文档库 最新最全的文档下载
当前位置:文档库 › 一维掺杂光子晶体的带隙结构及特征的研究_郭立帅

一维掺杂光子晶体的带隙结构及特征的研究_郭立帅

一维掺杂光子晶体的带隙结构及特征的研究_郭立帅
一维掺杂光子晶体的带隙结构及特征的研究_郭立帅

一维光子晶体带隙结构研究_张玲

第37卷第9期2008年9月 光 子 学 报 ACTA P HO TON ICA SIN ICA Vol.37No.9 September 2008 Tel :02928220149828313 Email :warltszhang @https://www.wendangku.net/doc/401610702.html, 收稿日期:2007204228 一维光子晶体带隙结构研究 张玲,梁良,张琳丽,周超 (西安建筑科技大学物理系,西安710055) 摘 要:在考虑介质色散的基础上,研究了介质层厚度对光子晶体带隙结构的影响.利用传输矩阵法,计算了以Li F 和Si 两种材料组成的一维光子晶体带隙结构.结果表明,介质层厚度的增加会引起禁带的红移,厚度减小会引起蓝移.分析了含空气缺陷层、金属缺陷层的光子晶体结构,发现空气缺陷层对带隙结构的高反射区域变化不大,而在低反射区域,反射系数为零的波带之间出现了两边反射系数增加,中间反射系数减小的情况.在金属缺陷层的带隙结构中,金属对整个波长范围光的吸收作用不同,金属对低反射区1.6μm 、1.85μm 处透射率较大的透射光吸收作用明显,而在1.28~1.38μm 处透射率波长区间,几乎无吸收. 关键词:光子晶体;色散;带隙结构;空气缺陷层;金属缺陷层中图分类号:O734 文献标识码:A 文章编号:100424213(2008)092181524 0 引言 微加工技术的进步,使得光子晶体[1]在理论和实验研究上取得了重大进展,利用光子晶体可以制造出光通信中的许多器件,如光纤、微谐振腔,品质优良的光子晶体滤波器、集成光路等等[223].实验室一般采用不同折射率介质在空间的周期性排列形成光子晶体,Ward 等人提出一种增强块状金属反射能力的方法,他们预测含有Al/玻璃层的一维金属/电介质光子晶体比块状Al 的反射能力更强[4].对Au/MgF 2光子晶体透射性质的研究发现,周期性结构产生的透射共振使得光通过金属层的透射率大大增强,并有效抑制了吸收.通过控制金属层和电介质的厚度以及周期数,可以调节透射区域的波长范围、宽度和陡度[5].如果在光子晶体中引入缺陷,可使光子局域化[6],在有缺陷层的一维光子晶体(AB )n D m (BA )n 的带隙结构发现随着缺陷层厚度的增加,在禁带中出现的缺陷模向低频方向移动[7].还有一些金属/电介质光子晶体可以对某些晶体的闪烁光谱进行修饰,使得其对慢衰减成分的相对抑制比大大提升等等[8].本文在考虑色散关系的基础上对于LiF 与Si 构成的2元一维光子晶体的带隙结构进行了研究,通过改变介质层的厚度,分析了其带隙结构的变化,另外当该结构的光子晶体中有空气缺陷层、金属缺陷层时,其带隙结构的变化[2],并对计算结果做了分析. 1 理论模型 典型的光子晶体是由两种不同介电常量(εa ,εb ),厚度为(d a ,d b )的材料交替排列的其结构如图1,根据光在介质薄膜传播的传输矩阵方法,在第一 介质中的传输矩阵为 M a = cos δa isin δa /ηa i ηa sin δa cos δa (1) 图1 一维光子晶体模型 Fig.1 The structure of 12D photonic crystal 在第二介质中的传输矩阵为 M b = cos δb isin δb /ηb i ηb sin δb co s δb (2) 式(1)、(2)中δj =2πn j d j cos θ/λ,n j 、d j 、θj ,分别为第 j 层(j =(a ,b ))的折射率,介质层厚度,入射角, λ为真空中的波长,对于TE 波:ηj =n j cos θj ,对于TM 波ηj =n j /co s θj , 对于整个光子晶体的传输矩阵,若取层的对数为n ,则 M =(M a ,M b )n = M 11M 12M 21 M 22 (3) 设光子晶体周围材料的折射率为n 0,对于TE 波η0=n 0co s θ0,光在光子晶体传播时的反射系数和透射系数分别为 r = (M 11+M 12η0)η0-(M 21+M 22η0)(M 11+M 12η0)η0+(M 21+M 22η0) (4)

一维光子晶体中缺陷层厚度与缺陷模的关系

一维光子晶体中缺陷层厚度与缺陷模的关系[摘要]采用传输矩阵法,分析了缺陷层厚度与缺陷模波长之间的关系,即:一 定的缺陷层厚度范围内,缺陷模的波长将随缺陷层厚度的增大而发生红移,且两者呈线性关系。利用这个关系,设计了一种精确计量微小位移的方法。 [关键词]一维光子晶体传输矩阵法缺陷微小位移测量 光子晶体(Photonic Crystal, Pc)是一种因折射率空间周期变化而具有光子能带的新型光学微结构材料。它的基本特征是具有光子带隙,频率落在带隙中的电磁波是禁止传播的。利用它我们可以制造出以前无法制作的甚至是全新理论的高性能器件,如光子晶体激光器、光子晶体波导及光纤等。由于一维光子晶体具有控制光模式及其光传输的优异能力且易于制备,它在光子晶体应用中占据了重要地位。含有缺陷的一维光子晶体的特性已经有文章进行过讨论,但是就缺陷层厚度和缺陷模位置的关系尚无明确的阐述。本文对这一问题进行了研究,并利用结论设计了一种监测微小位移的方法。 一、一维光子晶体的传输矩阵分析方法 光在光子晶体中的传播服从Maxwell方程组。实际研究光子晶体的过程中比较常用的计算方法有平面波展开法、时域有限差分法、传输矩阵法等等。对于一维光子晶体,使用传输矩阵法是比较方便的。 根据法拉第电磁感应定律,可以推出单层介质膜的传输特性: 只要给出各层的参数,就能得到每一层的特征矩阵,利用(1.3)式和(1.4)式,就可以计算处一维光子晶体的透射谱。 当一维光子晶体中所包含的层数比较大时,矩阵连乘的计算量是非常大的,需要用计算机来进行计算。本文利用MATLAB程序来实现数值的计算。 二、缺陷模位置与缺陷层厚度关系的数值研究 取一维光子晶体模型参数为,高折射率层折射率,低折射率层折射率n =1.35,入射光中心波长λ=1550nm,缺陷层两侧的膜周期数N=10,缺陷层的折射率。取缺陷层厚度时,可以看到在透射谱中出现了光子带隙,带隙中含有十分尖锐的缺陷态。缺陷态的性质已有文章介绍,在这里不再讨论。 图2波长-透射率谱,缺陷层厚度d=λ/4=387.5nm 在光子带隙的范围内(1200nm-1800nm)扫描缺陷态的透射峰,即记录不同的缺陷层厚度d和缺陷模位置。取d的变化范围为50nm-1000nm,可以得到d

[NSFC]光子带隙调控、新效应及其应用

项目名称:光子带隙调控、新效应及其应用首席科学家:xxx 起止年限:2011.1至2015.8 依托部门:教育部上海市科委

二、预期目标 总体目标: 围绕光子晶体的带隙调控、新现象及其应用,研究光子晶体带隙调控新机理和新现象,如特异材料及复合周期性结构和关联光子学微结构阵列;研究光子人工微结构集成回路的调控机理与新现象,如光子晶体和亚波长金属周期微结构中高品质微腔、对量子受限系统中的受激激发和自发辐射过程的影响、量子信息的制备和调控等。研究光子晶体中光调控新效应与潜在应用研究,如三维光子晶体的光调控新效应、非线性光子晶体的光调控新效应、光子局域共振微结构诱导的干涉效应和宏观量子效应等。通过项目的实施,在基础研究上取得一批在国际学术界领先的成果,产生一批有自主知识产权的专利技术,为光通讯、微波通讯、光电集成、航空航天系统及国防科技等领域的跨越式发展提供基础研究支撑。 五年目标: 1.设计与制备微波波段特异材料,利用特异材料及其复合周期结构 的特殊带隙结构、奇异缺陷模式和界面模式,研制新型微波原理性器件如新型飞行器天线罩、用于高速移动系统无线信道分析的新型天线等。 2.设计与制备光子晶体与量子受限系统复合结构,利用光子晶体与 量子受限系统复合结构光电量子调控和量子限制所产生的新激光原理和激光现象,研制新型激光器。 3.设计与制备亚波长金属周期微结构与量子受限系统复合结构,利 用光子晶体与量子受限系统复合结构光电量子调控和量子限制所产生的新跃迁激发原理和吸收现象,研制新型红外波段探测器。 4.设计与制备光子学微结构阵列,利用非线性光子学微结构阵列的

特殊带隙结构和光调控效应,研制新型光调制器件如光开关。5.发表一批高质量学术论文,形成一批有自主知识产权的专利技术。

一维光子晶体的能带结构研究开题报告

科研文献调研报告 题目:一维光子晶体的能带结构研究 学院:__理学院_ 专业:__光信息科学与技术__ 班级:_2008级 学号:_ 080701110083 学生姓名:__李辉_____指导教师:__徐渟_____ 2012年3月14日

一维光子晶体的能带结构研究 摘要: “光子晶体"的概念是1987年S.John和E.Yabloncvitch分别提出来的。而在当今世界,科学家们在不断研究电子控制的同时发现由于电子的特性,半导体器件的集成快到了极限,而光子有着电子所没有的优越特性:传输速度快,没有相互作用。所以科学家们希望能得到新的材料,可以像控制半导体中的电子一样,自由地控制光子。与此同时随着科学技术的发展特别是制造工艺技术的发展,使得光子晶体的制造不仅变得可能,还得到了长足的进步,在可见光及红外波段可以制成具有所需能带结构的光子晶体,实现对光的控制。因此近年来光子晶体得到深入广泛的研究与应用。 关键字:光子晶体能带结构半导体器件 The Investigation on the Band Structures of one-dimensional photonic crystal Abstract: The concept of"Photonic crystals" was put forward byS.John and E.Yabloncvitch in 1987.But nowScientists constantly study electronic control and find that the integration of semiconductor devices has been the limit because of the characteristics of the electronic.And the photon has the advantage of high speed,no interaction, which electron does not have.So scientists want to get

固体物理小论文一维光子晶体

一维光子晶体层状碘化铅/碘甲基氨的色散关系 自1987 年Yablono vitch[ 1 ] 在周期性排列的电介质中发现光子禁带以来, 人们对光子晶体这种人工结构已做了大量的研究工作。一维光子晶体, 其结构简单(图示1), 易于制备, 可以设计滤波器、薄膜太阳能电池等光电子学器件的常用结构。 使用CVD法制备卤化铅(碘化铅)层状结构,后期退火在每层碘化铅中加入碘甲基氨,由于二者的介电常数相差较大且呈周期排布所以在堆垛方向上形成一维光子晶体(图示2)。

通常描述光子晶体能带结构的物理参量主要是透射谱、反射谱及其)(k ω色散关系.本文中我们用平面波展开发计算色散关系[2]. 光子晶体理论分析中应用最早、最广的一种方法就是平面波展开法。在计算光子晶体光子能带结构时,平面波展开法直接应用了结构的周期性,将麦克斯韦方程从实空间变换到离散傅立叶空间,将色散关系计算简化为对代数本征值问题的求解. 假设光子晶体处在无源空间, 且是由各向同性、无损耗、非磁性、无色散的线性介质组成 入射波t i e x E t x E ω-=)(),( 由麦克斯韦方程给出其波动方程 2222),()(,t t x E a x x t x E ??=??ε)( 图2 碘化铅层状结构SEM 图

削去时间 )()(-2222x E c x x x E εω=??)( a 为晶格常数,)(x ε为周期性介电函数, nm a nm a a a a 4040212 1==+= ???<<<<=a x a a x x 1211 ,0,)(εεε 1a 为碘化铅厚度,2a 为碘甲基氨厚度,假设二者相等,根据图2可估算大概尺度为40nm 1ε为碘化铅介电常数,2ε为碘甲基氨介电常数,查阅资料取31=ε62=ε 将周期函数)(x ε做周期展开 ∑∞-∞== n x a n i n e x πεε2)( 其中 ?-=a x a n i n e x a 02)(1πεε 积分得 ???????≠??????--=+=-0,1)(20,12212211n e n i n a a a a a a n i n πεεπεεε 将E(x)展开得到布洛赫波的形式 ∑∞-∞=+= m x a m k i e m B x E )2()()(π 将②③带入①中 ① ② ③

时域有限差分法在一维光子晶体数值模拟方面的研究

文章编号:100525630(2006)0420037206 时域有限差分法在一维光子 晶体数值模拟方面的研究Ξ 宋 琦1,高劲松1,王笑夷1,王彤彤1,陈 红1,郑宣鸣1,申振峰1,凌 伟2 (1.中国科学院长春光学精密机械与物理研究所光学技术研究中心,吉林长春130033; 2.海军驻长春地区航空军代表,吉林长春130033) 摘要:介绍了时域有限差分法的基本原理,并对一维光子晶体薄膜中传播的电磁场作 了模拟和分析。通过对光子晶体透射谱的研究,讨论了不同周期数和不同介电常数比对光 子晶体带隙的影响,最后通过在周期介质层状结构中引入缺陷层构造了光子缺陷态。 关键词:时域有限差分法;光子晶体;光学禁带;缺陷态 中图分类号:O 734 文献标识码:A Study on the FD T D si m ula tion of the 1-D photon ics crysta l SON G Q i 1,GA O J in 2song 1,W A N G X iao 2y i 1,W A N G T ong 2tong 1CH EN H ong 1,ZH EN G X uan 2m ing 1,S H EN Z hen 2f eng 1,L ing W ei 2(11Op tical T echno logy and R esearch Cen ter ,Changchun In stitu te of Op tics ,F ine M echan ics and Physics , Ch inese A cadem y of Sciences ,Changchun 130033,Ch ina ; 21A viati on Comm issary of N avy in Changchun ,Changchun ,130033Ch ina ) Abstract :T he p rinci p le of fin ite difference ti m e dom ain (FD TD )w as p resen ted ,and analysis of electrom agnetic field in 1D p ho ton ics crystal (PC )w as p erfo rm ed .B ased on the study of tran s m ittance of 1D PC ,influence of differen t p eri ods and dielectric con stan t rati o s on the p ho ton ics band gap w ere discu ssed .T he defect state w as fo rm ed by in troducing the defect layer in to p eri od structu re . Key words :fin ite difference ti m e dom ain (FD TD );p ho ton ics crystal ;p ho ton ics band gap ;defect state 1 引 言 光子晶体是近年来深受关注的一个新兴研究方向[1~3]。光子晶体是由多种介电材料构成的复合结构。由于其在空间周期性排布的特殊结构与半导体材料极其相似,光子晶体也拥有与电子晶体的电子禁带相似的光子禁带(p ho ton ics band gap ,PB G ),频率落在光子禁带中的光子将被严格禁止,而在禁带中人为的引入缺陷将构造出光子的局域态,从而达到对光子的“捕获”的目的。 光子晶体的应用主要基于光子晶体的能带结构中存在的光子带隙与局域态。利用光子晶体的特殊性第28卷 第4期2006年8月 光 学 仪 器O PT I CAL I N STRUM EN T S V o l .28,N o.4 A ugu st,2006 Ξ收稿日期:2006206230 基金项目:国家自然科学基金资助项目(60478035) 作者简介:宋 琦(19802),男,辽宁省辽阳市人,硕士,主要从事光子晶体理论及现代薄膜制备方面的研究。

光子晶体透射谱

na=2.10;nb=1.46;n1=1;n2=1; d=1064; c3=0;c1=asin(n1*sin(c3)/na);c2=asin(na*sin(c1)/nb);c4=asin(nb*sin(c2)/n 2); d1=1064; a=d1/(4*na);b=d1/(4*nb); Ba=2*pi*na*a*cos(c1)/d; Bb=2*pi*nb*b*cos(c2)/d; f=4*pi*1e-7; e=1e-9/(36*pi); m=sqrt(e/f); za=m*cos(c1)*na;zb=m*cos(c2)*nb;z1=f*cos(c3)*n1;z2=f*cos(c4)*n2; p1=cos(Bb);p2=-i*sin(Bb)/zb;p3=-i*zb*sin(Bb);p4=cos(Bb); P=[p1 p2;p3 p4]; q1=cos(Ba);q2=-i*sin(Ba)/za;q3=-i*za*sin(Ba);q4=cos(Ba); Q=[q1 q2;q3 q4]; O=Q*P; for n=1:100; O1=O^n; O11=O1(1,1);O12=O1(1,2);O13=O1(2,1);O14=O1(2,2); z1=sqrt(e/f)*n1*cos(c3);z2=sqrt(e/f)*n2*cos(c4); t=2*z1/(z1*(O11+z2*O12)+O13+z2*O14); t1=abs(t); h1(1,n)=t1; end n=1:100; plot(n,h1); xlabel('周期'); ylabel('透射率');title('光子晶体透射率随周期变化'),grid on

非均匀分布等离子体光子晶体光子带隙分析

第29卷第4期2009年12月核聚变与等离子体物理 NuclearFusionandPlasmaPhysics V01.29,No.4 Dec.2009 文章编号:0254-6086(2009)04--0365-05 非均匀分布等离子体光子晶体光子带隙分析 刘崧1一,刘少斌2 (1.南昌大学理学院,南昌330031;2.南京航空航天大学信息科学与技术学院.南京210016) 摘要:用时域有限差分法研究了电磁波在等离子体光子晶体中的传播特性。数值模拟中使用完全匹配层吸收边界条件,计算了电磁波通过等离子体光子晶体的反射和透射系数。讨论了等离子体密度、等离子体温度、介电常数比和引入缺陷层对等离子体光子晶体光子带隙的影响。 关键词:等离子体光子晶体;光子带隙;缺陷模;时域有限差分法 中图分类号:TN011文献标识码:A 1引言 光子晶体是八十年代末由Yablonovitch和JollII提出来的一种新概念和新材料【l一,能有效地控制特定频段的电磁波传播,具有非常广阔的应用前景。光子晶体是指具有一定光子带隙结构的一种人工周期性电介质结构【3】,在介电常数呈周期性排列的介电材料中,某些波段的电磁波因周期性结构的强散射效应将无法在介电材料中传播,因而形成光子带隙结构。如果在这种周期性结构中引入缺陷模,会在光子带隙中形成相应的局域特性。因此,光子晶体的这种独特的性质由最初的光学领域扩展到微波与毫米波波段等众多的领域,具有十分重要的应用前景,比如用光子晶体制作频率滤波器【4l,光波导【5】和微波集成电子器件【6】等。等离子体光子晶体是由等离子体和电介质或真空构成的人工周期结构。最近由Hojo等人提出来,随后用解析法给出了电磁波在一维等离子体光子晶体中的色散关系【_71,此后文献【8,9】从理论和实验上对等离子体光子晶体的光子带隙特征和色散特性进行了分析。等离子体具有色散特性和耗散特性。一方面,等离子体是一种色散介质,其折射率小于1甚至为负值,而且与电磁波的频率密切相关。对入射电磁波而言,等离子体本身就存在阻带和通带。另‘疗面,等离子体也是一种耗散介质,当频率高于、浅子体频率的电磁波入射到等离子体内部时,由于等离子体的碰撞,入射电磁波的能量会被吸收,电磁波的能量转化为等离子体的内能Ilo】。等离子体的色散和耗散特性将使得等离子体光子晶体具有常规的介质光子晶体所不具有的性质【111。文献【ll】主要讨论了均匀分布的等离子体构成的等离子体光子晶体的光子带隙特征。不同条件下的等离子体具有不同的色散和耗散特性,如等离子体频率是密度、温度函数;另外,等离子体中电子密度分布决定其折射率,而折射率决定了电磁波的传播特性。因此,对非均匀分布等离子体光子晶体的研究显得十分必要了,这对通过改变等离子体的参数来人为控制等离子体光子晶体的性质在工程应用方面具有重要的理论指导意义。 本文主要用时域有限差分方法研究由密度线性分布、非磁化、碰撞、中温的等离子体和电介质构成的一维等离子体光子晶体的光子带隙特性。从时域的角度,分析了脉冲电磁波在不同时刻的电场幅值的空间分布;从频域的角度,讨论了等离子体密度、温度、电介质比率以及缺陷模等对光子带隙的影响。 2时域有限差分算法 时域有限差分方法(FDTD)是一种主要的电磁场时域计算方法,通过将Maxwell旋度方程化为有 收稿日期:2008-10--26;修订日期:2009---06-10 基金项目:毫米波国家重点实验室开放课题资助项目(K200802) 作者简介:刘崧(1968-),男,江西泰和人,副教授,主要从事等离子体理沦和计算电磁学研究。万方数据

光子带隙调控、新效应及其应用

项目名称:光子带隙调控、新效应及其应用首席科学家:陈鸿同济大学 起止年限:2011.1至2015.8 依托部门:教育部上海市科委

二、预期目标 总体目标: 围绕光子晶体的带隙调控、新现象及其应用,研究光子晶体带隙调控新机理和新现象,如特异材料及复合周期性结构和关联光子学微结构阵列;研究光子人工微结构集成回路的调控机理与新现象,如光子晶体和亚波长金属周期微结构中高品质微腔、对量子受限系统中的受激激发和自发辐射过程的影响、量子信息的制备和调控等。研究光子晶体中光调控新效应与潜在应用研究,如三维光子晶体的光调控新效应、非线性光子晶体的光调控新效应、光子局域共振微结构诱导的干涉效应和宏观量子效应等。通过项目的实施,在基础研究上取得一批在国际学术界领先的成果,产生一批有自主知识产权的专利技术,为光通讯、微波通讯、光电集成、航空航天系统及国防科技等领域的跨越式发展提供基础研究支撑。 五年目标: 1.设计与制备微波波段特异材料,利用特异材料及其复合周期结构 的特殊带隙结构、奇异缺陷模式和界面模式,研制新型微波原理性器件如新型飞行器天线罩、用于高速移动系统无线信道分析的新型天线等。 2.设计与制备光子晶体与量子受限系统复合结构,利用光子晶体与 量子受限系统复合结构光电量子调控和量子限制所产生的新激光原理和激光现象,研制新型激光器。 3.设计与制备亚波长金属周期微结构与量子受限系统复合结构,利 用光子晶体与量子受限系统复合结构光电量子调控和量子限制所产生的新跃迁激发原理和吸收现象,研制新型红外波段探测器。 4.设计与制备光子学微结构阵列,利用非线性光子学微结构阵列的

特殊带隙结构和光调控效应,研制新型光调制器件如光开关。5.发表一批高质量学术论文,形成一批有自主知识产权的专利技术。

翻译 光子带隙分析

光子带隙分析 介绍 该模式描述了,由砷化镓支柱等间距放置组成的光子晶体中的波传播,支柱之间的距离决定了波数与光频之间的关系,光频阻止了某些确定波长的光透射到晶体的内部。这个频率范围就叫做带隙,对某个确定的结构来说对应不止一个带隙,该模式摘取了晶体最低频段的带隙。 模型定义 该模式类似于光子晶体波导模式,它们之间的区别在于,该模式分析晶体本身而不是本身就是一个波导,因为它有一个重复的模式使得使用周期边界条件情况成为可能。因此,只需一个支柱就可以完成该模拟过程。该模式包含一个小的不对称性,以此来除去具有相同的特征值特征函数的困难,该对称性不是体现在光子晶体波导模式上。 在这种带隙分析中存在两个主要的问题,首先,砷化镓的折射率与频率有关,其次,波矢必定会为带面而倾斜。尽管,你可以通过特征值求解的方式分别解决这两个问题,但是它们之间的结合使得在没有脚本的情况下该问题的解决变得困难。然而,把该特征值当成一个未知数,我们可能解决一个非线性固定求解的问题,特征值是一个规范的电场,因此,平均值是在域的统一。非线性求解器找到了一个与要找的特征值相同的具有最新折射率的特征值。并且参数求解可以复现波矢k 。特征值等于自由空间波矢平方: k 02=Λ 特征值记为Λ,以避免与自由空间波长λ 0混乱,Λ 与λ 0之间的关系为: Λ 2π0= λ 发散播波矢k 遵从Floquet 周期边界条件进入该模拟过程: ()()βi z z e E E -=12 β是由波矢和周期边界之间的距离d 决定的相位因素,其中 β=kd 波矢k 的扫频范围是由光子晶体的倒晶格向量决定的,并且这些都是由原始晶格矢量确定的。对一个二维晶体来说,它有两个由下图定义的晶格向量,а1和а2。

一维光子晶体的禁带宽度分析

闽江学院 本科毕业论文(设计) 题目一维光子晶体的禁带宽度分析 学生姓名 学号 系别电子系 年级03 专业电子科学与技术 指导教师 职称副教授 完成日期2007.05.16

目录 摘要 (2) ABSTRACT (3) 第一章绪论 (4) 1.1什么是光子晶体? (4) 1.2光子晶体理论计算方法 (5) 1.3光子晶体的应用 (8) 第二章一维光子晶体基本理论 (9) 2.1光子禁带的产生 (9) 2.2一维光子晶体的特征矩阵 (11) 第三章一维光子晶体带隙变化规律的研究 (13) 3.1带隙随厚度比的变化 (13) 3.2带隙随折射率差的变化 (16) 3.3带隙随角度的变化 (19) 3.4厚度比与折射率差同时变化下的最大带隙 (22) 总结 (24) 参考文献 (25)

摘要 光子晶体的研究领域非常广泛,涉及到光学的方方面面。由于它所具有的特殊的性质,故被称为光的半导体,足见它对光学领域的影响力。虽然这个领域的工作也才刚开始10年多一点,但是进展非常地快。通过对这个领域的深入研究.不仅对光子晶体研究本身有意义,而且对光学领域的理论发展也具有重要的价值。使得人们对光的理解更加深入。 介绍了一维光子晶体的基本概念和原理系统综述了对一维光子晶体的研究进展和应用前景。 作为一维光子晶体的应用基础,一维光子晶体的禁带是研究的重点。一维光子晶体的带隙决定了工作频率范围,因此研究其带隙变化规律是其应用的关键,通过改变各种参数确定带隙的依赖因素及其定量关系。 通过传输矩阵的方法分析了一维光子晶体禁带的特性,讨论了影响带宽的因素,说明了相对带宽对光子晶体设计的重要性。在这个基础上讨论了扩展一维光子晶体带宽的方法,:1、使各层介质的厚度d微微变化,形成规则递增,达到展宽禁带的目的。2、角度 逐渐变化,使晶体在角度域化互相叠加,达到扩展带宽的目的。3、使晶体的折射率n1逐渐变化(n2=4.6),达到扩展带宽的目的。通过画出改变各种参数的情况下的带隙曲线图,得到带隙随各参数变化的规律,从而达到对一维光子晶体带隙变化规律的分析。 关键词:光子晶体;光子禁带;相对带宽;展宽。

一位光子晶体的计算

一维光子晶体的研究方法----传输矩阵法 1:绪论 1.1:光子晶体研究的意义 在以前对半导体材料的研究导致一场轰轰烈烈的电子工业革命,我们的科技水平有了突飞猛进的发展,并为此进入了计算机和信息为标准的信息时代。在过去的几十年里,半导体技术正向高速,高集成化方向发展。但这也引发了一系列的问题,比如电路中能量损失过大,导致集成体发热。此外,由于高速处理对信号器件中的延迟提出更高的要求,半导体器件的能力已经基本达到了极限,为此科学家们把目光从电子转向广光子。这是因为光子有着电子所不具备的优势:1.极高的信息容量和效率。2.极快的响应速度。3.极强的互连能力和并行能力。4.极大地存储能力。5.光子间的相互作用很弱,可极大地降级能力损失。但是与集成电路相比,科学家们设想能像集成电路一样制造出集成光路,在集成光路中,光子在其中起着电子的作用,全光通过。光子计算机将成为未来的光子产业,集成光路类似于电子产业中半导体的作用,光子产业中也存在着向集成电路的器件一样的集成光路——光子晶体,光子晶体的研究不仅仅是光通讯领域内的问题,同时也对其他相关产业将产生巨大的影响。 1.2:光子晶体的概念及应用 光子晶体是八十年代未提出的新概念和新材料,迄今取得了较快的发展,光子晶体不仅具有理论价值,更具有非常广阔的应用前景,这个领域已经成为国际学术界的研究热点。 控制光子是人们长期以来的梦想,光子晶体能帮助人们实现这一梦想。1987年Yablonol itch在讨论如何控制自发辐射和John 在讨论光子局域化时各自独立的提出了光子晶体的概念。他们所讨论问题的共同实质是周期性电介质材料中光传播的特性,根据固体电子能带理论,晶体内部原子呈周期性排列,库仑场的叠加产生周期性势场,当电子在其中运动时受到周期性势场的布格拉散射而形成的能带结构,带与带之间有带隙,称为禁带。能量落在禁带中的电子波不能传播。与此相仿,当电磁波在周期性电介质结构材料中传播时由于受到调制而形成能带结构——光子能带结构,其带隙称为光带隙(PBG:photonic band gap)。此具有

一维光子晶体的应用发展

龙源期刊网 https://www.wendangku.net/doc/401610702.html, 一维光子晶体的应用发展 作者:江帅璋 来源:《新教育时代·学生版》2016年第33期 摘要:一维光子晶体是介质特定的在一个方向上具有周期性的结构,在另外的两个方向上却是均匀性分布的。结构比较简单的一维光子晶体一般是两种介质交替叠层而形成的,这种一维光子晶体在垂直于介质层平面方向的介电常数是随空间位置的改变而改变的,而在平行于介质层平面方向的介电常数并不随空间位置的改变而改变。这种光子晶体在光纤和半导体激光器上已经得到了运用,布拉格光纤和半导体激光器的分布反馈式谐振腔事实上就是一维光子晶体。因为一维光子晶体制作简单,结构简单,所以一维光子晶体被大家广泛的关注。在最早期的时候,因为一维光子晶体特定的在一个方向上表现有周期性的结构,所以光子禁带也只在这个方向上出现,之后Joannopoulos和他的同事们根据理论和仿真得到一维光子晶体应该有全方向的三维带隙结构,因此一维光子晶体也能够具备二,三维光子晶体所具有的特性,所以一维光子晶体被人们更加普遍的应用到了研究中。 关键词:一维光子晶体周期性介电常数 一、一维光子晶体的研究进展与应用 一维光子晶体具有制作简易和控制光的传播形式优异性等优势,让一维光子晶体在不一样的研究中得到了广泛的关注。这些年一维光子晶体在研究领域取得了一些明显的进展。因为一维光子晶体拥有三维材料的全向能隙结构,所以可以将一维光子晶体应用到二维和三维器件的设计当中;一维光子晶体有高增益的局域广场以及光延迟效应,能够导致一些非线性效应,比如说谐波的产生、光学双稳态等;并且一维光子晶体也具有超折射现象,而且因为它有控制光模式以及光传输的优异性能,所以一维光子晶体在光子晶体的应用中占据着主要地位。下面我们从三个方面介绍一维光子晶体的特点和应用,分为物理机制和效应两个角度。[1] 1.全向能隙结构 1998年,因为一维光子晶体的边界是有限制的,所以出现了跟二维光子晶体和三维光子 晶体相像的全向能隙结构。虽然金属材料的反射镜的反射率跟入射角度没有关系,但是金属材料是吸收电磁波的,所以金属材料的反射率并不高。以前的多层高反膜会因为入射角度的增加其反射率降低。一维光子晶体可以产生一个不跟入射光偏正方向以及入射角有关联的较宽的全向带隙,解决了金属材料反射率不高的难题。除了反射镜外,一维光子晶体能够普遍的运用到微波天线、透射光栅、光波导等器件的研制中。[2~6] 2.布儒斯特角的控制

相关文档