文档库 最新最全的文档下载
当前位置:文档库 › 泉州市第十九届“启程杯”高中物理竞赛试卷 2

泉州市第十九届“启程杯”高中物理竞赛试卷 2

泉州市第十九届“启程杯”高中物理竞赛试卷 2
泉州市第十九届“启程杯”高中物理竞赛试卷 2

泉州市第十九届“启程杯”高中物理竞赛试卷

(考试时间:120分钟;满分:120分)

一、填空题(每小题6分,共18分。)

1. 一定质量的气体,原来处于状态I ,现保持其温度不变,而令其经历一体积膨胀的过程;然后令其体积不变而加热升温一段过程,最后达到状态II ;则状态II 的压强和状态I 的压强相比____ ___________ ____。

2.如图所示,R 1、R 2、R 3为定值电阻,但阻值未知,R x 为电阻箱。当R x 为R x 1=10Ω时,通过它的电流I x 1=1A ;当R x 为R x 2=18Ω时,通过它的电流I x 2=0.6A ;则当I x 3=0.1A 时,电阻R x 3的阻值为__________。

3. 如图所示,n 个质量为m 的完全相同的物块叠放在一起,所有接触面的动摩擦因数均为μ,滑轮摩擦不计,当F 为____________时,所有物块恰好相对滑动。

二、(10分)如图所示,竖直墙壁、水平地面均光滑,斜面与球的摩擦不计。已知斜面倾角为θ,质量为M ,球的质量为m ,系统从静止开始释放,试求斜面的加速度大小。

三、(12分)如图所示电路,电源电动势为E ,内阻不计。R 1=R 2=R 3=R ,R 4为滑动变阻器,其阻值可在0~2R 之间调节,当滑动端P 由最左端向最右端滑动时,试通过分析和必要的计算说明电容器C 上所带电荷量的变化情况。

四、(15分)如图所示,空间匀强电场E 沿- y 方向,匀强磁场B 沿- z 方向。有一电荷量为q ,质量为m 的带正电粒子,从O 点沿+x 轴方向以初速度v 0= 2E

B 射入场区,粒子的重力忽略不计,求:

(1)此带电粒子距x 轴的最大距离;

(2)此带电粒子的轨迹与x 轴相切的所有点的坐标x 所满足的条件。

五、(15分)北京时间2005年4月12日20时0分,我国在西昌卫星发射中心用“长征三号乙”捆绑式运载火箭,成功地将“亚太六号”通信卫星(其质量用m 表示)送入太空。这颗“亚太六号”通信卫星在围绕地球的椭圆轨道上运行如图所示,离地球表面最近的点A (近地点)高度L 1=209km (209×103m ),离地球表面最远的点B (远地点)高度L 2=49991km (49991×103m )。已知地球质量M =6.0×1024kg ,引力常量G = 115×10-9N·m 2/kg 2,地球半径R =6400km=6.4×106m 。且在地球上空任一高度处h (h 为到地球中心的距离),卫星具有的引力势能表达式为 - GMm h ,求:

(1)此卫星在围绕地球的椭圆轨道上从近地点A 运动到远地点B 的时间约为几天(设π2=10,保留两位数字);

(2)证明:v A ·(L 1+R )= v B (L 2+R )。其中v A 和v B 分别是“亚太六号”通信卫星在近地点A 和远地点B 的速度;L 1+R 和L 2+R 分别是“亚太六号”通信卫星在近地点A 和远地点B 到地球球心的距离(提示:根据椭圆的对称性可知近地点A 和远地点B 所在轨道处的极小的弧形应是半径相等的圆弧的弧);

(3)试计算“亚太六号”通信卫星的发射速度v 0的大小是多少km/s (保留两位数字)。

x

六、(15分)如图所示,在半径为R的绝缘圆筒内有磁感应强度为B的匀强磁场,方向垂直于纸面向里。圆筒正下方有小孔C与平行金属板M、N相通,M、N两板间距离为d,与电动势为E的电源连接。一带电荷量为-q、质量为m的带电粒子,开始时静止于C点正下方紧靠N板的A点,经电场加速从C点进入磁场后,经过最短时间又从C点射出。已知带电粒子与筒壁的碰撞是弹性碰撞,且碰撞中不损失电荷量,求:

(1)筒内磁场的磁感应强度B的大小;

(2)带电粒子由A点出发到从C点射出所经历的时间。

N

七、(15分)一吊桥由六对钢杆悬吊着,六对钢杆在桥面分列两排,其上端挂在两根钢缆上,如图所示为其一截面图,已知图中相邻两钢杆间的距离为9m ,靠桥面中心的钢杆长度为2m (即AA ′=DD ′=2m ),BB ′=EE ′,CC ′=PP ,又已知两端钢缆与水平方向成45°角。若钢杆及钢缆的自重均不计,为使每根钢杆承受的负荷相同,试求每根钢杆的长度应各为多少?

八、(20分)如图所示,一块足够长的木板,放在光滑的水平面上,在木板上自左向右放有序号是1、2、3…n 的小木块,所有小木块的质量均为m ,它们与木板间的动摩擦因数均为μ,开始时木板静止不动,第1、2、3…n 小木块的初速度大小依次为v 0、2v 0、3v 0…nv 0,方向都为水平向右,木板的质量与所有小木块的总质量相等,最终所有小木块都与木板以共同速度匀速运动,试求: (1)整个过程中木板运动的最大速度;

(2)若n =3,则木块3从开始运动到与木板速度刚好相等时的位移; (3)若n =3,则木块2在整个运动过程中的最小速度。

参考答案

F v 0 2v 0 3v 0

1

2

3 nv 0

… n

一、填空题(每小题6分,共18分。)

1. 有可能大,也有可能小,也有可能相同(6分)

2. 118Ω(6分)

3.F =n2μmg(6分)1.【解析】(6分)

本题考查气体压强、体积、温度之间的定性关系。保持气体温度不变,而令其体积膨胀,则压强减小;再令其体积不变而加热升温,则压强又变大,但与原来状态的压强相比可能大,也可能小,也可能相同。

2.【解析】(6分)

由于电源电动势E、内电阻r、电阻R1、R2、R3均未知,按题目所

给的电路模型列式求解,显然方程数少于未知量数,可采取变换电

路结构的方法。

将原图所示的虚线框内电路看成新的电源,则等效电路如答图2所示,电源的电动势为E′,内电阻为r′,根据电学知识,新电路不改变R x和I x的对应关系,故有

E′= I x1(R x1+ r′)①E′= I x2(R x2+ r′)②E′= I x3(R x3+ r′)③

由①、②两式解得E′=12V,r′=2Ω 代入③式,可得R x3=118Ω

3. 【解析】(6分)

如答图3所示,对物块1:水平方向受到左边滑轮上的绳水平向左的拉力T1、物块2对物块1水平向右的摩擦力f1=μmg,

据平衡条件有T1=f1=μmg=μmg×12

对物块2:

水平方向受到右边滑轮绳上的水平向右的拉力T2、物块1和物块3水

平向左的摩擦力f1和f2、左边滑轮绳上的水平向左的拉力T1,

据平衡条件有T2=T1+f1+f2=μmg+μmg +μ2mg=4μmg =22μmg

同理可分析得出,

对物块3:

据平衡条件有T3=T2+f2+f3=4μmg+μ2mg +μ3mg=9μmg =32μmg……

对物块n:

据平衡条件有T n=T n-1+f n-1+f n=(n-1)2μmg+μ(n-1)mg +μnmg=n2μmg

故F=T n=n2μmg

二、【解析】(10分)

对小球受力如答图4(a)所示,据牛顿第二定律有

mg-F1cosθ=ma(3分)

对斜面受力如答图4(b)所示,据牛顿第二定律有

F1sinθ=Ma x (3分)

又a = a x tanθ (2分)

由以上各式解得a x=

mg sinθcosθ

M cos2θ+m sin2θ(2分)

答图2

答图3

F1

a

a x

答图4(b)

三、【解析】(12分)

(1) 当P在最左端时,等效电路如答图5(a)所示

U R3=

R3

R3+R4E =

1

3E(1分)

U R1=

R1

R1+R2E =

1

2E(1分)

a、b两点的电势φa=E-U R3= 2

3E,φb= E-U R1=

1

2E

满足关系φb<φa(1分)

a、b两点的电势差U ab= 2

3E-

1

2E=

1

6E(1分)

电容器上所带电荷量Q C=CU ab=1

6EC(1分)

(2) 当P在最右端时,等效电路如答图5(b)所示

电容器上电压U C=U R2= 1

2E(1分)

且下板电势较高,电容器上所带电荷量Q=CU ab= 1

2EC(1分)

(3) 当P滑至中点时,R4阻值为R,电容器两板间的电压U C=U ab=0 (2分)故当P自左向右滑至中点时,U C=0,即

电容器C上极板放电结束,接着对下极板反向充电(1分)

即P从最左端滑至中点时,电容器放电过程释放的电荷量为Q C = 1

6EC(1分)

当P从中点滑至最右端时,电容器反向充电过程的电荷量为Q C= 1

2EC(1分)

四、【解析】(15分)

利用运动分解法求解此问题。

(1)令v0= v1+v′= 2E

B,其中v1=

E

B,v′=

E

B其方向与v0方向相同。(2分)

则带电粒子的运动可视为速度为v1= E

B的匀速直线运动与速度为v′的逆时针方向的匀速

圆周运动的合运动,如答图6所示,其圆周运动的半径和周期分别为

R= mv′

qB=

mE

qB2(2分)

T= 2πm

qB(2分)

故带电粒子将做螺旋线运动,粒子运动的轨迹如答图6中实线所示,M点为粒子距x轴的最远点。在

这一点粒子的速度v M= v1- v′=0,它到x轴的距离为y m=2R= 2mE

qB2(2分)

答图5(a)

答图5(b)

x

(2)答图6中P点为粒子运动轨迹与x轴的相切点,且粒子在该点的速度为

v P= v1+ v′= 2E

B(2分)

其与x轴的切点坐标为x p=v1T=E

2πm

qB =

2πmE

qB2(2分)

根据运动的周期性,粒子与x轴的所有相切点的坐标为

x=nx p=v1nT=E

B×n

2πm

qB =

2nπmE

qB2(n=1、2、3、……)(3分)

五、【解析】(15分)

(1) 卫星围绕地球的运动过程中,万有引力提供向心力

GMm

r2=mω2r=m(

T)

2r (1分) 整理得

r3

T2=

GM

4π2(1分)

由开普勒定律及上面推证知任一椭圆中上式同样适用k= r3

T2=

GM

4π2(1分)

由图可得知半长轴r= 209+2×6400+49991

2km(1分)

=31500km(或315×105m) (1分)

T=4π2r3

GM(1分)

=4×10×3153×1015

1

15×10

-9×6.0×1024s=3150315s≈55906.95s=0.64天(1分)

从近地点A运行到远地点B的时间t= T

2=0.32天(1分)

(2)设近地点A和远地点B所在轨道处的极小圆弧的半径为ρ,依题意知万有引力提供向

心力,即

f A= GMm

(L1+R)2=m

v A2

ρ(2分) f B=

GMm

(L2+R)2=m

v B2

ρ(2分)

联立解得v A·(L1+R)= v B(L2+R)(2分) (3)据机械能守恒及上面的证明得

1

2mv A 2-

GMm

L1+R=

1

2mv B

2-

GMm

L2+R(1分)

1

2mv A 2-

GMm

L1+R=

1

2mv0

2-

GMm

R(1分)

v A·(L1+R)=v B(L2+R)

由以上各式联立解得v0= 2GM(L1+L2+R)

(L1+L2+2R)R(2分)

代入数据解得v0=10.6km/s (2分)六、【解析】(15分)

由能量关系得 1

2mv 2=qE (2分)

带电粒子进入磁场后要求经过最短时间回到C 点,则带电粒子与筒壁至少应发生两次碰撞,轨迹如答图7所示,设带电粒子在磁场中的轨道半径为r ,据几何关系有 r =R tan60°=3R (2分) 据洛仑兹力提供向心力可得 r = mv

qB (1分) 由以上三式解得 B = 1

R

2mE 3q

(2分) (2)带电粒子在电场中运动的时间为t 1,则 d = 12(qE

md )t 12 (2分)

带电粒子在磁场中运动的时间为t 2,由于相邻两次碰撞时间内带电粒子在圆筒内转过的角度为θ= π

3,故带电粒子在磁场中转过的总角度为3θ

则 t 2= 3θ2πT (2分) 而 T = 2πm

qB (1分) 故带电粒子从A 点出发到C 点射出所经历的时间为 t = t 1+t 2 (1分) 由以上各式解得 t = m qE

(2d +32

πR ) (2分) 七、【解析】(15分)

如答图8所示,设每根钢杆承受的拉力均为F

由整体法可得 2F C sin45°=6F (2分) 解得 F = 2

6F C (1分) 在C 处:设钢缆BC 承受的拉力为F B C ,由平衡条件可知 竖直方向上满足 F C sin45°= F +F B C cos α (1分) 水平方向上满足 F C cos45°= F B C sin α (1分) 由以上各式解得 cot α= F C sin45°-F F C

cos45° = 2

3 (2分)

在B 处:设钢缆AB 承受的拉力为F AB ,由平衡条件可知 竖直方向上满足 F B C cos α= F + F AB cos β (1分) 水平方向上满足 F B C sin α= F AB sin β (1分)

由以上各式解得 cot β = F BC cos α-F F BC sin α =cot α- F F BC sin α= cot α- 2F C /6F C cos45° = 23 - 13 = 1

3(1分)

故 BB ′=AA ′+ B ′A ′cot β=(2+9×1

3)m=5m (2分) CC ′=BB ′+ C ′B ′cot α=(5+9×23)m=11m (2分) 即 BB ′=EE ′=5m ,CC ′=PP ′=11m (1分) 八、【解析】(20分)

(1)所有木块在木板上相对木板滑动时对地的加速度相同均为a =μg ,各木块减速的同时木板加速,木块先后按1、2、3、4、…n 的顺序相对木板静止,只要有的木块还相对木板滑

F

答图8

动,木板就加速。所以,当所有木块都相对木板静止时,木板运动的速度达到最大为v m,木块在木板上滑动过程中,所有木块与木板组成的系统动量守恒,当它们达共同速度时,木板速度达最大速度v m,对所有的木块和木板所组成的系统,由动量守恒定律选初末两状态有

mv0+m·2v0+ m·3v0+…+ m·nv0=(nm+nm)v m(3分)

解得v m= 1

2n(1+2+3+…+n)v0=

1

2n×

n

2(1+n)v0=

n+1

4v0(3分)

(2)若n=3,则由木块1、2、3及木板组成的系统动量守恒有

mv0+m·2v0+m·3v0=(3m+3m)v共(2分)解得v共= v0(1分)

对木块3:据动能定理有-μmgS3= 1

2mv共

2-

1

2m(3v0)

2(2分)

解得S3= 4v02

μg(1分)

(3)木块依1、2、3的先后顺序相对木板静止,当木块1与木板相对静止时速度为v1据动量定理,对木块1有-μmgt1=mv1-mv0 (1分)对木板有3μmgt1=3mv1(1分)

解得v1= v0

2= v板t1=

v0

2μg(2分)

此时木块2的速度为v2=2 v0-μg t1= 3v0

2(1分)

接下去当木块2与木块1以及木板相对静止时,速度为v2′达最小值,据动量定理

对木块2有-μmgt2=mv2′-mv2(1分)对板而言此过程仅受木块2和木块3的摩擦力(木块1已相对木板静止)

故有2μmgt2=(3m+m)(v2′-v1)(1分)

解得v2′= 5

6v0(1分)

2014全国高中物理竞赛初赛试题与标准答案(全Word版)

2014 第 31 届全国中学生物理竞赛预赛试题及参考答案与评分标准 一、选择题.本题共 5 小题,每小题 6 分,在每小题给出的 4个选 项中,有的小题只有一项符合题意,有的小题有多项符合题意.把符合题意的选项前面的英 文字母写在每小题后面的方括号内,全部选对的得 6 分,选对但不全的得 3 分,有选错或不答的得 0分. 1.一线膨胀系数为α的正立方体物块,当膨胀量较小时,其体膨胀系数等于 A.α1/3 B.α 3 C.α D. 3α 2.按如下原理制作一杆可直接测量液体密度的秤,称为密度秤,其外形和普通的杆秤差不 多,装秤钩的地方吊着一体积为 lcm 3的较重的合金块,杆上有表示液体密度数值的刻度.当秤砣放在 Q 点处时秤杆恰好平衡,如图所示,当合金块完全浸没在待测密度的液体中时, 移动秤砣的悬挂点,直至秤杆恰好重新平衡,便可直接在杆秤上读出液体的密度.下列说法中错误的是 A.密度秤的零点刻度在Q 点 B.秤杆上密度读数较大的刻度在较小的刻度的左边 C.密度秤的刻度都在Q 点的右侧 D.密度秤的刻度都在Q 点的左侧 3.一列简谐横波在均匀的介质中沿z 轴正向传播,两质点P1和 P2的平衡位置在 x 轴上,它们相距 60cm,当 P1质点在平衡位置处向上运动时,P2质点处在波谷位置,若波的传播速 度为 24 m/s,则该波的频率可能为 A. 50Hz B . 60Hz C. 400Hz D . 410Hz 4.电磁驱动是与炮弹发射、航空母舰上飞机弹射起飞有关的一种新型驱动方式,电磁驱动 的原理如图所示,当直流电流突然加到一固定线圈上,可以将置于线圈上的环弹射出去. 现在同一个固定线圈上,先后置有分别用钢、铝和硅制成的形状、大小和横截面积均相同的三 种环;当电流突然接通时,它们所受到的推力分别为F1、F2和 F3.若环的重力可忽略,下 列说法正确的是 A. F1>F 2>F3B. F2 >F3 >F1 C. F3 >F 2> F 1 D . F1=F2=F3 5.质量为 m A的 A 球,以某一速度沿光滑水平面向静止的 B 球运动,并与 B 球发生弹性正碰.假设 B 球的质量m B可选取为不同的值,则 A.当 m B=m A时,碰后 B 球的速度最大 B.当 m B =m A时,碰后 B 球的动能最大 C.在保持m B>m A的条件下, m B越小,碰后 B 球的速度越大

高中物理竞赛辅导(2)

高中物理竞赛辅导(2) 静力学力和运动 共点力的平衡 n个力同时作用在物体上,若各力的作用线相交于一点,则称为 共点力,如图1所示。 作用在刚体上的力可沿作用线前、后滑移而不改变其力 学效应。当刚体受共点力作用时,可把这些力沿各自的作用 线滑移,使都交于一点,于是刚体在共点力作用下处于平衡 状态的条件是:合力为零。 (1) 用分量式表示: (2) [例1]半径为R的刚性球固定在水 平桌面上,有一质量为M的圆环状均匀 弹性细绳圈,原长为,绳 圈的弹性系数为k。将圈从球的正上方 轻放到球上,并用手扶着绳圈使其保持 水平,最后停留在平衡位置。考虑重力, 不计摩擦。①设平衡时绳圈长 ,求k值。②若 ,求绳圈的平衡位置。

分析:设平衡时绳圈位于球面上相应于θ角的纬线上。在绳圈上任取一小元段, 长为,质量为,今将这元段作为隔离体,侧视图和俯视图分别由图示(a)和(b)表示。 元段受到三个力作用:重力方向竖直向下;球面的支力N方向沿半径R 指向球外;两端张力,张力的合力为 位于绳圈平面内,指向绳圈中心。这三个力都在经 线所在平面内,如图示(c)所示。将它们沿经线的切向和法向分 解,则切向力决定绳圈沿球面的运动。 解:(1)由力图(c)知:合张力沿经线切向分力为: 重力沿径线切向分力为: (2-2) 当绳圈在球面上平衡时,即切向合力为零。 (2-3) 由以上三式得 (2-4) 式中

由题设:。把这些数据代入(2-4)式得。于是。 (2)若时,C=2,而。此时(2-4)式变成 tgθ=2sinθ-1, 即 sinθ+cosθ=sin2θ, 平方后得。 在的范围内,上式无解,即此时在球面上不存在平衡位置。这时由于k值太小,绳圈在重力作用下,套过球体落在桌面上。 [例2]四个相同的球静止在光滑的球形碗内,它们的中心同在一水平面内,今以另一相同的球放以四球之上。若碗的半径大于球的半径k倍时,则四球将互相分离。试求k值。 分析:设每个球的质量为m,半径为r ,下面四个球的相互作用力为N,如图示(a)所示。 又设球形碗的半径为R,O' 为球形碗的球心,过下面四球的 球心联成的正方形的一条对角线 AB作铅直剖面。如图3(b)所示。 当系统平衡时,每个球所受的合 力为零。由于所有的接触都是光 滑的,所以作用在每一个球上的 力必通过该球球心。 上面的一个球在平衡时,其 重力与下面四个球对它的支力相平衡。由于分布是对称的,它们之间的相互作用力N, 大小相等以表示,方向均与铅垂线成角。

高中物理竞赛试题及答案

高中物理竞赛模拟试卷(一) 说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150 分,考试时间 120 分钟. 第Ⅰ卷(选择题 共 40 分) 一、本题共 10 小题,每小题 4 分,共 40 分,在每小题给出的 4 个选项中,有的小题只有一个选项正确,有的小题有多个选项正确,全部选对的得 4 分,选不全的得 2 分,有错选或不答的得 0 分. 1.置于水平面的支架上吊着一只装满细砂的漏斗,让漏斗左、右摆动,于是桌面上漏下许多砂子,经过一段时间形成一砂堆,砂堆的纵剖面最接近下图Ⅰ-1中的哪一种形状 2.如图Ⅰ-2所示,甲乙两物体在同一光滑水平轨道上相向运动,乙上连有一段轻弹簧,甲乙相互作用过程中无机械能损失,下列说法正确的有 A.若甲的初速度比乙大,则甲的速度后减到 0 B.若甲的初动量比乙大,则甲的速度后减到0 C.若甲的初动能比乙大,则甲的速度后减到0 D.若甲的质量比乙大,则甲的速度后减到0 3.特技演员从高处跳下,要求落地时必须脚先着地,为尽量保证安全,他落地时最好是采用哪种方法 A.让脚尖先着地,且着地瞬间同时下蹲 B.让整个脚板着地,且着地瞬间同时下蹲 C.让整个脚板着地,且着地瞬间不下蹲 D.让脚跟先着地,且着地瞬间同时下蹲 4.动物园的水平地面上放着一只质量为M 的笼子,笼内有一只质量为 m 的猴子.当猴以某一加速度沿竖直柱子加速向上爬时,笼子对地面的压力为F 1;当猴以同样大小的加速度沿竖直柱子加速下滑时,笼子对地面的压力为 F 2(如图Ⅰ-3),关于 F 1 和 F 2 的大小,下列判断中正确的是 A.F 1 = F 2>(M + m )g B.F 1>(M + m )g ,F 2<(M + m )g C.F 1>F 2>(M + m )g D.F 1<(M + m )g ,F 2>(M + m )g 5.下列说法中正确的是 A.布朗运动与分子的运动无关 B.分子力做正功时,分子间距离一定减小 C.在环绕地球运行的空间实验室里不能观察热传递的对流现象 D.通过热传递可以使热转变为功 6.如图Ⅰ-4所示,虚线a 、b 、c 代表电场中的三个等势面,相邻等势面之 图Ⅰ -3 图Ⅰ -4 图Ⅰ-2

高中物理竞赛辅导讲义-7.1简谐振动

7.1简谐振动 一、简谐运动的定义 1、平衡位置:物体受合力为0的位置 2、回复力F :物体受到的合力,由于其总是指向平衡位置,所以叫回复力 3、简谐运动:回复力大小与相对于平衡位置的位移成正比,方向相反 F k x =- 二、简谐运动的性质 F kx =- ''mx kx =- 取试探解(解微分方程的一种重要方法) cos()x A t ω?=+ 代回微分方程得: 2m x kx ω-=- 解得: 22T π ω== 对位移函数对时间求导,可得速度和加速度的函数 cos()x A t ω?=+ sin()v A t ωω?=-+ 2cos()a A t ωω?=-+ 由以上三个方程还可推导出: 222()v x A ω += 2a x ω=- 三、简谐运动的几何表述 一个做匀速圆周运动的物体在一条直径 上的投影所做的运动即为简谐运动。 因此ω叫做振动的角频率或圆频率, ωt +φ为t 时刻质点位置对应的圆心角,也叫 做相位,φ为初始时刻质点位置对应的圆心 角,也叫做初相位。

四、常见的简谐运动 1、弹簧振子 (1)水平弹簧振子 (2)竖直弹簧振子 2、单摆(摆角很小) sin F mg mg θθ=-≈- x l θ≈ 因此: F k x =- 其中: mg k l = 周期为:222T π ω=== 例1、北京和南京的重力加速度分别为g 1=9.801m/s 2和g 2=9.795m/s 2,把在北京走时准确的摆钟拿到南京,它是快了还是慢了?一昼夜差多少秒?怎样调整? 例2、三根长度均为l=2.00m 、质量均匀的直杆,构成一正三角彤框架 ABC .C 点悬挂在一光滑水平转轴上,整个框架可绕转轴转动.杆AB 是一导轨,一电动玩具松鼠可在导轨运动,如图所示.现观察到松鼠正在导轨上运动,而框架却静止不动,试论证松鼠的运动是一种什么样的运动?

全国中学生物理竞赛专题——电磁感应

第三讲 磁场 §3.1 基本磁现象 由于自然界中有磁石(43O Fe )存在,人类很早以前就开始了对磁现象的研究。 人们把磁石能吸引铁`钴`镍等物质的性质称为磁性。 条形磁铁或磁针总是两端吸引铁屑的能力最强,我们把这吸引铁屑能力最强的区域称之为磁极。 将一条形磁铁悬挂起来,则两极总是分别指向南北方向,指北的一端称北极(N 表示);指南的一端称南极(S 表示)。 磁极之间有相互作用力,同性磁极互相排斥,异性磁极互相吸引。 磁针静止时沿南北方向取向说明地球是一个大磁体,它的N 极位于地理南极附近,S 极位于地理北极附近。 1820年,丹麦科学家奥斯特发现了电流的磁效应。 第一个揭示了磁与电存在着联系。 长直通电导线能给磁针作用;通电长直螺线管与条形磁铁作用时就如同条形磁铁一般;两根平行通电直导线之间的相互作用……,所有这些都启发我们一个问题:磁铁和电流是否在本源上一致? 1822年,法国科学家安培提出了组成磁铁的最小单元就是环形电流,这些分子环流定向排列,在宏观上就会显示出N 、S 极的分子环流假说。近代物理指出,正是电子的围绕原子核运动以及它本身的自旋运动形成了“分子电流”,这就是物质磁性的基本来源。 一切磁现象的根源是电流,以下我们只研究电流的磁现象。 §3.2 磁感应强度 3.2.1、磁感应强度、毕奥?萨伐尔定律 将一个长L ,I 的电流元放在磁场中某一点,电流元受到的作用力为F 。 当电流元在某一方位时,这个力最大,这个最大的力m F 和IL 的比值,叫做该点的磁感应强度。 将一个能自由转动的小磁针放在该点,小磁针静止时N 极所指的方向,被规定为该点磁感应强度的方向。 真空中,当产生磁场的载流回路确定后,那空间的磁场就确定了,空间 各点的B 也就确定了。 根据载流回路而求出空间各点的B 要运用一个称为 毕奥—萨伐尔定律的实验定律。毕—萨定律告诉我们:一个电流元I ?L(如图3-2-1)在相对电流元的位置矢量为r 的P 点所产生的磁场的磁感强度B ?大小为2 sin r L I K θ?=,θ为顺着电流I ?L 的方向与r 方向的夹角,B ?的方向可用右手螺旋法则确定,即伸出 右手,先把四指放在I ?L 的方向上,顺着小于π的角转向r 方向时大拇指方向即为B ?的方向。式中K 为一常 数,K=7 10-韦伯/安培?米。载流回路是由许多个I ?L 组成的,求出每个I ?L 在P 点的B ?后矢量求和,就得 到了整个载流回路在P 点的B 。 如果令πμ=40K ,7 0104-?π=μ特斯拉?米?安1-,那么B ?又可写为 20 sin 4r L I B θ?πμ=? 0μ称为真空的磁导率。 下面我们运用毕——萨定律,来求一个半径为R ,载电流为I 的圆电流轴线上,距圆心O 为χ的一点的磁感应强度 l I ? //B

全国高中物理竞赛专题十三 电磁感应训练题解答

1、 如图所示为一椭圆形轨道,其方程为()22 2210x y a b a b +=>>,在中心处有一圆形区域, 圆心在O 点,半径为()r b <,圆形区域中有一均匀磁场1B ,方向垂直纸面向里,1B 以 1B t k ??=的速率增大,在圆外区域中另 有一匀强磁场2B ,方向与1B 相同,在初始时,A 点有一带正电q 的质量为m 的粒子, 粒子只能在轨道上运动,把粒子由静止释放,若要其通过C 点时对轨道无作用力,求2B 的大小。 解:由于r b a <<,故轨道上距O 为R 的某处,涡旋电场强度为 22122B r kr E R t R ?==? 方向垂直于R 且沿逆时针方向,故q 逆时针运动。 q 相对O 转过θ?角时,1B 对其做功为 2 2kr W F x Eq x q R R θ?=?=?=? 而2B 产生的洛伦兹力及轨道支持力不做功,故q 对O 转过θ角后,其动能为 2 2122 k kr E mv W q θ==?=∑ q 的速度大小为 2kr q v m θ = q 过C 时,()3 20,1,2,2 n n θππ=+= C 处轨道不受力的条件为 2 2mv qvB ρ = 其中ρ为C 处的曲率半径,可以证明:2 a b ρ=(证明略) A C 1 B 2 B O x y

将v 和θ的表达式代入上式可得 ()22 320,1,2,2br mk B n n a q ππ?? = += ??? 2、 两根长度相等,材料相同,电阻分别为R 和2R 的细导线,两者相接而围成一半径为a 的圆环,P Q 、为其两个接点,如图所示,在圆环所围成的区域内,存在垂直于图面、指向纸内的匀强磁场,磁感应强度的大小随时间增大的变化率为恒定值b 。已知圆环中感应电动势是均匀分布的,设M N 、为圆环上的两点,M N 、间的圆弧为半圆弧的一半,试求这两点间的电压()M N U U -。 解:根据法拉第定律,整个圆环中的感应电动势的大小 2E r b t π?Φ = =? (1) 按楞次定律判断其电流方向是逆时针的,电流大小为 23E E I R R R = =+ (2) 按题意,E 被均匀分布在整个圆环上,即?MN 的电动势为4E ,?NQPM 的电动势为34E ,现考虑?NQPM ,在这段电路上由于欧姆电阻所产生电势降落为()22I R R +,故 3242M N R U U E R I ? ?-=-+ ?? ? (3) 由(1)、(2)、(3)式可得 21 12 M N U U r b π-=- (4) 当然,也可采用另一条路径(?MTN 圆弧)求电势差 ()211 424321212 N M M N E R E E R U U I E r b U U R π-= -=-===--g g 与(4)式相符。 3、 如图所示,在边长为a 的等边三角形区域内有匀强磁场B ,其方向垂直纸面向外。一个边长也为a 的等边三角形导轨框架ABC ,在0t =时恰好与上述磁场区域的边界重合,而后以周期T 绕其中心在纸面内顺时针方向匀速转动,于是在框架ABC 中产生感应电流,规 R T M N P Q 2R S

高中物理竞赛习题

高中物理竞赛习题 1、圆环放在光滑水平面上,有一甲虫,质量与环相等,沿环爬行,相对环的角速度为ω0,求甲虫在环上爬行一周,环的角位移。 2、一小水滴在均匀的静止雾气中凝结成核,当它下落时,扫光位于路径上的雾气,假如它留住了收集到的全部雾气,仍能保持球形,且没有粘滞阻力,渐渐地它会趋于匀速下落:v ( t ) = a t ( 对应较大的t )。试求系数a 。 3、处于固定的、绝热长方体密封器中央的绝热活塞,质量为m,截面积为S,两边的气体压强均为P0,气柱长度均为L ,若不计摩擦,求活塞微振动的周期。

4、0.1 mol 的单原子气体作如图1所示的循环,已知P 1 = 32P a ,V 1 = 8.00m 3 ,P 2 = 1.0P a V 2 = 64.0m 3,试求: (1)循环中的最高温度; (2)循环中气体对外界做的功。 5、如图2所示,等边三角形ABC 以及内含的无 限网络均由相同的、均质的细铜线连成。现在BC 边上又接上同种导线组成的等边三角形。已知铜线单位 长度的电阻为R 0 ,试求AB 两端的等效电阻R AB 。 6、如图3所示,在空间有相互垂直的场强为E 的匀强电场和磁感强度为B 的匀强磁场。一电子从原点静止释放,试求其在y 轴方向前进的最大距离。 V 图 1图 3A B C a a a a -2图 2

7、为了测量玻璃楞镜的折射率n ,采用如图4所示的装置。棱镜放在会聚透镜的前面,AB 面垂直于透镜的主光轴,在透镜的焦平面上放一个屏,当散射光照在AC 面上时,在屏上可以观察到两个区域:照亮区和非照亮区。连接两区分界处(D 点)与透镜光心O 的直线与透镜的主光轴O O '成30°角。已知棱镜的顶角α= 30°,试求棱镜的折射率n 。 高中物理竞赛习题答案 1、 θ= -32π 2、 a = 7 1g 3、 T = S P 28mL 20π 4、 (1) m T = 721K ; (2) W = 636 J 5、 0AB aR 127 75R -= 6、 2m eB E 2Y π= 7、 n = 1)ctgj j sin i sin ( 20 +- ( 其中0i = 30°,j = 30°) A B C O O′30°图 4

新版高一物理竞赛讲义

高中物理《竞赛辅导》力学部分 目录 :力学中的三种力 【知识要点】 (一)重力 重力大小G=mg,方向竖直向下。一般来说,重力是万有引力的一个分力,静止在地球表面的物体,其万有引力的另一个分力充当物体随地球自转的向心力,但向心力极小。 (二)弹力 1.弹力产生在直接接触又发生非永久性形变的物体之间(或发生非永久性形变的物体一部分和另一部分之间),两物体间的弹力的方向和接触面的法线方向平行,作用点在两物体的接触面上.2.弹力的方向确定要根据实际情况而定. 3.弹力的大小一般情况下不能计算,只能根据平衡法或动力学方法求得.但弹簧弹力的大小可用.f=kx(k 为弹簧劲度系数,x为弹簧的拉伸或压缩量)来计算. 在高考中,弹簧弹力的计算往往是一根弹簧,而竞赛中经常扩展到弹簧组.例如:当劲度系数分别为k1,k2,…的若干个弹簧串联使用时.等效弹簧的劲度系数的倒数为:,即弹簧变软;反之.若

以上弹簧并联使用时,弹簧的劲度系数为:k=k 1+…k n ,即弹簧变硬.(k=k 1+…k n 适用于所有并联弹簧的原长相等;弹簧原长不相等时,应具体考虑) 长为 的弹簧的劲度系数为k ,则剪去一半后,剩余 的弹簧的劲度系数为2k (三)摩擦力 1.摩擦力 一个物体在另一物体表面有相对运动或相对运动趋势时,产生的阻碍物体相对运动或相对运动趋势的力叫摩擦力。方向沿接触面的切线且阻碍物体间相对运动或相对运动趋势。 2.滑动摩擦力的大小由公式f=μN 计算。 3.静摩擦力的大小是可变化的,无特定计算式,一般根据物体运动性质和受力情况分析求解。其大小范围在0<f≤f m 之间,式中f m 为最大静摩擦力,其值为f m =μs N ,这里μs 为最大静摩擦因数,一般情况下μs 略大于μ,在没有特别指明的情况下可以认为μs =μ。 4.摩擦角 将摩擦力f 和接触面对物体的正压力N 合成一个力F ,合力F 称为全反力。在滑动摩擦情况下定义tgφ=μ=f/N ,则角φ为滑动摩擦角;在静摩擦力达到临界状态时,定义tgφ0=μs =f m /N ,则称φ0为静摩擦角。由于静摩擦力f 0属于范围0<f≤f m ,故接触面作用于物体的全反力同接触面法线 的夹角≤φ0,这就是判断物体不发生滑动的条件。换句话说,只要全反力的作用线落在(0,φ0)范围时,无穷大的力也不能推动木块,这种现象称为自锁。 本节主要内容是力学中常见三种力的性质。在竞赛中以弹力和摩擦力尤为重要,且易出错。弹力和摩擦力都是被动力,其大小和方向是不确定的,总是随物体运动性质变化而变化。弹力中特别注意轻绳、轻杆及胡克弹力特点;摩擦力方向总是与物体发生相对运动或相对运动趋势方向相反。另外很重要的一点是关于摩擦角的概念,及由摩擦角表述的物体平衡条件在竞赛中应用很多,充分利用摩擦角及几何知识的关系是处理有摩擦力存在平衡问题的一种典型方法。 【典型例题】 【例题1】如图所示,一质量为m 的小木块静止在滑动摩擦因数为μ=的水平面上,用一个与水平方 向成θ角度的力F 拉着小木块做匀速直线运动,当θ角为多大时力F 最小? 【例题2】如图所示,有四块相同的滑块叠放起来置于水平桌面上,通过细绳和定滑轮相互联接起来.如果所有的接触面间的摩擦系数均为μ,每一滑块的质量均为 m ,不计滑轮的摩擦.那么要拉动最上面一块滑块至少需要多大的水平拉力?如果有n 块这样的滑块叠放起 来,那么要拉动最上面的滑块,至少需多大的拉力? 【例题3】如图所示,一质量为m=1㎏的小物块P 静止在倾角为θ=30°的斜面 上,用平行于斜面底边的力F=5N 推小物块,使小物块恰好在斜面上匀速运动,试求小物块与斜面间的滑 动摩擦因数(g 取10m/s 2 )。 【练习】 1、如图所示,C 是水平地面,A 、B 是两个长方形物块,F 是作用在物块B 上沿水平方向的力,物块A 和B 以相同的速度作匀速直线运动,由此可知, A 、 B 间的滑动 θ F P θ F A B F C N F f m f 0 α φ

全国高中物理竞赛训练题及答案

1、有一无限大的导体网络,它是由大小相同的正六边形网眼组成,如图(1.1),所有六边形每边的电阻都为R ,求结点a 、b 之间的电阻。 解析:像这类求导体网络的等效电阻的题目,我们不可能由电阻的串并联关系求出等效电阻,只能用电流的分步法,在ab 间引入一个电压ab U ,在网络中形成总电流I ,再找出ac I ,ab I 与I 的关系,最后由R U I =确定ab R 。 由网络的对称性可知,假设有电流I 从a 点流入网络,必有 1 3I 电流由a 流向c ,在c 点又分为两支路电流,则cb 的电流为1 6 I 。 另一方面,假设有I 电流有b 点流出网络,必有13I 电流由c 流向b ,a 和d 分别有1 6I 流向c 。 将两种情况叠加,则有I 电流由a 流入,从b 流出,按电流的分步法,必有 362ac I I I I = += 方向经导线ac 由a 流向c 362 ab I I I I = += 方向经导线cb 由c 流向b 所以a 、b 两点间的等效电阻为 a b a c c b ab U I R I R R R I I +=== 2、证明图(2.1)中的Y 形电阻网络与图(2.2)中的?形电阻网络的等效变化关系为: 图(1.1) a b c d 2 3 1 2 I 3 I 12 R 31 R 23 R 1 I 图(2.2) 1 I 1 R 2 R 3R 3 I 3 2I 2 1 图(2.1)

12233112 3 12233123 1 12233131 2R R R R R R R R R R R R R R R R R R R R R R R R ?++=???++=???++=?? 和 3112 1 122331 12232 122331 23313 122331R R R R R R R R R R R R R R R R R R ?=?++??=?++??=?++? 解析:所谓等效变换,就是指这两种网络联接方式之间,仍保持电路中其余各部分的电流和电压不变,即Y 形网络中三个端点的点位1U ,2U ,3U 及流过的电流1I 、2I 、3I 和?形网络中的三个端相同,见图(2.1)和图(2.2). 如图(2.3),设流经电阻12R 、23R 、31R 的电流分别是12I 、23I 、31I ,对图(2.1)所示的Y 形网络有 112212 331131123 0I R I R U I R I R U I I I -=?? -=??++=? 由此可得 3 2 11231 1223 31 12 23 31 R R I U U R R R R R R R R R R R R = - ++++ 对图(2.2)所示的网络有 121212 313131 11231U I R U I R I I I ?=?? ? =?? ?=-?? 解得 31 1211231 U U I R R =- 所以有 33121212311223311223311231 R U R U U U R R R R R R R R R R R R R R -=-++++ 式中各对应项的系数相等 122331 123 R R R R R R R R ++= 图(2.3) 3I 1I 2I 12 R 31R 23R 12I 23I 31I

高二物理竞赛试题(附答案)

高二物理竞赛试题 一、选择题I(单选每小题3分,共30分) 1.甲车速度v 1=10米/秒,乙车速度v 2=4米/秒,两车在一条公路的不同车道上作同方向的匀速直线运动,随后在甲车追上乙车相遇时,甲车立即刹车作加速度为a=2米/秒2 的匀减速运动。于是两车将再次相遇,设两车先后两次相遇的时间间隔为t ,两次相遇处的距离为s ,则( ) (A)t=6秒,s=24米 (B)t=5秒,s=20米 (C)t=5秒,s=25米 (D)t=6.25秒,s=25米 2.点光源s 位于凸透镜左侧2倍焦距(即2f)之外,由s 发出的一条光线a 如图1所示,则光线经过透镜折射后的出射光线将与主光轴0102相交于( ) (A)一倍焦距与两倍焦距之间 (B)两倍焦距之外 (C)无穷远处 (D)两倍焦距处 3.图2是某电路中的一部分,已知R 1=5欧,R 2=1欧,R 3=3欧,电流I 1=O.2安,I 2=O.1安,则通过电流表A 中的电流强度是( ) (A)0.2安,方向为b →a (B)0.1安,方向b →a (C)O.1安,方向为a →b (D)0.3安,方向a →b 4.质量为优的重物放在地面上,该地重力加速度为g ,现用一根细绳向上提重物,使绳子拉力从零开始逐渐增大,得到加速度a 与拉力T 的图线如图3所示中的OAB 。换一个地点做同样的实验,又得到OCD 的图线,关于OCD 图线所描述的物体质量m ′与新地点重力加速度g ′,下列说法中正确的是( ) (A) m ′> m ,g ′≠g (B) m ′< m ,g ′≠g (C) m ′> m ,g ′= g (D) m ′< m ,g ′= g 5.如图4所示,在通电密绕长螺线管靠近左端处,吊一金属环a 处于静止状态,在其内部也吊一金属环b 处于静止状态,两环环面均与螺线管的轴线垂直且环中心恰在螺线管中轴上,当滑动变阻器R 的滑片P 向左端移动时,a 、b 两环的运动情况将是( ) (A)a 右摆,b 左摆 (B)a 左摆,b 右摆 (C)a 右摆,b 不动 (D)a 左摆,b 不动 图1 图2 图2 图4

高中物理竞赛辅导讲义 第 篇 运动学

高中物理竞赛辅导讲义 第2篇 运动学 【知识梳理】 一、匀变速直线运动 二、运动的合成与分解 运动的合成包括位移、速度和加速度的合成,遵从矢量合成法则(平行四边形法则或三角形法则)。 我们一般把质点对地或对地面上静止物体的运动称为绝对运动,质点对运动参考照系的运动称为相对运动,而运动参照系对地的运动称为牵连运动。以速度为例,这三种速度分别称为绝对速度、相对速度、牵连速度,则 v 绝对 = v 相对 + v 牵连 或 v 甲对乙 = v 甲对丙 + v 丙对乙 位移、加速度之间也存在类似关系。 三、物系相关速度 正确分析物体(质点)的运动,除可以用运动的合成知识外,还可充分利用物系相关速度之间的关系简捷求解。以下三个结论在实际解题中十分有用。 1.刚性杆、绳上各点在同一时刻具有相同的沿杆、绳的分速度(速度投影定理)。 2.接触物系在接触面法线方向的分速度相同,切向分速度在无相对滑动时亦相同。 3.线状交叉物系交叉点的速度,是相交物系双方运动速度沿双方切向分解后,在对方切向运动分速度的矢量和。 四、抛体运动: 1.平抛运动。 2.斜抛运动。 五、圆周运动: 1.匀速圆周运动。 2.变速圆周运动: 线速度的大小在不断改变的圆周运动叫变速圆周运动,它的角速度方向不变,大小在不断改变,它的加速度为a = a n + a τ,其中a n 为法向加速度,大小为2 n v a r =,方向指向圆心;a τ为切向加速度,大小为0lim t v a t τ?→?=?,方向指向切线方向。 六、一般的曲线运动 一般的曲线运动可以分为很多小段,每小段都可以看做圆 周运动的一部分。在分析质点经过曲线上某位置的运动时,可 以采用圆周运动的分析方法来处理。对于一般的曲线运动,向心加速度为2n v a ρ =,ρ为点所在曲线处的曲率半径。 七、刚体的平动和绕定轴的转动 1.刚体 所谓刚体指在外力作用下,大小、形状等都保持不变的物体或组成物体的所有质点之间的距离始终保持不变。刚体的基本运动包括刚体的平动和刚体绕定轴的转动。刚体的任

第届全国中学生物理竞赛决赛试题与详细解答

第23届全国中学生物理竞赛决赛试题 2006年11月深圳 ★理论试题 一、 建造一条能通向太空的天梯,是人们长期的梦想.当今在美国宇航局(NASA )支持下,洛斯阿拉莫斯国家实验室的科学家已在进行这方面的研究.一种简单的设计是把天梯看作一条长度达千万层楼高的质量均匀分布的缆绳,它由一种高强度、很轻的纳米碳管制成,由传统的太空飞船运到太空上,然后慢慢垂到地球表面.最后达到这样的状态和位置:天梯本身呈直线状;其上端指向太空,下端刚与地面接触但与地面之间无相互作用;整个天梯相对于地球静止不动.如果只考虑地球对天梯的万有引力,试求此天梯的长度.已知地球半径R 0=6.37×106m ,地球表面处的重力加速度g =9.80m ·s -2. 二、 如图所示,一内半径为R 的圆筒(图中2R 为其内直径)位于水平地面上.筒内放一矩形物.矩形物中的A 、B 是两根长度相等、质量皆为m 的细圆棍,它们 平行地固连在一质量可以不计的,长为l =R 的矩形薄片的两端.初始时 矩形物位于水平位置且处于静止状态,A 、B 皆与圆筒内表面接触.已知A 、B 与圆筒内表面间的静摩擦因数μ都 等于1. 现令圆筒绕其中心轴线非常缓慢地转动,使A 逐渐升高. 1.矩形物转过多大角度后,它开始与圆筒之间不再能保持相对静止? 答:___________________________(只要求写出数值,不要求写出推导过程) l A 2R

2.如果矩形物与圆筒之间刚不能保持相对静止时,立即令圆筒停止转动.令θ表示A的中点和B的中点的连线与竖直线之间的夹角,求此后θ等于多少度时,B 相对于圆筒开始滑动.(要求在卷面上写出必要的推导过程.最后用计算器对方程式进行数值求解,最终结果要求写出三位数字.) 三、 由于地球的自转及不同高度处的大气对太阳辐射吸收的差异,静止的大气中不同高度处气体的温度、密度都是不同的.对于干燥的静止空气,在离地面的高度小于20km的大气层内,大气温度T e随高度的增大而降低,已知其变化率 =-6.0×10-3K·m-1 z为竖直向上的坐标. 现考查大气层中的一质量一定的微小空气团(在确定它在空间的位置时可当作质点处理),取其初始位置为坐标原点(z=0),这时气团的温度T、密度ρ、压强p都分别与周围大气的温度T e、密度ρe、压强p e相等.由于某种原因,该微气团发生向上的小位移.因为大气的压强随高度的增加而减小,微气团在向上移动的过程中,其体积要膨胀,温度要变化(温度随高度变化可视为线性的).由于过程进行得不是非常快,微气团内气体的压强已来得及随时调整到与周围大气的压强相等,但尚来不及与周围大气发生热交换,因而可以把过程视为绝热过程.现假定大气可视为理想气体,理想气体在绝热过程中,其压强p与体积V满足绝热过程方程 pVγ=C.式中C和γ都是常量,但γ与气体种类有关,对空气,γ=1.40.已知空气的摩尔质量μ=0.029kg?mol-1,普适气体恒量R=8.31J?(K?mol)-1.试在上述条件下定量讨论微气团以后的运动. 设重力加速度g=9.8m·s-2,z=0处大气的温度T e0=300K. 四、

高中物理竞赛试卷

高中物理竞赛试卷 (考试时间:120分钟;总分:120分) 一、单项选择题:(请将正确选项的序号填在括号内,每小题5分,共10分。) 1、如图所示,把一个架在绝缘支架上不带电的枕形导体放在带负电的导体C附近,达到 静电平衡后,下列对导体A端和B端电势判断正确的是( ) (取大地为零电势点) A.U A>UB>O B.U A<UB<O ?C.U A=UB<O ?D.U A=U B>O 2、一定质量的理想气体处于某一平衡状态,此时其压强为P0,有人设计了四种途径,使 气体经过每种途经后压强仍为P0,这四种途径是 ①先保持体积不变,降低压强,再保持温度不变,压缩体积 ?②先保持体积不变,使气体升温,再保持温度不变,让体积膨胀 ?③先保持温度不变,使体积膨胀,再保持体积不变,使气体升温 ?④先保持温度不变,压缩气体,再保持体积不变,使气体降温 可以断定( ) A.①、②不可能B.③、④不可能? ?C.①、③不可能??D.①、②、③、④都可能 二、填空题:(请将答案填在题中的横线上,每小题5分,共10分。) 1、2003年2月1日美国哥伦比亚号航天飞机在返回途中解体,造成人类航天史上又一悲剧。若哥伦比亚号航天飞机是在轨道半径为r的赤道上空飞行,且飞行方向与地球自转方向相同,已知地球自转角速度为ω0,地球半径为R,地球表面重力加速度为g, 在某时刻航天飞机通过赤道上某建筑物的上方,则到它下次通过该建筑物上方所需时间为___________________。

2、如图所示,在湖面上有一个半径为45m 的圆周,AB 是它的直径,在圆心O 和圆周上的A 点分别装有同样的振动源,其波在湖面上传播的波长是10m 。若一只小船在B 处恰好感觉不到振动,它沿圆周慢慢向A 划行,在到达A之前的过程中,还有___________次感觉不到振动。 三、(14分)如图所示,斜面重合的两契块AB C和AD C,质量均为M,DA 、BC 两面成水平,E 是质量为m 的小滑块,契块倾角为θ,各面均为光滑,系统放置在光滑的水平平台上自静止开始释放,问斜面未分离前小滑块的加速度为多少? 四、(15分)某颗地球同步卫星正下方的地球表面上有一观察者,他用天文望远镜观察 被太阳光照射的此卫星,试问,春分那天(太阳光直射赤道)在日落12小时内有多长时间该观察者看不见此卫星?已知地球半径为R ,地球表面处的重力加速度为g , 地球自转周期为T,不考虑大气对光的折射。 C D 3

高中物理竞赛辅导讲义 静力学

高中物理竞赛辅导讲义 第1篇 静力学 【知识梳理】 一、力和力矩 1.力与力系 (1)力:物体间的的相互作用 (2)力系:作用在物体上的一群力 ①共点力系 ②平行力系 ③力偶 2.重力和重心 (1)重力:地球对物体的引力(物体各部分所受引力的合力) (2)重心:重力的等效作用点(在地面附近重心与质心重合) 3.力矩 (1)力的作用线:力的方向所在的直线 (2)力臂:转动轴到力的作用线的距离 (3)力矩 ①大小:力矩=力×力臂,M =FL ②方向:右手螺旋法则确定。 右手握住转动轴,四指指向转动方向,母指指向就是力矩的方向。 ③矢量表达形式:M r F =? (矢量的叉乘),||||||sin M r F θ=? 。 4.力偶矩 (1)力偶:一对大小相等、方向相反但不共线的力。 (2)力偶臂:两力作用线间的距离。 (3)力偶矩:力和力偶臂的乘积。 二、物体平衡条件 1.共点力系作用下物体平衡条件: 合外力为零。 (1)直角坐标下的分量表示 ΣF ix = 0,ΣF iy = 0,ΣF iz = 0 (2)矢量表示 各个力矢量首尾相接必形成封闭折线。 (3)三力平衡特性 ①三力必共面、共点;②三个力矢量构成封闭三角形。 2.有固定转动轴物体的平衡条件:

3.一般物体的平衡条件: (1)合外力为零。 (2)合力矩为零。 4.摩擦角及其应用 (1)摩擦力 ①滑动摩擦力:f k = μk N(μk-动摩擦因数) ②静摩擦力:f s ≤μs N(μs-静摩擦因数) ③滑动摩擦力方向:与相对运动方向相反 (2)摩擦角:正压力与正压力和摩擦力的合力之间夹角。 ①滑动摩擦角:tanθk=μ ②最大静摩擦角:tanθsm=μ ③静摩擦角:θs≤θsm (3)自锁现象 三、平衡的种类 1.稳定平衡: 当物体稍稍偏离平衡位置时,有一个力或力矩使之回到平衡位置,这样的平衡叫稳定平衡。2.不稳定平衡: 当物体稍稍偏离平衡位置时,有一个力或力矩使它的偏离继续增大,这样的平衡叫不稳定平衡。 3.随遇平衡: 当物体稍稍偏离平衡位置时,它所受的力或力矩不发生变化,它能在新的位置上再次平衡,这样的平衡叫随遇平衡。 【例题选讲】 1.如图所示,两相同的光滑球分别用等长绳子悬于同一点,此两球同时又支撑着一个等重、等大的光滑球而处于平衡状态,求图中α(悬线与竖直线的夹角)与β(球心连线与竖直线的夹角)的关系。 面圆柱体不致分开,则圆弧曲面的半径R最大是多少?(所有摩擦均不计) R

第29届全国中学生物理竞赛决赛试题及答案(word版)

29届全国中学生物理竞赛决赛试题 panxinw 整理 一、(15分) 如图,竖直的光滑墙面上有A 和B 两个钉子,二者处于同一水平高度,间距为l ,有一原长为l 、劲度系数为k 的轻橡皮筋,一端由A 钉固定,另一端系有一质量为m=g kl 4的小 球,其中g 为重力加速度.钉子和小球都可视为质点,小球和任何物体碰 撞都是完全非弹性碰撞而且不发生粘连.现将小球水平向右拉伸到与A 钉 距离为2l 的C 点,B 钉恰好处于橡皮筋下面并始终与之光滑接触.初始时刻小球获得大小为20gl v 、方向竖直向下的速度,试确定此后小球沿 竖直方向的速度为零的时刻.

二、(20分) 如图所示,三个质量均为m的小球固定于由刚性轻质杆构成的丁字形架的三个顶点A、B和C处.AD ⊥BC,且AD=BD=CD=a,小球可视为质点,整个杆球体系置于水平桌面上,三个小球和桌面接触,轻质杆架 悬空.桌面和三小球之间的静摩擦和滑动摩擦因数均为μ,在AD杆上距A点a/4 1.试论证在上述推力作用下,杆球体系处于由静止转变为运动的临界状态时, 三球所受桌面的摩擦力都达到最大静摩擦力; 2.如果在AD杆上有一转轴,随推力由零逐渐增加,整个装置将从静止开始绕 该转轴转动.问转轴在AD杆上什么位置时,推动该体系所需的推力最小,并求出 该推力的大小.

三、(20分) 不光滑水平地面上有一质量为m的刚性柱体,两者之间的摩擦因数记为μ.柱体正视图如图所示,正视图下部为一高度为h的矩形,上部为一半径为R的半圆形.柱体上表面静置一质量同为m的均匀柔软的链条,链条两端距地面的高度均为h/2,链条和柱体表面始终光滑接触.初始时,链条受到微小扰动而沿柱体右侧面下滑.试求在链条开始下滑直至其右端接触地面之前的过程中,当题中所给参数满足什么关系时, 1.柱体能在地面上滑动; 2.柱体能向一侧倾倒; 3.在前两条件满足的情形下,柱体滑动先于倾倒发生.

高中物理竞赛试题(一)含答案

高一物理竞赛测试题(120分) 一、本题共12小题,每小题4分,共48分.在每小题给出的四个选项中,有的小题只有一个选 项正确,有的小题有多个选项正确.全部选对的得4分,选不全的得2分,有选错或不答的得0分.考生必须将答案填在下面的答题卡上。 1.如图所示,两光滑斜面的倾角分别为30°和45°,质量分别为2m 和m 的两个滑块用不可伸长的轻绳通过滑轮连接(不计滑轮的质量和摩擦),分别置于两个斜面上并由静止释放;若交换两滑块位置,再由静止释放.则在上述两种情形中正确的有 A.质量为2m 的滑块受到重力、绳的张力、沿斜面的下滑力和斜 面的支持力的作用 B .质量为m 的滑块均沿斜面向上运动 C .绳对质量为m 滑块的拉力均大于该滑块对绳的拉力 D .系统在运动中机械能均守恒 2.在粗糙水平地面上与墙平行放着一个截面为半圆的柱状物体A , A 与竖直墙之间放一光滑圆球B ,整个装置处于静止状态。现对B 加一竖直向下的力F ,F 的作用线通过球心,设墙对B 的作用力为F 1,B 对A 的作用力为F 2,地面对A 的作用力为F 3。若F 缓慢增大而整个装置仍 保持静止,截面如图所示,在此过程中 A . F 1保持不变,F 3缓慢增大 B . F 1缓慢增大,F 3保持不变 C . F 2缓慢增大,F 3缓慢增大 D . F 2缓慢增大,F 3保持不变 3.一有固定斜面的小车在水平面上做直线运动,小球通过细绳与车顶相连。 小球某时刻正处于图示状态。设斜面对小球的支持力为N ,细绳对小球 的拉力为T ,关于此时刻小球的受力情况,下列说法正确的是 A .若小车向左运动,N 可能为零 B .若小车向左运动,T 可能为零 C .若小车向右运动,N 不可能为零 D .若小车向右运动,T 不可能为零 4.某人骑自行车在平直道路上行进,图中的实线记录了自行车开始一段时间内的v -t 图象,某同学为了简化计算,用虚线作近似处理,下列说法正确的是 A .在t 1时刻,虚线反映的加速度比实际的小 B .在0-t 1时间内,由虚线计算出的平均速度比实际的小 C .在t 1-t 2时间内,由虚线计算出的位移比实际的大 D .在t 3-t 4时间内,虚线反映的是匀速运动 5.一质量为M 的探空气球在匀速下降,若气球所受浮力F 始终保持不变,气球在运动过程中所受阻力仅与速率有关,重力加速度为g ,现欲使该气球以同样速率匀速上升,则需从气球篮中减少的质量为 A .)(2g F M - B .g F M 2- C .g F M - 2 D . 0 第1题图 第5题图 第2题图 第4题图 1t 2t t 3t 4t o v 第3题图

高中物理竞赛辅导讲义:原子物理

原 子 物 理 自1897年发现电子并确认电子是原子的组成粒子以后,物理学的中心问题就是探索原子内部的奥秘,经过众多科学家的努力,逐步弄清了原子结构及其运动变化的规律并建立了描述分子、原子等微观系统运动规律的理论体系——量子力学。本章简单介绍一些关于原子和原子核的基本知识。 §1.1 原子 1.1.1、原子的核式结构 1897年,汤姆生通过对阴极射线的分析研究发现了电子,由此认识到原子也应该具有内部结构,而不是不可分的。1909年,卢瑟福和他的同事以α粒子轰击重金属箔,即α粒子的散射实验,发现绝大多数α粒子穿过金箔后仍沿原来的方向前进,但有少数发生偏转,并且有极少数偏转角超过了90°,有的甚至被弹回,偏转几乎达到180°。 1911年,卢瑟福为解释上述实验结果而提出了原子的核式结构学说,这个学说的内容是:在原子的中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外的空间里软核旋转,根据α粒子散射的实验数据可估计出原子核的大小应在10-14nm 以下。 1、1. 2、氢原子的玻尔理论 1、核式结论模型的局限性 通过实验建立起来的卢瑟福原子模型无疑是正确的,但它与经典论发生了严重的分歧。电子与核运动会产生与轨道旋转频率相同的电磁辐射,运动不停,辐射不止,原子能量单调减少,轨道半径缩短,旋转频率加快。由此可得两点结论: ①电子最终将落入核内,这表明原子是一个不稳定的系统; ②电子落入核内辐射频率连续变化的电磁波。原子是一个不稳定的系统显然与事实不符,实验所得原子光谱又为波长不连续分布的离散光谱。如此尖锐的矛盾,揭示着原子的运动不服从经典理论所表述的规律。 为解释原子的稳定性和原子光谱的离经叛道的离散性,玻尔于1913年以氢原子为研究对象提出了他的原子理论,虽然这是一个过渡性的理论,但为建立近代量子理论迈出了意义重大的一步。 2、玻尔理论的内容: 一、原子只能处于一条列不连续的能量状态中,在这些状态中原子是稳定的,电子虽做加速运动,但并不向外辐射能量,这些状态叫定态。 二、原子从一种定态(设能量为E 2)跃迁到另一种定态(设能量为E 1)时,它辐射或吸收一定频率的光子,光子的能量由这种定态的能量差决定,即 γh =E 2-E 1 三、氢原子中电子轨道量子优化条件:氢原子中,电子运动轨道的圆半径r 和运动初速率v 需满足下述关系: π2h n rmv =,n=1、2…… 其中m 为电子质量,h 为普朗克常量,这一条件表明,电子绕核的轨道半径是不连

相关文档
相关文档 最新文档