文档库 最新最全的文档下载
当前位置:文档库 › 数学史上最无解的局

数学史上最无解的局

数学史上最无解的局
数学史上最无解的局

数学史上最无解的局

分马的故事:从前,有一个老汉,临死前对三个儿子:"我不行了。咱们家只有十七匹马,我死后,老大分二分之一,老二分三分之一,老三分九分之一,但都必须分得活马。"老汉死了。兄弟三人安葬了父亲,便来到马圈,按老人的遗嘱分马,怎么分也分不开,兄弟三个一筹莫展,谁也没有办法。

正在这时,一个邻居骑马路过这里,看到他们愁眉苦脸的样子,便上前问道:"兄弟仨这般发愁,为了何事?"三兄弟把父亲的临终嘱咐和分马的难处告诉了他。这个邻居略一沉思,就想出了一个分马的好办法。

邻居的办法是将自己的一匹马借与他们,然后够成了18匹马,结果是老大9匹,老二6匹,老三分了2匹,还剩余1匹又还给了邻居。

其实这道题是没有答案的,上面的答案是错的,给我们造了一个假象。

其一,根据题目的要求–要分的是活马,17匹马按照所给的1/2,1/3,1/6,的比例是无法分割的,结果不可能得到整的马匹数。

其二,我们假设可以得到小数点的马匹数,那老大的马数是8.5,老二5.666666,老三是1.888888,那应该还余17/18匹马没有归属,如果按照邻居的算法兄弟三人的马匹数都大了。

原因是邻居一匹马的介入,使17/18匹马又一次被划分给了兄弟三人,这显然是不符合遗嘱的,尽管邻居的分法是整马数(PS:因为按照老人的遗嘱理解,单位"1"是17匹马,而不是18匹)。

如此多的自相矛盾,所以这道题该是无解的,可是这个答案却如此堂而皇之地流行了数千年。

历史上三大数学危机之三

第三次数学危机 一、起因 魏尔斯特拉斯用排除无穷小量的办法来解决贝克莱悖论,而在本世纪60年代,鲁滨逊又把无穷小量请了回来,引进了超实数的概念,从而建立了非标准分析,同样也能精确地描述微积分,进而也解决了贝克莱悖论。但必须注意到,贝克莱悖论只是在相对意义下得到了解决,因为实数理论的无矛盾性归结为集合论的无矛盾性,而集合论的无矛盾性至今仍未彻底解决。 二、经过 经过第一、二次数学危机,人们把数学基础理论的无矛盾性,归结为集合论的无矛盾性,集合论已成为整个现代数学的逻辑基础,数学这座富丽堂皇的大厦就算竣工了。看来集合论似乎是不会有矛盾的,数学的严格性的目标快要达到了,数学家们几乎都为这一成就自鸣得意。法国著名数学家庞加莱(1854—1912)于1900年在巴黎召开的国际数学家会议上夸耀道:“现在可以说,(数学)绝对的严密性是已经达到了”。然而,事隔不到两年,英国著名数理逻辑学家和哲学家罗素(1872—1970)即宣布了一条惊人的消息:集合论是自相矛盾的,并不存在什么绝对的严密性!史称“罗素悖论”。1918年,罗素把这个悖论通俗化,成为理发师悖论。罗素悖论的发现,无异于晴天劈雳,把人们从美梦中惊醒。

罗素悖论以及集合论中其它一些悖论,深入到集合论的理论基础之中,从而从根本上危及了整个数学体系的确定性和严密性。于是在数学和逻辑学界引起了一场轩然大波,形成了数学史上的第三次危机。 产生集合论悖论的原因在于集合的辨证性与数学方法的形式特性或者形而上学的思维方法的矛盾。如产生罗素悖论的原因,就在于概括原则造集的任意性与生成集合的客观规则的非任意性之间的矛盾。 三、影响 第三次数学危机的产物——数理逻辑的发展与一批现代数学的产生。 为了解决第三次数学危机,数学家们作了不同的努力。由于他们解决问题的出发点不同,所遵循的途径不同,所以在本世纪初就形成了不同的数学哲学流派,这就是以罗素为首的逻辑主义学派、以布劳威尔(1881—1966)为首的直觉主义学派和以希尔伯特为首的形式主义学派。这三大学派的形成与发展,把数学基础理论研究推向了一个新的阶段。三大学派的数学成果首先表现在数理逻辑学科的形成和它的现代分支——证明论等——的形成上。 为了排除集合论悖论,罗素提出了类型论,策梅罗提出了第一个集合论公理系统,后经弗伦克尔加以修改和补充,得到常用的策梅罗——弗伦克尔集合论公理体系,以后又经

历史上最伟大的数学家排行榜

数学是课堂上讲授的基本科目之一,数学是理解我们宇宙的一个重要因素。正是由于数学使人类能够登上月球,探索DNA的秘密,产生了电力,发明了计算机,所以没有数学我们就什么都不是。数量,质量,时间是生活的基本要素,我们的一天从数学开始,以时间的形式结束。 历史上有一些著名的数学家,他们的广泛的工作使我们能够更好地了解世界,提高我们今天的生活。他们的非凡作品总是被欣赏,他们的发现和思想帮助我们在生活中拥有卫星、手机和汽车。以下是10位最伟大的数学家。这个名单是根据他们对数学的热爱,他们的贡献和永恒的影响。 10、毕达哥拉斯的萨摩斯 萨摩斯的毕达哥拉斯是一位爱奥尼亚的希腊数学家,哲学家,毕达哥拉斯主义的创始人。他经常被认为是伟大的神秘主义者、数学家和科学家,但他以毕达哥拉斯定理而闻名于世。根据亚里士多德的研究,勾股定理是最早被广泛研究的超前数学之一。这个定理的重要性直到现在才被否认,因为它是大多数其他数学定理的基础,他的伟大理论导致了几何学的发展,因此他被誉为现代数学之父和伟大的数学家。

9、斐波那契 1170 - 1250 斐波那契也被称为斐波纳契是一位意大利数学家,他被一些人认为是中世纪最有才华的数学家。他以引进斐波那契数列和欧洲阿拉伯数字系统而闻名。还有许多其他的数学概念是以斐波那契命名的。他的作品在这一领域被采用,并被认为是现代数学领域发展的主要贡献。 8、威廉?莱布尼兹1646 - 1716 威廉·莱布尼茨是德国哲学家、数学家,在哲学史和数学史上占有独特的地位。他的职业生涯最初是作为律师,后来由于他的兴趣,他对哲学和科学产生了浓厚的兴趣。在数学上,他的

兴趣领域是神学,但他后来发明了微积分。他是最多产的机械计算器发明家之一,也是第一 个在1685年描述了一个风车计算器的人。 7、艾萨克牛顿1642 - 1727 艾萨克·牛顿(Isaac Newton)是英国数学家和物理学家,被广泛认为是最鼓舞人心的科学家之一,在科学革命中扮演着榜样的角色。牛顿还对光学做出了重大贡献,并制定了万有引力定律。 他和戈特弗里德·莱布尼茨一道发明了微积分。他的工作有助于推进数学的每一个分支。对于 任何指数都有效的广义二项式定理,他也很欣赏。因此,他是有史以来最伟大的数学家之一。

数学史上的三大危机

数学史上的三大危机 无理数危机、无穷小是零危机和悖论危机 无理数的发现-第一次数学危机 大约公元前5世纪,不可通约量的发现导致了毕达哥拉斯的悖论。当时的毕达哥拉斯学派重视自然及社会中不变因素的研究,把几何、算术、天文、音乐称"四艺",在其中追求宇宙的和谐规律性。他们认为:宇宙间一切事物都可总结为整数或整数之比,毕达哥拉斯学派的一项重大贡献是证明了勾股定理,但由此也发现了一些直角三角形的斜边不能表示成整数或整数之比(不可通约)的情形,如直角边长均为1的直角三角形就是如此。这个悖论直接触犯了毕氏学派的根本信条,导致了当时理解上的"危机",从而产生了第一次数学危机。 到了公元前370年,这个矛盾被毕氏学派的欧多克斯通过给比例下新定义的方法解决了。他的处理不可通约量的方法,出现在欧几里得《原本》第5卷中。欧多克斯和狄德金于1872年给出的无理数的解释与现代解释基本一致。今天中学几何课本中对相似三角形的处理,仍然反映出由不可通约量而带来的某些困难和微妙之处。第一次数学危机对古希腊的数学观点有极大的冲击。这表明,几何学的某些真理与算术无关,几何量不能完全由整数及其比来表示,反之却能够由几何量来表示出来,整数的权威地位开始动摇,而几何学的身份升高了。危机也表明,直觉和经验不一定靠得住,推理证明才是可靠的,从此希腊人开始重视演译推理,并由此建立了几何公理体系,这不能不说是数学思想上的一次巨大革命! 无穷小是零吗?-第二次数学危机 18世纪,微分法和积分法在生产和实践上都有了广泛而成功的实验过,绝大部分数学家对这个理论的可靠性是毫不怀疑的。 1734年,英国哲学家、大主教贝克莱发表《分析学家或者向一个不信正教数学家的进言》,茅头指向微积分的基础--无穷小的问题,提出了所谓贝克莱悖论。他指出:"牛顿在求xn的导数时,采取了先给x以增量0,应用二项式(x+0)n,从中减去xn以求得增量,并除以0以求出xn的增量与x的增量之比,然后又让0消逝,这样得出增量的最终比。这里牛顿做了违反矛盾律的手续──先设x有增量,又令增量为零,也即假设x没有增量。"他认为无穷小dx既等于零又不等于零,召之即来,挥之即去,这是荒谬,"dx为逝去量的灵魂"。无穷小量究竟是不是零?无穷小及其分析是否合理?由此而引起了数学界甚至哲学界长达一个半世纪的争论。导致了数学史上的第二次数学危机。 18世纪的数学思想的确是不严密的,直观的强调形式的计算而不管基础的可靠。其中特别是:没有清楚的无穷小概念,从而导数、微分、积分等概念也不清楚,无穷大概念不清楚,以及发散级数求和的任意性,符号的不严格使用,不考虑连续性就实行微分,不考虑导数及积分的存有性以及函数可否展成幂级数等等。 直到19世纪20年代,一些数学家才比较注重于微积分的严格基础。从波尔查诺、阿贝尔、柯西、狄里赫利等人的工作开始,到韦尔斯特拉斯、戴德金和康托的工作结束,中间经历了

数学史上的著名猜想之被否定的数学猜想

数学史上的著名猜想之被否定的数学猜想 过伯祥 数学史上,长时期未能解决的数学猜想特别多!并且很多都是世界级的难题,其中数论方面的问题又占多数.它们表面上是那么的浅显,好像不难解决似的,其实,若无深厚的数学功底,即使想接近它也十分困难。本章特作较多的介绍,使数学爱好者有一个初步了解.如果你有志要攻克这些猜想,就必须作好长期艰苦跋涉的思想准备. 1.被否定的数学猜想 (1)试证第五公设的漫长历程 几何是从制造器皿、测量容器、丈量土地等实际问题中产生和发展起来的. 几何学的发展历程中,有两个重大的历史性转折.其一是,大约从公元前7世纪到公元前3世纪,希腊数学从素材到框架,已经为几何学的理论大厦的建造准备了足够的条件.欧几里得在前人毕达哥拉斯、希波克拉底和欧多克斯等人的工作基础上,一举完成了统治几何学近2000年的极其伟大的经典著作《几何原本》.它使几何学发展成为一门独立的理论学科,是几何学史上的一个里程碑. 其二,也正是由于《几何原本》的问世,才带来了一个使无数人困惑和兴奋的著名问题--欧几里得第五公设问题. 在《几何原本》的第一卷中,规定了五条公设和五条公理.著名的欧几里得第五公设:“若两条直线被第三条直线所截,如有两个同侧内角之和小于两直角,则将这两直线向该侧适当延长后必定相交.”就是这五条公设中的最后一条.由于它在《几何原本》中引用得很少(直到证明关键性的第29个定理时才用到它);而且,它的辞句冗长,远不如前四条公设那样简单明了.于是给后人的印象是:似乎欧几里得本人也想尽量避免应用第五公设. 于是,一代又一代的数学家猜测:大概不用花费很多力气就能证明欧几里得第五公设.就这样,数学家们开始了试证第五公设的历程. 这是个始料未及的漫长历程!真正是前赴后继,几乎每个时代的大数学家都做过这一件工作. 然而,满以为非常简单,只不过是举手之劳的一件事,谁料历时两千年仍未解决. 第五公设问题几乎成了“几何原理中的家丑”(达朗贝尔).

高考数学:世界著名数学难题

455 63 世界著名数学难题 20世纪是数学大发展的一个世纪。数学的许多重大难题得到完满解决,如费马大定理的证明,有限单群分类工作的完成 等, 从而使数学的基本理论得到空前发展。回首20世纪数学 的发展, 数学家们深切感谢20世纪最伟大的数学大师大卫·希 尔伯特。希尔伯特在1900年8月8日于巴黎召开的第二届世 界数学家大会上的著名演讲中提出了23个数学难题。希尔伯特问题在过去百年中激发数学家的智慧,指引数学前进的方 向。 知识荐语: 数学是研究数量、结构、变化以及空间模型等概念的一门 基础学科,简单地说,是研究数和形的科学。在数学发展的历 史上,数学们不但证明了诸多经典的定理,还把众多谜题留给 后人。这期知识,就让我们一同走进那些著名的数学难题。 1. 四色猜想 世界近代三大数学难题之一。四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。”这个结论能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试。兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展。 ? 四色猜想到底怎么回事? ? 什么是四色猜想 ? 证明四色猜想的计算机是什么名字 ? 哪里有关于四色猜想的资料 ? 请问世界上那个四色猜想的内容是什么? ? 2. 哥德巴赫猜想 哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士。1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和。如6=3+3,12=5+7等等。这就是着名的哥德巴赫猜想。欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明。叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意。 ? 哥德巴赫猜想为什么被转化为证明1+1? ? 哥德巴赫猜想的内容 ? 哥德巴赫猜想难在哪里? ? 哥德巴赫猜想有什么新进展 ? 哥德巴赫猜想与1+1是什么关系?

(整理)数学史上的三次危机.

数学史上的三次危机 张清利 第一次数学危机 在古代的数学家看来与有理数对应的点充满了数轴,现在尚未深入了解数轴性质的人也会这样认为。因此,当发现在数轴上存在不与任何有理数对应的一些点时,在人们的心理上引起了极大震惊,这个发现是早期希腊人的重大成就之一。它是在公元前5世纪或6世纪的某一时期由毕达哥拉斯学派的成员首先获得的。这是数学史上的一个里程碑。毕达哥拉斯学派发现单位正方形的边与对角线不可公度,即对角线的长不能表为q p /的形式,也就是说不存在作为公共度量单位的线段。后来,又发现数轴上还存在许多点也不对应于任何有理数。因此,必须发明一些新的数,使之与这样的点对应,因为这些数不能是有理数,所以把它们称为无理数。 例如, ,22,8,6,2等都是无理数。无理数的发现推翻了早期希腊人坚持的另一信念:给定任何两个线段,必定能找到第三线段,也许很短,使得给定的线段都是这个线段的整数倍。事实上,即使现代人也会这样认为,如果他还不知道情况并非如此的话。 第一次数学危机表明,当时希腊的数学已经发展到这样的阶段: 1. 数学已由经验科学变为演绎科学; 2. 把证明引入了数学; 3. 演绎的思考首先出现在几何中,而不是在代数中,使几何具有 更加重要的地位。这种状态一直保持到笛卡儿解析几何的诞生。 中国、埃及、巴比伦、印度等国的数学没有经历这样的危机,因而一直停留在实验科学。即算术阶段。希腊则走上了完全不同的道路,形成了欧几里得的《几何原本》与亚里士多得的逻辑体系, 而成为现代科学的始祖。 在当时的所有民族中为什么只有希腊人认为几何事实必须通过合乎逻辑的论证而不能通过实验来建立?这个原因被称为希腊的奥秘。 总之,第一次数学危机是人类文明史上的重大事件。 无理数与不可公度量的发现在毕达哥拉斯学派内部引起了极大的震动。首先,这是对毕达哥拉斯哲学思想的核心,即“万物皆依赖于整数”的致命一击;既然像2这样的无理数不能写成两个整数之比,那么,它究竟怎样依赖于整数呢?其次,这与通常的直觉相矛盾,因为人们在直觉上总认为任何两个线段都是可以公度的。而毕达哥拉斯学派的比例和相似形的全部理论都是建立在这一假设之上的。突然之间基础坍塌了,已经建立的几何学的大部分内容必须抛弃,因为它们的证明失效了。数学基础的严重危机爆发了。这个“逻辑上的丑陋”是如此可怕,以致毕达哥拉斯学派对此严守秘密。据说,米太旁登的帕苏斯把这个秘密泄漏了出去,结果他被抛进了大海。还有一种说法是,将他逐出学派,并为他立了一个墓,说他

世界数学史上的十个著名不等式

数学史上的十个著名不等式 在数学领域里,不等式知识占有广阔的天地,而一个个的重要不等式又把这片天地装点得更加丰富多彩.下面择要介绍一些著名的不等式. 一、平均不等式(均值不等式) 设,,…,是个实数,叫做这个实数的算术平均数.当这个实数非负时,叫做这个非负数的几何平均数. 当这个实数均为正数时,叫做这个正数的调和平均数.设,,…,为个正数时,对如下的平均不等式:,当且仅当时等号成立. 平均不等式是一个重要的不等式,它的应用非常广泛,如求某些函数的最大值和最小值即是其应用之一. 设,,…,是个正的变数,则 (1)当积是定值时,和有最小值,且 ; (2)当和是定值时,积有最大值,且

两者都是当且仅当个变数彼此相等时,即时,才能取得最大值或最小值. 在中,当时,分别有, 平均不等式经常用到的几个特例是(下面出现的时等号成立; (3),当且仅当时等号成立; (4),当且仅当时等号成立. 二、柯西不等式(柯西—许瓦兹不等式或柯西—布尼雅可夫斯基不等式) 对任意两组实数,,…,;,,…,,有 ,其中等号当且仅当 时成立. 柯西不等式经常用到的几个特例(下面出现的,…,;,…,都表示实数)是: (1),,则

(2) (3) 柯西不等式是又一个重要不等式,有许多应用和推广,与柯西不等式有关的竞赛题也频频出现,这充分显示了它的独特地位. 三、闵可夫斯基不等式 设,,…,;,,…,是两组正数,,则 () () 当且仅当时等号成立. 闵可夫斯基不等式是用某种长度度量下的三角形不等式,当时得平面上的三角形不等式: 右图给出了对上式的一个直观理解. 若记,,则上式为

四、贝努利不等式 (1)设,且同号,则 (2)设,则(ⅰ)当时,有;(ⅱ)当或 时,有,上两式当且仅当时等号成立. 不等式(1)的一个重要特例是().五、赫尔德不等式 已知()是个正实数,,则 上式中若令,,,则此赫尔德不等式即为柯西不等式.六、契比雪夫不等式 (1)若,则 ; (2)若,则

数学史上著名猜想

数学史上的三个著名猜想 湖北舒云水 在问题探索中,为了寻求一般规律,往往先考察一些特例,通过对这些特例的不完全归纳形成猜想,然后再试图去证明或否定这种猜想,这是发现数学规律的一种重要手段﹒我们要学会归纳猜想,去发现一些新的数学结论﹒下面介绍数学史上三个有代表性的著名猜想. 1.费马素数猜想——一个错误的猜想 一种有趣且有很长历史的数叫费马素数,这些数是由法国数学家费马引进的. 费马在研究数列F n =2n2+1(n=0,1,2,…)前五项: F 0=3,F 1 =5,F 2 =17,F 3 =257,F 4 =65537. 发现它们都是素数,他没有做进一步的计算,就猜想:形如F n =2n2+1(n=0,1,2,…) 的整数都是素数,这就是费马素数猜想﹒瑞士数学家欧拉再往前走了一步,这个猜想就推 翻了,他证明了F 5 不是素数: F 5 =4294967297=641×6700417. 否定一个猜想,只需举一个反例即可. 费马是一个著名的数学家,但他的职业是一个法官,数学只是他的业余爱好,凭兴趣研究数学,取得了丰硕的成果. 2.费马大定理——一个已经被证明的著名猜想 我们知道方程x2+y2=z2有无数多个正整数解,如: 32+42=52,52+122=132,…… 费马作了进一步的探索:x3+y3=z3,x4+y4=z4,…有没有正整数解呢﹖他没能找出满足条件的正整数解,于是作出了一个重要猜想: 方程x n+y n=z n(n>2,n∈N)没有正整数解﹒ 自费马之后许多数学家花费巨大的劳动去解决这一问题,经过350多年的努力,到1995年这个问题终于由英国数学家维尔斯解决﹒维尔斯在继承前人成果的基础上,整整花了七年时间刻苦攻关,证明费马的猜想是成立的,一个猜想被证明是成立后,就成为一个定理,这就是著名的费马大定理﹒维尔斯因证明费马大定理,1996年荣获国际数学大奖——沃尔夫奖﹒ 3.哥德巴赫猜想——一个未被否定或证明的猜想 17世纪,德国数学家哥德巴赫发现每一个大偶数都可以写成两个素数的和﹒例如:6=3+3,8=3+5,10=3+7=5+5,12=5+7,14=3+11=7+7,…… 他对许多偶数进行了检验,都说明这是确定的﹒但是,这需要给予证明,他算来算去,没有办法证出来﹒于是,他写信向著名的大数学家欧拉求教,欧拉到死也没有证明它﹒因为哥德巴赫的发现尚未经过证明,所以只能称之为猜想,200多年来,世界上成千上万的数学

世界四大数学家的故事

数学家的故事 xx篇 1.八岁的xx发现了数学定理 德国高斯(1777~1855)是当代最杰出的天文学家、数学家,在物理的电磁学方面也有一些贡献,现在电磁学的一个单位就是用他的名字命名。数学家们称呼他为“数学王子”。 高斯出生在一个贫穷的家庭,是一个农民的儿子,幼年时,他在数学方面就显示出了非凡的才华。3岁能纠正父亲计算中的错误。 他八岁时进入乡村小学读书。教数学的老师是一个从城里来的人,觉得在一个穷乡僻壤教几个小猢狲读书,真是大材小用。而他又有些偏见: 穷人的孩子天生都是笨蛋,教这些蠢笨的孩子念书不必认真,如果有机会还应该处罚他们,使自己在这枯燥的生活里添一些乐趣。 这一天正是数学教师情绪低落的一天。同学们看到老师那抑郁的脸孔,心里畏缩起来,知道老师又会在今天捉这些学生处罚了。“你们今天替我算从1加2加3一直到100的和。谁算不出来就罚他不能回家吃午饭。”老师讲了这句话后就一言不发地拿起一本小说坐在椅子上看去了。 教室里的小朋友们拿起石板开始计算: “1加2等于3,3加3等于6,6加4等于10……”一些小朋友加到一个数后就擦掉石板上的结果,再加下去,数越来越大,很不好算。有些孩子的小脸孔涨红了,有些手心、额上渗出了汗来…… 还不到半个小时,小高斯拿起了他的石板走上前去,“老师,答案是不是这样?” 老师头也不抬,挥着那肥厚的手,说: “去,回去再算!错了。”他想不可能这么快就会有答案了。

可是高斯却站着不动,把石板伸向老师面前: “老师!我想这个答案是对的。”数学老师本来想怒吼起来,可是一看石板上整整齐齐写了这样的数:50,他惊奇起来,因为他自己曾经算过,得到的数也是50,这个8岁的小鬼怎么这样快就得到了这个数值呢?高斯解释他发现的一个方法,这个方法就是古时希腊人和中国人用来计算级数1+2+3+…+n的方法。高斯的发现使老师觉得羞愧,觉得自己以前目空一切和轻视穷人家的孩子的观点是不对的。他以后也认真教起书来,并且还常从城里买些数学书自己进修并借给高斯看。在他的鼓励下,高斯以后便在数学上作了一些重要的研究了。 2.小xxxx羊圈 欧拉,瑞士人,是世界数学史上与高斯、阿基米德、牛顿齐名的四大著名数学家之一,被誉为“数学界的莎士比亚”,在数论、几何学、天文数学、微积分等好几个数学的分支领域中都取得了出色的成就。不过,这个大数学家在孩提时代却一点也不讨老师的喜欢,他是一个被学校除了名的小学生。 事情是因为星星而引起的。当时,小欧拉在一个教会学校里读书。有一次,他向老师提问,天上有多少颗星星。老师是个神学的信徒,他不知道天上究竟有多少颗星,圣经上也没有回答过。其实,天上的星星数不清,是无限的。我们的肉眼可见的星星也有几千颗。这个老师不懂装懂,回答欧拉说: “天上有多少颗星星,这无关紧要,只要知道天上的星星是上帝镶嵌上去的就够了。” xx感到很奇怪: “天那么大,那么高,地上没有扶梯,上帝是怎么把星星一颗镶嵌到天幕上的呢?上帝亲自把它们一颗地放在天幕,他为什么忘记了星星的数目呢?上帝会不会太粗心了呢?” 他向老师提出了心中的疑问,老师又一次被问住了。老师的心中顿时升起一股怒气,这不仅是因为一个才上学的孩子向老师问出了这样的问题,使老师下不了台,更主要的是,老师把上帝看得高于一切。小欧拉居然责怪上帝为什

简述数学史上的三大危机

简述数学史上的三大危机 世界曾经发生过金融危机,比如美国的金融危机席卷全球,造成了史无前例的影响。实际上,在数学界也发生过翻天覆地的变革,那就是数学史上的三次数学危机。 在古希腊,哲学家都是格外重视数学。像无论是最早的唯物主义哲学家泰勒斯,还是最早的唯心主义哲学家毕达哥拉斯,都特别推崇数学。在那些伟大的数学家中,在数学上成就最大的,当推毕达哥拉斯。 毕达哥拉斯建立了一个带有神秘色彩的团体,被称为毕达哥拉斯学派。这个学派传授知识,研究数学,还很重视音乐。“数”与“和谐”是他们的主要哲学思想。他们认为数是万物的本源,数产生万物,数的规律统治万物,也就是“万物皆数”的观点。“万物皆数”就是万物皆可用自然数或分数表示。然而,这一观点在后来确被毕达哥拉斯自己给推翻了。这还得从一个有趣的故事说起。有一次毕达哥拉斯去朋友家做客,他发现朋友家的地板上的方形图案很有意思,凭借着他数学家头脑的直觉,得出了我们今天所学的勾股定理以及证明。然而根据勾股定理,边长为1的正方形,其对角线的长度应当是根号2,毕达哥拉斯发现根号2既不是自然数,也不是分数。这个事实的发现,是毕达哥拉斯学派的一大成就,它标志着人类思维有了更高的抽象能力。 但这一发现引起了毕达哥拉斯学派的惶恐不安。因为他们心目中的数只有自然数与自然数之比---分数。如今发现边长为1的正方形的

对角线这个明明白白地摆在那里的东西竟不能用“数”表示。这难道不是自己否定自己信仰的真理吗?于是毕达哥拉斯学派千方百计封锁消息,但是纸包不住火终于还是传开了。当时研究数学的希腊学者们便对数的重要性有了怀疑。哲学家们认为世界上的量都可以用数表示,任何两个分数,无论多么近,他们之间还有无穷对个分数,这么多的数居然还不能表示出线段上某些点的长度,数的万能的力量因为根号2的出现被否定了,这就是所谓的第一次数学危机。 第二次数学危机 我们生活着的这个世界,在一刻不停地变化着。古希腊哲学家赫拉克利特说:人不能两次踏入同一条河流,因为河水在流动,当人第二次踏进同一条河流时,已经不是第一次踏进时的河水了。赫拉克利特用这个生动的比喻说明万物皆在不断变化之中,但严格说起来他的话在概念上存在疑问。当时他的对立者巴门尼德宣扬相反的观点,他主张存在是静止的,不变的,永恒的。他的得意门生芝诺还提出“飞矢不动”的诡论。然而数学是讲究概念严密的,他们的说法都在概念上存在漏洞。像什么叫“动”与“不动”,古代哲学家对于如何从逻辑上严格把握事物的运动与变化和相对静止与稳定的统一是不清楚的,直到17世纪,数学上出现了变量与函数的概念才找到了精确描述运动与变化的工具。 对于事物的运动与变化,哲学家常有这一种说法:“运动就是矛盾”,“矛盾”是一个定义的术语,它揭示出事物的共性,但没指出运动的特殊性,而数学中用映射或函数描述运动却能勾画出运动的特殊

100个历史上最有名的数学难题

100个历史上最有名的数学难题 第01题阿基米德分牛问题archimedes' problema bovinum 太阳神有一牛群,由白、黑、花、棕四种颜色的公、母牛组成。在公牛中,白牛数多于棕牛数,多出之数相当于黑牛数的1/2+1/3;黑牛数多于棕牛,多出之数相当于花牛数的1/4+1/5;花牛数多于棕牛数,多出之数相当于白牛数的1/6+1/7。在母牛中,白牛数是全体黑牛数的1/3+1/4;黑牛数是全体花牛数1/4+1/5;花牛数是全体棕牛数的1/5+1/6;棕牛数是全体白牛数的1/6+1/7。问这牛群是怎样组成的? 第02题德·梅齐里亚克的法码问题the weight problem of bachet de meziriac 一位商人有一个40磅的砝码,由于跌落在地而碎成4块.后来,称得每块碎片的重量都是整磅数,而且可以用这4块来称从1至40磅之间的任意整数磅的重物。问这4块砝码碎片各重多少? 第03题牛顿的草地与母牛问题newton's problem of the fields and cows a头母牛将b块地上的牧草在c天内吃完了;a'头母牛将b'块地上的牧草在c'天内吃完了;a"头母牛将b"块地上的牧草在c"天内吃完了;求出从a到c"9个数量之间的关系?

第04题贝韦克的七个7的问题berwick's problem of the seven sevens 在下面除法例题中,被除数被除数除尽:* * 7 * * * * * * * ÷ * * * * 7 * = * * 7 * * * * * * * * * * * * * 7 * * * * * * * * * 7 * * * * * 7 * * * * * * * * * * * * * * * 7 * * * * * * * * * * * * * * 用星号(*)标出的那些数位上的数字偶然被擦掉了,那些不见了的是些什么数字呢? 第05题柯克曼的女学生问题kirkman's schoolgirl problem 某寄宿学校有十五名女生,她们经常每天三人一行地散步,问要怎样安排才能使每个女生同其他每个女生同一行中散步,并恰好每周一次? 第06题伯努利-欧拉关于装错信封的问题the bernoulli-euler problem of the misaddressed letters 求n个元素的排列,要求在排列中没有一个元素处于它应当占有的位置。

数学史上的三次危机-最新学习文档

数学史上的三次危机 (文章转载自数学发展简史) 从哲学上来看,矛盾是无处不存在的,即便以确定无疑著称的数学也不例外。数学中有大大小小的许多矛盾,例如正与负、加与减、微分与积分、有理数与无理数、实数与虚数等等。在整个数学发展过程中,还有许多深刻的矛盾,例如有穷与无穷、连续与离散、存在与构造、逻辑与直观、具体对象与抽象对象、概念与计算等等。 在数学史上,贯穿着矛盾的斗争与解决。当矛盾激化到涉及整个数学的基础时,就会产生数学危机。而危机的解决,往往能给数学带来新的内容、新的发展,甚至引起革命性的变革。 数学的发展就经历过三次关于基础理论的危机。 一、第一次数学危机 从某种意义上来讲,现代意义下的数学,也就是作为演绎系统的纯粹数学,来源予古希腊毕达哥拉斯学派。它是一个唯心主义学派,兴旺的时期为公元前500年左右。他们认为,“万物皆数”(指整数),数学的知识是可靠的、准确的,而且可以应用于现实的世界,数学的知识由于纯粹的思维而获得,不需要观察、直觉和日常经验。 整数是在对于对象的有限整合进行计算的过程中产生的抽象概念。日常生活中,不仅要计算单个的对象,还要度量各

种量,例如长度、重量和时间。为了满足这些简单的度量需要,就要用到分数。于是,如果定义有理数为两个整数的商,那么由于有理数系包括所有的整数和分数,所以对于进行实际量度是足够的。 有理数有一种简单的几何解释。在一条水平直线上,标出一段线段作为单位长,如果令它的定端点和右端点分别表示数0和1,则可用这条直线上的间隔为单位长的点的集合来表示整数,正整数在0的右边,负整数在0的左边。以q为分母的分数,可以用每一单位间隔分为q等分的点表示。于是,每一个有理数都对应着直线上的一个点。 古代数学家认为,这样能把直线上所有的点用完。但是,毕氏学派大约在公元前400年发现:直线上存在不对应任何有理数的点。特别是,他们证明了:这条直线上存在点p不对应于有理数,这里距离op等于边长为单位长的正方形的对角线。于是就必须发明新的数对应这样的点,并且因为这些数不可能是有理数,只好称它们为无理数。无理数的发现,是毕氏学派的最伟大成就之一,也是数学史上的重要里程碑。 无理数的发现,引起了第一次数学危机。首先,对于全部依靠整数的毕氏哲学,这是一次致命的打击。其次,无理数看来与常识似乎相矛盾。在几何上的对应情况同样也是令人惊讶的,因为与直观相反,存在不可通约的线段,即没有公共

#数学史上的著名猜想之(一)

数学史上的著名猜想之(一) —―被否定的数学猜想 过伯祥 数学史上,长时期未能解决的数学猜想特别多!并且很多都是世界级的难题,其中数论方面的问题又占多数.它们表面上是那么的浅显,好像不难解决似的,其实,若无深厚的数学功底,即使想接近它也十分困难。本章特作较多的介绍,使数学爱好者有一个初步了解.如果你有志要攻克这些猜想,就必须作好长期艰苦跋涉的思想准备. 1.被否定的数学猜想 (1)试证第五公设的漫长历程 几何是从制造器皿、测量容器、丈量土地等实际问题中产生和发展起来的. 几何学的发展历程中,有两个重大的历史性转折.其一是,大约从公元前7世纪到公元前3世纪,希腊数学从素材到框架,已经为几何学的理论大厦的建造准备了足够的条件.欧几里得在前人毕达哥拉斯、希波克拉底和欧多克斯等人的工作基础上,一举完成了统治几何学近2000年的极其伟大的经典著作《几何原本》.它使几何学发展成为一门独立的理论学科,是几何学史上的一个里程碑. 其二,也正是由于《几何原本》的问世,才带来了一个使无数人困惑和兴奋的著名问题--欧几里得第五公设问题. 在《几何原本》的第一卷中,规定了五条公设和五条公理.著名的欧几里得第五公设:“若两条直线被第三条直线所截,如有两个同侧内角之和小于两直角,则将这两直线向该侧适当延长后必定相交.”就是这五条公设中的最后一条.由于它在《几何原本》中引用得很少(直到证明关键性的第29个定理时才用到它);而且,它的辞句冗长,远不如前四条公设那样简单明了.于是给后人的印象是:似乎欧几里得本人也想尽量避免使用第五公设. 于是,一代又一代的数学家猜测:大概不用花费很多力气就能证明欧几里得第五公设.就这样,数学家们开始了试证第五公设的历程. 这是个始料未及的漫长历程!真正是前赴后继,几乎每个时代的大数学家都做过这一件工作. 然而,满以为非常简单,只不过是举手之劳的一件事,谁料历时两千年仍未解决. 第五公设问题几乎成了“几何原理中的家丑”(达朗贝尔). 直至19世纪,人们才逐渐意识到“欧氏第五公设可以证明”是一个错误的猜想,但它却

数学史上三大危机

数学史上三大危机 数学的发展史中,并不是那么一帆风顺的,其中历史上曾发生过三大危机,危机的发生促使了数学本生的发展,因此我们应该辨证地看待这三大危机。 第一次危机发生在公元前580~568年之间的古希腊,数学家毕达哥拉斯(Pythagoras,约公元前580~约前500)建立了毕达哥拉斯学派。他证明许多重要的定理,包括后来以他的名字命名的毕达哥拉斯定理(勾股定理),即直角三角形两直角边为边长的正方形的面积之和等于以斜边为边长的正方形的面积。毕达哥拉斯将数学知识运用得纯熟之后,觉得不能只满足于用来算题解题,于是他试着从数学领域扩大到哲学,用数的观点去解释一下世界。经过一番刻苦实践,他提出"万物皆为数"的观点:数的元素就是万物的元素,世界是由数组成的,世界上的一切没有不可以用数来表示的,数本身就是世界的秩序。 公元前500年,毕达哥拉斯学派的弟子希伯索斯(Hippasus)发现了一个惊人的事实,一个正方形的对角线与其一边的长度是不可公度的(若正方形的边长为1,则对角线的长不是一个有理数),这一不可公度性与毕氏学派的"万物皆为数"(指有理数)的哲理大相径庭。这一发现使该学派领导人惶恐,认为这将动摇他们在学术界的统治地位,于是极力封锁该真理的流传,希伯索斯被迫流亡他乡,不幸的是,在一条海船上还是遇到毕氏门徒。被毕氏门徒残忍地投入了水中杀害。科学史就这样拉开了序幕,却是一场悲剧。 希伯索斯的发现,第一次向人们揭示了有理数系的缺陷,证明了它不能同连续的无限直线等同看待,有理数并没有布满数轴上的点,在数轴上存在着不能用有理数表示的"孔隙"。而这种"孔隙"经后人证明简直多得"不可胜数"。于是,古希腊人把有理数视为连续衔接的那种算术连续统的设想彻底地破灭了。不可公度量的发现连同芝诺悖论一同被称为数学史上的第一次数学危机,对以后2000多年数学的发展产生了深远的影响,促使人们从依靠直觉、经验而转向依靠证明,推动了公理几何学和逻辑学的发展,并且孕育了微积分思想萌芽。 不可约的本质是什么?长期以来众说纷纭,得不到正确的解释,两个不可通约的比值也一直认为是不可理喻的数。15世纪意大利著名画家达.芬奇称之为"无理的数",17世纪德国天文学家开普勒称之为"不可名状"的数。

数学史上的三次危机数学研究性学习

数学史上的三次危机 一:探究缘由 数学是一门日常当中应用最为广泛的学科,无论哪里都存在着数学的美,然而,当我们小组从网上查找数学问题时,意外地发现了数学研究史上竟然存在着三次危机,严重动摇了当时的数学观念。我们被这三次危机所吸引,决定要探究一下数学史上的三次危机。 二:分工 姜鑫鹏:写调查报告 季浩楠崔子睿:查找资料 王金鹏康怡平:总结资料,写感受 三:研究过程 首先上网查找资料,了解数学史上的三次危机发生的时间、地点、背景、影响,从数学的角度看待数学史上的三次危机,然后大家交流自己查到的资料,发表自己的看法,进行记录,然后写感受,整理成为调查报告。 四:查找到的资料 毕达哥拉斯定理提出后,其学派中的一个成员希帕索斯考虑了一个问题:边长为1的正方形其对角线长度是多少呢?他发现这一长度既不能用整数,也不能用分数表示,而只能用一个新数来表示。希帕索斯的发现导致了数学史上第一个无理数的诞生。小小的出现,却在当时的数学界掀起了一场巨大风暴。它直接动摇了毕达哥拉斯学派的数学信仰,使毕达哥拉斯学派为之大为恐慌。实际上,这一伟大发现不但是对毕达哥拉斯学派的致命打击,对于当时所有古希腊人的观念这都是一个极大的冲击。这一结论的悖论性表现在它与常识的冲突上:任何量,在任何精确度的范围内都可以表示成有理数。这不但在希腊当时是人们普遍接受的信仰,就是在今天,测量技术已经高度发展时,这个断言也毫无例外是正确的!

可是为我们的经验所确信的,完全符合常识的论断居然被小小的的存在而推翻了!这应该是多么违反常识,多么荒谬的事!它简直把以前所知道的事情根本推翻了。更糟糕的是,面对这一荒谬人们竟然毫无办法。这就在当时直接导致了人们认识上的危机,从而导致了西方数学史上一场大的风波,史称“第一次数学危机”。 第二次数学危机导源于微积分工具的使用。伴随着人们科学理论与实践认识的提高,十七世纪几乎在同一时期,微积分这一锐利无比的数学工具为牛顿、莱布尼兹共同发现。这一工具一问世,就显示出它的非凡威力。许许多多疑难问题运用这一工具后变得易如反掌。但是不管是牛顿,还是莱布尼兹所创立的微积分理论都是不严格的。两人的理论都建立在无穷小分析之上,但他们对作为基本概念的无穷小量的理解与运用却是混乱的。因而,从微积分诞生时就遭到了一些人的反对与攻击。其中攻击最猛烈的是英国大主教贝克莱。 十九世纪下半叶,康托尔创立了著名的集合论,在集合论刚产生时,曾遭到许多人的猛烈攻击。但不久这一开创性成果就为广大数学家所接受了,并且获得广泛而高度的赞誉。数学家们发现,从自然数与康托尔集合论出发可建立起整个数学大厦。因而集合论成为现代数学的基石。“一切数学成果可建立在集合论基础上”这一发现使数学家们为之陶醉。1900年,国际数学家大会上,法国著名数学家庞加莱就曾兴高采烈地宣称:“……借助集合论概念,我们可以建造整个数学大厦……今天,我们可以说绝对的严格性已经达到了……” 可是,好景不长。1903年,一个震惊数学界的消息传出:集合论是有漏洞的!这就是英国数学家罗素提出的著名的罗素悖论。这是第三次数学危机 五:感想 数学史上的三次危机都在当时的社会和数学领域造成了极大的冲击,在当时简直和世界在做对,所以,在当时都遭到了反对派的猛烈攻击。但每一次的数学危机,都是数学学科的一次巨大进步,因为,只有发现了不能解决的问题,才能激发人们的动力,使人们奋力将问

盘点数学史上24道智力经典名题

盘点数学史上24道智力经典名题同学们,你们知道数学史上有哪些经典名题吗?查字典数学网为大家推荐的数学史上24道智力经典名题,小朋友们不妨开动脑筋,动手做一做吧! 1.遗嘱传说,有一个古罗马人临死时,给怀孕的妻子写了一份遗嘱:生下来的如果是儿子,就把遗产的2/3给儿子,母亲拿1/3;生下来的如果是女儿,就把遗产的1/3给女儿,母亲拿2/3。结果这位妻子生了一男一女,怎样分配,才能接近遗嘱的要求呢? 2.公主出题古时候,传说捷克的公主柳布莎出过这样一道有趣的题:“一只篮子中有若干李子,取它的一半又一个给第一个人,再取其余一半又一个给第二人,又取最后所余的一半又三个给第三个人,那么篮内的李子就没有剩余,篮中原有李子多少个?” 3.王子的数学题传说从前有一位王子,有一天,他把几位妹妹召集起来,出了一道数学题考她们。题目是:我有金、银两个手饰箱,箱内分别装自若干件手饰,如果把金箱中25%的手饰送给第一个算对这个题目的人,把银箱中20%的手饰送给第二个算对这个题目的人。然后我再从金箱中拿出5件送给第三个算对这个题目的人,再从银箱中拿出4件送给第四个算对这个题目的人,最后我金箱中剩下的比分掉的多10件手饰,银箱中剩下的与分掉的比是2∶1,请问谁能算出我

的金箱、银箱中原来各有多少件手饰? 4.国王的重赏传说,印度的舍罕国王打算重赏国际象棋的发明人——大臣西萨班达依尔。这位聪明的大臣跪在国王面敢说:“陛下,请你在这张棋盘的第一个小格内,赏给我一粒麦子,在第二个小格内给两粒,在第三个小格内给四粒,照这样下去,每一小格内都比前一小格加一倍。陛下啊,把这样摆满棋盘上所有64格的麦粒,都赏给您的仆人吧?”国王说:“你的要求不高,会如愿以偿的”。说着,他下令把一袋麦子拿到宝座前,计算麦粒的工作开始了。……还没到第二十小格,袋子已经空了,一袋又一袋的麦子被扛到国王面前来。但是,麦粒数一格接一格地增长得那样迅速,很快看出,即使拿出来全印度的粮食,国王也兑现不了他对象棋发明人许下的语言。算算看,国王应给象棋发明人多少粒麦子? 5.哥德巴赫猜想哥德巴赫是二百多年前德国的数学家。他发现:每一个大于或等于6的偶数,都可以写成两个素数的和(简称“1+1”)。如:10=3+7,16=5+11等等。他检验了很多偶数,都表明这个结论是正确的。但他无法从理论上证明这个结论是对的。1748年他写信给当时很有名望的大数学家欧拉,请他指导,欧拉回信说,他相信这个结论是正确的,但也无法证明。因为没有从理论上得到证明只是一种猜想,所以就把哥德巴赫提出的这个问题称为哥德巴赫猜想。世界上许多数学家为证明这个猜想作了很大努力,他们由

数学悖论与三次数学危机

数学悖论与三次数学危机 数学发展从来不是完全直线式的,而是常常出现悖论。历史上一连串的数学悖论动摇了人们对数学可靠性的信仰,数学史上曾经发生了三次数学危机。数学悖论的产生和危机的出现,不单给数学带来麻烦和失望,更重要的是给数学的发展带来新的生机和希望,促进了数学的繁荣。危机产生、解决、又产生的无穷反复过程,不断推动着数学的发展,这个过程也是数学思想获得重要发展的过程。 数学历来被视为严格、和谐、精确的学科,纵观数学发展史,数学发展从来不是完全直线式的,他的体系不是永远和谐的,而常常出现悖论。悖论是指在某一一定的理论体系的基础上,根据合理的推理原则,推出了两个互相矛盾的命题,或者是证明了这样一个复合命题,它表现为两个互相矛盾的命题的等价式[1]。数学悖论在数学理论中的发展是一件严重的事,因为它直接导致了人们对于相应理论的怀疑,而如果一个悖论所涉及的面十分广泛的话,甚至涉及到整个学科的基础时,这种怀疑情绪又可能发展成为普遍的危机感,特别是一些重要悖论的产生自然引起人们对数学基础的怀疑以及对数学可靠性信仰的动摇。数学史上曾经发生过三次数学危机,每次都是由一两个典型的数学悖论引起的。本文回顾了历史上发生的三次数学危机,重点介绍了三次数学危机对数学发展的重要作用。 1毕达哥拉斯悖论与第一次数学危机 公元前六世纪,在古希腊学术界占统治地位的毕达哥拉斯学派,其思想在当时被认为是绝对权威的真理,毕达哥拉斯学派倡导的是一种称为“唯数论”的哲学观点,他们认为宇宙的本质就是数的和谐[2]。他们认为万物皆数,而数只有两种,就是正整数和可通约的数(即分数,两个整数的比),除此之外不再有别的数,即是说世界上只有整数或分数。 毕达哥拉斯学派在数学上的一项重大贡献是证明了毕达哥拉斯定理[3],也就是我们所说的勾股定理。勾股定理指出直角三角形三边应有如下关系,即a2=b2+c2,a和b分别代表直角三角形的两条直角边,c表示斜边。 然而不久毕达哥拉斯学派的一个学生希伯斯很快便发现了这个论断的问题。他发现边长相等的正方形其对角线长并不能用整数或整数之比来表示。假设正方形边长为1,并设其对角线长为d,依勾股定理应有d2=12+12=2,即d2=2,那么d是多少呢?显然d不是整数,那它必是两整数之比。希伯斯花了很多时间来寻找这两个整数之比,结果没找着,反而找到了两数不可通约性的证明[4],用反证法证明如下:设Rt△ABC,两直角边为a=b,则由勾股定理有c2=2a2,设已将a和c中的公约数约去,即a、c已经互素,于是c为偶数,a为奇数,不妨令c=2m,则有(2m)2=2a2,a2=2m2,于是a为偶数,这与前面已证a为奇数矛盾。这一发现历史上称为毕达哥拉斯悖论。 毕达哥拉斯悖论的出现,对毕达哥拉斯学派产生了沉重的打击,“数即万物”的世界观被极大的动摇了,有理数的尊崇地位也受到了挑战,因此也影响到了整个数学的基础,使数学界产生了极度的思想混乱,历史上称之为第一次数学危机。 第一次数学危机的影响是巨大的,它极大的推动了数学及其相关学科的发展。首先,第一次数学危机让人们第一次认识到了无理数的存在,无理数从此诞生了,之后,许多数学家正式研究了无理数,给出了无理数的严格定义,提出了一个含有有理数和无理数的新的数类——实数,并建立了完整的实数理论[5],为数学分析的发展奠定了基础。再者,第一次数学危机表明,直觉和经验不一定靠得住,推理证明才是可靠的,从此希腊人开始重视演绎推理,并由此建立了几何公理体系。欧氏几何就是人们为了消除矛盾,解除危机,在这时候应运而生的[6]。第一次数学危机极大地促进了几何学的发展,使几何学在此后两千年间成为几乎是全部严密数学的基础,这不能不说是数学思想史上的一次巨大革命。 2贝克莱悖论与第二次数学危机 公元17世纪,牛顿和莱布尼兹创立了微积分,微积分能提示和解释许多自然现象,它

相关文档
相关文档 最新文档