文档库 最新最全的文档下载
当前位置:文档库 › 7薄膜晶体管器件结构

7薄膜晶体管器件结构

薄膜晶体管

薄膜晶体管的定义: Thin Film Transistor (薄膜场效应晶体管),是指液晶显示器上的每一液晶象素点都是由集成在其后的薄膜晶体管来驱动。从而可以做到高速度高亮度高对比度显示屏幕信息。TFT属于有源矩阵液晶显示器。 补充:TFT(ThinFilmTransistor)是指薄膜晶体管,意即每个液晶像素点都是由集成在像素点后面的薄膜晶体管来驱动,从而可以做到高速度、高亮度、高对比度显示屏幕信息,是目前最好的LCD彩色显示设备之一,其效果接近CRT显示器,是现在笔记本电脑和台式机上的主流显示设备。TFT的每个像素点都是由集成在自身上的TFT来控制,是有源像素点。因此,不但速度可以极大提高,而且对比度和亮度也大大提高了,同时分辨率也达到了很高水平。 TFT ( Thin film Transistor,薄膜晶体管)屏幕,它也是目前中高端彩屏手机中普遍采用的屏幕,分65536 色及26 万色,1600万色三种,其显示效果非常出色。 平板显示器种类: 经过二十多年的研究、竞争、发展,平板显示器已进入角色,成为新世纪显示器的主流产品,目前竞争最激烈的平板显示器有四个品种: 1、场致发射平板显示器(FED); 2、等离子体平板显示器(PDP); 3、有机薄膜电致发光器(OEL); 4、薄膜晶体管液晶平板显示器(TFT-LCD)。 场发射平板显示器原理类似于CRT,CRT只有一支到三支电子枪,最多六支,而场发射显示器是采用电子枪阵列(电子发射微尖阵列,如金刚石膜尖锥),分辨率为VGA(640×480×3)的显示器需要92.16万个性能均匀一致的电子发射微尖,材料工艺都需要突破。目前美国和法国有小批量的小尺寸的显示屏生产,用于国防军工,离工业化、商业化还很远。 等离子体发光显示是通过微小的真空放电腔内的等离子放电激发腔内的发光材 料形成的,发光效应低和功耗大是它的缺点(仅1.2lm/W,而灯用发光效率达80lm/ W以上,6瓦/每平方英寸显示面积),但在102~152cm对角线的大屏幕显示领域有很强的竞争优势。业内专家分析认为,CRT、LCD和数字微镜(DMD)3种投影显示器可以与PDP竞争,从目前大屏幕电视机市场来看,CRT投影电视价格比PDP便宜,是PDP最有力的竞争对手,但亮度和清晰度不如PDP,LCD和DMD投影的象素和价格目前还缺乏竞争优势。尽管彩色PDP在像质、显示面积和容量等方面有了明显提高,但其发光效率、发光亮度、对比度还达不到直观式彩色电视机的要求,最重要的是其价格还不能被广大家用消费者所接受,这在一定程度上制约了彩色PDP 市场拓展。目前主要在公众媒体展示场合应用开始普遍起来。 半导体发光二极管(LED)的显示方案由于GaN蓝色发光二极管的研制成功,从而一举获得了超大屏幕视频显示器市场的绝对控制权,但是这种显示器只适合做户外大型显示,在中小屏幕的视频显示器也没有它的市场。 显示器产业的专家一直期望有机薄膜电致发光材料能提供真正的象纸一样薄的 显示器。有机薄膜电致发光真正的又轻又薄,低功耗广视角,高响应速度(亚微妙)

膜材料发展前景与展望

膜材料发展前景与展望 一、国内外经济对膜产业的重大需求 近几十年发展起来的膜技术是以具有选择透过性的膜材料作为核心,在膜两侧推动力下,实现混合物分离、提纯、浓缩的分离技术。与过滤、精馏、萃取、蒸发等传统分离技术相比,膜技术具有能耗低、分离效率高、设备简单、无相变、无污染等优点,因此被称为新型高效分离技术。作为一种高新技术,膜技术并不是高不可攀的,实际上,它就在我们身边。比如,随处可购买到的纯净饮用水绝大部分采用膜技术净化得到;为保持乳品的营养价值及水果的风味,牛奶、酸奶、奶酪等也可以采用膜技术进行除菌、浓缩及杂质去除。 在21世纪的多数工业中,膜技术将扮演重要角色,在水资源、能源、环境、传统产业改造等领域发挥重大作用。 在缓解水资源短缺方面,预计到2050年,我国缺水总量将达4000亿m3,因缺水而导致的工业总产值损失大约2000亿元,农业总产值损失大约1500亿元。膜法海水淡化技术、膜法水质净化技术、膜及其集成技术将成为解决我国北方资源性缺水、南方水质性缺水和城市缺水的有效手段。 在化工与石油化工领域,分离过程能耗占到了总能耗的70%左右,分离效率低还导致了严重的环境污染问题。膜分离技术可以高效低能耗地实现高精度分离,是过程工业节能降耗的共性技术之一。譬如,膜法精密过滤代替蒸发,可节能40%以上,减少溶剂消耗量30%以上;膜法渗透汽化技术代替精馏,进行有机物脱水,可节能50%

以上;膜技术是过程工业减排的关键支撑技术,采用膜法处理油田回注水、焦化废水等,可实现工业废水循环利用,减少废水排放量;采用膜法可以实现废酸、废碱资源化利用,实现废液零排放。 此外,膜技术还是改造传统产业、推进相关行业技术进步的高新技术,可以说,膜技术的发展得到了全球范围的高度重视,美国、日本、欧洲等多国政府将膜技术作为21世纪高新技术进行研究与开发,制定了相应的研究开发计划,促进了膜技术和产业的强劲发展。我国政府对膜技术的研究和开发同样十分重视,自“六五”以来,已连续六个五年计划都把膜技术作为重点项目进行支持。2010年出台《国务院关于加快培育和发展战略性新兴产业的决定》将高性能膜材料列入战略性新兴产业,为膜技术和膜产业的自身发展,膜应用市场的培育带来了前所未有的机遇。 经过5O多年的发展.中国膜产业逐渐走向成熟。特别是近20年来,中国膜产业高速增长,总产值从1993年2亿元人民币上升到20O8年200亿元(膜行业总产值是指膜制品、膜组件、膜附属设备及相关工程的总值,膜制品与膜组件是整个行业的核心)。 在21世纪的许多工业中,都将膜技术的重要性提升到了战略高度。2009年我国膜产业总产值约240亿元,2010年约300亿元。按照目前年均30%的增幅,未来5年我国膜产业有望突破1000亿元。可以预见,膜技术将迎来产值大幅增加的黄金十年,它所带动的相关产业产值总量更是不可估量。膜技术将在水资源、能源、环境、传统产业改造等领域发挥重大作用。

薄膜材料的应用与发展

薄膜材料的应用与发展 薄膜材料的发展以及应用,薄膜材料的分类,如金刚石薄膜、铁电薄膜、氮化碳薄膜、半导体薄膜复合材料、超晶格薄膜材料、多层薄膜材料等。各类薄膜在生产与生活中的运用以及展望。 1 膜材料的发展 在科学发展日新月异的今天,大量具有各种不同功能的薄膜得到了广泛的应用,薄膜作为一种重要的材料在材料领域占据着越来越重要的地位。 自然届中大地、海洋与大气之间存在表面,一切有形的实体都为表面所包裹,这是宏观表面。生物体还存在许多肉眼看不见的微观表面,如细胞膜和生物膜。生物体生命现象的重要过程就是在这些表面上进行的。细胞膜是由两层两亲分子--脂双层膜构成,它好似栅栏,将一些分子拦在细胞内,小分子如氧气、二氧化碳等,可以毫不费力从膜中穿过。膜脂双层分子层中间还夹杂着蛋白质,有的像船,可以载分子,有的像泵,可以把分子泵到膜外。细胞膜具有选择性,不同的离子须走不同的通道才行,比如有K+通道、Cl-通道等等。细胞膜的这些结构和功能带来了生命,带来了神奇。 2 膜材料的应用 人们在惊叹细胞膜奇妙功能的同时,也在试图模仿它,仿生一直以来就是材料设计的重要手段,这就是薄膜材料。它的一个很重要的应用就是海水的淡化。虽然地球上70%的面积被水覆盖着,但是人们赖以生存的淡水只占总水量的2.5%~3%,随着人口增长和工业发展,当今世界几乎处于水荒之中。因此将浩瀚的海水转为可以饮用的淡水迫在眉睫。淡化海水的技术主要有反渗透法和蒸馏法,反渗透法用到的是具有选择性的高分子渗透膜,在膜的一边给海水施加高压,使水分子透过渗透膜,达到膜的另一边,而把各种盐类离子留下来,就得到了淡水。反渗透法的关键就是渗透膜的性能,目前常用有醋酸纤维素类、聚酰胺类、聚苯砜对苯二甲酰胺类等膜材料.这种淡化过程比起蒸法法,是一种清洁高效的绿色方法。 利用膜两边的浓度差不仅可以淡化海水,还可以提取多种有机物质。工业生产中,可用膜法过滤含酚、苯胺、有机磺酸盐等工业废水,膜法过滤大大节约了成本,有利于我们的生存环境。 膜的应用还体现在表面化学上面。在日常生活中,我们会发现在树叶表面,水滴总是呈圆形,是因为水不能在叶面铺展。喷洒农药时,如果在农药中加入少量的润湿剂(一种表面活性剂),农药就能够在叶面铺展,提高杀虫效果,降低农药用量。 更重要的,研究人员还将膜材料用于血液透析,透析膜的主要功能是移除体内多余水份和清除尿毒症毒素,大大降低了肾功能衰竭患者的病死率[1] 3 膜材料的分类 近年来,随着成膜技术的飞速发展,各种材料的薄膜化已经成为一种普遍趋势。 薄膜材料种类繁多,应用广泛,目前常用的有:超导薄膜、导电薄膜、电阻薄膜、半导体薄膜、介质薄膜、绝缘薄膜、钝化与保护薄膜、压电薄膜、铁电薄膜、光电薄膜、磁电薄膜、磁光薄膜等。目前很受人们注目的主要有一下几种薄膜。 3.1金刚石薄膜 金刚石薄膜的禁带宽,电阻率和热导率大,载流子迁移率高,介电常数小,击穿电压高,是一种性能优异的电子薄膜功能材料,应用前景十分广阔。 近年来,随着科技的发展,人们发展了多种金刚石薄膜的制备方法,比如离子束沉积法、磁控溅射法、热致化学气相沉积法、等离子化学气相沉积法等.成功获得了生长速度快、具有较高质量的膜,从而使金刚石膜具备了商业应用的可能。

薄膜材料与技术

薄膜技术在能源材料中的应用——薄膜太 阳能电池 一概述 能源和环境是二十一世纪面临的两个重大问题,据专家估算,以现在的能源消耗速度,可开采的石油资源将在几十年后耗尽,煤炭资源也只能供应人类使用约200年。太阳能电池作为可再生无污染能源,能很好地同时解决能源和环境两大难题,具有很广阔的发展前景。照射到地球上的太阳能非常巨大,大约40 min照射到地球上的太阳能就足以满足全球人类一年的能量需求。因此,制备低成本高光电转换效率的太阳能电池不仅具有广阔的前景,而且也是时代所需。 太阳能电池行业是21世纪的朝阳行业,发展前景十分广阔。在电池行业中,最没有污染、市场空间最大的应该是太阳能电池,太阳能电池的研究与开发越来越受到世界各国的广泛重视。 太阳能电池种类繁多,主要有硅太阳能电池、聚光太阳能电池、无机化合物薄膜太阳能电池、有机薄膜太阳能电池、纳米晶薄膜太阳能电池和叠层太阳能电池等几大类[1]。 二薄膜太阳能电池。 1、薄膜硅太阳能电池 薄膜硅太阳能电池(硅膜厚约50μm)的出现,相对晶体硅太阳能电池,所用的硅材料大幅度减少,很大程度上降低了晶体硅太阳能电池的成本。薄膜硅太阳能电池主要有非晶硅(a—Si)、微晶硅(μc—Si)和多晶硅(p-Si)薄膜太阳能电池,前两者有光致衰退效应,其中μc—Si薄膜太阳能电池光致衰退效应相对较弱但μc-Si薄膜沉积速率低(仅1.2 nm/s) ,光致衰退效应致使其性能不稳定,发展受到一定的限制,而后者则无光致衰退效应问题,因此是硅系太阳能电池

的发展方向[1]。 太阳能电池是制约太阳能发电产业发展的瓶颈技术之一。目前主要的研究工作集中在新材料、新工艺、新设计等方面,其目的是为了提高电池转换效率和降低电池制造成本。制造太阳能电池的材料主要有单晶硅、多晶硅、非晶硅以及其他新型化合物半导体材料,其中非晶硅属直接转换型半导体,光吸收率大,易于制成厚度0.5微米以下、面积l平方米以上的薄膜,并且容易与其他 原子结合制成对近红外高吸收的非晶硅锗集层光电池,这是目前的主攻方向之一;另一种是非晶硅和多晶硅混合薄膜材料,它转换率高、用材省,是新世纪最有前途的薄膜电池之一。 2、无机化合物薄膜太阳能电池 选用的无机化合物主要有CdTe,CdS,GaAs,CulnSe2(CIS)等,其中CdTe的禁带宽度为1.45 eV(最佳产生光伏响应的禁带宽度为1.5 eV),是一个理想的半导体材料,截止2004年,CdTe电池光电转化效率最高为16.5%;CdS的禁带宽度约为2.42 eV,是一种良好的太阳能电池窗口层材料,可与CdTe、SnS和CIS等形成异质结太阳能电池;GaAs的禁带宽度为1.43 eV,光吸收系数很高,GaAs单结太阳电池的理论光电转化效率为27%,目前GaA/Ge单结太阳电池最高光电转换效率超过20%,生产水平的光电转换效率已经达到19~20%,其与GalnP组成的双节、三节和多节太阳能电池有很大的发展前景;CIS薄膜太阳能电池实验室最高光电转化效率已达19.5%,在聚光条件下(14个太阳光强),光电转化效率达到21.5%,组件产品的光电转化效率已经超过13%;CIS 薄膜用Ga部分取代In,就形成Culn1-x Ga x Se2 (简称CIGS)四元化合物,其薄膜的禁带宽度在1.04~1.7 eV范围内可调,这为太阳能电池最佳禁带宽度的优化提供了机会,同时开发了两种新的材料,用Ga完全取代In形成CuGaSe2,用S完全取代Se形成CulnS2,以备In、Se资源不足时可以采用。但是,Cd和As是有毒元素,In和Se是稀有元素,严重地制约着无机化合物薄膜太阳能电池的大规模生

薄膜晶体管-调研报告

“薄膜晶体管的制备及电学参数”调研报告 (青岛大学物理科学学院,应用物理系) 摘要:20世纪平板显示技术的出现,把人类带入了信息社会,人类社会从此发生了质的飞跃。而平板显示的核心元件就是薄膜晶体管TFT(nlin Film Transistor),一种在掺杂硅片或玻璃基底上通过薄膜工艺制作的场效应晶体管器件。将半导体氧化物作为有源层来制作TFT用于平板显示中,不仅能获得较高迁移率,器件性能优越,而且制造工艺简单、低温下可以获得,显示出了巨大的应用前景。本文综述了薄膜材料的制备方法,薄膜晶体管的发展历程与应用以及其结构、工作原理和测试表征方法。 关键词:薄膜材料,薄膜晶体管,制备,表征方法 Abstract:In the 20th century,the emergence of the flat panel display technology has brought human beings into the information society.Since then the human society happened a qualitative leap.The core component of flat panel display is the thin film transistor(TFT),it is a field effect transistor device produced by thin film technology on the doped-silicon or glass.If we use the semiconductor oxide as the active layer,not only we can get a higher mobility,bu also the device performance call be enhanced.And the manufacturing process is simple,low temperatures also can be obtained,which shows a great prospect.The preparation method of thin film materials is reviewed in this paper, the development and application of thin film transistor and its structure, working principle and test method are characterized, Keywords: Thin film materials, thin film transistor, manufacture, characterization methods 前言 薄膜材料是指厚度介于单原子分子到几毫米间的薄金属或有机物层。当固体或液体的一维线性尺度远远小于它的其他二维尺度时,我们称这样的固体或液体为膜。薄膜材料具有良好的韧性、防潮性和热封性能,应用非常广泛。例如:双向拉伸聚丙烯薄膜(BOPP)、低密度聚乙烯薄膜(LDPE)、聚酯薄膜(PET)、镀铝薄膜、半导体氧化物薄膜等等。近几年来,以氧化锌、氧化铟、氧化锡等半导体氧化物及其合金为有源层的透明薄膜晶体管备受关注,并已取得了突破性进展。这些氧化物是优异的光电材料,具有高光学透过率、生长温度低、击穿电压高、电子迁移率高等优点,从而可以获得更好、成本更低的薄膜晶体管,并且也为新型薄膜晶体管的发展带来了契机。氧化物薄膜晶体管作为极具发展潜力的新型薄膜晶体管,具备了许多传统TFT无法比拟的优点,但是也存在诸多问题有待进一步解决。例如,如何解决外界环境对器件性能的影响,优化工艺从而降低成本,如何制作出性能优越、具有实用价值的器件等,这些都是现在研究面临的问题。本文的主要调研对象,包括氧化锌以及有机薄膜作为有源层的薄膜晶体管。 薄膜晶体管的发展历程 1925年,Julius Edger Lilienfeld首次提出结型场效应晶体管(Field

第六章 薄膜材料及其应用

第六章 薄膜材料及其应用(1) 主要内容 一、超硬薄膜 二、智能薄膜 三、纳米薄膜 四、三族元素氮化物薄膜 五、巨磁和庞磁薄膜 六、铁电薄膜 七、红外敏感薄膜 八、人工周期调制材料 一、超硬薄膜 材料的硬度不仅取决于材料的宏观性质(弹性和塑性),而且 也取决于材料的微观性质(原子间的相互作用力)。合成超硬材料对于了解原子间相互作用的微观特性与宏观特性间的基本关系,以及纯技术的应用都十分重要。 超硬材料(包括已有超硬材料和理论预言超硬材料)可以分为三类: 1. 由周期表中第2、3周期的轻元素所形成的共价和离子-共价化合物; 2. 特殊共价固体,包括各种结晶和无序的碳材料; 3. 与轻元素形成的部分过渡金属化合物,如:硼化物、碳化物、氮化物和氧化物。 超硬材料的特点 1. 超硬材料在正常条件下大多是亚稳相; 2. 绝大多数超硬材料都是共价型或离子型固体; 3. 过渡金属化合物超硬材料具有共价键和金属键; 4. 超硬材料在元素周期表中都由位于中间位置的主族元素组成,这些元素具有最小离子、共价或金属半径,且固态中的原子间具有最大的结合能; 5. 元素中电子壳层的周期填充使固体中的原子半径或分子体积呈规律性变化; 6. 元素固相在变化时,如具有最小摩尔体积,则具有最大的体弹性模量、最大的结合能和最高的熔点。满足Aleksandrov 关系: k 为体弹性模量,Vm 为摩尔体积,Ec 为结合能 对单一元素的固体, 绝大多数在1-4; (一)由原子序数较小的元素形成的超硬化合物 这些超硬材料由位于第2、3周期中的元素如:铍、硼、碳、氮、氧、铝、硅、磷 的化合物组成。它们能形成三维刚性点阵、原子间具有较强的共价键。典型的离子-共价化合物例子是氧化物,如:刚玉Al2O3,超石英(SiO2的高压相)。 这些超硬化合物主要有:BeO 、B6O 、P2O5、Al-B-O 系统、CNx 、SiC 、Be2C 、Si3N4及其它硼碳化合物、硼磷化物、硼硅化物等。 (二)碳材料 由于C 原子间存在不同类型的化学键合,所以C 存在大量的同素异构体和无序相。如 sp3 C 杂化键合形成的金刚石,是最硬的的已知材料。所以可将碳划到特殊材料。 单晶金刚石的维氏硬度达70-140GPa 。另一sp3 C 杂化键合形成的六方金刚石具有与金刚石类似的力学性质。近年来,利用各种沉积技术,制备了高sp3 键合度的非晶碳膜,也称类金刚石薄膜。它的显微硬度达到70GPa 。足球烯C60是有C 的sp2 原子键合形成m c V E k ∝160.5/E kV c m -≡

薄膜技术发展历程

薄膜技术发展历程(一):镀膜发展史 化学镀膜最早用于在光学元件表面制备保护膜。随后,1817年,Fraunhofe在德国用浓硫酸或硝酸侵蚀玻璃,偶然第一次获得减反射膜,1835年以前有人用化学湿选法淀积了银镜膜它们是最先在世界上制备的光学薄膜。后来,人们在化学溶液和蒸气中镀制各种光学薄膜。50年代,除大快窗玻璃增透膜的一些应用外,化学溶液镀膜法逐步被真空 镀膜取代。 真空蒸发和溅射这两种真空物理镀膜工艺,是迄今在工业撒谎能够制备光学薄膜的两种最主要的工艺。它们大规模地应用,实际上是在1930年出现了油扩散泵---机械泵抽气系统之后。 1935年,有人研制出真空蒸发淀积的单层减反射膜。但它的最先应用是1945年以后镀制在眼镜片上。1938年,美国和欧洲研制出双层减反射膜,但到1949年才制造出优质的产品。1965年,研制出宽带三层减反射系统。在反射膜方面,美国通用电气公司1937年制造出第一盏镀铝灯。德国同年制成第一面医学上用的抗磨蚀硬铑膜。在滤光片方面,德国1939年试验淀积出金属—介质薄膜Fabry---Perot型干涉滤光片。 在溅射镀膜领域,大约于1858年,英国和德国的研究者先后于实验室中发现了溅射现象。该技术经历了缓慢的发展过程。1955年,Wehner 提出高频溅射技术后,溅射镀膜发展迅速,成为了一种重要的光学薄膜工艺。现有两极溅射、三极溅射、反应溅射、磁控溅射和双离子溅射等 淀积工艺。 自50年代以来,光学薄膜主要在镀膜工艺和计算机辅助设计两个

方面发展迅速。在镀膜方面,研究和应用了一系列离子基新技术。1953年,德国的Auwarter申请了用反应蒸发镀光学薄膜的专利,并提出用离子化的气体增加化学反应性的建议。1964年,Mattox在前人研究工作的基础上推出离子镀系统。那时的离子系统在10Pa压力和2KV的放电电压下工作,用于在金属上镀耐磨和装饰等用途的镀层,不适合镀光学薄膜。后来,研究采用了高频离子镀在玻璃等绝缘材料上淀积光学薄膜。70年代以来,研究和应用了离子辅助淀积、反应离子镀和等离子化学气相等一系列新技术。它们由于使用了带能离子,而提供了充分的活化能,增加了表面的反应速度。提高了吸附原子的迁移性,避免形成柱状显微结构,从而不同程度地改善了光学薄膜的性能,是光学薄膜制造 工艺的研究和发展方向。 实际上,真空镀膜的发展历程要远远复杂的多。我们来看一个这个 有两百年历史的科技历程: 19世纪 真空镀膜已有200年的历史。在19世纪可以说一直是处于探索和预研阶段。探索者的艰辛在此期间得到充分体现。1805年, 开始研究接触角与表面能的关系(Young)。1817年, 透镜上形成减反射膜(Fraunhofer)。1839年, 开始研究电弧蒸发(Hare)。1852年, 开始研究真空溅射镀膜(Grove;Pulker)。1857年, 在氮气中蒸发金属丝形成薄膜(Faraday;Conn)。 1874年, 报道制成等离子体聚合物(Dewilde;Thenard)。1877年,薄膜的真空溅射沉积研究成功(Wright)。1880年, 碳氢化合物气相热解(Sawyer;Mann)。1887年, 薄膜的真空蒸

薄膜材料制备原理、技术及应用知识点

薄膜材料制备原理、技术及应用知识点1 一、名词解释 1. 气体分子的平均自由程:自由程是指一个分子与其它分子相继两次碰撞之间,经过的直线路程。对个别分子而言,自由程时长时短,但大量分子的自由程具有确定的统计规律。气体分子相继两次碰撞间所走路程的平均值。 2. 物理气相沉积(PVD):物理气相沉积(Physical Vapor Deposition,PVD)技术表示在真空条件下,采用物理方法,将材料源——固体或液体表面气化成气态原子、分子或部分电离成离子,并通过低压气体(或等离子体)过程,在基体表面沉积具有某种特殊功能的薄膜的技术。物理气相沉积的主要方法有,真空蒸镀、溅射镀膜、电弧等离子体镀、离子镀膜,及分子束外延等。发展到目前,物理气相沉积技术不仅可沉积金属膜、合金膜、还可以沉积化合物、陶瓷、半导体、聚合物膜等。 3. 化学气相沉积(CVD):化学气相沉积(Chemical vapor deposition,简称CVD)是反应物质在气态条件下发生化学反应,生成固态物质沉积在加热的固态基体表面,进而制得固体材料的工艺技术。它本质上属于原子范畴的气态传质过程。 4. 等离子体鞘层电位:等离子区与物体表面的电位差值ΔV p即所谓的鞘层电位。 在等离子体中放入一个金属板,由于电子和离子做热运动,而电子比离子的质量小,热速度就比离子大,先到达金属板,这样金属板带上负电,板附近有一层离子,于是形成了一个小局域电场,该电场加速了离子,减速电子,最终稳定了以后,就形成了鞘层结构,该金属板稳定后具有一个电势,称为悬浮电位。 5. 溅射产额:即单位入射离子轰击靶极溅出原子的平均数,与入射离子的能量有关。 6. 自偏压效应:在射频电场起作用的同时,靶材会自动地处于一个负电位下,导致气体离子对其产生自发的轰击和溅射。 7. 磁控溅射:在二极溅射中增加一个平行于靶表面的封闭磁场,借助于靶表面上形成的正交电磁场,把二次电子束缚在靶表面特定区域来增强电离效率,增加离子密度和能量,从而实现高速率溅射的过程。 8. 离子镀:在真空条件下,利用气体放电使气体或被蒸发物部分离化,产生离子轰击效应,最终将蒸发物或反应物沉积在基片上。结合蒸发与溅射两种薄膜沉积技术而发展的一种PVD方法。 9. 离化率:被离化的原子数与被蒸发气化的原子数之比称为离化率.一般离化装置的离化率仅为百分之几,离化率较高的空心阴极法也仅为20~40% 10. 等离子体辅助化学气相沉积(PECVD)技术:是一种用等离子体激活反应气体,促进在基体表面或近表面空间进行化学反应,生成固态膜的技术。等离子体化学气相沉积技术的基本原理是在高频或直流电场作用下,源气体电离形成等离子体,利用低温等离子体作为能量源,通入适量的反应气体,利用等离子体放电,使反应气体激活并实现化学气相沉积的技术。 11. 外延生长:在单晶衬底(基片)上生长一层有一定要求的、与衬底晶向相同的单晶层,犹如原来的晶体向外延伸了一段,故称外延生长。 12. 薄膜附着力:薄膜对衬底的黏着能力的大小,即薄膜与衬底在化学键合力或物理咬合力作用下的结合强度。 二、填空: 1、当环境中元素的分压降低到了其平衡蒸气压之下时,元素发生净蒸发。反之,元素发生净沉积。 2、在直流放电系统中,气体放电通常要经过汤生放电阶段、辉光放电阶段和弧光放电阶段三个放电过程,其中溅射法制备薄膜主要采用辉光放电阶段所产生的大量等离子体来形成溅射。 3、溅射仅是离子轰击物体表面时发生的物理过程之一,不同能量的离子与固体表面相互作用的过程不同,不仅可以实现对物质原子的溅射,还可以在固体表面形成沉积现象和离子注入现象。 4、溅射法所采有的放电气体多为Ar气,主要原因是惰性气体做为入射离子时,物质溅射产额高,从经济方面考虑,多使用Ar做为溅射气体。 5、直流溅射要求靶材具有良好的导电性,否则靶电流过小,靶电压过高,而射频溅射方法以交流电源提供高频电场,高频电场可经由其它阻抗形式进入沉积室,不再要求电极一定是导电体,使溅射过程摆脱对靶材导电性的要求。 6、磁控溅射存在的缺点。 1 微观永远大于宏观你永远大于人类今天永远大于永远■■■■■■■■纯属个人行为,仅供参考■■■■■■■■勿删■■■■■■■■■

高分子膜的发展应用

高分子膜的发展应用 【摘要】:薄膜材料的发展以及应用,薄膜材料的分类,如金刚石薄膜、铁电薄膜、氮化碳薄膜、半导体薄膜复合材料、超晶格薄膜材料、多层薄膜材料等。各类薄膜在生产与生活中的运用以及展望。 【关键词】:薄膜;金刚石;铁电;氮化碳;半导体;超晶格 1 膜材料的发展 在科学发展日新月异的今天,大量具有各种不同功能的薄膜得到了广泛的应用,薄膜作为一种重要的材料在材料领域占据着越来越重要的地位。 自然届中大地、海洋与大气之间存在表面,一切有形的实体都为表面所包裹,这是宏观表面。生物体还存在许多肉眼看不见的微观表面,如细胞膜和生物膜。生物体生命现象的重要过程就是在这些表面上进行的。细胞膜是由两层两亲分子--脂双层膜构成,它好似栅栏,将一些分子拦在细胞内,小分子如氧气、二氧化碳等,可以毫不费力从膜中穿过。膜脂双层分子层中间还夹杂着蛋白质,有的像船,可以载分子,有的像泵,可以把分子泵到膜外。细胞膜具有选择性,不同的离子须走不同的通道才行,比如有K+通道、Cl-通道等等。细胞膜的这些结构和功能带来了生命,带来了神奇。 2 膜材料的分类 近年来,随着成膜技术的飞速发展,各种材料的薄膜化已经成为一种普遍趋势。薄膜材料种类繁多,应用广泛,目前常用的有:超导薄膜、导电薄膜、电阻薄膜、半导体薄膜、介质薄膜、绝缘薄膜、钝化与保护薄膜、压电薄膜、铁电薄膜、光电薄膜、磁电薄膜、磁光薄膜等。目前很受人们注目的主要有一下几种薄膜。2.1金刚石薄膜 金刚石薄膜的禁带宽,电阻率和热导率大,载流子迁移率高,介电常数小,击穿电压高,是一种性能优异的电子薄膜功能材料,应用前景十分广阔[2]。 近年来,随着科技的发展,人们发展了多种金刚石薄膜的制备方法,比如离子束沉积法、磁控溅射法、热致化学气相沉积法、等离子化学气相沉积法等.成功获得了生长速度快、具有较高质量的膜,从而使金刚石膜具备了商业应用的可能。金刚石薄膜属于立方晶系,面心立方晶胞,每个晶胞含有8个C原子,每个C原子采取sp3杂化与周围4个C原子形成共价键,牢固的共价键和空间网状结构是金刚石硬度很高的原因.金刚石薄膜有很多优异的性质:硬度高、耐磨性好、摩擦系数效、化学稳定性高、热导率高、热膨胀系数小,是优良的绝缘体。 利用它的高导热率,可将它直接积在硅材料上成为既散热又绝缘的薄层,是高频微波器件、超大规模集成电路最理想的散热材料。利用它的电阻率大,可以制

半导体ZnO薄膜晶体管

半导体ZnO薄膜晶体管1 姚绮君,李德杰 清华大学电子工程系, (100084) E-mail:yqj01@https://www.wendangku.net/doc/462091010.html, 摘 要:本文介绍了一种以射频溅射ZnO材料为有源层的薄膜晶体管。在器件有源层制作中通过气氛控制、添加栅网屏蔽等方法改善器件性能。最终晶体管的导通电流达到10-4A量级,整个制作过程处理温度控制在300℃以下,工艺简单且适用于大面积生产。经过初步的分析,可以认为以ZnO材料为有源层的薄膜晶体管,可以满足MIM或MISM型场发射显示阴极的驱动需要。 关键词:薄膜晶体管;氧化锌;射频磁控溅射;场发射显示 1. 引言 薄膜晶体管(thin film transistor, TFT)近些年来被广泛应用于液晶显示器,使液晶显示器成功达到了大屏幕清晰显示的效果,在商业上取得了巨大的成功。其它一些平面显示技术,如有机电致发光(OLED)[1]、场发射(FED)[2],和图象传感技术[3],也都在尝试与TFT技术相结合,并达到了较好的效果。但总的来说,目前所流行的基于硅材料的TFT,由于其自身材料性质的限制,存在着处理温度和材料迁移率之间的矛盾,要获得大的导通电流就需要比较高的温度。另外硅材料有比较大的光电流,用于显示器件时必须要制作遮光层,这也在一定程度上增加了其工艺的复杂性。 国外近期也报道了一些其他材料制作TFT的初步结果。其中以ZnO薄膜作为有源层的TFT[4][5][6][7],具有材料制作工艺成熟,透光好,受光辐射影响小,导通电流大的特点,但这些研究主要是面向有机电致发光或透明电路(Transparent Electronics)方向的应用。 本文将介绍一种使用射频溅射ZnO薄膜作为有源层的薄膜晶体管,制作工艺的设计主要面向本实验室制作的MIM或MISM型场发射显示阴极的驱动[8]。整个制作过程中处理温度控制在300℃以下,理论上适于大面积生产。最终器件导通电流在10-4A量级,开关比大于105。 2. 实验过程 ZnO TFT结构如图1,选用了TFT的倒置结构。其导电沟道长为10μm,长宽比为5。衬底采用制板玻璃,电极由直流溅射的Mo膜构成。绝缘层采用了直流反应溅射的Ta2O5。栅极和有源层图形均用光刻腐蚀方法制备,源极漏极图形用光刻抬离制备。ZnO薄膜用直径6.5cm的陶瓷靶射频溅射制备,真空系统本压强控制在1.3×10-3Pa左右,溅射气压2.0Pa,射频功率密度为3w/cm2。基片用卤钨灯加热,温度控制在250℃(热耦测得的是石墨加热台中的温度)。有源层膜厚用溅射时间控制,然后用台阶仪测量,一般控制在50nm。在溅射过程中尝试使用不锈钢栅网屏蔽基片,并且适量通入O2以减少ZnO薄膜中的氧缺位。在通入氧 1 本课题得到高等学校博士学科点专项科研基金(20020003101)资助。 - - 1

多晶硅薄膜晶体管特性研究

多晶硅薄膜晶体管特性研究 摘要 多晶硅薄膜晶体管(polysilicon thin film transiston)因其高迁移率、高速高集成化、p 型和n型导电模式、自对准结构以及耗电小、分辨率高等优点,近年来被广泛的应用于液晶显示器。随着器件尺寸减小至深亚微米,热载流子退化效应所致器件以及电路系统的可靠性是器件的长期失效问题。 本文主要研究热载流子效应。首先,研究热载流子退化与栅极应力电压,漏极应力电压及应力时间的依赖关系。其次,漏极轻掺杂(Light Doped Drain,LDD)结构是提高多晶硅薄膜晶体管抗热载流子特性的一种有效方法,研究了LDD结构多晶硅薄膜晶体管的结构参数对器件可靠性的影响。 关键词:多晶硅薄膜晶体管热载流子效应可靠性

Study on Characteristics of polysilicon thin film transistor Abstract Today, p-Si TFTs are used broadly in display devices because of its high field effect mobility,high integration and high speed,high definition display,n channel and p channel capability,low power consumption and self-aligned structures. With the device scaling down to deep-submicrometer, the reliability of the device circuit system induced by hot carrier effect is long-term failure. Hot carrier effects is studied. Firstly,we mainly study the dependence between hot carrier degradation and gate-stress voltage,drain-stress voltage and stress time.Secondly,the structure of Light Doped Drain is an effective means to resist hot carrier effect ,the influence of parameters of LDD structures on reliability of p-Si TFT was investigated. Keywords:p-Si TFT;hot carrier effect;reliability

【发展战略】人工肾脏中透析膜材料的应用与发展

让昨天告诉今天:人工肾脏中透析膜材料的应用与发展(2009年47期) 让昨天告诉今天:人工肾脏中透析膜材料的应用与发展 《中国组织工程研究与临床康复》学术部,辽宁省沈阳市 110004 关键词: 透析膜;人工肾;血液透析;透析机 doi:10.3969/j.issn.1673-8225.2009.47.003 血液透析示意图 1854年,苏格兰化学家Thomas Graham(1805/1869)利用牛的膀胱膜做为过滤分子的膜,第一次提出了透析的概念,被称为现代透析之父。 历史学家称最早的透析是在古罗马皇帝的浴池。在那里四周用大理石铸造,池水沸腾充满蒸汽,那些患尿毒症的人们在浴池里通过出汗和蒸气浴使体内的毒素和水分清除到池水中。在人们寻求有效的透析方法的过程中,由于毒素和水分地逐渐堆积,无数的尿毒症患者死亡了。通常他们会静悄悄地死在家里,有人称之为“dropsy”(浮肿而死)。从1850年开始,人们寻求清除毒素和水分的研究有了一定进展。直到1854年,苏格兰化学家Thomas Graham发现涂有鸡蛋清的羊皮纸允许晶体物质透过并弥散到血中,他利用牛的膀胱膜做为过滤分子的膜。他第一次提出晶体物质通过半透膜弥散并开创了渗透学说,被称为现代透析之父,历史上第一种透析膜也自此而诞生。在以后的近一个世纪里,科学家们遍寻可以作为半透膜使用的能够过滤水分和毒素同时又不容易破坏的材料。烟丝和纤维素膜一直应用到现在。

血液透析原理示意图 1913年,美国的John Abel等设计了第一台人工肾,用于动物,用火棉胶制成管状透析器,抗凝治疗使用了水蛭素,一种从水蛭中提取的抗凝物。 1913年,第一次世界大战前不久,美国医学家John Abel、Rowntree和Turener进行了第一次血液透析的动物试验,根据他们的设想,认为可以用透析的方法从肾衰竭患者的血液中去除某些可弥散性的物质,从而解除患者的中毒危象。他们用动静脉分别插管的方法,建立体外循环,用水蛭素抗凝剂,使血液经过用火棉胶(珂罗玎膜 celloidin)制成的管状透析器,将此管浸于水浴中为兔成功地做了2 h的透析。他们发现电解质及化学毒素可以从管中向外弥散,而大分子物质如血细胞、蛋白质等则不能通过珂罗玎膜,这一实验开创了伟大的透析事业。挽救了千千万万患者的生命。可惜的是由于当时透析器的制造技术和抗凝剂的不理想,使得这一工作受到了限制。直到1918年,美国医学家hwell等发现肝素,但因制剂不纯,使用受限。而水蛭素的不良反应也很大,直到20世纪30年代才完成了肝素的提纯。 一次性血液透析器 1923年德国的Georg Haas用火棉胶做成透析膜,以后发展为纤维素膜,铜仿膜和高分子合成膜。 德国人Georg Haas首先把透析原理应用到临床医学,年轻的Haas进行大胆设想,1925年他用火棉胶做透析膜,用纯化水蛭素抗凝,以狗做实验,获得成功。1926年2月Haas首次对人体进行了实践。此后由于透析膜的材料及抗凝剂的问题,血透的研究和运用趋于沉寂,直到肝素的纯化可供人体用及发明赛洛玢制成透析膜。1920年到1930年间,人们将纤维素溶于氢氧化钠二硫化碳溶液中,再在酸浴中形成膜,这种再生纤维素膜称为赛璐玢,是制造透析器的基本材料。由于醋酸纤维膜的发明、肝素的提纯,为血液透析的现代化奠定了基础。

功能薄膜材料应用概述

功能薄膜材料应用概述 高性能材料的领先制造商英国威格斯公司(Victrex )日前正致力于推广可应用于电子元器件和电子设备的VICTEREX PEEK 产品,包括VICTREX PEEK 聚合材料和最新推出的APTIV 薄膜。这些材料主要针对高端应用市场。目前,PEEK 等高性能材料已经广泛应用于电子设备及其关键元件和部件中,如手机、电池、线路板、硬盘驱动器(HDD)、打印机、计算机、发光二极管(LED)、开关及连接插头等应用。 新型APTIV 薄膜是基于Victrex PEEL 聚合材料的 创新型薄膜,用途也非常广泛,典型的应用案例包 括用于DVD 主轴马达的止推垫圈、采用矿物填充 级APTIV 薄膜用于扬声器扩音器球顶和表面贴装 动圈麦克风等。这些材料独特的综合性能可帮助电 子厂商和终端用户轻松满足RoHS 和WEEE 等强 制性指令的要求,并实现最理想的性能、质量和成 本目标。 随着终端市场对电子产品的要求越来越高,如必须 能够承受各种严酷的运行环境、必须是环保型产 品、以及必须是高安全性产品,电子设备和元器件 供应商也对材料提出了更严格的要求,包括更高的 耐热性、更高的机械强度和可加工性等。与此同时,随着当今电子产品的工作频率越来越高,以及无线 电子产品采用的载波频率越来越高,客户也开始越 来越关注终端产品的散热问题,并对材料提出越来越高的热性能要求和介电性能要求(即在很高频率下仍能保持很好的绝缘性能)。 PEEK 是一种于1978年由ICI 发明的聚合材料,其本身的特性包括:高温条件下机械强度高、连续使用温度高达260℃、热变形温度高于300℃、低蠕变性、低吸湿性、低热膨胀性、优异抗磨性、高强度、高尺寸稳定性、高抗化学特性、高耐腐蚀性和易于加工等。它是用于电子元器件和电子设备的理想材料选择,不仅表面硬度高,具备出色的抗磨性,而且燃烧时产生的副产品无毒性,符合安全要求。PEEK 材料还可在最大限度地保证电子产品稳定性和可靠性的同时,帮助客户节约总体成本。此外,VICTEREX PEEK 产品可轻易挤压成形、加工和注模制造,可充分满足客户差异化的制造需求。 PEEK 材料的卓越性能可以使它用于替代其它具有高性能和易于加工的聚合材料,也可以用于替代某些部位的金属/合金/金属复合物、陶瓷、制造成本和消耗高的部件以及复合物。该材料可分为高温级、特殊耐磨级、碳纤维增强级、玻璃纤维增强级、无填充级,它可以以粉末或粒状形式提供给客户,也可以按照450标准流动性、150易流动性和90高流动性形式供应。 APTIV 薄膜在柔性PCB 中的需求最大。

薄膜应用

薄膜应用 1膜材料的发展 在科学发展日新月异的今天,大量具有各种不同功能的薄膜得到了广泛的应用,薄膜作为一种重要的材料在材料领域占据着 越来越重要的地位。 自然届中大地、海洋与大气之间存在表面,一切有形的实体都为表面所包裹,这是宏观表面。生物体还存在许多肉眼看不见的微观表面,如细胞膜和生物膜。生物体生命现象的重要过程就是在这些表面上进行的。细胞膜是由两层两亲分子--脂双层膜构成,它好似栅栏,将一些分子拦在细胞内,小分子如氧气、二氧化碳等,可以毫不费力从膜中穿过。膜脂双层分子层中间还夹杂着蛋白质,有的像船,可以载分子,有的像泵,可以把分子泵到膜外。细胞膜具有选择性,不同的离子须走不同的通道才行,比如有K+通道、Cl-通道等等。细胞膜的这些结构和功能带来了生命,带来了神奇。

2膜材料的应用 人们在惊叹细胞膜奇妙功能的同时,也在试图模仿它,仿生一直以来就是材料设计的重要手段,这就是薄膜材料。它的一个很重要的应用就是海水的淡化。虽然地球上70%的面积被水覆盖着,但是人们赖以生存的淡水只占总水量的%~3%,随着人口增长和 工业发展,当今世界几乎处于水荒之中。因此将浩瀚的海水转为可以饮用的淡水迫在 眉睫。淡化海水的技术主要有反渗透法和蒸馏法,反渗透法用到的是具有选择性的高分 子渗透膜,在膜的一边给海水施加高压,使 水分子透过渗透膜,达到膜的另一边,而把 各种盐类离子留下来,就得到了淡水。反渗 透法的关键就是渗透膜的性能,目前常用有 醋酸纤维素类、聚酰胺类、聚苯砜对苯二甲酰胺类等膜材料.这种淡化过程比起蒸法法,是一种清洁高效的绿色方法。 利用膜两边的浓度差不仅可以淡化海水,还可以提取多种有机物质。工业生产中,可用膜法过滤含酚、苯胺、有机磺酸盐等工业废水,膜法过滤大大节约了成本,有利于

相关文档