文档库 最新最全的文档下载
当前位置:文档库 › 对质点系角动量定理的讨论

对质点系角动量定理的讨论

对质点系角动量定理的讨论
对质点系角动量定理的讨论

目录

摘要 (1)

Abstract (1)

1 引言 (1)

2 惯性系中质点系角动量定理 (1)

2.1惯性系中角动量定理的推导 (1)

2.2在惯性系中角动量表达式的一点讨论 (2)

2.3惯性系中质点对轴的角动量定理 (3)

2.4刚体定轴转动时对转轴的角动量 (3)

3 非惯性系中的角动量定理 (4)

4 应用 (5)

4.1质点系质心系的角动量定理在刚体定轴转动中的应用 (5)

4.2刚体做定轴转动时对轴上任一点的角动量定理和应用 (5)

5 结论 (6)

参考文献 (7)

对质点系角动量定理的讨论

摘 要:通过对质点系角动量定理推导以及讨论其在具,体问题中的应用,并且结合其在惯性系、非惯性系以及质心系的情况下的公式和它们之间的联系,明确了解了角动量定理在解决力学相关问题的重要性,从而为解决相关力学问题提供帮助。

关键词:质点系;角动量;参考点;轴;质心

Discussion on the Theorem of Angular Momentum of Particle

Abstract : Through to discuss of the particle system and angular moment theorem andits specific problems, and to combinate with the application in the inertial system, noninertial system under the conditions of the heart and the quality of the formula and the relationship between them, we understanded the angular momentum in solving problems which related to the mechanical theorems and its importance clearly , and proved a lot of help to solve the related mechanical problems.

Key W ords : Particle; Angular momentum; Reference points; Axis; centroid.

1引言

角动量定理在质点系中的应用在力学相关问题中非常重要,本论文主要是通过上学期对质点系角动量在惯。性系,非惯性系,以及质心系内的研究与讨论,总结出的一些公式和规律,为掌握解决问题方法提供方便。

2惯性系中质点系角动量定理

2.1惯性系中角动量定理的推导

质点系内各质点对参考点O 的角动量的矢量和看作质点系对O 点的角动量,设由n 个质点组成的质点系,在惯性参考系中,各质点的速度分别用1v ,2v ……i v …n v

表示,相对于参考点O 的位置矢量分别为1r ,2r ……i r …n r

,质量分别为1m ,

2m ……i m ……n m 将质点系的角动量记作L

。则

∑?i i i v m r L =

(1)

而任一质量对于参考点O 的角动量定理用于质点系内的质点I :

dt

L

d M i i = (2)

i L 表示质点i 的角动量,质点i 所受的力矩可分为内力矩内

i M 和外力矩外i M

,于是

dt

L d M M i

i i

=+外内 (3) 根据牛顿第三定律,质点i 与质点j 之间的相互作用力ji ij F F

-=,且二力作用在一条直线上,ij F 与ji F 到点O 的垂直距离都等于d ,故作用力ij F 与反作用力ji F

对O 点

的力矩大小相等方向相反,可见成对出现的内力对O 点的力矩矢量和为0,将求和与导数运算交换顺序后,并考虑到∑

i L 即质点系的角动量L

,得

∑=

=dt

L d dt L d dt

L d i

i (4)

为力矩的矢量和,成为质点系对参考点O 的角动量定理[1]。 2.2在惯性系中角动量表达式的一点讨论

各种表达式之间有一定的联系。在惯性系中对动点P 的角动量P

L

可表示为

()C P O i i P i i i i i P i

i i Pi P v m r L v m r v m r v m r r v m r L

?-=?-?=

?-=

?=

∑∑

∑∑ (5)

(5)式表明:质点系相对于惯性系中变动参考点P 的角动量P L

,等于其相对于点O 的

角动量

O

L 与其总动量C v m 平移到点P 后相对同一定点O 的角动量v m r P

?之差[2]。当

动点P 就是质心C 时,由公式得到一般的结果

C C C O v m r L L

??= (6)

若把(6)式代入(5)式,可得一个非常有用的公式,即

C PC C C P C C C O v m r L v m r v m r L L

?+=?-?+=' (7)

(7)式表明:质点系相对于惯性系中动点P 的角动量P

L

等于其对质心C

的角动量C

L 与

质点系动量C v m 对P 点的角动量C PC v m r

?'之矢量和。

2.3惯性系中质点对轴的角动量定理

现在仅研究几个质点分别与Z 轴的垂直的平面内运动的情况,将其应用于某一点

i 得

()()dt

v m r d dt d L M i i i i iz iz γsin

=

=]

3[ (8)

质点i 所有的合力对Z 轴的力矩可分为内力矩内i M

和外力矩外i M

,故上式可写作

()()

=

+dt

v m r d M

M

i i i i i i γsin

(9)

由于0=∑内i M

,其在Z 轴上的投影也等于0,再将求和与求导运算交换顺序,(9)式

可写作

()()dt L d dt v m r d z M z

i i i i i

=

??

? ??=∑

γsin 外 (10) 其表示质点系所受一切外力对Z 轴的力矩之和,()∑i i i i v m r γsin

为质点系对Z 轴的角动量,上式表示质点系对于Z 轴的角动量对时间的变化率等于参考点所受一切外力对于Z 轴的力矩之和,叫做质点对Z 轴的角动量定理[3]。 2.4刚体定轴转动时对转轴的角动量

对轴的角动量是作为对点的角动量在坐标轴上的投影而引入的。由于刚体是较为特殊的质点系所以通过下面的综述使解决刚体的问题变得更为简单。设OZ 轴即刚体转轴,将公式应用于刚体,刚体对轴的角动量为

∑?=

i i i z v r m L

(11)

因z i i r v ω?=

,故有

()

z i i i r m L ω2

= (12)

(12)式右括号内为各质元质量与其到转动轴线垂直距离平方乘积之和,显然,它决定与刚体本身的质量分布以及转动轴线的位置,i m 叫作刚体对定轴Z 的转动惯量。用z I 表示

r m i

i

Z I 2∑=

(13)

式中2i i r m

为转动惯量[4]。刚体对Z 轴的角动量可写作z z z I L ω=

,将它与动量相比,

转动惯量和角速度分别可与惯性质量和速度相比拟。这转动惯量恰是对一定转轴转动惯性的度量,正是由于这种特性导致刚体这种质点系的角动量定理变得简单了:

z

z i i I dt

d

r m ω?=∑

2 (14)

将其变形后可得

()z z iz I d M ω?=∑

(15)

(15)式中dt M iz

称为作用于刚体地i 个外力矩的冲量矩。上式意为刚体对Z 轴角动量的

增量等于该轴外力矩冲量矩的代数和,式用冲量矩表述的角动量定理。并由此又进而推出了转动定理:他表示刚体绕定轴转动时刚体对该轴的转动惯量与角加速度的乘积在数量上等于对此转动轴线的合力矩,叫做刚体定轴转动的转动定理。由此可以与牛顿第二定律相比:力使质点产生加速度,而力矩产生角加速度。

3非惯性系中的角动量定理

在非惯性系(或质心系)中对定点P (设与上述惯性系中i 点是同一点)的角动量

P

L ' 可表示为

()pc

PC p i i PC i i Ci i

i PC Ci i i Pi p v m r L v m r v m r v m r r v m r L ''''''''''

?+=?+?=?+=?=

∑∑

∑∑ (16)

(16)式表明:在非惯性系中对定点

P 的角动量P

L

,等于其对质心C 的角动量C L '

与质

心C 对点P 的位矢PC r '

与PC v m '

叉积之矢量和]5[。虽然(16)式与(7)式形式相似,但其本质不同。(7)式为在惯性系中对动点P 计算角动量P L

,为在非惯性系中对同一点P 为

定点计算角动量P

L ' 。可见,在不同参考系中即便是对同一点如P 点计算角动量,一

般也不相等。但对质心C

,这个特殊点则恒有C C L L '

=这是因为

()i i ci

c i ci

i c i ci

i i ci C v m r v m r v v m r v m r L

?+

?=

+?=

?=∑∑∑'

'

''

'

(17)

显然(17)式等号右边第一项为00'''=?=?=?c c c i i ci v v r m v m r

,第二项为

C i i ci L v m r '''

=?,即有C C L L ' =。这说明:在惯性系中对质心C 计算角动量C L 与在质心系中对质心C 计算角动量C L '

总是相等的[6],这正是质心的一个重要特征,考虑到C C L L '

=。则由(9)式与(10)式可得

()

p

pc pc c PC P P v m r v m v m r L L ?=-?=''''- (18)

从(1)式可以看出,在两个相互平动的参考系中对同一点P 计算角动量所得值一般

是不等的,除非是对质心C 或PC

r ' 与PC

v 平行时才有C C L L '

=,这一点应当特别注意,

表中式

c pc p C a m r m dt

J d

?-=''' (19)

在平动加速参考系中对质心以外的其他参考点来说,合外力矩不等于角动量的时间变化率,出现附加项(惯性力力矩)

c c M dt

L d ''

= (20)

若参考点P 与质心C 重合,则0'=pc r

,此时附加项为零,(17)式与(18)式等价;若pc r '

平行于c a ,则附加项也为零,(19)式与(20)式等价;若0=c a (p v

不一定为零),则附加项也为零,(19)式与(20)式也等价。这说明,一般情况下附加项与点C 的加速度有关,与点C 的速度无关[7]。

4应用

4.1质点系质心系的角动量定理在刚体定轴转动中的应用

角动量定理的数学表达式为:

dt

L d M

a a

= (21)

其中:i i a F r M

?=

外,i i i o v m r L

?=

分别为质点系外力矩的矢量和与质点系

的角动量。由于i r

是某参考点O 向质点的矢径,i r

的大小和方向不仅与质点的位置有关,而且与参考点的选择有关[8]。另外,在此定理的推导下应用了牛顿第二定理及

i i

v dt r d =注意到只有参考点是参照系中的一个固定点时,dt

r d i

才表示质点的速度。因此

质点系的角动量定理是对惯性系中的的一个固定参考点的规律,故M 和L 均加了下标“v ”。

4.2刚体做定轴转动时对轴上任一点的角动量定理和应用

设刚体绕定轴Z 转动,在Z 轴上任选一原点O ,建立固定坐标系oxyz ,刚体的

角速度k ω=ω。在定轴转动中,刚体上任一质元i m 以O 点为圆心,作半径为i R 的圆周运动。令质元i m 对'O 的矢径为r ,因为刚体上所有质元的速度都满足关系

i i r v

?=ω (22)

所以刚体上任一点o 的角动量为:

(

)k

y x m j z y m i z x m i i i

i i i i

i i i

i i O

L

???

? ?

?

++???? ?

?

-+???? ?

?

-=∑

2

ω

ω (23)

因为i i i

i z x m ∑和i i i

i z y m ∑

一般并不等于零,

所以刚体定轴转动的角动量O L

的方向

与刚体角速度k ω=ω的方向一般并不相同。很明显,只有0==∑∑i i i

i i i i

i z y m z x m 时,

O

L 的方向才与ω的方向一致注意到在

O

L 的3个坐标分量中,唯有Z 轴分量

()

ω2

2i i

i

i

y x

m +∑中只出现i x 和i y ,与i z 无关,所以它与参考点在Z 轴的位置无关,从

而具有对轴的性质。另外在刚体的定轴转动中,转动的方向被限制固定在空间,而且相对于刚体也是固定的,质元到转轴的距离i R 不变,因此()222i

i

i

i i i

i R

m y x m ∑∑=

+为

常量,于是O

L

在转轴的分量大小为ω∑i

i i R m 2方向与ω的方向相同,此结论与转轴是

否为坐标轴无关[9]。

简证如下为区别起见,将转轴设为ON 轴,角速度ω方向为其正方向,因为是定轴转动,无论转轴的方位如何,从中可清楚看出,刚体中任一质元的速度仍为

i i i R r v ?=?=ωω,对原点的矢径i i R o o r

+=',将其代入动量式有

(

)()i

i i

i i i

i O R m R R m o o L

??+

??=

ωω' (24)

(24)式中第一项的方向垂直于ON 项方向沿ON 且和ω的方向相同,大小为ω

2i i

i R m

∑因此O

L 在转轴上的投影就是第二项在转轴上的投影。只要转轴确定,()

i

i i

i R m R

??∑

ω就完全确定,与坐标系的选择无关[10]。可见它正是刚体定轴转动的反映,因此称其为刚体对轴的角动量。

5结论

通过对质点系角动量定理的谈论,我们可以对质点系的角动量定理所具有的规律进行归纳总结,在解决相关角动量定理的问题中可以灵活运用,并且使角动量定理与更多其他物理现象相联系,正因为其所具有的这种普遍性,所以在解决问题中有重大

应用。

参考文献:

[1] 漆安慎,杜婵英.力学[M].北京:高等教育出版社,2005:102-120.

[2] 周衍柏.理论力学教程[M].北京:高等教育出版社,1996:253-259.

[3] 胡惠玲,林纯镇,吴惟敏.理论力学基础教程[M].北京:高等教育出版社,1996:168-193.

[4] 蔡伯濂.大学物理力学教学研究[M].北京:北京大学出版社,1982:198-206.

[5] 董云峰,段文峰.理论力学[M].北京:清华大学出版社,2006:259-264.

[6] Chaang-Y ung Kung. A Case Study of A vionics Manufacturer in Taiwan[J]. Quality & Quantity,

2006:577-593.

[7] 马文蔚.物理学上册[M].北京:高等教育出版社,1995:139—145.

[8] 柴莉莉.质点角动量定理[M].中国科技信息,2009:9-15.

[9] Nikos Mamoulis, Spiridon Bakiras. On Discovering Moving Clusters in Spatio-temporal Data[M].

Lecture Notes in Computer Science, 2005: 923.

[10] She-I Chang, David C. An ERP system performance assessment model development based on the

balanced scorecard approach[J]. Information Systems Frontiers, Online First, 2010.

高中物理《楞次定律》优质课教案、教学设计

G 教学设计 一、1、复习引入课堂, 2、实验导入新课二、 1、介绍研究感应电流方向的主要器材并让学生思考: (1) 、灵敏电流计的作用是什么?为什么用灵敏电流计而不用安培表? 答:灵敏电流计——(把灵敏电流计与干电池试触,演示指针偏转方向与电流流入方 向间的关系)电流从那侧接线柱流入,指针就向那侧偏转,因为灵敏电流计的量程较小,灵敏度较高,能测出螺线管中产生的微弱感应电流。 (2) 、为什么本实验研究的是螺线管中的感应电流,而不是单匝线圈或其它导体中的 感应电流? 答:因为穿过螺线管的磁通量发生变化,所以是螺线管中的感应电流,而螺线管中的 电流也就是单匝线圈中的电流。 2、实验内容: 灵 研究影响感应电流方向的因素按照图 敏 螺 所示连接电路,并将磁铁向线圈插入或从 电 线 线圈拔出等,分析感应电流的方向与哪些 流 管因素有关。 计 3、学生探究:研究感应电流的方向 (1) 、探究目标:找这两个磁场的方向关系的规律。 (2) 、探究方向:从磁铁和线圈有磁力作用入手。 (3) 、探究手段:分组实验(器材:螺线管,灵敏电流计,条形磁铁,导线) (4) 、探究过程 操 作 填写 内 方 法 容 N S 磁铁在管上静止不动时 磁铁在管中静止 不动时 插入 拔出 插入 拔出 N 在下 S 在下 N 在下 S 在下 原来磁场的方向 向下 向下 向上 向上 向下 向上 向下 向上 原来磁场的磁通量变化 增大 减小 增大 减小 不变 不变 不变 不变 感应磁场的方向 向上 向下 向下 向上 无 无 无 无 原磁场与感应磁 相反 相同 相反 相同 —— —— —— ——

(5)、学生带着问题分组讨论: 问题1、请你根据上表中所填写的内容分析一下,感应电流的磁场方向是否总是与原磁场的方向相反? 问题2、请你仔细分析上表,用尽可能简洁的语言概括一下,究竟如何确定感应电流的方向?并说出你的概括中的关键词语。 问题3、你能从导体和磁体相对运动的角度来确定感应电流的方向吗?如果能,请用简洁的语言进行概括,并试着从能量的转化与守恒角度去解释你的结论? 学生四人一组相互交流、分析、讨论,用最简洁的语言概括出本组的结论。师巡视各组的情况,然后指定某些组公布本组的成果在全班进行交流,师生共同讨论,形成结论。 教学中,学生概括多种多样,有的也非常准确到位,甚至于出乎意料,如:概括1:感应电流的磁场总是阻碍引起感应电流的磁通量的变化 概括2:感应电流在回路中产生的磁通量总是反抗(或阻碍)原磁通量的变化 概括3:感应电流的效果总是反抗(或阻碍)引起它的那个原因 (加点部分为学生提出的关键词) 教师应充分肯定他们的结论,并对出现的问题进行讨论、纠正, 总结规律:原磁通变大,则感应电流磁场与原磁场相反,有阻碍变大作用 原磁通变小,则感应电流磁场与原磁场相同,有阻碍变小作用 结论:增反减同 展示多媒体课件再次看看多媒体模拟的电磁感应中感应电流的产生过程。 投影展示楞次定律内容及其理解: 4、楞次定律——感应电流的方向 (1)、内容:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。 (师指出上述结论是物理学家楞次概括了各种实验结果提出的,并对楞次的物理 学贡献简单介绍) (2)、理解: ①、阻碍既不是阻止也不等于反向,增反减同 “阻碍”又称作“反抗”,注意不是阻碍原磁场而阻碍原磁场的变化 ②、注意两个磁场:原磁场和感应电流磁场 ③、学生在图中标出每个螺线管的感应电流产生的等效N 极和S 极。 根据标出的磁极方向总结规律: 感应电流的磁场总是磁体阻碍相对运动。“你来我不让你来,你走我不让你走” 强调:楞次定律可以从两种不同的角度来理解: a、从磁通量变化的角度看:感应电流总要阻碍磁通量的变化。

高中物理楞次定律实验教案

高中物理楞次定律实验教案 第三节:楞次定律教案 【教学目标】 1、知识与技能: (1)、理解楞次定律的内容。 (2)、能初步应用楞次定律判定感应电流方向。 (3)、理解楞次定律与能量守恒定律是相符的。 (4)、理解楞次定律中“防碍”二字的含义。 2、过程与方法 (1)、通过观察演示实验,探索和总结出感应电流方向的一般规律 (2)、通过实验教学,感受楞次定律的实验推导过程,培养学生观察 实验,分析、归纳、总结物理规律的水平。 3、情感态度与价值观 (1)、使学生学会由个别事物的个性来理解一般事物的共性的理解事 物的一种重要的科学方法。 (2)、培养学生的空间想象水平。 (3)、让学生参与问题的解决,培养学生科学的探究水平和合作精神。【教学重点】应用楞次定律(判感应电流的方向) 【教学难点】理解楞次定律(“防碍”的含义) 【教学方法】实验法、探究法、讨论法、归纳法 【教具准备】

灵敏电流计,线圈(外面有明显的绕线标志),导线若干,条形磁铁, 线圈 【教学过程】 一、复习提问: 1、要产生感应电流必须具备什么样的条件? 答:穿过闭合回路的磁通量发生变化,就会在回路中产生感应电流。 2、磁通量的变化包括哪情况? 答:根据公式Φ=BS sinθ(θ是B与S之间的夹角)可知,磁通量Φ 的变化包括B的变化,S的变化,B与S之间的夹角的变化。这些变化 都能够引起感应电流的产生。 二、引入新课 提出问题:如图,在磁场中放入一线圈,若磁场B变大或变小,问 ①有没有感应电流?(有,因磁通量有变化); ②感应电流方向如何? 本节课我们就来一起探究感应电流与磁通量的关系。 三、实行新课 1、介绍研究感应电流方向的主要器材并让学生思考: (1)、灵敏电流计的作用是什么?为什么用灵敏电流计而不用安培表? 答:灵敏电流计——(把灵敏电流计与干电池试触,演示指针偏转方 向与电流流入方向间的关系)电流从那侧接线柱流入,指针就向那侧 偏转,因为灵敏电流计的量程较小,灵敏度较高,能测出螺线管中产 生的微弱感应电流。

楞次定律实验设计

“楞次定律”实验教学设计 学习目标 1、通过实验探究归纳总结出楞次定律。 2、理解楞次定律,并会运用楞次定律判断感应电流的方向 3、通过实验探究,提高学生的分析、归纳、概括、及表述的能力 实验的中心问题:闭合回路中Φ变化产生的感应电流的方向如何判别。 实验器材:(1) 判别电流表指针偏转与电流流向间的关系:干电池一节、灵敏电流计、导线。 (2) 判别感应电流的方向:条形磁铁、灵敏电流表、螺线管、导线两根。 教学方法:实验探究式教学法。 教学过程设计: (一)设置情景、提出问题: [演示实验]: 如下图所示,当磁铁向上或向下运动时, 电流表的指针发生了偏转. [提出问题] 1、电流表指针偏转有规律吗? 2、怎样判断出感应电流的方向? (二)解决实验中心问题、形成新知识。 (1)解决中心问题的方法 [教师指导]:回想以前学过的方法,有实验探究、理论分析等 [提出方案]:实验探究法。 (2)选择易行方案解决中心问题: [教师点拔引导]:电流方向通过电流表指针偏转方向来显示,故应先判别电流方向与电流表指 针偏转方向之间的关系, 如何判别? [提出方案]:连接电路(灵敏电流计、干电池、导线)判别指针偏转与电流方向间关系。 1、弄清电流方向、电流表指针偏转方向与电流表红、黑接线柱的关系:{ 将电流表的左右接 线柱分别与干电池的正负极相连(试触法),观察电流流向与指针偏向的关系} 结论:当电流由流入时,表针向偏转。 2、根据灵敏电流计的偏转方向结合线圈导线绕向把电流流向。用标签贴出来,由此判断感应 电流的方向

[实验]:探究感应电流的方向 [教师示范演示]:教师按上图第一种情况演示实验, 1·磁铁的运动方向,磁铁产生的磁场方向; 2·引导学生实验中须注意电流表指针偏转方向, 用标签在螺线管上标出感应电流的方向, 3·用右手判断感应电流产生的磁场方向; 4·螺线管内的磁通量的变化, 5·关注螺线管内磁铁产生的磁场方向与感应电流产生的磁场方向的关系。 [设计表格]:表格中的内容由学生填写。

楞次定律难点解析

“楞次定律”教学难点的突破方法 高中物理教学中楞次定律是高考的热点、重点、难点之一,其内容是:感应电流的磁场,总是要阻碍引起感应电流的磁通量的变化。该定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况。要让学生学好这个定律,突破这一定律难点,除做好演示实验外,教学中还应注意让学生从以下几点着手学习。 一、分四步理解楞次定律 1.明白谁阻碍谁──感应电流的磁通量阻碍产生产感应电流的磁通量。 2.弄清阻碍什么──阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。 3.熟悉如何阻碍──原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即“增反减同”。 4.知道阻碍的结果──阻碍并不是阻止,结果是增加的还增加,减少的还减少。 二、学会楞次定律的另一种表述 有人把它称为对楞次定律的深层次理解。 1.表述内容:感应电流总是反抗产生它的那个原因。 2.表现形式有三种: a.阻碍原磁通量的变化; b.阻碍物体间的相对运动,有的人把它称为“来拒去留”; c.阻碍原电流的变化(自感)。 注意:分析磁通量变化时关键在于对有关磁场、磁感线的空间分布要有足够清楚的了解,有些问题应交替利用楞次定律和右手定则分析。 三、能正确区分楞次定律与右手定则的关系 导体运动切割磁感线产生感应电流是磁通量发生变化引起感应电流的特例,所以判定电流方向的右手定则也是楞次定律的特例。用右手定则能判定的,一定也能用楞次定律判定,只是不少情况下,不如用右手定则判定来得方便简单。反过来,用楞次定律能判定的,并不是用右手定则都能判断出来。如闭合圆形导线中的磁场逐渐增强,用右手定则就难以判定感应电流的方向;相反,用楞次定律就很容易判定出来。 四、理解楞次定律与能量守恒定律 楞次定律在本质上就是能量守恒定律。在电磁感应现象中,感应电流在闭合电路中流动时将电能转化为内能,根据能量守恒定律,能量不能无中生有,这部分能量只能从其他形式的能量转化而来。例如,当条形磁铁从闭合线圈中插进与拔出的过程中,按照楞次定律,把磁铁插入线圈或从线圈中拔出,都必须克服磁

高中物理-楞次定律实验教学案例

高中物理-楞次定律实验教学案例 这一节研究的是判断感应电流方向的一般规律,是本章教学的重点和难点。一是其涉及的因素多(磁场方向、磁通量的变化,线圈绕向、电流方向等),关系复杂;二是规律比较隐蔽,其抽象性和概括性很强。如果不明确指出各物理量之间的关系,使学生有一个清晰的思路,势必造成学生思路混乱,影响学生对该定律的理解。因此,学生理解楞次定律有较大的难度。为此笔者不按教材的思路进行实验,而是另辟蹊径,进了一些创新实验,具体设计如下: 一、复习知识引出课题 教师:1820年奥斯特发现电能生磁,1831年法拉第发现磁也能生电,我们把利用磁场产生的电流叫做感应电流。那么感应电流产生的条件是什么? 学生:闭合回路的磁通量发生变化。 实验1(教师演示)(如图1) 磁铁N极靠近与电流计连接的闭合线圈,磁通量增加,回路有感应电流;磁铁N 极远离与电流计连接的闭合线圈,磁通量减少,回路有感应电流。 教师:前后两次电流计指针偏转方向不同,意味着感应电流方向不同。那么感应电流的方向与什么因素有关?如果没有电流计我们将如何判断感应电流方向?实验设计目的: 1.复习感应电流产生的条件 2.引出感应电流的方向与什么因素有关这一课题 图1 二、实验探究,总结规律 实验2. 磁铁吸铝环(教师演示) 教师:磁铁能吸引铁钴镍等金属,能否吸引金属铝? 学生:不能 教师:将铝环与强磁铁接触释放,铝环掉落。 教师:演示实验2(如图2) 将闭合铝环平放,强磁铁N极靠近铝环,然后 迅速往上移动,结果铝环被吸引起来。 学生:惊讶 图2

教师:为什么磁铁能够把铝环吸引起来呢? 学生:磁铁离开铝环,通过铝环的磁通量发生变化产生感应电流,感应电流的磁场与磁铁的磁场发生了作用。 教师:很好,那么环形电流的磁场类似于何种磁体的磁场分布情况呢? 学生:条形磁铁。 教师:那么刚才用强磁铁吸引铝环可不可以看做磁铁吸引磁铁呢? 学生:可以。 教师:我刚才的强磁铁的下端为N 极,那么能否判断出铝环感应电流产生的磁场分布情况呢?(如图3) 学生:可以,铝环上端是S 极,下端是N 极。 教师:那么我们能否根据所判断的极性来确定感应电流的方向呢?依据是什么? 学生:可以,用安培定则。 教师:为此,我们若要判断感应电流的方向,可以先判断感应电流磁场的方向。 那么感应电流的磁场方向如何来判断呢?有没有相应的规律呢?我们通过实验进一步来探究。 实验设计目的:让学生能够将感应电流的方向与磁场的方向通过安培定则紧密地联系在一起,从而为进一步探究规律明确了方向。 实验3 探究楞次定律(学生分组) 教师:若将铝环竖直放置,再将磁铁远离,铝环又会做出怎样的反应呢?(展示实验装置,如图4)铝环与磁铁之间一定是引力么?与磁铁的极性有没有关系呢? 师生共同归纳得出四种实验情形,N 极靠近、N 极远离、S 极靠近、S 极远离.(如图5)。 N S v N S v N S v N S v N S v 图3 图5 图4

对质点系角动量定理的讨论

目录 摘要 (1) Abstract (1) 1 引言 (1) 2 惯性系中质点系角动量定理 (1) 2.1惯性系中角动量定理的推导 (1) 2.2在惯性系中角动量表达式的一点讨论 (2) 2.3惯性系中质点对轴的角动量定理 (3) 2.4刚体定轴转动时对转轴的角动量 (3) 3 非惯性系中的角动量定理 (4) 4 应用 (5) 4.1质点系质心系的角动量定理在刚体定轴转动中的应用 (5) 4.2刚体做定轴转动时对轴上任一点的角动量定理和应用 (5) 5 结论 (6) 参考文献 (7)

对质点系角动量定理的讨论 摘 要:通过对质点系角动量定理推导以及讨论其在具,体问题中的应用,并且结合其在惯性系、非惯性系以及质心系的情况下的公式和它们之间的联系,明确了解了角动量定理在解决力学相关问题的重要性,从而为解决相关力学问题提供帮助。 关键词:质点系;角动量;参考点;轴;质心 Discussion on the Theorem of Angular Momentum of Particle Abstract : Through to discuss of the particle system and angular moment theorem andits specific problems, and to combinate with the application in the inertial system, noninertial system under the conditions of the heart and the quality of the formula and the relationship between them, we understanded the angular momentum in solving problems which related to the mechanical theorems and its importance clearly , and proved a lot of help to solve the related mechanical problems. Key W ords : Particle; Angular momentum; Reference points; Axis; centroid. 1引言 角动量定理在质点系中的应用在力学相关问题中非常重要,本论文主要是通过上学期对质点系角动量在惯。性系,非惯性系,以及质心系内的研究与讨论,总结出的一些公式和规律,为掌握解决问题方法提供方便。 2惯性系中质点系角动量定理 2.1惯性系中角动量定理的推导 质点系内各质点对参考点O 的角动量的矢量和看作质点系对O 点的角动量,设由n 个质点组成的质点系,在惯性参考系中,各质点的速度分别用1v ,2v ……i v …n v 表示,相对于参考点O 的位置矢量分别为1r ,2r ……i r …n r ,质量分别为1m , 2m ……i m ……n m 将质点系的角动量记作L 。则

楞次定律教案(图文版)

《楞次定律》教学设计 一、教材分析: 本节课教学内容是人教版教材,高中物理选修3-2第一章第三节“感应电流的方向——楞次定律”。楞次定律是电磁感应规律的重要组成部分,它及法拉第电磁感应定律一样也是本章的一个教学重点,是分析和处理电磁感应现象问题的两个重要支柱之一。 由于此定律所牵涉的物理量和物理规律较多,只有对原磁场方向、原磁通量变化情况、感应电流的磁场方向、以及会用安培定则进行正确的判定,才能得到正确的感应电流的方向。同时,学生还必须能正确运用安培定则,左手定则,安培定则解决问题,所以这部分内容也是电学部分的一个难点。 二、教学重难点: 教学重点:理解感应电流的方向及引起感应电流的磁通量变化之间的关系。 教学难点:根据教学目标,进行实验设计及操作。 三、学情分析: 学生已经掌握了磁通量的概念,并会分析磁通量的变化。已经知道了条形磁铁的磁感线的分布。学生已经利用(条形磁铁、电流计、线圈等)实验器材研究感应电流产生的条件。 四、教学目标:

1.知识及技能 (1)会表述感应电流的方向及引起感应电流的磁通量的变化之间的关系。 (2)会用自己的语言组织表述“感应电流的磁场总要阻碍引起感应电流的磁通量的变化”中的“阻碍”的意义。 (3)会用楞次定律判断电磁感应现象中感应电流的方向。2.过程及方法 (1)通过探究过程体会提出问题、猜想及假设、制定计划及设计实验、分析论证、验证等科学探究要素。 (2)通过楞次定律的学习过程,了解物理学的研究方法,认识物理实验在物理学发展过程中的作用。 (3)通过实验探究,学会用实验探究的方法研究物理问题。3.情感态度及价值观 (1)通过楞次对法拉第研究成果的关注到发现感应电流方向的规律的介绍,让学生发展对科学的好奇心及求知欲,能体验探索自然规律的艰辛及喜悦。 (2)通过实验学会及他人主动交流合作,培养团队精神。 五、设计思路: 本节作为一堂物理规律课的教学,重点在于指导学生思考问题的方法和利用实验研究物理规律的手段,为此本课采用学生分组随堂实

对质点系角动量定理的讨论

目录 摘要 (1) 关键词 (1) Abstract (1) Key Words (1) 引言 (1) 1惯性系中质点系角动量定理 (1) 1.1惯性系中角动量定理的推导 (1) 1.2在惯性系中角动量表达式的一点讨论 (2) 1.3惯性系中质点对轴的角动量定理 (3) 1.4刚体定轴转动时对转轴的角动量 (4) 2非惯性系中的角动量定理 (5) 3应用 (6) 3.1质点系质心系的角动量定理在刚体定轴转动中的应用 (6) 3.2刚体做定轴转动时对轴上任一点的角动量定理和应用 (7) 结束语: (8) 参考文献: (8)

对质点系角动量定理的讨论 姓名:杜晨阳 学号:20095040038 单位:物理电子工程学院 专业:物理学 指导老师:贾老师 职称:副教授 摘 要:通过对质点系角动量定理推导以及讨论其在具体问题中的应用,并且结合其在惯性系、非惯性系以及质心系的情况下的公式和它们之间的联系,明确了解了角动量定理在解决力学相关问题的重要性,从而为解决相关力学问题提供帮助。 关键词:质点系;角动量;参考点;轴;质心 To express theorem of angular momentu Abstract: Through to discusse of the particle system and angular momenttheorem andits specific problems, and to combinate with the application in the inertial system, noninertial system under the conditions of the heart and the quality of the formula and the relationship between them,we understanded the angular momentum in solving problems which related to the mechanical theorems and its importance clearly,and proved a lot of help to solve the related mechanical problems. Key Words : Particle, Angular momentum, Reference points, Axis, centroid. 引言 角动量定理在质点系中的应用在力学相关问题中非常重要,本论文主要是通过上学期对质点系角动量在惯性系,非惯性系,以及质心系内的研究与讨论,总结出的一些公式和规律,为掌握解决问题方法提供方便。 1惯性系中质点系角动量定理 1.1惯性系中角动量定理的推导 质点系内各质点对参考点O 的角动量的矢量和看作质点系对O 点的角动量,设 由n 个质点组成的质点系,在惯性参考系中,各质点的速度分别用1v ,2v ……i v …n v

第2节质点系的角动量定理及角动量守恒定律

第5.2节 质点系的角动量定理及角动量守恒定律 5.2.1离心调速器模型如图所示.由转轴上方向下看,质量为m 的小球在水平面内绕AB 逆时针作匀速圆周运动,当角速度为ω时,杆张开α角.杆长为l .杆与转轴在B 点相交.求(1)作用在小球上的各力对A 点、B 点及AB 轴的力矩.(2)小球在图示位置对A 点、B 点及AB 轴的角动量.杆质量不计 解:(本题中A 点的位置不明确,A 点应与两小球同 高度) 以A 点为坐标原点建立坐标系,x 轴向右,y 轴向上,z 轴垂直于纸面向外。 左侧小球: 受力:j mg W ?-= ,)?cos ?(sin j i T T αα+= 位失:相对于A 点:i l r A ?sin α-= 相对于B 点:T T l j i l r B -=+-=)?cos ?(sin αα 速度:小球绕y 轴作匀速圆周运动,速率为:αωωsin l r v == 在图中所示位置:k l k v v ?sin ?αω== 重力矩: ?)?(?)?(?sin )?()?cos ?(sin ?sin )?()?sin (=?=?==-?+-=?==-?-=?=j j j j k mgl j mg j i l W r k mgl j mg i l W r B A AB B B A A ττταααταατ 拉力T 的力矩: 0?)?(?)?(0 ?2sin ?cos sin )?cos ?(sin )?sin (2 1=?=?==?-=?=-=-=+?-=?=j j j j T T T l T r k lT k lT j i T i l T r B A AB B B A A τττταααααατ 角动量: j m l j j L j j L L m l m l L j i m l k m l j i l v m r L j m l k m l i l v m r L B A AB B B B A A ?sin ?)?(?)?(sin sin sin cos ||) ?sin ?sin cos (?sin )?cos ?(sin ?sin ?sin )?sin (222 42222222αωαωαααωαααωαωαααωαωα=?=?==+=+-=?+-=?==?-=?=

楞次定律 说课稿 教案

楞次定律 【教学目标】 1、知识与技能: (1)理解楞次定律的内容。 (2)能初步应用楞次定律判定感应电流方向。 (3)理解楞次定律与能量守恒定律是相符的。 (4)理解楞次定律中“阻碍”二字的含义。 2、过程与方法 (1)通过观察演示实验,探索和总结出感应电流方向的一般规律 (2)通过实验教学,感受楞次定律的实验推导过程,培养学生观察实验,分析、归纳、总结物理规律的能力。 3、情感态度与价值观 (1)使学生学会由个别事物的个性来认识一般事物的共性的认识事物的一种重要的科学方法。 (2)培养学生的空间想象能力。 (3)让学生参与问题的解决,培养学生科学的探究能力和合作精神。 【教学重点】应用楞次定律(判感应电流的方向) 【教学难点】理解楞次定律(“阻碍”的含义) 【教学方法】实验法、探究法、讨论法、归纳法 【教具准备】 灵敏电流计,线圈(外面有明显的绕线标志),导线若干,条形磁铁,线圈 【教学过程】 一、复习提问: 1、要产生感应电流必须具备什么样的条件?

答:穿过闭合回路的磁通量发生变化,就会在回路中产生感应电流。 2、磁通量的变化包括哪情况? 答:根据公式Φ=BS sinθ(θ是B与S之间的夹角)可知,磁通量Φ的变化包括B的变化,S的变化,B与S之间的夹角的变化。这些变化都可以引起感应电流的产生。 二、引入新课 1、问题1:如图,已知通电螺线管的磁场方向,问电流 方向? 答:由右手螺旋定则(安培定则)可知, 左边进,电流逆时针方向。 2、问题2:如图,在磁场中放入一线圈,若磁场变大或变小,问 ①有没有感应电流?(有,因磁通量有变化) ②感应电流方向如何? 3、感应电流不是个好“孩子”。感应电流的方向与磁通量间又有什么样的关系? 本节课我们就来一起探究感应电流与磁通量的关系。 三、进行新课 1、介绍研究感应电流方向的主要器材并让学生思考: (1)、灵敏电流计的作用是什么?为什么用灵敏电流计而不用安培表? 答:灵敏电流计——(把灵敏电流计与干电池试触,演示指针偏转方向与电流

楞次定律的教学设计方案

楞次定律的教学设计方案 楞次定律的--方案 一、教学目标 理解楞次定律的内容 理解楞次定律和能量守恒相符合 会用楞次定律解答有关问题 通过实验的探索,培养学生的实验操作、观察能力和分析、归纳、总结的逻辑思维能力. 二、教学重点:对楞次定律的理解. 三、教学难点:对楞次定律中的“阻碍”和“变化”的理解. 四、教学媒体: 计算机、电视机; 线圈、条形磁铁、导线、干电池、蹄形磁铁、灵敏电流计、楞次定律演示器. 五、课堂教学结构模式:探究式教学 六、教学过程: 复习: 提问:产生感应电流的条件是什么? 电脑演示例题:请同学回忆右手定则的内容,并判断闭合电路的一部分导体切割磁感线时所产生感应电流的方向.

引入: 电脑设置新情景并提出问题引起学生思考:如果用其它方式改变磁通量,从而产生感应电流,如何判断感应电流的方向呢? 新课教学 通过旧知识给出新结论: 即利用右手定则判断闭合电路的一部分导体切割磁感线而产生的感应电流的方向给出结果: 当原磁通量增加时感应电流的磁场与原磁场方向相反; 当原磁通量减少时感应电流的磁场与原磁场方向相同.学生实验:实验内容见附表一. 实验准备 查明电流表指针的偏转方向与电流方向的关系,搞清螺线管导线的绕向. 通过学生分析实验结果和电脑的演示,使学生发现自己的实验结果与上述结论相一致. 当穿过闭合电路的磁通量发生变化时,电路中就有感应电流产生.现在,我们再来根据实验的结果来得出判断感应电流方向的规律.由于电流方向和它所形成的磁场方向是有确定的规律的,因此,如果能够确定感应电流的磁场的方向,便能够确定感应电流的方向. 附表:

动作 原磁场方向 原磁通量变化情况 感应电流方向 感应电流磁场方向与方向的关系 极向下插入 极不动 极向上抽出 极向下插入 极不动 极向上抽出 楞次定律内容的教学部分: 通过前人所做实验的大量性来说明此结论的普遍性. 通过电脑软件模拟实验过程,进一步分析实验的结论,根据实验现象所反映的物理本质的规律,请学生得出确定感应电流方向的具有普遍意义的规律并加以叙述,教师予以评价、修正,在此基础上得出楞次定理的完善表述.得到楞次定律的内容: 电流的磁场总是阻碍引起感应电流的磁通量的变化 通过电脑演示,使学生进一步理解“阻碍”和“变化”的含义. 感应电流的磁场总是要阻碍引起感应电流的磁通量的

质点角动量定理附角动量守恒定律

第六章角动量 内容: §6-1 力矩(4课时) §6-2 质点的角动量定理及角动量守恒定律(4课时) 要求: 1.熟练掌握力对点的力矩。 2.理解对点的角动量定理及角动量守恒定律。 重点与难点: 角动量守恒定律。 作业: P219 1,2,3,4, P220 5,6,,

第六章 角动量 §6-1 力矩 一、力对点的力矩: 如图所示,定义力F 对O 点的力矩为: F r M ?= 大小为: θs i n Fr M = 力矩的方向:力矩是矢量,其方向可用右手螺旋 法则来判断:把右手拇指伸直,其余四指弯曲,弯曲 的方向由矢径通过小于1800的角度转向力的方向 时,拇指指向的方向就是力矩的方向。 二、力对转轴的力矩: 力对O 点的力矩在通过O 点的轴上的投影称为力对转轴的力矩。 1)力与轴平行,则0=M ; 2)刚体所受的外力F 在垂直于转轴的平面内,转轴和力的作用线之间的距离d 称为力对转轴的力臂。力的大小与力臂的乘积,称为力F 对转轴的力矩,用M 表示。力矩的大小为: Fd M = 或: θs i n Fr M = 其中θ是F 与r 的夹角。 3)若力F 不在垂直与转轴的平面内,则可把该力分解为两个力,一个与转轴平行的分力1F ,一个在垂直与转轴平面内的分力2F ,只有分力2F 才对刚体的转动状态有影响。 对于定轴转动,力矩M 的方向只有两个,沿转轴方向或沿转轴方 向反方向,可以化为标量形式,用正负表示其方向。 三、合力矩对于每个分力的力矩之和。 合力 ∑=i F F 合外力矩 ∑∑∑=?=?=?i i i M F r F r F r M = 即 ∑i M M = 四、单位: m N ? 注意:力矩的单位和功的单位不是一回事,力矩的单位不能写成焦耳。 (1)与转动垂直但通过转轴的力对转动不产生力矩; (2)与转轴平行的力对转轴不产生力矩;

(完整版)楞次定律教学设计详案

德州学院第五届教学技能大赛 楞次定律教学设计详案 推荐单位物理系 参赛选手刘宗耀 所学专业物理学

学科层次本科 楞次定律教学设计详案 一、教学目标 1、知识与技能:掌握楞次定律的主要内容,能熟练运用楞次定律判断感应电流方向。 2、过程与方法:通过楞次定律的探究过程,掌握实验探究的基本方法;初步掌握比较总结法这一研究方法。 3、情感态度与价值观:培养学生对探究的兴趣、抽象思维能力以及严谨的科学态度。 二、重点难点 重点:实验探究楞次定律的主要内容;运用楞次定律解决具体问题的方法与步骤。 难点:楞次定律与安培定则的结合运用;楞次定律中阻碍的理解。 关键:楞次定律探究实验 三、教具与学具 条形磁铁、螺线管、导线若干、检流计、带有铝环的支架以及楞次定律探究实验和表格的课件。 四、教法与学法 1.教法选择 以实验法为主,讲授法和讨论法为辅。主要采用实验探究法得出楞次定律;重点内容和难点知识,由教师以讲授的形式呈现给学生;在教师指导下由学生的分组讨论,得出结论,培养学生的语言交流能力和分析能力。 2.学法指导 本课结合教法,引导学生通过以下学法进行学习。 实验探索法:本课创设了有趣的物理实验,反复思考物理现象的原因和结果,

有助于培养学生的实验观察能力和知识的迁移能力。 比较总结法:通过对现象的讨论、分析、比较、总结出物理规律的过程,有助于学生分析能力和综合能力的培养。 反馈定位法:本课通过实例解析和练习反馈,可以巩固所学知识,有利于学生对概念的准确定位和正确思维的形成。 五、教学过程 (一)新课引入(3分钟) 教师:在上节课的电磁感应实验中,我们了解到当闭合线圈内的磁通量发生变化时会有感应电流产生。可大家有没有注意到,不同的实验条件下所得到的感应电流方向是不同的?我们将这个实验再做一遍,大家注意观察检流计的指针偏转方向有没有变化。(教师做演示实验) 学生:注意到了 教师:感应电流的方向有哪些因素决定呢?遵循什么规律?下面我们将通过实验来探究这个问题。 (二)探究思考(34分钟) 1.演示实验(3分钟) 教师:老师这里有一套仪器,由一个支架、两个铝环 和一个铝质横梁组成,铝环A是闭合的,铝环B是有缺口 的,大家注意观察,当我把磁铁移向有缺口的铝环时,铝 环运动了吗? 学生:没有。 教师:当把磁铁移向闭合铝环的时候,发生什么变化呢? 学生:铝环发生转动了。 教师:闭合铝环转动,说明有力在推动它。可是磁铁没有接触铝环,也不会对铝环产生吸引力,为什么会有力的作用呢?分析一下,磁铁的运动对铝环周围产生了哪些影响?当磁铁靠近闭合铝环时,铝环中的磁通量是不是变化了呢? 学生:变化了。 教师:通过上节课的学习,当磁通量发生变化时,会在闭合铝环中产生什么影响?

角动量定理

角动量守恒 现在我们来讨论物体的转动。有关转动的运动学我们在第一章已经了解得很 清楚了,有趣的是,你发现在转动和线性运动之间几乎每一个量都是相互对应的。 譬如,就象我们讨论位置和速度那样,在转动中可以讨论角位置和角速度。速度 说明物体运动得多快,而角速度则反映了物体转动的快慢,角速度越大,物体转动得越快,角度变化也越快。再继续下去,我们可以把角速度对时间微分,并称2 d dt d dt αω==ΦK K K 2为角加速度,它与通常的加速度相对应。 当然,转动只是一种形式稍微特殊一点的运动,其动力学方程也就无外乎 Newton 定律了。当然,由于这种运动只涉及转动,因此,我们也许可以找到一 些更加适合描述转动的物理量以及相应的作为Newton 第二定律推论的动力学 方。为了将该转动动力学和构成物体的质点动力学规律联系起来,我们首先就应 当求出,当角速度为某一值时,某一特定质点是如何运动的。这一点我们也是已 经知道了的:假如粒子是以一个给定的角速度ωK 转动,我们发现它的速度为 v r ω=×K K K (1) 接下来,为了继续研究转动动力学,就必须引进一个类似于力的新的概念。 我们要考察一下是否能够找到某个量,它对转动的关系就象力对线性运动的关系 那样,我们称它为转矩(转矩的英文名称torque 这个字起源于拉丁文torquere ,即 扭转的意思)。力是线性运动变化所必须的,而要使某一物体的转动发生变化就 需要有一个“旋转力”或“扭转力”,即转矩。定性地说,转矩就是“扭转’;但 定量地说,转矩又应该是什么呢?因为定义力的一个最好的办法是看在力作用下 通过某一给定的位移时,它做了多少功,所以通过研究转动一个物体时做了多少 功就能定量地得出转矩的理论。为了保持线性运动和转动的各个量之间的对应关 系,我们让在力作用下物体转过一个微小距离时所做的功等于转矩与物体转过的 角度的乘积。换句话说,我们是这样来定义转矩,使得功的定理对两者完全相同: 力乘位移是功,转矩乘角位移也是功。这就告诉了我们转矩是什么。如果粒子的 位矢转过一个很小的角度,它做了多少功呢?这很容易。所做的功是

第五节-角动量角动量守恒定理讲解学习

第五节-角动量角动量 守恒定理

第五章角动量角动量守恒定理 本章结构框图 学习指导 本章概念和内容是中学没有接触过的,是大学物理教学的重点和难点。许多同学容易将平动问题与转动问题中的概念和规律混淆,例如两种冲击摆问题。建议采用类比方法,对质量与转动惯量、动量与角动量、力与力矩、冲量与角冲量、平动动能和转动动能、运动学的线量和角量、动量定理和角动量定理、动量守恒和角动量守恒……一一加以比较。本章的重点是刚体定轴转动问题,注意定轴条件下,各种规律都应该用标量式表示。还请注意动量守恒在天体问题、粒子问题中的应用。 基本要求 1.理解质点、质点系、定轴刚体的角动量概念。 2.理解定轴刚体的转动惯量概念,会进行简单计算。 3.理解力矩的物理意义, 会进行简单计算。

4.掌握刚体定轴转动定律,熟练进行有关计算。 5.理解角冲量(冲量矩)概念,掌握质点、质点系、定轴刚体的角动量定 理,熟练进行有关计算。 6.掌握角动量守恒的条件,熟练应用角动量守恒定律求解有关问题。 内容提要 1.基本概念 刚体对定轴的转动惯量:是描述刚体绕定轴转动时,其转动惯性大小的物理量。定义为刚体上每个质元(质点、线元、面元、体积元)的质量与该质元到转轴距离平方之积的总和。即: I的大小与刚体总质量、质量分布及转轴位置有关。 质点、质点系、定轴刚体的角动量:角动量也称动量矩,它量度物体的转动运动量,描述物体绕参考点(轴)旋转倾向的强弱。表5.1对质点、质点系、定轴刚体的角动量进行了比较。 表5.1质点、质点系和定轴刚体的角动量

力矩:力的作用点对参考点的位矢与力的矢积叫做力对该参考点的力矩(图5.1): 即: 大小:(力×力臂)方向:垂直于决定的平面,其指向由右手定则确定。

楞次定律教学设计 详案

德州学院第五届教学技能大赛 楞次定律 教学设计详案 推荐单位物理系 参赛选手刘宗耀 所学专业物理学 学科层次本科

楞次定律教学设计详案 一、教学目标 1、知识与技能:掌握楞次定律的主要内容,能熟练运用楞次定律判断感应电流方向。 2、过程与方法:通过楞次定律的探究过程,掌握实验探究的基本方法;初步掌握比较总结法这一研究方法。 3、情感态度与价值观:培养学生对探究的兴趣、抽象思维能力以及严谨的科学态度。 二、重点难点 重点:实验探究楞次定律的主要内容;运用楞次定律解决具体问题的方法与步骤。 难点:楞次定律与安培定则的结合运用;楞次定律中阻碍的理解。 关键:楞次定律探究实验 三、教具与学具 条形磁铁、螺线管、导线若干、检流计、带有铝环的支架以及楞次定律探究实验和表格的课件。 四、教法与学法 1.教法选择 以实验法为主,讲授法和讨论法为辅。主要采用实验探究法得出楞次定律;重点内容和难点知识,由教师以讲授的形式呈现给学生;在教师指导下由学生的分组讨论,得出结论,培养学生的语言交流能力和分析能力。 2.学法指导 本课结合教法,引导学生通过以下学法进行学习。 实验探索法:本课创设了有趣的物理实验,反复思考物理现象的原因和结果,有助于培养学生的实验观察能力和知识的迁移能力。 比较总结法:通过对现象的讨论、分析、比较、总结出物理规律的过程,有助于学生分析能力和综合能力的培养。 反馈定位法:本课通过实例解析和练习反馈,可以巩固所学知识,有利于学

生对概念的准确定位和正确思维的形成。 五、教学过程 (一)新课引入(3分钟) 教师:在上节课的电磁感应实验中,我们了解到当闭合线圈内的磁通量发生变化时会有感应电流产生。可大家有没有注意到,不同的实验条件下所得到的感应电流方向是不同的?我们将这个实验再做一遍,大家注意观察检流计的指针偏转方向有没有变化。(教师做演示实验) 学生:注意到了 教师:感应电流的方向有哪些因素决定呢?遵循什么规律?下面我们将通过实验来探究这个问题。 (二)探究思考(34分钟) 1.演示实验(3分钟) 教师:老师这里有一套仪器,由一个支架、两个铝环 和一个铝质横梁组成,铝环A是闭合的,铝环B是有缺口 的,大家注意观察,当我把磁铁移向有缺口的铝环时,铝 环运动了吗? 学生:没有。 教师:当把磁铁移向闭合铝环的时候,发生什么变化呢? 学生:铝环发生转动了。 教师:闭合铝环转动,说明有力在推动它。可是磁铁没有接触铝环,也不会对铝环产生吸引力,为什么会有力的作用呢?分析一下,磁铁的运动对铝环周围产生了哪些影响?当磁铁靠近闭合铝环时,铝环中的磁通量是不是变化了呢? 学生:变化了。 教师:通过上节课的学习,当磁通量发生变化时,会在闭合铝环中产生什么影响? 学生:会有感应电流产生。 教师:根据我们之前对电磁感应的学习,有电流通过闭合线圈时,会在空间中产生什么影响? 学生:感应电流会在空间中产生磁场。

角动量定理及角动量守恒定律

角动量定理及角动量守恒定律 一、力对点的力矩: 如图所示,定义力F 对O 点的力矩为: F r M ?= 大小为: θsin Fr M = 力矩的方向:力矩是矢量,其方向可用右手螺旋法则来判断:把右手拇指伸直,其余四指弯曲,弯曲的方向由矢径通过小于1800的角度转向力的方向时,拇指指向的方向就是力矩的方向。 二、力对转轴的力矩: 力对O 点的力矩在通过O 点的轴上的投影称为力对转轴的力矩。 1)力与轴平行,则0=M ; 2)刚体所受的外力F 在垂直于转轴的平面内,转轴和力的作用线之 间的距离d 称为力对转轴的力臂。力的大小与力臂的乘积,称为力F 对 转轴的力矩,用M 表示。力矩的大小为: Fd M = 或: θsin Fr M = 其中θ是F 与r 的夹角。 3)若力F 不在垂直与转轴的平面内,则可把该力分解为两个力,一 个与转轴平行的分力1F ,一个在垂直与转轴平面内的分力2F ,只有分力2F 才对刚体的转动状态有影响。 对于定轴转动,力矩M 的方向只有两个,沿转轴方向或沿转轴方向反方向,可以化为标量形式,用正负表示其方向。 三、合力矩对于每个分力的力矩之和。 合力 ∑=i F F 合外力矩 ∑∑∑=?=?=?i i i M F r F r F r M = 即 ∑i M M = 四、质点的角动量定理及角动量守恒定律 在讨论质点运动时,我们用动量来描述机械运动的状态,并讨论了在机械运动过程中所遵循的动量守恒定律。同样,在讨论质点相对于空间某一定点的运动时,我们也可以用角动量来描述物体的运动状态。角动量是一个很重要的概念,在转动问题中,它所起的作用和(线)动量所起的作用相类似。 在研究力对质点作用时,考虑力对时间的累积作用引出动量定理,从而得到动量守恒定律;考虑力对空间的累积作用时,引出动能定理,从而得到机械能守恒定律和能量守恒定律。至于力矩对时间的累积作用,可得出角动量定理和角动量守恒定律;而力矩对空间的累积作用,则可得出刚体的转动动能定理,这是下一节的内容。本节主要讨论的是绕定轴转动的刚体的角动量定理和角动量守恒定律,在这之前先讨论质点对给定点的角动量定理和角动量守恒定律。 下面将从力矩对时间的累积作用,引入的角动量的概念,讨论质点和刚体的角动量和角动量守恒定律。 1.质点的角动量(Angular Momentum )——描述转动特征的物理量 1)概念 一质量为m 的质点,以速度v 运动,相对于坐标原点O 的位置矢量

第五节 角动量角动量守恒定理

第五章角动量角动量守恒定理 本章结构框图 学习指导 本章概念和内容是中学没有接触过的,是大学物理教学的重点和难点。许多同学容易将平动问题与转动问题中的概念和规律混淆,例如两种冲击摆问题。建议采用类比方法,对质量与转动惯量、动量与角动量、力与力矩、冲量与角冲量、平动动能和转动动能、运动学的线量和角量、动量定理和角动量定理、动量守恒和角动量守恒……一一加以比较。本章的重点是刚体定轴转动问题,注意定轴条件下,各种规律都应该用标量式表示。还请注意动量守恒在天体问题、粒子问题中的应用。 基本要求 1.理解质点、质点系、定轴刚体的角动量概念。 2.理解定轴刚体的转动惯量概念,会进行简单计算。 3.理解力矩的物理意义, 会进行简单计算。 4.掌握刚体定轴转动定律,熟练进行有关计算。 5.理解角冲量(冲量矩)概念,掌握质点、质点系、定轴刚体的角动量定理, 熟练进行有关计算。

6.掌握角动量守恒的条件,熟练应用角动量守恒定律求解有关问题。 内容提要 1.基本概念 刚体对定轴的转动惯量:是描述刚体绕定轴转动时,其转动惯性大小的物理量。定义为刚体上每个质元(质点、线元、面元、体积元)的质量与该质元到转轴距离平方之积的总和。即: I的大小与刚体总质量、质量分布及转轴位置有关。 质点、质点系、定轴刚体的角动量:角动量也称动量矩,它量度物体的转动运动量,描述物体绕参考点(轴)旋转倾向的强弱。表5.1对质点、质点系、定轴刚体的角动量进行了比较。 表5.1质点、质点系和定轴刚体的角动量

力矩:力的作用点对参考点的位矢与力的矢积叫做力对该参考点的力矩(图5.1): 即: 大小:(力×力臂)方向:垂直于决定的平面,其指向由右手定则确定。 对于力矩的概念应该注意明确以下问题: ?区分力对参考点的力矩和力对定轴的力矩:力对某轴的力矩是力对轴上任意一点的力矩在该轴上的投影。例如:某力对x、y、z轴的力矩就是该力对原点 的力矩在三个坐标轴上的投影: 由上可知:力对参考点的力矩是矢量,而力对定轴的力矩是代数量。 ?明确质点系内力矩的矢量和恒为零:由于内力总是成对出现,作用力和反 作用力等大、反向、在同一直线上,所以对任何参考点内力矩的矢量和恒为零。当然,对任意轴,内力矩的代数和也恒为零。 ?明确质点系的合外力矩不等于其外力矢量和的力矩:合外力矩为各外力对同一参考点的力矩的矢量和,即:。由于一般情况下,各外力的作 用点的位矢各不相同,所以不能先求合力,再求合力的力矩。但是存在特例:在求重力矩时,可以把系内各质点所受重力平移到质心C,先求出其合 力,再由得到重力的合力矩。

相关文档
相关文档 最新文档