脱硫废液免费运价专业加工厂家,由专业的厂家进行处理;这样,处理装置的建设、运行及产品收益由专业处理厂家获得,煤焦化企业每年将支付运输及处理费约25(每天脱硫废液处理量)X200(处理费用+人工+运费等)X365(天数)=183万元 1.2方案可行性:建设一专业脱硫废液处理场所目前有很大困能,环评、场地、资金等,且煤焦化企业提供的是高腐蚀液体,运输过程存在很大困难,且液体浓缩势必造成运行成本高,另外,为降低运输费用,场地的选择也必须要煤焦化周边!由于种种原因、目前接收脱硫废液的专业厂家不是很多,甚至没有听说! 二、方案二:煤焦化企业上套副盐提取装置,混盐由专业厂家进行提纯。 2.1方式:公司将脱硫液通过脱色、过滤、浓缩、冷却、离心,将脱硫废液中的硫氰酸钠和硫代硫酸钠等产品从脱硫废液中分离出来,提取出成品硫氰酸钠和硫代硫酸钠的混合盐,浓缩后回收的蒸馏水返回到脱硫系统循环使用。 根据现有处理量建设混盐装置投资约在140万元左右,运行成本包括水、蒸汽、维修、耗材、电等约5000元/天;每天提取混盐约6吨,每吨约250元,每天混盐收益250*6=1500元,实际每天收益:1500-5000=-3500元,每3500*365=128万元; 2.2方案可行性:脱硫废液以固体物形式进行出售,便于运输,且目前混盐加工

焦化厂脱硫废液提盐方案说明

焦化厂脱硫废液提盐方 案说明 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

苏州乔发环保科技股份有限公司 焦化厂脱硫废液提盐工艺 一、背景 焦化厂脱硫都为湿法脱硫;湿法脱硫工艺大致有两种;一是真空碳酸钾法,此方法生产的硫磺纯度高,为精硫磺,好销售;而且此工艺还能生产硫酸产品等,但是此工艺投资大,占地大;采用后脱硫,用工业碳酸钠做碱源,脱硫废液中的副盐就是,硫氰酸钠和硫代硫酸钠,还有少量的硫酸钠。即钠盐;钠盐的市场经济效益比铵盐要好。 二是催化氧化法,此方法生产的硫磺为黑硫磺,即粗硫磺;硫磺纯度底,渣子多,市场销售困难;此工艺为前脱硫,即:PDS法脱硫,前脱硫采用氨作为碱源,脱硫废液中的副盐就是,硫氰酸铵;硫代硫酸铵;还有少量的硫酸铵,即铵盐;。 脱硫废液中三种负盐总和不得超过250g/L,即; 硫氰酸钠(铵)130g/L,硫代硫酸钠(铵)90g/L,硫酸钠(铵)30g/L。脱硫废液中副盐超过250g/L就必须的外排,更新脱硫液,否则煤气就无法吸收煤气中的硫化氢,因此脱硫液中的副盐始终保持在250g/L以内;外排的部分液体称脱硫废液,里面还有较高的副盐,无法循环使用,必须把副盐提取后方可回用。 二、脱硫废液现状 焦化厂采用PDS法脱除焦炉煤气中H2S和HCN,全部投产运行后,预计每天需要外排脱硫废液50吨/天,(本方案设计日处理量约为50吨/天,设计富余为20%,实际处理量为60吨/天),年产生约19800吨脱硫废液。(按330天计算已考虑运行过程中检修、故障、保养等因素),脱硫废液中含有大量的硫代硫酸铵(NH4)2S2O3、硫氰酸铵NH4CNS及其他杂质,这些脱硫废液的去处一直是行业里的难题。

脱硫废液处理方案

. 100吨/天焦化脱硫废液资源化处理项目 可行性报告

. 东北师大学2013年3月

第一章脱硫废液的产生、危害及利用价值自带氨前脱硫工艺近几年在焦化行业焦炉气脱硫已得到普遍的应用。这一工艺采用煤气中自带氨作碱源,以酞菁钴类(PDS)化合物为主要成分作为脱硫脱菁催化剂,脱硫运行成本较低,投资较小,工艺操作简单,脱硫脱氰效率高,而且不用外加碱源,是目前焦化行业普遍采用的脱硫工艺,据不完全统计,全国已有二百家以上企业采用该法脱硫,均取得了较好的效果。 但是,由于脱硫过程存在副反应,致使该脱硫过程生成硫氰酸铵、硫代硫酸铵、硫酸铵等副盐,并且不断地积累。当这些副盐在脱硫液中含量超过250g/L时,就会对脱硫效果产生影响,能耗增高,脱硫效率下降,副盐含量越高脱硫效率就越差。为了保证脱硫效率,不得不外排一部分脱硫液,补充一部分新脱硫液来降低脱硫系统中的副盐含量。年产100万吨焦炭的焦炉气脱硫系统每天大约需外排脱硫液50m3以上,才能基本保证脱硫液中副盐含量不大于250g/L。目前,国大多数焦化厂采用拌煤焚烧法处理脱硫废液,即将脱硫废水拌如煤中送入焦炉,但存在降低煤的发热量,焚烧后产生大量的有害气体,腐蚀焦炉设备,同时由于废水中氨等物质气味大,在煤输送过程中操作环境极差。另外,脱硫废水送至配煤过程中,不可能全部滞留于煤中,有近半数的脱硫废水会渗透至地表,造成和地下污染,产生重的二次污染,这种法并没有真正解决脱硫废水污染问题。

从另一个面看,这些物质也是附加值很高的化工产品。因此,从外排脱硫液中回收附加值高的产品,即可平衡脱硫系统中的副盐,保证脱硫效率,又能消除环境污染,还可产生一定的经济效益,是处理外排脱硫液切实可行的法。 第二章脱硫废液付盐提取技术现状 脱硫废液处理目前国外开展了一些研究工作。日本专利认为从脱硫废液中回收硫氰酸铵是极为困难的,原因是硫代硫酸铵和硫氰酸铵都极易溶解于水且溶解度相差极小,利用溶解度不同来进行分离是不可能的,因此日本专利提出了电渗析法,此法虽能制得硫氰酸铵.但因处理过程复杂,装置成本高,耗电量大而未能实现工业化生产。 目前,国有少部分焦化厂采用梯度结晶提盐法,脱硫废液先蒸氨后,根据溶解度不同加热浓缩进行分步结晶提盐,可提出硫氰酸铵、硫代硫酸铵、硫酸铵三种盐。但由于硫代硫酸铵和硫氰酸铵溶解度相差极小,提盐纯度很低,含量在50-70%。投资高,操作复杂。特别是提出的硫代硫酸铵量大且纯度低没有市场消耗,基本上是没有用途的废物,所以此法还是没有解决污染问题,是不可行的。 还有一种法是溶剂萃取法,通过用有机化学溶剂对脱硫废液进行萃取,从而提取出硫酸铵、硫代硫酸铵和硫氰酸铵,并将其初步分离,纯度在90-95%之间。此种法的缺点极其明显,首先是使用有机溶剂进行萃取,不仅成本较高而且萃取后的溶液因含有机溶剂,在蒸馏过程中造成的污染比较重,废气排放无法达标仍需进行二次处理;其次有机溶剂属于易燃易爆,政府管制非常厉,运输、存储都有巨大隐患;

焦化厂烟气脱硝脱硫一体化解决方案

110万吨/年焦炉烟气脱硝脱硫一体化技术方案 110万吨/年焦炉烟道气与脱硝脱硫一体化 设 计 方 案 廊坊市晋盛节能技术服务有限公司

目录 1. 项目概述 (2) 1.1. 项目概况 (2) 2. 设计依据 (2) 2.1. 设计原则 (2) 2.2. 设计标准 (3) 2.3. 设计原始参数 (3) 2.3.1 烟气参数 (3) 2.3.2 气候条件 (4) 2.4. 设计要求 (4) 2.5. 工程范围 (4) 3. 烟气脱硫脱硝一体化工艺 (5) 3.1. 总工艺流程 (5) 3.2. 脱硝工艺 (5) 3.3. 脱硫工艺 (7) 4. 烟气脱硫脱硝一体化技术说明 (8) 4.1. 脱硝技术 (8) 4.1.1脱硝系统的构成 (8) 4.1.2脱硝系统主要设备 (9) 4.2. 脱硫技术 (11) 4.2.1脱硫工艺描述 (11) 4.2.2脱硫主要设备 (11) 5. 经济及环境效益分析 (13) 5.1脱硫脱硝环境效益及节约费用 (13) 5.2脱硫脱硝运行费用 (13) 5.3脱硫脱硝投资费用 (14) 5.4设备清单 (13)

1.项目概述 1.1.项目概况 焦化厂是专门从事冶金焦炭生产及冶炼焦化产品、加工、回收的专业工厂。焦 、NOx及烟尘等,炉烟囱排放的大气污染物为焦炉煤气燃烧后产生的废气,主要有SO 2 污染物呈有组织高架点源连续性排放,是污染最为严重的行业之一。 2012年6月,环境保护部及国家质量监督检验检疫局联合发布了《炼焦化学工业污染物排放标准》,明确规定了焦化工业的大气污染物排放标准。 廊坊市晋盛节能技术服务有限公司一体化烟气治理技术,就是将烟气烟气除尘技术,烟气脱硫、脱硝技术捆绑在一起,形成一套集成创新的装置,这套装置既能除尘、脱硫、脱硝,从而达到烟气资源化利用的目的。从此改变烟气治理只有投入,没有产出的困境。 2.设计依据 2.1.设计原则 2.1.1脱硫脱硝 对尾气同时进行脱硝及脱硫治理。 采用高效、先进、运行稳定、管理方便的治理工艺及技术,保证废气的达标排放; 烟气净化治理不影响焦化厂生产工艺的正常运行。 精心布设系统的流程,减少运行过程的物耗及能耗,降低运行成本; 根据工程的实际情况尽量减少脱硝装置的建设投资。 改造工程将充分利用现有设备和场地,力求工艺流程和设备布置合理。 所有设备的制造和设计完全符合企业标准及安全可靠,连续有效运行的要求,确保净化系统能够安全、稳定的运行。

相关文档
相关文档 最新文档