文档库 最新最全的文档下载
当前位置:文档库 › 圆周运动的实例

圆周运动的实例

圆周运动的实例
圆周运动的实例

本课例题高考命题的4大力学考点:匀速圆周运动,匀变速直线运动,平抛运动

题型一:随转盘转动问题

【例题1】如图所示是一个水平转盘的示意图,盘上距转轴为r处,有一质量为m的小物体随盘做匀速圆周运动。(1)若物体在转盘上无滑动,请画出小物体的受力示意图。

(2)若物体和转盘之间的最大静摩擦力为f m,问

圆盘转动的角速度不能超过多少物体才不会滑出?

(1)重力,支持力,摩擦力(向心力)

(2)mrw^2=f m

W=根号下f m/mr

题型二:汽车拐弯问题(水平)

【例题2】如图,一辆质量为1000kg的赛车正以14m/s的速度

进入一个圆形赛道,已知赛道半径为50m,则

(1)此赛车转弯所需的向心力是多大?

(2)当天气晴朗时,赛车和路面间的摩擦系数是

0.60,问比赛过程中赛车是否能顺利通过弯道?

(3)在雨天时,赛车和路面间的摩擦系数是0.25,问

赛车是否能顺利通过弯道?

(1)F=m*(v^2/r)=3920N

(2)Ff=μmg=5880N 所以可以通过

(3)Ff=μmg=2450N 所以不可以通过,会做离心运动

注意:水平面内的转弯问题向心力是摩擦力;斜面上的转弯问题向心力是合力,解题时要留心

题型三:火车拐弯问题(斜面)

【例题3】铁路转弯处的圆弧半径是300m,轨距是1435mm。规定火车通过这里的速度是20m/s,内外轨的高度差应该是多大才能使外轨不受轮缘的挤压?保持内外轨的这

个高度差,如果车的速度大于或小于20m/s,会分别发生什么现象?说明理由。Fn=mv^2/r=sinαmg

sinα=v^2/gr

h/d= v^2/gr

h=0.195

大于:离心

小于:近心

【例题4】小球做圆锥摆时细绳长L,与竖直方向成α角,求小球做匀速圆周运动的角速度 。Fn=mgtanα

R=Lsinα

F=ma=mrw^2

易解得w的值

【例题5】如图是双人花样滑冰运动中女运动员被男运动员拉着旋转的精彩场面,如果目测女运动员做圆锥摆运动时和竖直方向的夹角为60°,那么试估计她所受到的拉力

有多少?(设女运动员自身重力为G,所受支持力不计)

F=G/cos60`=2G

【例题6】质量为1.5×104kg的汽车,以不变的速率,先后驶过凹形路面和凸形路面,路面的曲率半径为15m,如果路面所能承受的压力不得超过2×105N,汽车允许的最大速率为

多少?汽车若以此速率经过路面时,对路面的最小压力为多大?(g取10m/s2)

V=7.1m/s

F=2*10^5

(重点题,第二问)【例题7】绳系着装有水的小木桶,在竖直平面内作圆周运动,水的质量m=0.5kg,绳长

L=60cm,求(1)桶在最高点而使水不流出的最小速率.(2)水在最高点

速率v=3m/s时,水对桶底的压力.

(1)根号下gr

(2)2.5N

注意用牛顿第三定律!!

规律总结 1.水平平面内的圆周运动

火车转弯:设火车弯道处内外轨高度差为h ,内外轨间距L ,转弯半径R 。由于外轨略高于内轨,使得火车所受重力和支持力的合力F 合提供向心力。外轨略高于内轨。

为转弯时规定速度)

(得由合0020sin tan v L Rgh

v R

v m L h mg mg mg F ===≈=θθ

0v 是内外轨对火车都无摩擦力的临界条件)

即当火车转弯时行驶速率不等于V 0时,其向心力的变化可由内外轨道对轮缘侧压力自行调节,但调节程度不宜过大,以免损坏轨道。 2.竖直平面内的圆周运动

(1)绳、内轨模型:在竖直平面内作圆周运动过最高点情况

①临界条件:由mg+T=mv 2

/L 知,小球速度越小,绳拉力或环压力T 越小,但T 的最小值只能为零,此时小球以重力提供作向心力,恰能通过最高点。即mg=R m 2临v

结论:绳子和轨道对小球没有力的作用(可理解为恰好通过或恰好通不过的速度),只有重力提供作向心力,临界速度V 临=gR

②能过最高点条件:V ≥V 临(当V ≥V 临时,绳、轨道对球分别产生拉力、压力)

③不能过最高点条件:V

最高点状态: mg+T 1=L m 2高

v (临界条件T 1=0, 临界速度V 临=gR , V ≥V 临才能通过)

最低点状态: T 2- mg = 2m

v

(2)杆、管道模型 ①临界条件:杆和管道对小球有支持力的作用2

v mg N m R

-=(由知) 当V=0时,N=mg (可理解为小球恰好转过或恰好转不过最高点)

圆心。增大而增大,方向指向随即拉力向下时,当④时,当③增大而减小,且向上且随时,支持力当②v N gR v N gR v N mg v N gR v )(0

0>==>><<

作用时,小球受到杆的拉力>,速度当小球运动到最高点时时,杆对小球无作用力,速度当小球运动到最高点时长短表示)

(力的大小用有向线段,但(支持)

时,受到杆的作用力,速度当小球运动到最高点时N gR v N gR v mg N N gR v 0

==<< 会判断是受拉力还是支持力!

(3)汽车过桥问题。

详细讲解见《中学教材全解·必修二物理》

注意四种分析:过程分析(轨道平面在哪,圆心在哪,半径多少);状态分析(用角速度描述的还是线速度描述的);受力分析(提供向心力的,由供需关系列出方程);条件分析(隐含条件,临界条件)。 注意四种步骤:明确对象,找到圆心和半径 受力分析,找向心力;列出方程求解;解方程,注意取舍。

圆周运动的实例及临界问题

圆周运动的实例及临界问题 一、汽车过拱形桥 1.汽车在拱形桥最高点时,向心力:F 合= mg -N =m v 2 R . 支持力:N =mg -mv 2 R <mg ,汽车处于失重状 态. 2.汽车对桥的压力N ′与桥对汽车的支持N 是一对相互作用力,大小相等,所以汽车通过最高点时的速度越大,汽车对桥面的压力就越小. 例1 一辆质量m =2 t 的轿车,驶过半径R =90 m 的一段凸形桥面,g =10 m/s 2 ,求: (1)轿车以10 m/s 的速度通过桥面最高点时,对桥面的压力是多大? (2)在最高点对桥面的压力等于轿车重力的一半时,车的速度大小是多少? 解析 (1)轿车通过凸形桥面最高点时,受力分析如图所示: 合力F =mg -N ,由向心力公式得mg -N =m v 2 R ,故 桥面的支持力大小N =mg -m v 2R =(2 000×10-2 000×102 90) N ≈×104 N 根据牛顿第三定律,轿车在桥面最高点时对桥面压力的大小为×104 N. (2)对桥面的压力等于轿车重力的一半时,向心力F ′=mg -N ′=,而F ′=m v ′2R ,所以此时轿 车的速度大小v ′=错误!=错误! m/s ≈21.2 m/s 答案 (1)×104 N (2)21.2 m/s 二、圆锥摆模型 1.运动特点:人及其座椅在水平面内做匀速圆周运动,悬线旋转形成一个圆锥面. 图1 2.运动分析:将“旋转秋千”简化为圆锥 摆模型(如图1所示) (1)向心力:F 合=mg tan_α (2)运动分析:F 合=mω2r =mω2 l sin α (3)缆绳与中心轴的夹角α满足cos α= g ω2l . 图6 例2 如图6所示,固定的锥形漏斗内壁是光滑的,内壁上有两个质量相等的小球A 和B ,在各自不同的水平面做匀速圆周运动,以下物理量大小关系正确的是( ) A .速度v A >v B B .角速度ωA >ωB C .向心力F A >F B D .向心加速度a A >a B 解析 设漏斗的顶角为2θ,则小球的合力为F 合 =mg tan θ,由F =F 合=mg tan θ=mω2 r =m v 2 r =ma ,知向心力F A =F B ,向心加速度a A =a B ,选项C 、D 错误;因r A >r B ,又由v = gr tan θ 和ω= g r tan θ 知v A >v B 、ωA <ωB ,故A 对,B 错. 答案 A 三、火车转弯 1.运动特点:火车转弯时做圆周运动,具有向心加速度,需要向心力. 2.铁路弯道的特点:转弯处外轨略高于内轨,铁轨对火车的支持力斜向弯道的内侧,此支 持力与火车所受重力的合力指向圆心,为火车转弯提供了一部分向心力. 例3 铁路在弯道处的内、外轨道高度是不 同的,已知内、外轨道平面与水平面的夹角为θ, 如图7所示,弯道处的圆弧半径为R ,若质量为m 的火车转弯时速度等于gR tan θ,则( ) A .内轨对内侧车轮轮缘有挤压 B .外轨对外侧车轮轮缘有挤压 C .这时铁轨对火车的支持力等于mg cos θ D .这时铁轨对火车的支持力大于mg cos θ

《圆周运动的实例分析》教案设计

教学设计 高一年级物理《圆周运动的实例分析》 子 洲 中 学 艾娜

高一年级物理《圆周运动的实例分析》教学设计 一、教材依据 本节课是沪科版高中物理必修2第二章《研究圆周运动》的第3节《圆周运动的实例分析》。 二、设计思路 (一)、指导思想 ①突出科学的探究性和物理学科的趣味性; ②体现了以学生为主体的学习观念;注重了循序渐进性原则和学生的认知规律,使学生从感性认识自然过渡到理性认识。 (二)、设计理念 本节对学生来说是比较感兴趣的,要使学生顺利掌握本节内容。引导学生在日常生活经验的基础上通过观察和主动探究和归纳,就成为教学中必须解决的关键问题。所以在本节课的设计中,结合新课改的要求,利用“六步教学法”:教师主导——提出问题;学生探求——发现问题;主体互动——研究问题;课堂整理——解决问题;课堂练习——巩固提高;反思小结——信息反馈,为学生准备了导学提纲,重视创设问题的情境和指导学生探究实验,引导学生分析实验现象,归纳总结出实验结论。 (三)教材分析 本节是《研究圆周运动》这一章的核心,它既是圆周运的向心力与向心加速度的具体应用,也是牛顿运动定律在曲线运动中的升华,它也将为学习后续的万有引定律应用、带电粒子在磁场中运动等内容作知识与方法上的准备。 本节通过对自行车、交通工具等具体事例的分析,理解圆周运动规律分析和解决物理问题的方法。在本节教学内容中,圆周运动与人们日常生活、生产技术有着密切的联系,本节教材从生活场景走向物理学习,又从物理学习走向社会应用,体现了物理与生活、社会的密切联系。 (四)学情分析 本人任教的学生基础较好、动手能力较强,对物理学科特别是紧密联系生活的内容特感兴趣。而且学生已经学完向心力和向心加速度理论知识,将会在极大的好奇心中学习本节内容,只是缺乏对实际圆周运动的深度分析,还没有能将其上升至理论高度。 三、教学目标 (一)知识与技能

竖直平面内的圆周运动及实例分析

竖直平面内的圆周运动及实例分析 竖直平面内的圆周运动一般是变速圆周运动(带电粒子在匀强磁场中运动除外),运动的速度大小和方向在不断发生变化,运动过程复杂,合外力不仅要改变运动方向,还要改变速度大小,所以一般不研究任意位置的情况,只研究特殊的临界位置──最高点和最低点。 一、两类模型——轻绳类和轻杆类 1.轻绳类。运动质点在一轻绳的作用下绕中心点作变速圆周运动。由于绳子只能提供拉力而不能提供支持力,质点在最高点所受的合力不能为零,合力的最小值是物体的重力。所以:(1)质点过最高点的临界条件:质点达最高点时绳子的拉力刚好为零,质点在最高点的向心力 全部由质点的重力来提供,这时有,式中的是小球通过最高点的最小速度, 叫临界速度;(2)质点能通过最高点的条件是;(3)当质点的速度小于这一值时,质点运动不到最高点高作抛体运动了;(4)在只有重力做功的情况下,质点在最低点的速度不得小于,质点才能运动过最高点;(5)过最高点的最小向心加速度。 2.轻杆类。运动质点在一轻杆的作用下,绕中心点作变速圆周运动,由于轻杆能对质点提供支持力和拉力,所以质点过最高点时受的合力可以为零,质点在最高点可以处于平衡状态。 所以质点过最高点的最小速度为零,(1)当时,轻杆对质点有竖直向上的支持力,其大小等于质点的重力,即;(2)当时,;(3)当,质点的重力不 足以提供向心力,杆对质点有指向圆心的拉力;且拉力随速度的增大而增大;(4)当 时,质点的重力大于其所需的向心力,轻杆对质点的竖直向上的支持力,支持力随的增大而减小,;(5)质点在只有重力做功的情况下,最低点的速度,才能运动到最高点。过最高点的最小向心加速度。 过最低点时,轻杆和轻绳都只能提供拉力,向心力的表达式相同,即,向

圆周运动实例分析

圆周运动实例分析 广州南沙东涌中学 一.教学目标 1.知识与技能 1.能定量分析汽车转弯时的向心力由谁提供。 2.能定量分析汽车过拱形桥最高点和凹形桥最低点的压力问题。 3.会用牛顿第二定律分析生活中较简单的圆周运动问题。 2.过程与方法 通过对圆周运动的实例分析,渗透理论联系实际的观点,提高分析和解决问题的能力。 3.情感、态度与价值观 养成应用实践能力和思维创新意识;运用生活中的几个事例,激发学习兴趣、求知欲和探索动机;通过对实例的分析,建立具体问题具体分析的科学观念。 二.学情分析 学生已经学习过了圆周运动以及向心力的基本知识,并且生活中有很多圆周运动,学生在生活经验中已具备一些有关圆周运动的感性认识,但他们还不是很清楚物体做圆周运动的向心力应该由谁来充当,,也不能理性的分析和解释各种实际的圆周运动的情况。教学中要充分利用学生已有知识经验,使学生积极主动地参与教学过程。 三.重点难点 会用牛顿第二定律分析生活中较简单的圆周运动问题 四.教学过程 活动1【导入】引入新课 向同学们提出以下问题:1.物体做圆周运动受到的合外力是否为0? 2.向心力它是恒力还是变力以及向心力的公式? 3.生活中有哪些运动是圆周运动?引出本节课《圆周运动实例分析》 活动2【讲授】讲授新课 本节课主要有两个知识点:(1)汽车转弯问题(2)汽车过拱形桥问题 (1)汽车转弯的问题 1.汽车在水平路面转弯: 汽车在水平面转弯时,向心力由哪个力来提供?为什么汽车转弯时,要减速慢行? 通过PPT呈现汽车转弯时的图片,引导学生找出汽车转弯时的向心力由静摩擦力提供,通过分析可知,汽车转弯时 ,车速越大,所需向心力越大,因此,转弯时,必须减速慢行。 例题讲解; 例1.在一段半径为R的圆弧形水平弯道上,已知地面对汽车轮胎的最大静摩擦力等于车重的μ倍 ,则汽车转弯时的 安全速度是多少?

圆周运动的实例分析

圆周运动的实例分析(三) 1.(圆锥摆模型)两个质量相同的小球,在同一水平面内做匀速圆周运动,悬点相同,如图9所示,A运动的半径比B的大,则() A.A所需的向心力比B的大 B.B所需的向心力比A的大 C.A的角速度比B的大 D.B的角速度比A的大 2.如图所示,固定的锥形漏斗内壁是光滑的,内壁上有两个质量相等的小球A和B,在各自不同的水平面做匀速圆周运动,以下物理量大小关系正确的是() A.速度v A>v B B.角速度ωA>ωB C.向心力F A>F B D.向心加速度a A>a B 3.如图所示,一个内壁光滑的圆锥筒的轴线垂直于水平面,圆锥筒固定不动,有两个质量相同的小球A和B紧贴着内壁分别在图中所示的水平面内做匀速圆周运动,则下列说法正确的是() A.球A的线速度必定大于球B的线速度 B.球A的角速度必定小于球B的角速度 C.球A的运动周期必定小于球B的运动周期 D.球A对筒壁的压力必定大于球B对筒壁的压力 4.如图所示,一根细线下端拴一个金属小球P,细线的上端固定在金属块Q上,Q放在带小孔的水平桌面上.小球在某一水平面内做匀速圆周运动(圆锥摆).现使小球在一个更高一些的水平面上做匀速圆周运动(图上未画出),两次金属块Q都保持在桌面上静止.则后一种情况与原来相比较,下面的判断中正确的是() A.小球P运动的周期变大 B.小球P运动的线速度变大 C.小球P运动的角速度变大 D.Q受到桌面的支持力变大 5.质量不计的轻质弹性杆P插在桌面上,杆端套有一个质量为m的小球,今使小球沿水平方向做半径为R的匀速圆周运动,角速度为ω,如图4所示,则杆的上端受到的作用力大小为() A.mω2R B.m2g2-m2ω4R2 C.m2g2+m2ω4R2 D.不能确定

匀速圆周运动的实例分析例题[1][1]

匀速圆周运动的实例分析例题[1][1]

匀速圆周运动的实例分析 典型例题1——关于汽车通过不同曲面的问题分析 一辆质量t的小轿车,驶过半径m的一段圆弧形桥面,求: (重力加速度) (1)若桥面为凹形,汽车以20m/s的速度通过桥面最低点时,对桥面压力是多大? (2)若桥面为凸形,汽车以10m/s的速度通过桥面最高点时,对桥面压力是多大? (3)汽车以多大速度通过凸形桥面顶点时,对桥面刚好没有压力? 解: (1)汽车通过凹形桥面最低点时,在水平方向受到牵引力F和阻力f.在竖直方向受到桥面向上的支持力和向下的重力,如图(甲)所示.圆弧形轨道的圆心在汽车上方,支持力与重力的合力为,这个合力就是汽车通过桥面最低点时的向心力,即.由向心力公式有: , 解得桥面的支持力大小为 根据牛顿第三定律,汽车对桥面最低点的压力大小是N.

(2)汽车通过凸形桥面最高点时,在水平方向受到牵引力F和阻力f,在竖直方向受到竖直向下的重力和桥面向上的支持力,如图(乙)所示.圆弧形轨道的圆心在汽车的下方,重力与支持力的合力为,这个合力就是汽车通过桥面顶点时的向心力,即,由向心力公式有 , 解得桥面的支持力大小为 根据牛顿第三定律,汽车在桥的顶点时对桥面压力的大小为N. (3)设汽车速度为时,通过凸形桥面顶点时对桥面压力为零.根据牛顿第三定律,这时桥面对汽车的支持力也为零,汽车在竖直方向只受到重力G作用,重力就是汽车驶过桥顶点时的向心力,即,由向心力公式有 , 解得: 汽车以30 m/s的速度通过桥面顶点时,对桥面刚好没有压力. 典型例题2——细绳牵引物体做圆周运动的系列问题 一根长的细绳,一端拴一质量的小球,使其在竖直平面内绕绳的另一端做圆周运动,求:

难点之三 圆周运动的实例分析

难点之三 圆周运动的实例分析 一、难点形成的原因 1、对向心力和向心加速度的定义把握不牢固,解题时不能灵活的应用。 2、圆周运动线速度与角速度的关系及速度的合成与分解的综合知识应用不熟练,只是了解大概,在解题过程中不能灵活应用; 3、圆周运动有一些要求思维长度较长的题目,受力分析不按照一定的步骤,漏掉重力或其它力,因为一点小失误,导致全盘皆错。 4、圆周运动的周期性把握不准。 5、缺少生活经验,缺少仔细观察事物的经历,很多实例知道大概却不能理解本质,更不能把物理知识与生活实例很好的联系起来。 二、难点突破 (1)匀速圆周运动与非匀速圆周运动 a.圆周运动是变速运动,因为物体的运动方向(即速度方向)在不断变化。圆周运动也不可能是匀变速运动,因为即使是匀速圆周运动,其加速度方向也是时刻变化的。 b.最常见的圆周运动有:①天体(包括人造天体)在万有引力作用下的运动;②核外电子在库仑力作用下绕原子核的运动;③带电粒子在垂直匀强磁场的平面里在磁场力作用下的运动;④物体在各种外力(重力、弹力、摩擦力、电场力、磁场力等)作用下的圆周运动。 c.匀速圆周运动只是速度方向改变,而速度大小不变。做匀速圆周运动的物体,它所受的所有力的合力提供向心力,其方向一定指向圆心。非匀速圆周运动的物体所受的合外力沿着半径指向圆心的分力,提供向心力,产生向心加速度;合外力沿切线方向的分力,产生切向加速度,其效果是改变速度的大小。 例1:如图3-1所示,两根轻绳同系一个质量m=0.1kg 的小球,两绳的另一端分别固定在轴上的A 、B 两处,上面绳AC 长L=2m ,当两绳都拉直时,与轴的夹角分别为30°和45°,求当小球随轴一起在水平面内做匀速圆周运动角速度为ω=4rad/s 时,上下两轻绳拉力各为多少? 【审题】两绳张紧时,小球受的力由0逐渐增大时,ω可能出现两个临界值。 【解析】如图3-1所示,当BC 刚好被拉直,但其拉力T2恰为零,设此时角速度为ω1,AC 绳上拉力设为T1,对小球有: mg T =?30cos 1 ① 30sin L ωm =30sin T AB 2 11② 代入数据得: s rad /4.21=ω, 要使BC 绳有拉力,应有ω>ω1,当AC 绳恰被拉直,但其拉力T1恰为零,设此时角速度为ω2,BC 绳拉力为T2,则有 mg T =?45cos 2 ③ T2sin45°=m 22ωLACsin30°④ 代入数据得:ω2=3.16rad/s 。要使AC 绳有拉力,必须ω<ω2,依题意ω=4rad/s>ω2,故 AC 绳已无拉力,AC 绳是松驰状态,BC 绳与杆的夹角θ>45°,对小球有: 图3-1

匀速圆周运动的实例分析

匀速圆周运动的实例分析 匀速圆周运动的实例分析一. 教学内容: 匀速圆周运动的实例分析 二. 具体知识: 知识点1 火车、汽车、飞机等的转弯 1. 火车转弯 (1)火车车轮的结构特点 火车的车轮有凸出的轮缘,且火车在轨道上运行时,有凸出轮缘的一边在两轨道内侧,这种结构特点,主要是有助于固定火车运动的轨迹(如图所示)。 (2)如果转弯处内外轨一样高,外侧车轮的轮缘挤压外轨,使外轨发生弹性形变,外轨对轮缘的弹力就是火车转弯的向心力,如图所示,但火车质量太大,单靠这种办法得到向心力,轮缘与外轨间的相互作用力太大,铁轨和车轮极易受损。 (3)如果在转弯处使外轨略高于内轨,火车转弯时铁轨对火车的支持力的方向不再是竖直的,而是斜向弯道的内侧,它与重力G的合力指向圆心,为火车转弯提供了一部分向心力,这就减轻了轮缘与外轨的挤压,在修筑铁路时,要根据

弯道的半径和规定的行驶速度,适当选择内外轨的高度差,使转弯时所需的向心力几乎完全由重力G和支持力的合力来提供(如图所示)。 设内外轨间的距离为L,内外轨的高度差为h,火车转弯的半径为R,火车转弯的规定速度为,由图得向心力为 , 由牛顿第二定律得,所以。 即火车转弯的规定速度。 (4)对火车转弯时速度与向心力的讨论 a. 当火车以规定速度转弯时,等于向心力,这时轮缘与内、外轨均无侧压力。 b. 当火车转弯速度时,小于向心力,外轨向内挤压轮缘,提供侧压力,与共同充当向心力。 c. 当火车转弯速度时,大于向心力,内轨向外挤压轮缘,产生的侧压力与共同充当向心力。 2. 汽车转弯 在水平公路上行驶的汽车,转弯时所需的向心力,是由车轮与路面间的静摩擦力提供的,即,因为静摩擦力最大不能超过最大静摩擦力,故要求车子转弯时,车速不能太大和转弯半径不能太小。 思考:在高速公路的转弯处,路面造得外高内低是什么原

匀速圆周运动的实例分析.doc

匀速圆周运动的实例分析 教学目标知识目标 1、进一步理解向心力的概念. 2、理解向心力公式,进一步明确匀速圆周运动的产生条件,掌握向心力公式的应用.能力目标 1、培养在实际问题中分析向心力来源的能力. 2、培养运用物理知识解决实际问题的能力.情感目标 1、激发学生学习兴趣,培养学生关心周围事物的习惯.教学建议教材分析教材首先明确提出向心力是按效果命名的力,任何一个力或几个力的合力只要它的作用效果是使物体产生向心加速度,它就是物体所受的向心力,接着详细介绍了火车转弯和汽车过拱桥两个常见的实际问题.后面又附有思考与讨论,开拓学生的思维.教法建议 1、培养学生分析向心力来源的能力,分析问题时,要首先引导学生对做周围运动的物体进行受力情况分析,并让学生清楚地认识到求出物体沿半径方向受到的合外力,就是提供给物体做圆周运动的向心力. 2、培养学生运用物体知识解决实际问题的能力.通过例题的分析与讨论(结合动画或课件),引导学生从中领悟掌握运用向心力公式的思路和方法.即:第一:根据物体受力情况分析向心力的来源,做匀速圆周运动的物体.第二:运用向心力公式计算做圆周运动所需的向心力.第三:由物体实际受到的力提供了它所需要的向心力,列出方程求解. 3、可多举一些实例让学生分析.向心力可由重力、弹力、摩擦力等单独提供,也可由它们的合力提

供. 4、在讲述汽车过拱桥的问题时,汽车做的是变速圆周运动,对此要根据牛顿第二定律的瞬时性向学生指出:在变速圆周运动中,物体在各位置受到的向心力分别产生了物体通过各位置的向心加速度,向心力公式仍是适用的.但要注意,对于物体做匀速圆周运动的情况,只有在物体通过最高点和最低点时,向心力才是合外力.同时,还可以向学生指出:此问题中出现的汽车对桥面的压力大于或小于车重的现象,是发生在圆周运动中的超重或失重现象.教学设计方案教学重点:分析向心力来源.教学难点:实际问题的处理方法.主要设计:一、讨论向心力的来源:例如:万有引力提供向心力(人造地球卫星);弹力提供向心力(绳系小球在光滑水平面上的匀速圆周运动);摩擦力力提供向心力(物价在转盘上随转盘一起转动);合力提供向心力(圆锥摆等).二、讨论火车转弯:(一)展示图片1:火车车轮有凸出的轮缘.(二)展示课件1:外轨作用在火车轮缘上的力F是使火车必须转弯的向心力.(三)展示课件2:外轨高于内轨时重力与支持力的合力是使火车转弯的向心力.(四)讨论:为什么转弯处的半径和火车运行速度有条件限制?三、讨论汽车过拱桥:(一)思考:汽车过拱桥时,对桥面的压力与重力谁大?(二)展示课件3:汽车过拱桥在最高点的受力情况(变变)(三)展示课件4:汽车过凹形桥时低点时的受力情况(变变)(四)总结在圆周运动中的超重、失重情况.探究活动 1、荡秋千时,你对秋千底座的压力大小恒定吗?请你想办法实际验证一下,并

教案竖直平面内的圆周运动实例分析

课题:竖直平面内的圆周运动实例分析 授课班级:高一14班授课时间:2016年4月12日 授课教师:罗华权 三维目标: 一、知识与技能 1、了解竖直平面内的圆周运动的特点; 2、会分析汽车过凸形桥最高点和凹形桥最低点的受力情况; 3、会分析轻杆、轻绳、管道内的小球做圆周运动在最高点、最低点的受力情况; 4、掌握轻杆、轻绳、管道内的小球做圆周运动的临界条件。 二、过程与方法 1、通过对圆周运动的实例分析,渗透理论联系实际的观点,提高学生的分析和解决问题的 能力。 2、通过对匀速圆周运动的规律也可以在变速圆周运动中使用,渗透特殊性和一般性之间的 辨证关系,提高学生的分析能力。 3、运用启发式问题探索教学方法,激发学生的求知欲和探索动机;锻炼学生观察、分析、 抽象、建模的解决实际问题的方法和能力。 三、情感态度与价值观 1、通过对几个实例的分析,使学生养成仔细观察、善于发现、勤于思考的良好习惯,明确 具体问题必须具体分析; 2、激发学生学习兴趣,培养学生关心周围事物的习惯; 3、养成良好的思维表述习惯和科学的价值观。 教学重点: 1、分析汽车过凸形桥最高点和凹形桥最低点的受力情况; 2、分析轻绳、圆环内侧轨道、轻杆的小球做圆周运动在最高点、最低点的受力情况。 教学难点: 轻绳、圆环内侧轨道、轻杆等模型中的小球在竖直平面内做圆周运动的临界条件及应用。 教学方法: 讲授、分析、推理、归纳 教学用具: 过山车模型、水流星、多媒体课件等 课时安排: 1课时 教学过程: 上节课我们对生活中常见的匀速圆周运动进行了实例分析。知道分析和研究匀速圆周运动的问题,关键是把向心力的来源弄清楚,然后再结合牛顿第二定律解决相关具体问题。这节课我们将进一步学习竖直平面内的变速圆周运动,生活中有哪些常见的竖直平面内的圆周运动呢? 一、汽车过凹凸桥 1. 汽车过凸形桥的最高点 公路上的拱形桥是常见的,汽车过桥时的运动也可看做圆周运动。

3圆周运动的实例分析

难点之三:圆周运动的实例分析 一、难点形成的原因 1、对向心力和向心加速度的定义把握不牢固,解题时不能灵活的应用。 2、圆周运动线速度与角速度的关系及速度的合成与分解的综合知识应用不熟练,只是了解大概,在解题过程中不能灵活应用; 3、圆周运动有一些要求思维长度较长的题目,受力分析不按照一定的步骤,漏掉重力或其它力,因为一点小失误,导致全盘皆错。 4、圆周运动的周期性把握不准。 5、缺少生活经验,缺少仔细观察事物的经历,很多实例知道大概却不能理解本质,更不能把物理知识与生活实例很好的联系起来。 二、难点突破 (1)匀速圆周运动与非匀速圆周运动 a.圆周运动是变速运动,因为物体的运动方向(即速度方向)在不断变化。圆周运动也不可能是匀变速运动,因为即使是匀速圆周运动,其加速度方向也是时刻变化的。 b.最常见的圆周运动有:①天体(包括人造天体)在万有引力作用下的运动;②核外电子在库仑力作用下绕原子核的运动;③带电粒子在垂直匀强磁场的平面里在磁场力作用下的运动;④物体在各种外力(重力、弹力、摩擦力、电场力、磁场力等)作用下的圆周运动。 c.匀速圆周运动只是速度方向改变,而速度大小不变。做匀速圆周运动的物体,它所受的所有力的合力提供向心力,其方向一定指向圆心。非匀速圆周运动的物体所受的合外力沿着半径指向圆心的分力,提供向心力,产生向心加速度;合外力沿切线方向的分力,产生切向加速度,其效果是改变速度的大小。 例1:如图3-1所示,两根轻绳同系一个质量m=0.1kg的小球,两绳的另一端分别固定在轴上的A、B两处,上面绳AC长L=2m,当两绳都拉直时,与轴的夹角分别为30°和45°,求当小球随轴一起在水平面内做匀速圆周运动角速度为ω=4rad/s时,上下两轻绳拉力各为多少? 【审题】两绳张紧时,小球受的力由0逐渐增大时,ω可能出现两个临界值。

圆周运动的实例分析典型例题解析

圆周运动的实例分析典型例题解析 【例1】用细绳拴着质量为m 的小球,使小球在竖直平面内作圆周运动,则下列说法中,正确的是[ ] A .小球过最高点时,绳子中张力可以为零 B .小球过最高点时的最小速度为零 C .小球刚好能过最高点时的速度是Rg D .小球过最高点时,绳子对小球的作用力可以与球所受的重力方向相 反 解析:像该题中的小球、沿竖直圆环内侧作圆周运动的物体等没有支承物的物体作圆周运动,通过最高点时有下列几种情况: (1)mg mv /R v 2当=,即=时,物体的重力恰好提供向心力,向心Rg 加速度恰好等于重力加速度,物体恰能过最高点继续沿圆周运动.这是能通过最高点的临界条件; (2)mg mv /R v 2当>,即<时,物体不能通过最高点而偏离圆周Rg 轨道,作抛体运动; (3)mg mv /R v mg 2当<,即>时,物体能通过最高点,这时有Rg +F =mv 2/R ,其中F 为绳子的拉力或环对物体的压力.而值得一提的是:细绳对由它拴住的、作匀速圆周运动的物体只可能产生拉力,而不可能产生支撑力,因而小球过最高点时,细绳对小球的作用力不会与重力方向相反. 所以,正确选项为A 、C . 点拨:这是一道竖直平面内的变速率圆周运动问题.当小球经越圆周最高点或最低点时,其重力和绳子拉力的合力提供向心力;当小球经越圆周的其它位置时,其重力和绳子拉力的沿半径方向的分力(法向分力)提供向心力. 【问题讨论】该题中,把拴小球的绳子换成细杆,则问题讨论的结果就大相径庭了.有支承物的小球在竖直平面内作圆周运动,过最高点时:

(1)v (2)v (3)v 当=时,支承物对小球既没有拉力,也没有支撑力; 当>时,支承物对小球有指向圆心的拉力作用; 当<时,支撑物对小球有背离圆心的支撑力作用; Rg Rg Rg (4)当v=0时,支承物对小球的支撑力等于小球的重力mg,这是有支承 物的物体在竖直平面内作圆周运动,能经越最高点的临界条件. 【例2】如图38-1所示的水平转盘可绕竖直轴OO′旋转,盘上的水平杆 上穿着两个质量相等的小球A和B.现将A和B分别置于距轴r和2r处,并用 不可伸长的轻绳相连.已知两球与杆之间的最大静摩擦力都是f m.试分析角速 度ω从零逐渐增大,两球对轴保持相对静止过程中,A、B两球的受力情况如何 变化? 解析:由于ω从零开始逐渐增大,当ω较小时,A和B均只靠自身静摩擦 力提供向心力. A球:mω2r=f A;B球:mω22r=f B. 随ω增大,静摩擦力不断增大,直至ω=ω1时将有f B=f m,即m ω=,ω=.即从ω开始ω继续增加,绳上张力将出现.1 2 m11 2r f T f mr m /2 A球:mω2r=f A+T;B球:mω22r=f m+T. 由B球可知:当角速度ω增至ω′时,绳上张力将增加△T,△T=m·2r(ω′2-ω2).对于A球应有m·r(ω′2-ω2)=△f A+△T=△f A+m·2r(ω′2-ω2). 可见△f A<0,即随ω的增大,A球所受摩擦力将不断减小,直至f A=0

圆周运动实例分析

圆周运动实例分析 【学习目标】 1.会在具体问题中分析向心力的来源,会处理火车转弯、汽车过桥等圆周运动问题。 2.会应用牛顿运动定律分析圆周运动问题 【课堂导学】 一、汽车过桥问题 我们先来分析汽车过拱桥最高点时对桥的压力.设汽车的质量为m,过最高点时的速度为v,桥面半径为r.汽车在拱桥最高点时的受力情况如图6-4所示,重力G和桥对它的支持力F1的合力就是汽车做圆周运 动的向心力,方向竖直向下(指向圆心)所以G-F1=m ,则F1=G-m . 汽车对桥的压力与桥对汽车的支持力是一对作用力和反作用力 故压力F1′=F1=G-m . 小结: 1.汽车在凸形桥的最高点时,谁提供向心力?请写出对应的表达式。 (设桥的半径是r,汽车的质量是m,车速为v,支持力为F N) ①支持力F N________重力G ②v越大,则压力_________,当v=________时,压力=0。 思考:汽车在凹形桥的最低点时,谁提供向心力?请写出对应的表达式。 设桥的半径是r,汽车的质量是m,车速为v,支持力为F N。 ①支持力F N________重力G ②v越大,则压力_________。(温馨小提示:画出简图,对汽车进行受力分析,找出向心力来源) 典型例题1——关于汽车通过不同曲面的问题分析 一辆质量t的小轿车,驶过半径m的一段圆弧形桥面,求: (重力加速度) (1)若桥面为凹形,汽车以20m/s的速度通过桥面最低点时,对桥面压力是多大? (2)若桥面为凸形,汽车以10m/s的速度通过桥面最高点时,对桥面压力是多大? (3)汽车以多大速度通过凸形桥面顶点时,对桥面刚好没有压力?

变式训练:一辆质量m=2.0t的小轿车,驶过半径R=90m的一段圆弧形桥面,求:(重力加速度g=10m/s2)(1)若桥面为凹形,汽车以20m/s的速度通过桥面最低点时,对桥面压力是多大? (2)若桥面为凸形,汽车以10m/s的速度通过桥面最高点时,对桥面压力是多大?(3)汽车以多大速度通过凸形桥面顶点时,对桥面刚好没有压力?2、当小汽车以10m/s的速度通过一座拱桥的最高点,拱桥半径50m,求此车里的一名质量为60kg的乘客对座椅的压力 二、圆锥摆。 画出圆锥摆球受力分析图. 画出轨迹圆,找圆心,标出半径。并指出向心力的来源 例题1.如图所示,长为L的细线,栓一质量为m的小球,一端固定于O点,让其在水平面内做匀速圆周运动,如右图所示,求摆线L与竖直方向的夹角为θ时, (1)线的拉力F; (2)小球运动的线速度大小; (3)小球运动的角速度大小及周期。 θ

教案竖直平面内的圆周运动及实例分析

竖直平面内的圆周运动及实例分析 说明:竖直平面内的圆周运动一般是变速圆周运动(带电粒子在匀强磁场中运动除外),运动的速度大小和方向在不断发生变化,运动过程复杂,合外力不仅要改变运动方向,还要改变速度大小,所以对此要根据牛顿第二定律的瞬时性解决问题:在变速圆周运动中,虽然物体在各位置受到的向心力分别产生了物体通过各位置的向心加速度,但向心力公式仍是适用的.但要注意,对于物体做匀速圆周运动的情况,只有在物体通过最高点和最低点时,向心力才是合外力.一般不研究任意位置的情况,只研究特殊的临界位置──最高点和最低点。同时,还可以向学生指出:此问题中出现的对支持面的压力大于或小于物重的现象,是发生在圆周运动中的超重或失重现象. 一、教学目标: 1.知识与技能: (1)理解匀速圆周运动是变速运动; (2)进一步理解向心力的概念;(3)掌握竖直平面内最高点和最低点的圆周运动。 2.过程与方法: 通过对竖直平面内特殊点的研究,培养学生观察能力、抽象概括和归纳推理能力。 3.情感态度价值观:渗透科学方法的教育。 二、重点难点: 教学重点:分析向心力来源. 教学难点 :实际问题的处理方法. 向心力概念的建立及计算公式的得出是教学重点,也是难点。通过生活实例及实验加强感知,突破难点。 三、授课类型:习题课 四、上课过程: (一)、情景引入: (二)、两类模型——轻绳类和轻杆类 (1)轻绳模型:一轻绳系一小球在竖直平面内做圆周运动.小球能到达最高点(刚好做 圆周运动)的条件是小球的重力恰好提供向心力,即mg =m r v 2 ,这时的速度是做圆周 运动的最小速度v min = . (绳只能提供拉力不能提供支持力). 类此模型:竖直平面内的内轨道,竖直(光滑)圆弧内侧的圆周运动,水流星的运动(水流星在竖直平面内作圆周运动过最高点的临界条件),过山车运动等,

圆周运动实例分析

圆周运动实例分析 1.物体做匀速圆周运动的条件是什么? 匀速圆周运动是匀速运动吗?是匀变速运动吗? 其合外力方向与速度方向始终垂直吗? 圆周运动呢? 一切圆周运动的向心力都指向圆心吗? 2.处理匀速圆周运动问题的一般思路? (1)对研究对象进行受力分析 (2)明确圆心、半径及什么力提供向心力 (3)列牛顿第二定律方程 一、汽车过桥 例1:质量为m 的汽车以速度v 通过拱形桥最高点时,若桥面的圆弧半径为R ,则此时汽 车对桥面的压力多大? 提示:合外力提供向心力。即有G-N=mv 2/R,失重 例2、求质量为m 的汽车以速度v 通过半径为R 的凹形桥最低点时对桥的压力多大? 提示:合外力提供向心力。即有N-G=mv 2/R 。超重 分析:他们各自将处在超重还是失重 例3:如图3,物体做水流星运动,它的速度应当满足什么条件??? 绳子的拉力提供向心力,即有:F 拉= mv 2/R 例4:质量为m 的小球,固定在长为L 轻杆上在竖直平面内转动,在最高点,试讨论:小 球的速度在什么范围内,杆对小球有支持力? 在什么范围内,杆对小球有向下的拉力? 速度为何值时,杆对小球无作用力? 提示:在最高点的速度必须大于0,其他临界条件为 合外力提供向心力 变式: 质量为m 的光滑小球,在半径为R 的圆管内滚动,请讨论:小球能做完整圆周运动,最高点 速度满足什么条件? 练习:如图所示,在倾角α=300 的光滑斜面上,有一根长L=0.8m 的细绳,其一 端固定在O 点,另一端系一质量m=0.2kg 的小球,沿斜面做圆周运动,试计算 通过最高点A 的最小速度。(g 取10m/s 2) r v m r m F 2 2 ==∑ω径径0F ⊥∑=水 N mg α A L O B

圆周运动实例分析的全面分析

“圆周运动实例分析”的 课标、教纲、考纲、教材、教材编写说明、自编教辅 一、课标要求 1.内容标准 (1)会用运动合成与分解的方法分析抛体运动。 例1 分别以物体在水平方向和竖直方向的位移为横坐标和纵坐标,描绘做抛体运动的物体的轨迹。 (2)会描述匀速圆周运动。知道向心加速度。 (3)能用牛顿第二定律分析匀速圆周运动的向心力。分析生活和生产中的离心现象。例2 估测自行车拐弯时受到的向心力。 (4)关注抛体运动和圆周运动的规律与日常生活的联系。 2.活动建议 (1)通过查找资料,对比实际弹道的形状与抛物线的差异,尝试做出解释。 (2)调查公路拐弯处的倾斜情况或铁路拐弯处两条铁轨的高度差异。 二、教学要求 1.对课标解读 “(二)抛体运动与圆周运动” (1)会用运动合成与分解的方法分析抛体运动。 (2)会描述匀速圆周运动。知道向心加速度。 (3)能用牛顿第二定律分析匀速圆周运动的向心力。分析生活和生产中的离心现象。 (4)关注抛体运动和圆周运动的规律与日常生活的联系。

三、新旧考纲对比 四、教材 略 五、教材编写说明 (一)教材特色 1.重视情景创设

(1)以图片创设情境(2)以问题创设情景(3)以活动创设情境(4)以导言创设情境2.突出科学探究 (1)实验探究(2)理论探究 3.注重联系实际 (1)教学内容:引入课题的情景、研究问题的载体、物理知识的应用。(2)习题选编:联系生活实际、联系生产实际、联系科研实际。(3)课外拓展:课外阅览、问题讨论、物理在线实验室。 4.渗透人文精神: (1)关注物理学的发展历史(2)关注物理学对经济、社会发展的贡献(3)关注国内、外科技发展现状与趋势(4)关注与物理学相关的热点问题。 5.方便自主学习: (1)教材呈现形式灵活:“实验探究”、“理论探究”、“观察思考”、“讨论交流”、“活动”。(2)课文旁注画龙点睛:名词解释、点睛之笔、经典介绍、总结性语言、对正文的补充说明、启发式的提问。(3)课后作业分层要求:常规的书面作业外,还有课外阅览、动手实验、资料搜索、社会实践等。(4)章末复习及时到位: (二)修订说明 1.降低了部分章节的教学要求 (1)将部分章节的内容由必修改为了选修:“斜抛运动”、“了解相对论”、“初识量子论”。(2)将正文中的部分内容移至了“发展空间”。 2.对部分教学内容作了适当调整 (1)调整了部分知识的呈现顺序:先讲“向心力”,后讲“向心加速度”、先讲“势能”,后讲“动能动能定理”、“能量守恒定律”移至“能源的开发与利用”内、先介绍“预言彗星回归”,后介绍“预言未知天体”。(2)调整了部分章节的教学内容:“运动的合成与分解”一节中的“活动”,由对小船渡河的讨论改为“运动的合成实验”。在讲圆周运动的向心力时,用J2130向心力演示仪进行研究。“圆周运动的实例分析”改为“汽车过拱形桥、旋转秋千、火车转弯、离心运动”。万有引力定律的应用”一节,将正文估测太阳平均密度的内容改成了估测地球的平均密度。 3.增删了部分文字、图片和习题 (1)增删文字,删去:“运动的合成与分解”“发展空间”讨论自行车气门芯的运动,“平抛运动”“发展空间”原有“用碎纸片估测出原子弹爆炸威力的科学家”,“圆周运动”对线速度方向的“实验探究”;增加:“机械能守恒定律”“学生实验:验证机械能守恒定律”。(2)增删图片,删去:人物卡通画 , 曲线运动速滑运动员图片 ,“运动的合成与分解”机械地震仪示意图;增加: “人造卫星宇宙飞船”“中国国家航天计划示意图”.(3)增删习题, 删去了难度较大的习题或重复的习题;增加了部分习题,主要是章节调整后为弥补部分练习题量不足而设置,有的则是为加强重点内容而设置。 六、自编教辅资料 第三节圆周运动的实例分析 第四节圆周运动与人类文明(选学)

圆周运动的案例分析

高中物理必修2第二单元第二节导学案 宝鸡石油中学 周燕 【课 题】 §2.3圆周运动的案例分析 【学习目标】 1.进一步理解向心力是使物体产生向心加速度的原因. 2.会在具体问题中分析向心力的来源,并能初步应用公式计算. 3.能理解运用匀速圆周运动的规律分析和处理生产和生活中的具体实例. 【学习重点】会在具体问题中分析向心力的来源,并结合牛顿运动定律求解有关问题. 【学习难点】 1.具体问题中向心力的来源. 2. 对变速圆周运动的理解和处理。知道向心力和向心加速度的公式也适用于变速圆周运动. 【知识点复习】 一、向心力:产生向心加速度,是物体作圆周运动的原因。 1、需要的向心力: 无论物体做什么样的圆周运动,都需要向心力。物体做不同的圆周运动,就可能需要不同的向心力,所需要的向心力其大小与半径r 、角速度ω、线速度v 、质量m 的关系为: 2 2v F m mr mv r ωω===需 2、提供的向心力: 物体在做圆周运动时,受力情况可能千差万别,但是我们把物体所受的所有外力沿半径方向和垂直半径方向进行正交分解,然后求出物体在半径方向的合力,就是外界给物体提供的向心力F 提 3、物体圆周运动的条件: 要保证物体沿着圆周运动,即做圆周运动,那么外界给物体提供的向心力F 提 必须等于物体做圆周运动所需要的向心力F 需 。即满足 F F =提需 。 ? 当F 提>F 需时 ,物体将离圆心越来越近。 ? 当F 提=F 需时 ,物体将以速度v 、半径r 作稳定的圆周运动。 ? 当F 提

匀速圆周运动的实例分析例题

匀速圆周运动的实例分析 典型例题1——关于汽车通过不同曲面的问题分析 一辆质量t的小轿车,驶过半径m的一段圆弧形桥面,求: (重力加速度) (1)若桥面为凹形,汽车以20m/s的速度通过桥面最低点时,对桥面压力是多大 (2)若桥面为凸形,汽车以10m/s的速度通过桥面最高点时,对桥面压力是多大 (3)汽车以多大速度通过凸形桥面顶点时,对桥面刚好没有压力 解: (1)汽车通过凹形桥面最低点时,在水平方向受到牵引力F和阻力f.在竖直方向受到桥面向上的支持力和向下的重力,如图(甲)所示.圆弧形轨道的圆心在汽车上方,支持力与重力的合力为,这个合力就是汽车通过桥面最低点时的向心力,即.由向心力公式有: , 解得桥面的支持力大小为

根据牛顿第三定律,汽车对桥面最低点的压力大小是N. (2)汽车通过凸形桥面最高点时,在水平方向受到牵引力F和阻力f,在竖直方向受到竖直向下的重力和桥面向上的支持力,如图(乙)所示.圆弧形轨道的圆心在汽车的下方,重力与支持力的合力为,这个合力就是汽车通过桥面顶点时的向心力,即,由向心力公式有 , 解得桥面的支持力大小为 根据牛顿第三定律,汽车在桥的顶点时对桥面压力的大小为N. (3)设汽车速度为时,通过凸形桥面顶点时对桥面压力为零.根据牛顿第三定律,这时桥面对汽车的支持力也为零,汽车在竖直方向只受到重力G作用,重力就是汽车驶过桥顶点时的向心力,即,由向心力公式有

, 解得: 汽车以30 m/s的速度通过桥面顶点时,对桥面刚好没有压力. 典型例题2——细绳牵引物体做圆周运动的系列问题 一根长的细绳,一端拴一质量的小球,使其在竖直平面内绕绳的另一端做圆周运动,求: (1)小球通过最高点时的最小速度 (2)若小球以速度通过周围最高点时,绳对小球的拉力多大若此时绳突然断了,小球将如何运动. 【分析与解答】 (1)小球通过圆周最高点时,受到的重力必须全部作为向心力,否则重力G中的多余部分将把小球拉进圆内,而不能实现沿竖直圆周运动.所以小球通过圆周最高点的条件应为,当时,即小球受到的重力刚好全部作为通过圆周最高点的向心力,绳对小球恰好不施拉力,如图所示,此时小球的速度就是通过圆周最高点的最小速度,由向心力公式有:

物理--匀速圆周运动的实例分析匀速圆周运动的实例分析

物理--匀速圆周运动的实例分析匀速圆周运动 的实例分析 教学目标 知识目标 1、进一步理解向心力的概念. 2、理解向心力公式,进一步明确匀速圆周运动的产生条,掌握向心力公式的应用. 能力目标 1、培养在实际问题中分析向心力来源的能力. 2、培养运用物理知识解决实际问题的能力. 情感目标 1、激发学生学习兴趣,培养学生关心周围事物的习惯. 教学建议 教材分析 教材首先明确提出向心力是按效果命名的力,任何一个力或几个力的合力只要它的作用效果是使物体产生向心加速度,它就是物体所受的向心力,接着详细介绍了火车转弯和汽车过拱桥两个常见的实际问题.后面又附有思考与讨论,开拓学生的思维.教法建议

1、培养学生分析向心力来源的能力,分析问题时,要首先引导学生对做周围运动的物体进行受力情况分析,并让学生清楚地认识到求出物体沿半径方向受到的合外力,就是提供给物体做圆周运动的向心力. 2、培养学生运用物体知识解决实际问题的能力.通过例题的分析与讨论(结合动画或课),引导学生从中领悟掌握运用向心力公式的思路和方法.即:第一:根据物体受力情况分析向心力的来源,做匀速圆周运动的物体. 第二:运用向心力公式计算做圆周运动所需的向心力.第三:由物体实际受到的力提供了它所需要的向心力,列出方程求解.3、可多举一些实例让学生分析.向心力可由重力、弹力、摩擦力等单独提供,也可由它们的合力提供. 4、在讲述汽车过拱桥的问题时,汽车做的是变速圆周运动,对此要根据牛顿第二定律的瞬时性向学生指出:在变速圆周运动中,物体在各位置受到的向心力分别产生了物体通过各位置的向心加速度,向心力公式仍是适用的.但要注意,对于物体做匀速圆周运动的情况,只有在物体通过最高点和最低点时,向心力才是合外力.同时,还可以向学生指出:此问题中出现的汽车对桥面的压力大于或小于车重的现象,是发生在圆周运动中的超重或失重现象. 教学设计方案 匀速圆周运动的实例分析

相关文档
相关文档 最新文档