文档库 最新最全的文档下载
当前位置:文档库 › 均苯三酸配合物

均苯三酸配合物

均苯三酸配合物
均苯三酸配合物

Colloids and Surfaces A:Physicochem.Eng.Aspects 431 (2013) 66–72

Contents lists available at SciVerse ScienceDirect

Colloids and Surfaces A:Physicochemical and

Engineering

Aspects

j o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /c o l s u r f

a

Ultrasound-assisted coating of silk yarn with nano-porous Co 3(BTC)2·12H 2O with iodine adsorption af?nity

Shabnam Shamaei a ,Amir Reza Abbasi b ,?,Nourolah Noori b ,Ezzat Ra?ee b ,Azadeh Azadbakht a

a Department of Chemistry,Faculty of Science,Khorramabad Branch,Islamic Azad University,Khorramabad,Islamic Republic of Iran b

Faculty of Chemistry,Razi University,67194Kermanshah,Islamic Republic of Iran

h i g h l i g h t s

?Dense coatings of Co 3(BTC)2·12H 2O

nanostructures on the silk ?bers were achieved.

?The effects of ultrasound irradia-tion and sequential dipping steps in growth of the Co-BTC were studied.?Results show a decrease in the par-ticles size as decreasing sequential dipping steps.

?XRPD analyses indicated that the prepared Co-BTC on ?ber were crys-talline.

?

A comparison of adsorption and desorption rates of iodine between samples was also conducted.

g r a p h i c a l

a b s t r a c t

Schematic representation of the formation mechanism of nano-porous Co 3(BTC)2·12H 2O on natural silk

surfaces.

a r t i c l e

i n f o

Article history:

Received 9February 2013

Received in revised form 10April 2013Accepted 12April 2013

Available online 25 April 2013

Keywords:

Co 3(BTC)2·12H 2O Sonication Silk yarn Nanoparticle

Iodine adsorption

a b s t r a c t

A porous coordination polymer,Co 3(BTC)2·12H 2O (Co-BTC)upon silk yarn,has been synthesized under ultrasound irradiation of identical reaction mixtures of Co(OAc)2·2H 2O and H 3BTC (BTC =1,3,5-benzenetricarboxylate)at different conditions.In this work,we successfully loaded compounds with I 2by suspending them in an n-hexane solution of I 2.The delivery of I 2from compounds in ethanol at room temperature was determined by UV/vis spectroscopy.In the nano-porous materials the surface area is decreased so that the amount of adsorption is decreased a little.So the delivery of iodine from the nano-porous materials can be faster than bulk materials but the amount of adsorbance is less.Effects of temperature,sequential dipping steps and sonication in growth of the Co-BTC upon silk yarn were stud-ied.A comparison of adsorption and desorption rates of iodine between samples under various conditions was also conducted.

? 2013 Elsevier B.V. All rights reserved.

1.Introduction

Porous materials are an important and growing technology used predominantly for separation applications,including ?ltra-tion and chromatographic media.In addition,porous materials are

?Corresponding author.Tel.:+988314277464;fax:+988314277464.E-mail address:ar.abbasi@razi.ac.ir (A.R.Abbasi).

emerging as high-surface-area supports for catalysis and as tem-plates for other nanomaterials [1].A large number of porous materials have been synthesized and characterized,and some have shown fascinating delivery applications and gas sorption properties [1].Porous materials have been particularly highlighted for their excellent adsorption properties,separation and storage [2].Con-trolling the assembly of thin porous coordination polymers (PCPs)?lms on different substrates is currently recognized as one of the most important issues in the synthesis of functional materials [3].

0927-7757/$–see front matter ? 2013 Elsevier B.V. All rights reserved.https://www.wendangku.net/doc/4b2280294.html,/10.1016/j.colsurfa.2013.04.036

S.Shamaei et al./Colloids and Surfaces A:Physicochem.Eng.Aspects431 (2013) 66–72

67

Fig.1.Schematic representation of the formation mechanism of Co-BTC nanoparticles upon silk yarn:(a)water circulation,(b)double jacketed vessel,(c)ultrasound bath and(d)silk yarn.

Many technologies have been explored to fabricate thin PCPs?lms upon?bers.These technical approaches can be grouped in several ways such as surface functionalization[4],sequential dipping[5] and electrospun nano?brous?lters[6].In this paper,we report the preparation of nano-porous three-dimensional Co3(BTC)2·12H2O (Co-BTC)on natural silk surfaces under sonication.In order to investigate the role of sonication on the nature of products,blank reactions were performed without ultrasound irradiation.The effects of ultrasound irradiation,sequential dipping steps,temper-ature and reaction time in growth of the Co-BTC upon silk yarn were studied.Generally,sonication might dramatically reduce the reaction time and this simple and energy-ef?cient heating pro-cess has become a rapidly developing synthetic method[7–9].The sonochemical irradiation of a liquid causes two primary effects, namely,cavitations and heating[10].Recently,sonochemistry has been successfully applied to prepare coordination polymers with known structures[11].Deposition of microcrystalline CP at alu-mina,silica and on surfaces of?exible organic polymers[12]were reported,but in this work we used silk?bers as substrate,thus due to existence of COOH groups on the surface of these silk?bers no self-assembled monolayers(SAMs)formation was required and in a very simple and effective procedure at ambient pressure and tem-perature,Co-BTC coating of the silk?bers were done successfully by layer by layer(LBL)technique[13,14].A wide range of nanoparti-cles with various structures can be immobilized on the?bers,which brings new properties to the?nal textile product.These textiles can be widely used for hygienic clothing,wound healing,and medical applications in hospitals and other places where bacteria present a hazard[15].Cobalt ions have powerful antibacterial activity and are widely used as some antibacterial agents and biomedical mate-rials[16,17].It is accepted that the carboxylic groups in the silk molecules are mainly responsible for the uptake of metal cations by a chelation mechanism.In general,positive ions are bound to silk at high pH value,since the carboxylic groups are unprotonated and the electron pair on the carboxylic oxygen is available for donation to metal ions[7,18].

2.Experimental

2.1.Materials and physical techniques

The silk yarn(6366.7Tex and240twists per meter)was obtained from Guilan Silk Co.(Rasht,Iran).The natural silk yarns were pre washed using an aqueous solution containing NaOH (pH=9.5),at25?C for15min,followed by washing several times with hot water then with cold water and dried at ambient condi-tions.All reagents and solvents were used as supplied by Merck Chemical Company and used without further puri?cation.X-ray powder diffraction(XRPD)was carried out on a Philips diffractome-ter of X’pert Company with monochromatized Co K?radiation. The samples were characterized with a scanning electron micro-scope(SEM,Philips XL30and S-4160)with gold coating.Ultrasonic generators were carried out on a Sonica-2200EP(continuous mode,output power:305W)and Elma sonic p60(continuous mode,output power:580W).Ultrasonic generators have water circulation system and double jacketed vessel.The effects of son-ication in growth of the Co-BTC upon?ber were studied in305W and580W.In situ UV/vis spectrum experiment has been car-ried out on a PG Instruments,T80+UV/vis/NIR spectrophotometer within the wavelength range of190–800nm,using the same sol-vent in the examined solution as a blank.The iodine content is underestimated by UV/vis spectroscopy,due to the fact that some I2remains in the zigzag chains of Co-BTC.When silk yarn (0.05g)containing Co-BTC is immersed in2mL ethanol solu-tion in quartz test pool,iodine continuously released from the Co-BTC pores,leading to the iodine concentration in test pool growing,so the ABS growing with increasing time.Infrared spec-tra were taken with a Fourier transform infrared(FT-IR)Bruker, vector22spectrometer using KBr pellets in the400–4000cm?1 range.

2.2.Syntheses of Co-BTC on natural silk surfaces

The growth of Co-BTC on silk yarn was achieved by sequen-tial dipping in alternating bath of aqueous Co(OAc)2·2H2O and H3BTC(BTC=1,3,5-benzenetricarboxylate)in a mixed solution of DMF and EtOH under various conditions.Before the experiment began,silk?bers were immersed in an alkaline solution.In alka-line pH(pH=9.5),the surface of?ber becomes negatively charged due to deprotonation of the carboxylic group present at the?ber’s surface[7,15,18].The?rst layer was fabricated by immersing the silk–COO?surface into an solution of Co(OAc)2·2H2O and then in solution of H3BTC(1cycle).When negative?ber was immersed in aqueous Co2+,Co2+ions are attracted to the?ber surface[7].The dipping step in the BTC3?solution allowed the formation of Co-BTC complex and initiated the formation of new Co-BTC particles, as illustrated in Fig.1.The results show that subsequently adding Co(Ac)2·2H2O and H3BTC leads to a stepwise deposition of Co-BTC multilayers and an increase in the thickness of the multilayers with the increase of the deposition cycles[7].The dipping step in each Co2+and BTC3?solutions were1or5min followed by some rinses in pure water each for1min.The growth of Co-BTC upon?ber with ultrasonic methods was prepared in30and50?C.A summary of the different treatments is provided in Table1.

68S.Shamaei et al./Colloids and Surfaces A:Physicochem.Eng.Aspects 431 (2013) 66–72

Table 1

Experimental conditions and average diameter of Co-BTC particles on the silk ?ber.

Samples

Cycles a t b T (?C)c

Power (W)d

SEM e Morphology

I 313030517Nanoparticle II 1213030525Nanoparticle III 18130305≥?Bulk

IV 12130580503Rectangular (in the transverse direction)V 12150580870Rectangular (in the transverse direction)VI f

12

1

30

312

Nanorod (in the transverse direction)

a Number of dipping steps in Co 2+and BTC 3?solutions (number of immersion cycles).

b Time of dipping step in each Co 2+and BTC 3?solutions (min).

c Temperature of reaction.

d Power of ultrasound irradiation.

e Average diameter by SEM (nm).

f

Blank reaction:without ultrasound

irradiation.

Fig.2.I 2enrichment progress when 100mg compound III was soaked in 3ml of an n-hexane solution of I 2(0.1M/L).

2.3.Antimicrobial test

The antibacterial activity of fabric samples was evaluated against Escherichia coli (ATCC 25923,Gram-negative bacterium)and Staphylococcus aureus (ATCC 25922,Gram-positive bacterium)using disk diffusion method as described in the literature [7].Mix-tures of Mueller–Hinton agar in 1L distilled water at pH 7.2as well as the empty Petri plates were autoclaved.The agar medium was then cast into the Petri plates and cooled in laminar air?ow.The Mueller–Hinton agar was inoculated with bacteria,using an inoculating loop.Approximately 10colony-forming units of each bacterium were inoculated on plates,and then each fabric samples was planted onto the agar plates.All the plates were incubated at 37?C for 24h,following which the zone of inhibition was mea-sured.

2.4.I 2enrichment progress

For augment of porosity in the Co-BTC upon ?ber we suc-cessfully tested their porosity with I 2by suspending them in an n-hexane solution of I 2.We immersed a few samples (100mg of Co-BTC upon ?ber)in a suf?cient amount of n-hexane solution of I 2(0.1M/L)in a small sealed ?ask at room temperature [19],and observed that the dark brown solutions of I 2fade slowly to pale red (Fig.2).At the end of the dipping process,the color of

the sample changed from pink to brown and dark brown to black.Results show that 1.0g of samples II ,III ,IV and V can absorb approximately 1.150,1.625,1.169and 1.271g of iodine respectively [2]

.

Fig.3.Temporal evolution of UV/vis absorption spectra for the delivery of I 2from III.I 2and IV.I 2in the 2h.

S.Shamaei et al./Colloids and Surfaces A:Physicochem.Eng.Aspects431 (2013) 66–72

69

Fig.4.SEM photograph(samples I,II and III)and the corresponding particle size distribution histogram of sample I.

3.Results and discussion

3.1.Iodine adsorption af?nity

Porous structure in Co-BTC upon?ber combining?exibility is architecturally suitable for adsorption of some molecules with spe-cial directional physical properties[20].The delivery of I2from Co-BTC upon?ber performed in ethanol,at room temperature under continuous stirring was determined by UV/vis spectroscopy (Fig.3).Fig.3shows progress of the iodine release from II.I2(II.I2: sample II containing iodine molecules)when the containing iodine crystals were immersed in ethanol.The temporal evolution UV/vis spectrum for iodine in ethanol solution shows max at210,280and 360nm,which become stronger with increasing I2content.The delivery of I2in ethanol increases with time,indicating that the I2 release is governed by the host–guest interaction.The intensity of adsorption band at210nm is proportional to concentration of I2, and the adsorption bands at280and360nm correspond to polyio-dide I3?,which are generally stabilized by H+ions and obtained from the reaction I2with decomposed iodide[20].The potential intermolecular interactions between I2and?-electron of zigzag chains are important.The exceptional af?nity of II for I2may be attributed to the structural character of the regular?-electron walls made of BTC3?.That is,there is a striking difference compared to conventional adsorbent materials that are lacking an accessi-ble interaction between I2and Co-BTC[20–22].The deliveries of I2in III.I2and IV.I2have been performed in ethanol,at room tem-perature by UV/vis spectroscopy too(Fig.3).It seems that in II the pores become smaller and the I2molecules are more accessible than III.So the delivery of iodine from II can be faster than III but the amount of adsorbance is less.In II and all of the nano-porous mate-rials the surface area is decreased so that the amount of adsorption is decreased a little[2].These facts are repeated for sample IV.

3.2.Effects of temperature and sequential dipping steps on iodine adsorption af?nity

Particle sizes and morphology of nanoparticle are depending on temperature and sequential dipping[23].This?nding has already been observed in other studies on ultrasound-assisted synthesis of nano-particles[8].Effect of different sequential dipping in growth of the Co-BTC upon?ber were studied in pH=9.5.The results sug-gest that with an increase in the?ber dipping steps in the Co2+ and BTC3?solution,growth takes place on more nuclei as the Co2+ and BTC3?ions attraction increases,and subsequently the concen-tration and size of Co-BTC particles increases[15].For the sake of investigating the morphology of the prepared coating samples,the SEM images of samples I–III were studied(Fig.4).The sample I was dipped3times in Co2+and in BTC3?solutions in an alkaline medium https://www.wendangku.net/doc/4b2280294.html,parison between sample I,II and III shows that particle size of sample I is smaller than that of samples II and III. As a result,an increase in sequential dipping steps led to increase of particle size[5].

In the synthesis of Co-BTC from solution after the initial nuclea-tion and subsequent growth,the temperature is raised,and thus the solubility of solid in solvent increases to promote Ostwald ripen-ing.As a result the concentration of solid in solvent falls below the equilibrium solubility of small nanoparticles and the small

70S.Shamaei et al./Colloids and Surfaces A:Physicochem.Eng.Aspects 431 (2013) 66–

72

Fig.5.SEM photograph of the samples IV –VI and corresponding wavelength-dispersive X-ray (WDX)analysis:VI .

particles dissolve into the solvent.An increased temperature results in an increased solubility,and thus a reduced supersaturation of growth species in the solution.As a result nuclei with small sizes may become unstable and dissolve back into the solution;dissolved species will then deposit onto the surfaces of large particles [18].Comparison between IV (30?C)and V (50?C)shows that an increase in temperature led to increase of particle size (Table 1and Fig.5).

3.3.Ultrasound effects

Particle sizes and morphology of nanoparticle are depending on power of ultrasound irradiation [10].In order to investigate the role of power ultrasound irradiation on the nature of products,reac-tions were performed under different power ultrasound irradiation (305W and 580W).Results show a decrease in the particle size as decreasing power ultrasound irradiation (Table 1).An increasing of power ultrasound irradiation (580W)results in an increasing of solubility,and thus a reduced supersaturation of growth species in the solution.As a result,nuclei with small sizes may become unsta-ble and dissolve back into the solution;dissolved species will then deposit onto the surfaces of large particles.Thus,an increasing of power ultrasound irradiation leads to an increasing of particle size [7].Comparison between samples II and IV (Figs.4and 5)shows that particle size of sample II (25nm)is smaller than particle size of samples IV (503nm).As result,in II the pores become smaller and the I 2molecules are more accessible than IV .So the delivery of iodine from II can be faster than IV but the amount of adsorbance is less [2].

In order to investigate the role of sonication on the nature of products,sample VI (blank reaction)was performed without ultra-sound irradiation.In these reactions,Co-BTC particles on ?bers were prepared by sequential dipping steps without ultrasound irra-diation.These systems depicted an increase in the particle size accompanying an increase in the power of ultrasound irradiation (samples IV and VI ).The growth of nanoparticles by using soni-cating is essentially by two processes;one is the diffusion process of the reactants to the surface of the growing crystallite,while the second one is the reaction at the surface of the crystallite to incorpo-rate the reactant as a part of the growth process.In these conditions,the growth proceeds through the new nucleations and increase the number of particles.

3.4.XRPD and FT-IR spectra

To determine the crystal phase of the Co-BTC formed on silk yarn,X-ray powder diffraction (XRPD)measurements were car-ried out over the diffraction angle (2?)of 5–70?(Fig.6).This ?gure shows the XRPD patterns:Co 3(BTC)2·12H 2O upon silk ?ber under ultrasound irradiation (A),pristine silk ?bers (B)and sim-ulated from single crystal X-ray data of the Co 3(BTC)2·12H 2O (C).The fourteen major peaks found at 15.02?,17.53?,18.81?,27.04?,28.83?,29.44?,32.70?,33.41?,33.95?,35.14?,35.62?,41.82?,43.44?

and 44.50?on the 2?scale correspond respectively to the (11ˉ1),

(220),(111),(20ˉ2),(31ˉ2),(002),(022),(331),(62ˉ1),(44ˉ1),(440),(441),(11ˉ3)and (730)crystal planes.Acceptable matches,

with slight different in 2?,were observed between the simulated

from single-crystal X-ray data patterns [19]and those from the

S.Shamaei et al./Colloids and Surfaces A:Physicochem.Eng.Aspects431 (2013) 66–72

71

Fig.6.XRD patterns of silk yarn containing Co3(BTC)2·12H2O:sample III(A),the pure silk yarn(B)and simulated pattern based on single crystal data of XRD pattern of Co3(BTC)2·12H2O(C).

experimental powder X-ray diffraction patterns of compound III. The results indicated that Co-BTC formed on the silk yarn and the crystallinity of the coated Co-BTC PCPs?lms were increased by increase in cycles of layer by layer coating of Co-BTC on the silk?bers;the wide peak at17–23?corresponds to the silk sub-strate[7,18].The obtained pattern match with the standard pattern of monoclinic Co3(BTC)2·12H2O,space groups C2with the lat-tice parameters a=17.482(6)?A,b=12.963(5)?A,c=6.559(2)?A and z=4[19].This solid is composed of zigzag chains of tetra-aqua cobalt(II)benzenetricarboxylate that are hydrogen-bonded to yield a tightly held3-D network[19].FT-IR for Co3(BTC)2·12H2O(KBr, 3500–400cm?1):3460(s,broad),3159(s,broad),2340(w),1848 (w),1610(s),1565(s),1525(s),1474(s),1435(s),1374(s),1110 (w),986(w),925(w),907(w),815(m),756(s),721(s),566(m), 530(m),463(m),446(m).

3.5.Bactericidal tests

The antimicrobial activity of the product(sample III)was tested against Gram-negative and Gram-positive bacterial(S.aureus and E.coli)using disk diffusion method according to previous works [7,24].One of the factors in?uencing the antibacterial activity of the developed coating is the release of the active phase into the surrounding medium,i.e.Co2+or/and Co-BTC particles.This result indicates that the pristine silk yarn has no in?uence on the antibacterial activity.While the Co2+/Co-BTC are considered as an environmentally safe ion,a much more important and serious issue is the leaching of Co-BTC particles.We observed distinct zones of inhibition(clear areas with no bacterial growth)around the Co-BTC upon?ber against S.aureus and E.coli.The observed zone of inhi-bition is a result of the leaching of active biocidal species Co2+ion from the embedded Co-BTC particles present in the fabric into the surrounding aqueous medium[25].The presence of the inhibition zone clearly indicates that the mechanism of the biocidal action of the fabric is due to the leached Co2+ion[26].

4.Conclusions

In summary,we report the porous coordination network Co-BTC upon silk?ber from layer-by-layer growth from molecular precur-sors by using the ultrasound technique.Due to existence of–COOH groups on the surface of these silk?bers no SAM formation was required and in a very simple and effective procedure at ambient pressure and temperature,Co-BTC coating of the silk?bers were done successfully.Dense coating of silk?bers with Co-BTC,which is the result of formation coordination bonds between surface–COO?groups of silk?bers and Co2+and growth of the porous coordina-tion polymer on these seeds reduce the emission intensity of silk ?bers with similar mechanism of the heavy atom effect.Co-BTC upon silk may indeed is suitable for applications requiring frequent loading and unloading of guests.The activated empty phase has excellent and promising I2af?nity,and it can be slowly delivered to ethanol controllably.Adsorption and desorption rates of iodine were also compared between samples under different sequential dipping.The compounds were tested for their antibacterial ef?cacy against S.aureus and E.coli and were found to possess signi?cant antibacterial activity.

Acknowledgment

Support of this investigation by Razi University of Kermanshah is gratefully acknowledged.

References

[1]A.U.Czaja,N.Trukhan,U.Muller,Industrial applications of metal–organic

frameworks,Chem.Soc.Rev.38(2009)1284–1293.

[2]L.Hashemi, A.Morsali,Microwave assisted synthesis of a new lead(II)

porous three-dimensional coordination polymer:study of nanostructured size effect on high iodide adsorption af?nity,https://www.wendangku.net/doc/4b2280294.html,m.14(2012) 779–781.

[3]D.B.Amabilino,J.F.Stoddart,Interlocked and intertwined structures and super-

structures,Chem.Rev.95(1995)2725–2828.

[4]M.Meilikhov,K.Yusenko,E.Schollmeyer,C.Mayer,H.-J.Buschmann,R.A.

Fischer,Stepwise deposition of metal organic frameworks on?exible synthetic polymer surfaces,Dalton Trans.40(2011)4838–4841.

[5]A.R.Abbasi,A.Morsali,Synthesis and properties of silk yarn containing Ag

nanoparticles under ultrasound irradiation,Ultrason.Sonochem.18(2011) 282–287.

[6]J.K.Yuan,X.G.Liu,O.Akbulut,J.Q.Hu,S.L.Suib,J.Kong,F.Stellacci,Superwet-

ting nanowire membranes for selective absorption,Nanotechnology3(2008) 332–336.

[7]A.R.Abbasi,K.Akhbari,A.Morsali,Dense coating of surface mounted CuBTC

metal–organic framework nanostructures on silk?bers,prepared by layer-by-layer method under ultrasound irradiation with antibacterial activity,Ultrason.

Sonochem.19(2012)846–852.

[8]N.Perkas,Y.Wang,Y.Koltypin, A.Gedanken,S.Chandrasekaran,Meso-

porous iron–titania catalyst for cyclohexane oxidation,https://www.wendangku.net/doc/4b2280294.html,mun.(2001) 988–989.

[9]https://www.wendangku.net/doc/4b2280294.html,ndau,L.Vradman,M.Herskowitz,Y.Koltypin,A.Gedanken,Ultrasoni-

cally controlled deposition–precipitation:Co–Mo HDS catalysts deposited on wide-pore MCM material,J.Catal.201(2001)22–36.

[10]K.S.Suslick,Sonochemistry,Science247(1990)1439–1445.

[11]K.Kwang-Heon,K.Kwang-Bum,Ultrasound assisted synthesis of nano-sized

lithium cobalt oxide,Ultrason.Sonochem.15(2008)1019–1025.

[12]A.M.B.Furtado,J.Liu,Y.Wang,M.D.Levan,Mesoporous silica–metal organic

composite:synthesis,characterization,and ammonia adsorption,J.Mater.

Chem.21(2011)6698–6706.

[13]O.Shekhah,Layer-by-layer method for the synthesis and growth of sur-

face mounted metal-organic frameworks(SURMOFs),Materials3(2010) 1302–1315.

[14]H.J.Lee,S.Y.Yeo,S.H.Jeong,Antibacterial effect of nanosized silver colloidal

solution on textile fabrics,J.Mater.Sci.38(2003)2199–2204.

[15]A.R.Abbasi,A.Morsali,Formation of silver iodide nanoparticles on silk?ber by

means of ultrasonic irradiation,Ultrason.Sonochem.17(2010)704–710. [16]Z.H.Chohan,C.T.Supuran,A.Scozzafava,Metalloantibiotics:synthesis and

antibacterial activity of cobalt(II),copper(II),nickel(II)and zinc(II)complexes of kefzol,J.Enzyme Inhib.Med.Chem.19(2004)79–84.

[17]A.Mishra,N.K.Kaushik,A.K.Verma,R.Gupta,Synthesis,characterization and

antibacterial activity of cobalt(III)complexes with pyridine-amide ligands,Eur.

J.Med.Chem.43(2008)2189–2196.

[18]A.R.Abbasi,A.Morsali,Synthesis and characterization of AgBr–silk nanocom-

posite under ultrasound irradiation,https://www.wendangku.net/doc/4b2280294.html,anomet.Polym.20(2010) 825–832.

[19]O.M.Yaghi,H.Li,T.L.Groy,Construction of porous solids from hydrogen-

bonded metal complexes of1,3,5-benzenetricarboxylic acid,J.Am.Chem.Soc.

118(1996)9096–9101.

[20]M.-H.Zeng,Q.-X.Wang,Y.-X.Tan,S.Hu,X.-H.Zhao,L.-S.Long,M.Kurmoo,

Rigid pillars and double walls in a porous metal-organic framework:single-crystal to single-crystal,controlled uptake and release of iodine and electrical conductivity,J.Am.Chem.Soc.132(2010)2561–2563.

72S.Shamaei et al./Colloids and Surfaces A:Physicochem.Eng.Aspects431 (2013) 66–72

[21]S.R.Batten,S.M.Neville,D.R.Turner,Coordination Polymers:Design,Analysis

and Application,The Royal Society of Chemistry,London,2009.

[22]M.P.Suh,Y.E.Cheon, E.Y.Lee,Syntheses and functions of porous

metallosupramolecular networks,Coord.Chem.Rev.252(2008) 1007–1026.

[23]A.R.Abbasi,A.Morsali,Syntheses and characterization of AgI nano-structures

by ultrasonic method:different morphologies under different conditions, Ultrason.Sonochem.17(2010)572–578.[24]M.Shateri Khalil-Abad,M.E.Yazdanshenas,M.R.Nateghi,Effect of cationization

on adsorption of silver nanoparticles on cotton surfaces and its antibacterial activity,Cellulose16(2009)1147–1157.

[25]H.B.Wang,J.Y.Wang,Q.F.Wei,J.H.Hong,X.Y.Zhao,Nanostructured antibac-

terial silver deposited on polypropylene nonwovens,Surf.Rev.Lett.14(2007) 553–557.

[26]M.Shateri Khalil-Abad,M.E.Yazdanshenas,Superhydrophobic antibacterial

cotton textiles,J.Colloid Interface Sci.351(2010)293–298.

常用增塑剂简介

常用增塑剂简介 1.邻苯二甲酸酯类邻苯二田酸酣类是目前最广泛使用的主增塑剂,品种多、产量高,井具有色泽浅、毒性低、电性能好、挥发件小、气味少、耐低温性一般等特点。目前邻苯二酸酯类的消耗量约占增塑剂总消耗量的80-85%,而其中最常用的是邻苯二甲酸二辛酯和邻苯二甲酸二异辛酯两种。 (1)邻苯二甲酸二辛酯((简称DOP)无色油状液体,有特殊气味。 (2)邻苯二甲酸二异辛酯(简称DIOP) 几乎是无色的粘稠液体,溶于大多数有机溶剂和烃类, (3)邻苯二甲酸二异癸酯(简称DIDP) 粘稠液体,溶于大多数有机溶剂和烃类,不溶于或微溶于甘油、乙二醇和某些胺类。它的挥发性比DOP小。耐迁移,是一种低挥发性增塑剂,又耐老化,电性能好,但相溶性差些。 (4)邻苯二甲酸二异壬酯(简称DINP)透明油状液体,其高温下的挥发性只是DOP的一半。 (5)邻苯二甲酸二丁酯(简称DBP)无色透明液体,具有芳香族气味,溶于大多数有机溶剂和烃类。DBP对PVC的临界塑化温度为90—95℃。 (6)邻苯二甲酸二异丁酯(简称DIBP) 无色透明液体, DIBP在PVC农用薄膜中使用时曾发现由于它的析出致使水稻烂秧的问题。 (7)邻苯二甲酸丁苄酯(简称BBP) 透明油状液体,溶于有机溶剂和烃类,不溶于水。BBP对PVC的临界塑化温度为96-100℃。 (8)邻苯二甲酸二甲酯(简称DMP) 无色油状液体,微带芳香族气味,常温下不溶于水,和脂肪烃混溶,与大多数树脂相溶性良好. (9)邻苯二甲酸二乙酯(简称DEP) 无色油状液体,无毒,微带芳香族气味,溶于大多数有机溶剂。 (10)邻苯二甲酸二环己酯(DCHP) 具有芳香族气味的白色结晶状粉末.溶于大多数有机溶剂,在热的汽油和矿物油中完全溶解,微溶于乙二醇类和某些胺类。 (11)对苯二甲酸二辛酯(DOTP) DOTP与DOP的物理性能相似,制品的机械性能也相似,但DOTP 的挥发件比DOP小得多。 2. 脂肪酸酯类脂肪酸酯类的低温性能很好,但与聚氯乙烯的相溶性较差故只能用作耐寒的副增塑剂与邻苯二甲酸酯类并用。最常用的品种是己二酸二辛酯和癸二酸二辛酯。 (1)己二酸二辛酯(简称DOA) 无色无嗅液体,无毒,溶于大多数有机溶剂,微溶于乙二醇类,不溶于水,DOA对PVC的临界塑化温度为12l一125℃。 (2)已二酸二异癸酯(简称DIDA) 清澈易流动的油状液体。 (3)壬二酸二辛酯(简称D0Z) 几乎是无色的透明液体, (4)癸二酸二丁酸(简称DBS) 几乎是无色的液体, (5)癸二酸二辛酯(简称DOS) 几乎是无色的油状液体,不溶于水,溶于醇、苯、醚等有机溶剂。 (6)癸二酸二异辛酯(简称DIOS) 无色清澈液体,溶于酮、醇、酯、芳香烃和脂肪烃等大多数有机溶剂,微溶于胺和多元醇。 (7)二(2—乙基丁酸)三缩乙二醇酯(简称3GH) 它是安全玻璃用聚乙烯醇缩丁醛薄膜中最为广泛使用的增塑剂,同时它对纤维索塑料、丙烯酸酯塑料和聚氯乙烯也是良好的增塑剂。 3.磷酸酯类磷酸酯与聚氯乙烯等树脂有良好的相溶性,透明性也好,但有毒性。它们既是增塑剂,又是阻燃剂。芳香族磷酸醋的低温性能很差,而脂肪族磷酸酯的低温性能较好,但热稳定性较差,耐久性不如芳香族磷酸酯。其主要品种有磷酸三甲苯酯和磷酸三苯酯。 (1)磷酸三甲苯酯(简称TCP) (2)磷酸三苯酯(简称TPP) 微带芳香气味的白色针状结晶,微溶于乙醇,醚、苯、氯仿、丙酮。

DNOP

"邻苯二甲酸二正辛酯(DNOP)"相关产品信息 酞酸二异癸酯1,2,4-苯三甲酸三辛酯邻苯二甲酸正辛正癸酯邻苯二甲酸二异壬酯邻苯二甲酸双十二酯邻苯二甲酸二正辛酯(DNOP)偏苯三酸三异癸基酯邻苯二甲酸二癸酯1,2,4-苯三甲酸癸基辛基酯邻苯二甲酸二十三酯邻苯二甲酸二壬酯1,2-苯二羧酸双十一烷基酯1,2,4-苯三甲酸三异壬基酯1,2-苯二羧酸二支链烷基酯(C11-14,C13富集) 邻苯二甲酸二(2-乙基己)酯 供应DOP邻苯二甲酸二辛酯,简称DOP。 产品别名:邻苯二甲酸二(2-乙基己)酯; 酞酸二辛酯。 英文名称:Dioctyl phthalate英文别名Bis(2-ethylhexyl) phthalate; Di-2-ethylhexyl phthalate 分子式:C24H38O4 分子量:390.30 性质:无色油状液体,比重0.9861(20/20 ),熔点-55 ,沸点370 (常压),不溶于水,溶于乙醇、矿物油等大多数有机溶剂。 质量指标: GB11406-2001

表邻苯二甲酸二辛酯性能指标 项目优级品一级品 外观透明、无可见杂质的油状液体 色度(铂-钴)号≤ 30 40 酯含量%≥ 99.5 99 密度(p20)g/cm3 0.982-0.988 0.982-0.988 酸度(以苯二甲酸计)%≤ 0.01 0.015 加热减量%≤ 0.2 0.3 闪点℃≥ 195 192 热处理后色度(铂-钴)号≤ 100 - 体积电阻系数.cm≥ 1x10″ - 邻苯二甲酸二辛酯是重要的通用型增塑剂,主要用于聚氯乙烯树脂的加工,还可用于化纤树脂、醋酸树脂、ABS树脂及橡胶等高聚物的加工,也可用于造漆、染料、分散剂等。

橡胶配方常用的原材料名称对比

天然胶:RSSIX;RSS1#;RSS2#;RSS3#;RSS4#;RSS5#。质量按顺序降低。 CSR﹕中國標準膠 SMR 马来西亚标准胶 SIR﹕印度尼西亞標準膠 TTR﹕泰國標準膠 ISNR﹕印度標準膠 SSR﹕新加坡標準膠 ENR-50 环氧化天然橡胶 CV 恒粘橡胶 LV:低粘橡胶,门尼值为45+-5度,可以不经过素炼直接混炼。 充油天然橡胶:低温防滑性好。 MG:易操作橡胶SP接枝橡胶 SBR 1205:苯乙烯25%;丁二烯75%。溶液型聚合。可以部分取代SBR1006/1008/1009/密炼机密炼会增加10-15%体积。耐磨耐曲折,耐低温,耐压缩变形。 SSBR303人造胶:溶液型苯乙烯丁二烯橡胶,苯乙烯48%;丁二烯52%。主要用于透明料,与RB,IR共用10-20PHR。 S1430:1,3 丁二烯-苯乙烯聚合物。可增加硬度,柔韧性和耐磨。 S2250/KA8802人造胶:丁二烯,苯乙烯,丙烯晴聚合体。 BIIR2244/X2:异丁烯,异戊二烯,丁基橡胶。 HP100:氯磺化聚乙烯CSM》96%。四氯化碳《0.2% MILLATHANE-97:聚脂聚氨基甲酸乙酯橡胶。聚醚类合成尿素橡胶 IR-307人造胶:聚异戊二烯99.99%,可做透明底,奶嘴,接着剂,胶囊。 E-BR:乳液聚合顺式聚丁二烯橡胶,含高芳氢油35份。 UBE BR150L人造胶:100%聚丁烯。 BR9000:一般顺丁橡胶 BR9175:充油顺丁橡胶37.5% BR9075:充油顺丁橡胶 IM(PIB): 聚异丁烯 XNBR﹕羧基丁晴橡胶 HNBR﹕氫化丁晴橡胶 PBR﹕丁比橡胶 ACM﹕丙烯酸脂橡膠 AEM:乙烯-丙烯酸橡胶 CSM﹕氯磺化聚乙烯 CPE﹕氯化聚乙烯 CO﹕均聚氯醇橡膠 ECO﹕共聚氯醇橡膠 PUR(PU)﹕聚氨脂橡膠 AU﹕聚脂型聚氨脂橡膠 EU﹕聚迷型聚氨脂橡膠 Q﹕硅橡膠 MQ﹕二甲基硅橡膠 MVQ﹕甲基乙烯基硅橡膠 MPQ﹕甲基苯基硅橡膠

食品化学

应化121 阮长春 1208110246 第二章食品防腐剂 2.简述防腐剂的分型及各自的特点。 答:防腐剂可分为以下三大类,其特点如下: (1)酸性防腐剂:主要有苯甲酸及其钠盐、山梨酸及其钾盐、丙酸钠及丙酸钙。其特点是未解离的酸分子防腐功能最强,效力随PH 值而定,酸性越强效果越好,在碱性条件下几乎无效。 (2)对羟基苯甲酸酯类防腐剂:主要有对羟基苯甲酸乙酯,对羟基苯甲酸丙酯,对羟基苯甲酸丁酯,对羟基苯甲酸异丁酯,对羟基 苯甲酸异丙酯。其特点是PH在4~8范围类均有较好防腐效果, 其防腐效果不随PH值变化而变化。特别适用于偏中性的食品防 腐。其作用机理是通过抑制微生物细胞的呼吸酶系与电子传递 酶系的活性,破坏微生物细胞膜的结构。 (3)其他化学防腐剂:主要有二氧化硫,焦亚硫酸钠,焦亚硫酸钾,脱氢酸酯,脱氢酸酯钠,富马酸。其特点是该类防腐剂均通过 形成亚硫酸来抑制微生物的生长,因而只在酸性条件下有效。 (4)天然防腐剂:主要有乳酸链球菌素,纳他霉素,壳聚糖,溶菌酶,香辛料提取物。其特点是天然防腐剂也称天然有机防腐剂,是 由生物体分泌或者体内存在的具有抑菌作用的物质,经人工提 取或者加工而成为食品防腐剂。此类防腐剂为天然物质,有的 本身就是食品的组分,故对人体无毒害,并能增进食品的风味 品质,因而是一类有发展前景的食品防腐剂。 3.试比较山梨酸及盐类与苯甲酸及盐类防腐剂的特点。 答:山梨酸及其钾盐pH作用范围5-6在酸性介质中对微生物的抑制效果良好是,随pH的增大防腐效果减小,pH为8时,丧失防腐作用,适宜pH值在5.5以下的食品防腐。作用机理是,它与微生物的酶系统的巯基相结合,从而破坏许多重要的酶系统的作用,此外它还能干扰传递功能,以及细胞膜表面能量传递的功能,抑制微生物增殖,达到防腐的目的。毒性比苯甲酸低。但是抑菌效力是苯甲酸的3~5倍。 苯甲酸及其钠盐pH作用范围2.5-4.0,酸性越强效果越好,作用机理是未解离的苯甲酸分子进入细胞,从而干扰微生物细胞膜的通透性,抑制细胞膜对氨基酸的吸收,进入细胞的苯甲酸分子电离酸化细胞内的碱储,并能抑制细胞内的呼吸酶系的活性,对乙酰辅酶A缩合反应有很强的阻止作用,从而起到食品防腐效果。 4.面包的防霉一般采用何种防腐剂?为什么? 答:面包的防霉一般用丙酸钙,因为丙酸钙抑制霉菌的有效剂量较丙酸钠小,但它在面包中可以补食品中的钙质,能抑制面团发酵时枯草杆菌的繁殖。5.天然防腐剂主要有哪些?各有何特点? 答:主要的天然防腐剂及特点如下: (1)乳酸链球菌素——由乳酸链球菌合成的多肽抗菌类物质。白色易流动粉末,其活性在室温及酸性条件下加热均稳定,PH=2时121℃加热30min 及PH=3时121℃加热15min,其活性不受影响。但PH > 4时迅速分解。其

化学品常用缩写

化学品常用缩写 A A/MMA 丙烯腈/甲基丙烯酸甲酯共聚物 AA 丙烯酸 AAS 丙烯酸酯-丙烯酸酯-苯乙烯共聚物 ABFN 偶氮(二)甲酰胺 ABN 偶氮(二)异丁腈 ABPS 壬基苯氧基丙烷磺酸钠 Ac 乙酰基 acac 乙酰丙酮基 AIBN 2,2'-二偶氮异丁腈 aq. 水溶液 B BAA 正丁醛苯胺缩合物 BAC 碱式氯化铝 BACN 新型阻燃剂 BAD 双水杨酸双酚A酯 BAL 2,3-巯(基)丙醇 9-BBN 9-硼二环[3.3.1]壬烷 BBP 邻苯二甲酸丁苄酯 BBS N-叔丁基-乙-苯并噻唑次磺酰胺 BC 叶酸 BCD β-环糊精 BCG 苯顺二醇 BCNU 氯化亚硝脲 BD 丁二烯 BE 丙烯酸乳胶外墙涂料 BEE 苯偶姻乙醚 BFRM 硼纤维增强塑料 BG 丁二醇 BGE 反应性稀释剂 BHA 特丁基-4羟基茴香醚 BHT 二丁基羟基甲苯 BINAP (2R,3S)-2.2'-二苯膦-1.1'-联萘,亦简称为联二萘磷,BINAP是日本名古屋大学的Noyori(2001年诺贝尔奖)发展的一类不对称合成催化剂 BL 丁内酯 BLE 丙酮-二苯胺高温缩合物 BLP 粉末涂料流平剂 BMA 甲基丙烯酸丁酯 BMC 团状模塑料 BMU 氨基树脂皮革鞣剂 BN 氮化硼 Bn 苄基 BNE 新型环氧树脂

BNS β-萘磺酸甲醛低缩合物 BOA 己二酸辛苄酯 BOC 叔丁氧羰基(常用于氨基酸氨基的保护)BOP 邻苯二甲酰丁辛酯 BOPP 双轴向聚丙烯 BP 苯甲醇 BPA 双酚A BPBG 邻苯二甲酸丁(乙醇酸乙酯)酯 BPF 双酚F BPMC 2-仲丁基苯基-N-甲基氨基酸酯 BPO 过氧化苯甲酰 BPP 过氧化特戊酸特丁酯 BPPD 过氧化二碳酸二苯氧化酯 BPS 4,4’-硫代双(6-特丁基-3-甲基苯酚)BPTP 聚对苯二甲酸丁二醇酯 Bpy 2,2'-联吡啶 BR 丁二烯橡胶 BRN 青红光硫化黑 BROC 二溴(代)甲酚环氧丙基醚 BS 丁二烯-苯乙烯共聚物 BS-1S 新型密封胶 BSH 苯磺酰肼 BSU N,N’-双(三甲基硅烷)脲 BT 聚丁烯-1热塑性塑料 BTA 苯并三唑 BTX 苯-甲苯-二甲苯混合物 Bu 正丁基 BX 渗透剂 BXA 己二酸二丁基二甘酯 BZ 二正丁基二硫代氨基甲酸锌 Bz 苯甲酰基 C c- 环- CA 醋酸纤维素 CAB 醋酸-丁酸纤维素 CAM 甲基碳酰胺 CAN 硝酸铈铵 CAN 醋酸-硝酸纤维素 CAP 醋酸-丙酸纤维素 Cat. 催化 CBA 化学发泡剂 CBz 苄氧羰基 CDP 磷酸甲酚二苯酯 CF 甲醛-甲酚树脂,碳纤维

常用化学品的名称对照

常用化学品的名称对照 Prepared on 24 November 2020

常用化学品的名称对照 一、常用化学品英文缩写、中文名称对照英文缩写全称A A/MMA丙烯腈/甲基丙烯酸甲酯共聚物 AA 丙烯酸 AAS 丙烯酸酯-丙烯酸酯-苯乙烯共聚物 ABFN 偶氮(二)甲酰胺 ABN 偶氮(二)异丁腈 ABPS 壬基苯氧基丙烷磺酸钠 B BAA正丁醛苯胺缩合物 BAC 碱式氯化铝 BACN新型阻燃剂 BAD 双水杨酸双酚A酯 BAL 2,3-巯(基)丙醇 BBP 邻苯二甲酸丁苄酯 BBS N-叔丁基-乙-苯并噻唑次磺酰胺 BC 叶酸 BCD β-环糊精 BCG苯顺二醇 BCNU 氯化亚硝脲 BD 丁二烯 BE 丙烯酸乳胶外墙涂料 BEE 苯偶姻乙醚 BFRM 硼纤维增强塑料 BG 丁二醇 BGE 反应性稀释剂 BHA特丁基-4羟基茴香醚 BHT二丁基羟基甲苯 BL 丁内酯 BLE 丙酮-二苯胺高温缩合物 BLP 粉末涂料流平剂 BMA 甲基丙烯酸丁酯 BMC 团状模塑料 BMU 氨基树脂皮革鞣剂 BN 氮化硼 BNE 新型环氧树脂 BNS β-萘磺酸甲醛低缩合物 BOA 己二酸辛苄酯 BOP 邻苯二甲酰丁辛酯 BOPP 双轴向聚丙烯 BP 苯甲醇 BPA 双酚A BPBG 邻苯二甲酸丁(乙醇酸乙酯)酯 BPF 双酚F BPMC2-仲丁基苯基-N-甲基氨基酸酯 BPO 过氧化苯甲酰 BPP 过氧化特戊酸特丁酯 BPPD 过氧化二碳酸二苯氧化酯 BPS 4,4’-硫代双(6-特丁基-3-甲基苯酚) BPTP 聚对苯二甲酸丁二醇酯 BR 丁二烯橡胶 BRN青红光硫化黑 BROC 二溴(代)甲酚环氧丙基醚

均苯四甲酸二酐

拟在建项目数据库

1、概述 均苯四甲酸二酐外观为白色粉末或针状结晶,遇水或暴露在湿空气中易吸潮而水解成均苯四甲酸。均苯四甲酸二酐分子中具有四个羧酸基,并且都是对称的,可发生醇化、酰氯化、氢化、酰胺化、酰亚胺化、腈化等多种化学反应。 均苯四甲酸二酐是一种重要的有机合成工业原料,也是发展新型化工材料和高附加值精细化工产品的基本原料,主要用作生产聚酰亚胺的单体,此外还可用作环氧树脂的固化剂及聚酯树脂的交联剂,用于制造酞青蓝染料和一些重要的衍生物等,用途十分广泛。 目前国内均酐的主要用途是生产新型工程塑料聚酰亚胺(PI)。这是二十世纪六十年代发展起来的一种可耐高温、低温、辐射、冲击、具有优异电绝缘性能和机械性能的合成材料,可制成薄膜、

纤维、漆包线漆、胶粘剂、层压板和模塑件等,被称为“黄金膜”,广泛应用于电子、电机、机械制造、原子能以及航天等部门。 2、产品市场分析 均苯四甲酸二酐是高温绝缘材料的主要成分,用于生产聚酰亚胺薄膜、聚酰亚胺膜塑料和绝缘材料。此外,均苯四甲酸二酐还可用于生产高温固化剂、消光剂、增塑剂、环氧树脂固化剂、粉末涂料、防腐涂料、高效脱硫催化剂、耐高温绝缘漆、消光固化剂、耐高温粘合剂。 (1)用作环氧树脂固化剂 用环氧树脂进行浇铸和层压制造电机材料,特别是制造防漏电性能电机材料时,均采用酸酐作固化剂。 (2)用作表面活性剂 均苯四甲酸二酐和高碳醇进行分步酯化反应可制得具有生物降解性能的“绿色”表面活性剂或乳化剂。这种表面活性剂具有优良的表面张力、乳化、润湿泡沫等表面特性。 (3)用作增塑剂 由均苯四甲酸二酐和相应醇反应制得的均苯四酸四丁酯(TBPM)和均苯四酸四辛酯(TOPM),具有良好的电绝缘性和耐热性,可用于生产耐热高压电缆、耐热聚氯乙烯高级人造革,特别是医用塑料制品;均苯四甲酸二酐与2-乙基已醇酯化制得的均苯四甲酸四(2-乙基己)酯,是聚氯乙烯耐热增塑剂,可用于生产102~120℃耐热电缆,生产特殊的耐久耐热塑料制品,医药及食品方面使用的聚氯乙烯制品。 (4)聚酰亚胺生产 生产聚酰亚胺是均苯四甲酸二酐最主要的用途。由均苯四甲酸二酐和对二氨基二苯醚等芳香族二胺类化合物反应制得的聚酰亚胺,具有不融不熔的特点,同其它塑料相比,有着非常优秀的耐化学药品性、耐磨性、耐放射性,在工业上主要用途是制成薄膜用作H级或C级电机和电缆的耐热绝缘衬垫或统包材料,或用作柔性电路板基村,也可制成模塑料用于制造原子反应堆和宇宙空间用的电料,以及在200~232℃下工作的喷气发动机油管材料等。 (5)其它 均苯四甲酸二酐还可用作水处理剂、金属缓蚀剂、皮革鞣剂的添加剂、柴油的低温性能改进剂、电子摄影色调改善剂、粉末涂料聚酯树脂的交联剂、电极材料、热熔路标漆、偶氮染料及粘结剂以及制耐高温润滑剂、染料、醇酸树脂及聚酯树脂改性等。 目前,国外均苯四甲酸二酐的生产厂家主要有美国的杜邦公司、AllcoChemmical Corp、Priceton Chemicals Research-Inc,生产能力约为2.2万吨/年。德国的生产能力为2.4万吨/年,日本的生产能力为3.06万吨/年。 我国自二十世纪六十年代开始进行均苯四酸二酐的研究和试生产,上海焦化厂曾采用硝酸氧化法及高锰酸钾氧化法生产均苯四酸二酐,并建有15吨/年的装置。七十年代以来,国内开发均苯四酸二酐的单位主要有:南京化工大学、南京炼油厂研究所、黑龙江石油化工研究所,均采用气相空气氧化法,流程相似,只有原料和催化剂不同。 目前国内生产厂家主要有黑龙江省牡丹江石化集团股份公司牡丹江化工三厂、河北蒿城市聚丙烯厂、河北元氏县冀津化工厂、河北廊坊三威化工有限公司(廊坊市精细化工厂)、辽宁省鞍山华兴化工有限公司、上海市合成树脂研究所、上海太平洋化工(集团)公司合成树脂所实验厂、上海焦化总厂特种炭黑厂、江苏溧阳市化学工业公司、常熟市联邦化工有限公司、浙江象山志华化学有限公司以及黄山市华美精细化工有限公司等。 随着我国经济的快速发展,人民生活水平的不断提高,我国化学工业对均苯四甲酸二酐的需求量逐年增加。目前,我国均苯四甲酸二酐的生产能力还很小,年产量不足千吨,产量还不能满足国内实际生产的需求,每年都得大量进口,开发利用前景广阔。

无毒增塑剂花名册

无毒增塑剂花名册 我国作为主流增塑剂的邻苯二甲酸二辛酯(DOP)在欧盟、美国、日本和韩国被禁止使用后,国内生产对上述国家出口产品的企业纷纷寻找DOP代用品。这个问题我感觉越来越严重。有的老板反映,它的产品如果被美国查出含有DOP成分是会被退货处理的。问题究竟有多少严重?如果生产食品包装和儿童玩具这样的产品,安全性要求高一点是可以理解的。但是,现在的问题是,生产电缆的企业也面临同样的问题。老板们时常把环保型电缆放在嘴上,可见DOP在普通的工业产品上也被上述国家禁止使用。这里开列的是一部分无毒或低毒增塑剂的名单。 一、柠檬酸酯增塑剂柠檬酸酯的两个主要品种柠檬酸三丁酯(TBC)、乙酰柠檬酸三丁酯(ATBC)已获得美国FDA批准作为安全、无毒增塑剂,我国也建议在包装材料中使用。 柠檬酸三丁酯(TBC)是由柠檬酸和正丁醇在催化剂的作用下酯化合成而得,乙酰柠檬酸三丁酯(ATBC)原料为醋酸、柠檬酸、正丁醇。柠檬酸三丁酯(TBC)因具有相容性好、增塑效率高、无毒、不易挥发、耐候性强等特点而广受关注,成为首选替代邻苯二甲酸酯类的绿色环保产品。它在寒冷地区使用仍保持有好的挠曲性,又耐光,耐水,耐热,熔封时热稳定性好而不变色,安全经久耐用,适用于食品、医药物品包装、血浆袋及一次性注射输液管等。TBC对PVC、PP、纤维素树脂都可增塑,其相容性好;TBC与其他无毒增塑剂共用可提高制品硬度,尤其对软的纤维醚更为适用;TBC具无毒及抗菌作用,不滋生细菌,还具有阻燃性,所以它在乙烯基树脂中用量甚大;薄膜、饮料管、食品瓶密封圈、医疗机械、医院内围墙、家庭、饭店宾馆及公共场所等壁板、天花板,食堂灶间、卫生问等更需要此种灭菌阻燃增塑剂;交通工具含国防航空器、战船、战车的车箱内塑料制品也须用此增塑剂;TBC在玩具塑料中用量也非常大;具改善硝化纤维抗紫外能力,是多种香料的溶剂;可增强洗涤剂的去污能力;作化妆品的添加剂、乳化剂,对受伤皮肤可起治疗及营养作用,又可阻止紫外线对皮肤角质层的水分挥发,保护皮肤具滋润性及生理弹性;作润滑油及极压抗摩剂、聚氧乙烯树脂的平滑剂;烟丝中加TBC后可使香烟燃烧时生成的HCN毒气被TBC吸收,从而减少对吸烟者的毒害,TBC可使烟卷保持韧性而不被折断;作含蛋白质类液体的泡沫去除剂、鞋袜去臭剂、纸张加香助剂、橡胶工业加工防焦剂。 ATBC为无毒、无味主增塑剂,ATBC比TBC的毒性更小。ATBC作为主增塑剂,具有溶解性强,耐油性、耐光性好,并有很好的抗霉性。它与大多数纤维素、聚氯乙烯、聚醋酸乙烯酯等有良好的相容性,主要用作纤维素树脂和乙烯基树脂的增塑剂。在儿童玩具方面,随着DOP毒性资料的不断被发现,越来越多领域禁止使用DOP,而ATBC无毒,无味,透明性好,水抽出率低,经其增塑的塑料制品加工性能优良,热合性好,二次加工方便,特别适合作为儿童玩具主增塑剂使用。在肉制品包装方面,ATBC无毒,可作为肉制品包装材料,而DOP不能应用在高脂肪含量食品包装领域。而且ATBC无味,不会引起食品异味,经其增塑的塑料制品透明,印刷性能好。在医用制品方面,ATBC无毒,水抽出率低,对人体没有潜在危害,经其增塑的医用制品耐高温、低温性能好。ATBC作为一种优良的增塑剂不仅满足无毒增塑剂的条件,也

均苯四甲酸二酐的制备

摘要:均苯四甲酸二酐(均酐,PMDA),是一种非常重要的化工原料。文章通过对均四甲苯催化氧化主要得到均苯四甲酸二酐,均苯四甲酸。文章通过分析比较选择均酐收率较高的催化剂,并分析均苯四甲酸二酐的研发现状,作用以及今后的发展趋势。 关键词:均苯四甲酸二酐;催化氧化;研发现状;发展趋势 前言 均苯四甲酸二酐(1,2,4,5-苯四甲酸二酐,以下简称均酐)是一种在化工领域起着一定作用的化工原料。均苯四甲酸二酐外观为白色粉末或针状结晶,分子式为C10H2O6,熔点284~286℃,沸点397~400℃,相对密度1.680。常温下溶于二甲基甲酰胺、二甲基亚砜、γ-丁内酯、N-甲基吡咯烷酮、丙酮、丁酮、甲基异丁基甲酮、乙酸乙酯等,不溶于氯仿、乙醚、正已烷和苯,暴露在空气中易水解变成均四甲酸,均苯四甲酸二酐分子中具有四个羧基,并且都是对称的,可发生酯化、酰氯化、氢化、酰胺化、酰亚胺化、氰化等化学反应。 正文 均苯四甲酸二酐的应用 1.均酐及其衍生物具有十分重要且广泛的用途,特别是均酐可作为生产聚酰亚的主要单体 之一。聚酰亚胺在高温的环境里能体现多方面的性能,是目前有机高分子材料中使用温度最宽,高温下尺度稳定性,耐辐射性,机械性,电性能,耐腐蚀性均佳的一种新型工程材料。它可制成薄膜、层压板、纤维、粘合剂、漆包线漆、浇注件等被称为“万能塑料”。随着聚酰亚胺材料市场需求量的不断增加,作为主要单体之一,均酐的制备方法的研究正日益引起国内外科研工作者的重视。 2.均苯四甲酸二酐在涂料工业上的应用日益广泛,用于生产聚酰亚胺树脂,环氧树脂的固 化剂,聚酯树脂的交联剂,酚醛树脂的稳定剂等,用环氧树脂进行浇注和层压制造电机材料,特别是制造电机材料,特别是制造防漏电性电机材料时,均采用酸酐做固化剂,以均酐为固化剂不仅可制成绝缘性能良好的大型铸件,而且耐热性可达200~250℃;另外,用均酐作为环氧树脂胶粘剂的固化剂,可快速粘结,从而制得耐冲击性瞬时胶粘剂。 3.用作增塑剂,由均酐和应醇反应制得的均苯四酸四丁酯和均苯四酸四辛酯,具有良好的 电绝缘性和耐热性,可用于生产耐热高压电缆、耐热聚氯乙烯高级人造革,特别是医用,医药及塑料制品;均苯四甲酸二酐与2-乙基已醇酯化制得的均苯四甲酸四(2-乙基已)酯,是聚氯乙烯耐热增塑剂,可用于生产102~120℃耐热电缆,生产特殊的耐热耐久塑料制品,医药及食品方面使用的聚氯乙烯制品。 4.表面活性剂。均酐和高碳醇进行分步酯化反应可制取具有生物降解性能的“绿色”表面 活性剂或乳化剂;均酐和高级脂肪醇发生酯化反应,通过控制醇和均酐的投料比,可制得阳离子、非离子和这种表面活性剂具有优良的表面张力、乳化、润湿泡沫等表面特性。 5.均酐还可用作粉末涂料聚醋树脂的交联剂、电极材料、热熔路标漆、缓蚀剂、偶氮染料 及粘结剂,尤其适用于耐冲击性瞬时粘结剂。用作皮革黯剂的添加剂、柴油的低温性能改进剂、电子摄影色调改善剂以及耐高温润滑剂等 均苯四甲酸二酐的生产幅况 1851 年,Erdman 0L 在将苯六甲酸热解时发现了均酐, 1947 年美国 California Research Corp ,首次以均四甲苯为原料,用 V2O5复合氧化物催化剂气相催化氧化制得了均酐, 1960年美国杜邦公司以均四甲苯为原料,首次建立了液相硝酸氧化法制均酐的生产装置, 1969 年日本古河电气公司建立了用硝酸氧化和液相空气氧化法生产装置, 1970 年

杂环化合物

第十七章 杂环化合物 ——在环上含有杂原子(非碳原子)的有机物称为杂环化合物。 脂杂环 —— 没有芳香特征的杂环化合物称为脂杂环。 三元杂环 (环氧乙烷) (氮杂环丙烷) 四元杂环 NH O 五元杂环 顺丁烯二酸酐) 七元杂环 (1H-氮杂 芳杂环——具有芳香特征的杂环化合物称为芳杂环。 五元杂环 呋喃 六元杂环 吡啶 吡喃(无芳香性) 苯并杂环 吲哚 喹啉 异喹啉 杂环并杂环 嘌呤 17.1 杂环化合物的分类和命名 杂环化合物的分类: 1. 按照环的大小分类:五元杂环和六元杂环 2. 按照杂环中杂原子的数目分类:含有一个杂原子的杂环和含有两个或两个以上杂原子的杂环 O H N O O O O N H O S N H N O N S O N H N N N N N H N

3. 按照环的形式分类:单杂环和稠杂环 4. 按照环上碳原子的电荷密度分类:多π芳杂环和缺π芳杂环 杂环化合物的命名: 1. 多用习惯命名:采取音译法;用“口”字旁表示杂环化合物 五元杂环体系 呋喃(furan) 吡咯(pyrrol 苯并呋喃 (benzofuran 苯并噻 (benzothiophene) 六元杂环体系 吡啶(pyridine) α-吡喃酮(α-pyrone) γ-吡喃酮 哒嗪(pyridazine) 嘧啶 吡嗪(pyrazine) (pyrimidine) 六元杂环苯并环系 喹啉 异喹啉 苯并吡喃 苯并-γ-吡喃酮 (isoquinoline) (quinoline) (benzopyran) (benzo-γ-pyrone) 杂环并杂环: 嘌呤(purine)

增塑剂的方法研究

增塑剂的方法研究 班级:化学1001 姓名:罗丽敏学号:100900032 摘要:增塑剂广泛应用于生产生活中,然己二酸酯类(AEs)增塑剂被确认为有害增塑剂,长期与之接触会严重影响人体健康,所以研究出快速、方便、准确对己二酸酯类的检测手段有重要的意义。本文就增塑剂的分类及性质进行了概述,而且分聚氯乙烯材料、食品、水体和迁移规律对近年来对己二酸酯类增塑剂的检测方法进行简要综述,并对今后的研究方向进行展望。 关键词:增塑剂分类己二酸酯检测方法 Abstract : Plasticizer is widely used in the production and living, however adipic acid esters (AEs) plasticizer was confirmed as harmful plasticizer, long-term and the contact will seriously affect human health, so developed fast, convenient and accurate to adipic acid esters testing methods have important significance. In this paper the classification of plasticizer and properties are reviewed, and the points of polyvinyl chloride (PVC) materials, food, water and migration law of in recent years to adipic acid esters plasticizer detection methods are reviewed, and the future research direction in the future . Key words : plasticizer classify DEHA detection method 1、前言: 增塑剂是一种加入到材料(通常是塑料、树脂或弹性体)中以改进其加工性、可塑性、柔韧性和拉伸性的物质。加入增塑剂可以降低熔体粘度、玻璃化转变温度和产品的弹性模量而不会改变被增塑材料的基本化学性质【1】。 己二酸二乙酯(DEA)、己二酸二丁酯(DBA)、己二酸二异丁酯(DIBA)、己二酸二(2-丁氧基乙基)酯(BBOEA)、己二酸二(2一乙基己基)酯(DEHA)等己二酸类酯具有改进塑料的柔软性和耐寒性,增进光稳定性,改善加工性能等优点,因而被广泛使用于多种塑料制品中。过去认为己二酸酯类的毒性要比邻苯二甲酸酯类小,缺乏明确的使用限量。然而随着该类增塑剂应用范围的扩大和对其研究的深入,实验发现其对动物是有害的。塑料中的增塑剂在加工、使用的过程中会溶出、迁移和挥发损失,一方面影响制品的使用性能,一方面释放到周围环境中对人体健康和环境可能造成损害。自从人体组织内和尸检时检出DOP后…,大量研究已证实增塑剂可以通过人们日常吸入、皮肤吸收和环境污染等多种途径进入人体内并损害健康。因此,增塑剂毒性问题引发国际社会的广泛关注,塑料中增塑剂迁移测定方法的研究也日益受到重视。2005年10月13日报导的日韩生产的PVC保鲜膜可能致癌的消息,使食品包装材料助剂的安全性问题迅速浮出水面。 最近的研究成果表明,己二酸酯类增塑剂是生物内分泌干扰素[2],可干扰人体激素的分泌,在体内长期积累会导致畸形、癌变和致突变[3],引起人类多种疾病。研究数据显示:己二酸酯会渗入食物,尤其是高脂肪的食物,并且在加热时会加速释放出塑化剂己二酸酯[4],造成食品的二次污染,随食物进入人体后,大量的或者长期的摄入必然对人体的健康造成严重的危害。 2、增塑剂分类 2.1邻苯二甲酸酯类

杂环化合物

第14章杂环化合物 杂环化合物是由碳原子和非碳原子共同组成环状骨架结构的一类化合物。这些非碳原子统称为杂原子,常见的杂原子为氮、氧、硫等。前面已经学过的内酯、内酰胺、环醚等化合物都是杂环化合物,但是这些化合物的性质与同类的开链化合物类似,因此都并入相应的章节中讨论。本章将主要讨论的是环系比较稳定、具有一定程度芳香性的杂环化合物,即芳杂环化合物。 杂环化合物的种类繁多,数量庞大,在自然界分布极为广泛,许多天然杂环化合物在动、植物体内起着重要的生理作用。例如:植物中的叶绿素、动物血液中的血红素、中草药中的有效成分生物碱及部分苷类、部分抗生素和维生素、组成蛋白质的某些氨基酸和核苷酸的碱基等都含有杂环的结构。在现有的药物中,含杂环结构的约占半数。因此,杂环化合物在有机化合物(尤其是有机药物)中占有重要地位。 第一节分类和命名 一、杂环化合物的分类 芳杂环化合物可以按照环的大小分为五元杂环和六元杂环两大类;也可按杂原子的数目分为含一个、两个和多个杂原子的杂环,还可以按环的多少分为单杂环和稠杂环等。见表14-1。 表14-1 有特定名称的杂环的分类、名称和标位 14-1

二、杂环化合物的命名 (一)有特定名称的稠杂环14-2

杂环化合物的命名比较复杂。现广泛应用的是按IUPAC(1979)命名原则规定,保留特定的45个杂环化合物的俗名和半俗名,并以此为命名的基础。我国采用“音译法”,按照英文名称的读音,选用同音汉字加“口”旁组成音译名,其中“口”代表环的结构。见表14-1。 (二)杂环母环的编号规则 当杂环上连有取代基时,为了标明取代基的位置,必须将杂环母体编号。杂环母体的编号原则是: 1.含一个杂原子的杂环 含一个杂原子的杂环从杂原子开始编号。见表14-1中吡咯、吡啶等编号。 2.含两个或多个杂原子的杂环 含两个或多个杂原子的杂环编号时应使杂原子位次尽可能小,并按O、S、NH、N 的优先顺序决定优先的杂原子,见表14-1中咪唑、噻唑的编号。 3.有特定名称的稠杂环的编号有其特定的顺序 有特定名称的稠杂环的编号有几种情况。有的按其相应的稠环芳烃的母环编号,见表14-1中喹啉、异喹啉、吖啶等的编号。有的从一端开始编号,共用碳原子一般不编号,编号时注意杂原子的号数字尽可能小,并遵守杂原子的优先顺序;见表14-1中吩噻嗪的编号。还有些具有特殊规定的编号,如表14-1中嘌呤的编号。 4.标氢 上述的45个杂环的名称中包括了这样的含义:即杂环中拥有最多数目的非聚集双键。当杂环满足了这个条件后,环中仍然有饱和的碳原子或氮原子,则这个饱和的原子上所连接的氢原子称为“标氢”或“指示氢”。用其编号加H(大写斜体)表示。例如: N N H O O 1H-吡咯2H-吡咯2H-吡喃4H-吡喃 若杂环上尚未含有最多数目的非聚集双键,则多出的氢原子称为外加氢。命名时要指出氢的位置及数目,全饱和时可不标明位置。例如: 14-3

高二化学杂环、难命名的有机物-苯并杂环化合物的命名

有机物的推断 ?有机物推断的一般方法: ①找已知条件最多的,信息量最大的。这些信息可以是化学反应、有机物性质(包括物理性质)、 反应条件、实验现象、官能团的结构特征、变化前后的碳链或官能团间的差异、数据上的变化等等。 ②寻找特殊的或唯一的。包括具有特殊性质的物质(如常温下处于气态的含氧衍生物--甲醛)、特 殊的分子式(这种分子式只能有一种结构)、特殊的反应、特殊的颜色等等。 ③根据数据进行推断。数据往往起突破口的作用,常用来确定某种官能团的数目。 ④根据加成所需的量,确定分子中不饱和键的类型及数目;由加成产物的结构,结合碳的四 价确定不饱和键的位置。 ⑤如果不能直接推断某物质,可以假设几种可能,结合题给信息进行顺推或逆推,猜测可能,再验 证可能,看是否完全符合题意,从而得出正确答案。 推断有机物,通常是先通过相对分子质量,确定可能的分子式。再通过试题中提供的信息,判断有机物可能存在的官能团和性质。最后综合各种信息,确定有机物的结构简式。其中,最关键的是找准突破口。 ?根据反应现象推知官能团: ①能使溴水褪色,可推知该物质分子中可能含有碳碳双键、三键或醛基。 ②能使酸性高锰酸钾溶液褪色,可推知该物质分子中可能含有碳碳双键、三键、醛基或为苯的同系 物。 ③遇三氯化铁溶液显紫色,可推知该物质分子含有酚羟基。 ④遇浓硝酸变黄,可推知该物质是含有苯环结构的蛋白质。 ⑤遇I2水变蓝,可推知该物质为淀粉。 ⑥加入新制氢氧化铜悬浊液,加热,有红色沉淀生成;或加入银氨溶液有银镜生成,可推知该分子 结构有-CHO即醛基。则该物质可能为醛类、甲酸和甲酸某酯。 ⑦加入金属Na放出H2,可推知该物质分子结构中含有-OH或-COOH。 ⑧加入NaHCO3溶液产生气体,可推知该物质分子结构中含有-COOH或-SO3H。 ⑨加入溴水,出现白色沉淀,可推知该物质为苯酚或其衍生物。 根据物质的性质推断官能团: 能使溴水褪色的物质,含有C=C或C C或-CHO;能发生银镜反应的物质,含有-CHO;能与金属钠发生置换反应的物质,含有-OH、-COOH;能与碳酸钠作用的物质,含有羧基或酚羟基;能与碳酸氢钠反应的物质,含有羧基;能水解的物质,应为卤代烃和酯,其中能水解生成醇和羧酸的物质是酯。但如果只谈与氢氧化钠反应,则酚、羧酸、卤代烃、苯磺酸和酯都有可能。能在稀硫酸存在的条件下水解,则为酯、二糖或淀粉;但若是在较浓的硫酸存在的条件下水解,则为纤维素。 (4)根据特征数字推断官能团 ①某有机物与醋酸反应,相对分子质量增加42,则分子中含有一个-OH;增加84,则含有两个-

偏苯三酸酐主要用途

偏苯三酸酐主要用途 偏苯三酸酐(TMA)又名1,2,4-苯三甲酸酐,简称偏酐,是一种重要的精细化工产品,随着乙烯装置的大型化,三甲苯馏分量的增大,偏苯三酸酐的开发前景也日益广阔。偏苯三酸酐具有广泛的用途: (1)制偏苯三酸三辛酯 由偏苯三酸酐和辛醇酯化生成的偏苯三酸三辛酯(简称TOTM)具有良好的耐热性、低挥发性、耐油性以及可加工性,广泛用作PVC耐热增塑剂、抗溶剂交联氯乙烯树脂的增塑剂,90℃和105℃级耐热电缆配方的主增塑剂以及用作6000V、10000V高压电缆所需的配套增塑剂。此外,还可用作浸渍剂和耐高温绝缘漆,广泛用于电器内部件、汽车内电线、半导体等的包覆材料;用作汽车电缆、防湿与耐热环氧树脂胶囊组分、防雾聚乙烯树脂组分以及纤维与热塑塑料的无水染料组分;用作汽车座垫、人造革、洗衣机排水软管、百叶窗帘、密封材料与填料等。 (2)制备聚酰胺-酰亚胺和聚酯酰亚胺 由偏苯三酸酐和芳香二胺反应可以制得聚酰胺-酰亚胺,由偏苯三酸酐、氢醌和4,4‘-二胺二酚醚反应可以制得聚酯酰亚胺。它们都具有良好的耐热性能、耐电绝缘性能和机械性能,在高温下也具有较好的耐磨性能,主要用于F、H级电机的绝缘材料,如漆包线漆、浸渍漆、硅钢片漆以及薄膜等,可在230-250℃下长期使用。此外还可用于制造电器元件、阀件、轴承、喷气发动机零件等模制塑料部件。 (3)制备醇酸树脂 偏苯三酸酐与多元醇及二羧酸反应,可以制得性能优良的醇酸树脂涂料。热塑性醇酸树脂主要用作汽车、电器用具、机械制品的底漆,也可用作厨房、家具等的表面漆,用于工业建材及常用油漆等。常温固化树脂则主要用于工业建材和常用油漆。 (4)其它 偏苯三酸酐能使环氧树脂在短时间固化并使固化后的环氧树脂具有优良的物化性质,是一种便宜且实用的固化剂。此外,偏苯三酸酐还可用于生产聚酯树脂和粉末涂料,大量用于家电、自行车、钢门、窗等装饰性、防腐性要求高的地方。用作耐热绝缘层压物、合成染料、耐热清漆、稳定剂、纤维柔软剂、颜料、水处理剂、电影胶片和表面活性剂等。

TOTM

TOTM TOTM(偏苯三酸三辛酯) Trioctyl trimellitate 分子式(Formula):C33H54O6 分子量(Molecular Weight):546.78 CAS No.:3319-31-1 质量指标(Specification) 含量(Purity):99.0% 物化性质(Physical Properties) 色度(APHA) ≤80 密度(g/cm3(20℃)) 0.988±0.003 酸值(mgKOH/g) ≤0.20 体积电阻率(Ω.cm) ≥5×1011 闪点(℃) ≥245 加热减量(%) ≤0.15 折光率(20℃) 1.485(25℃) TOTM增塑剂主要用语生产105摄氏度级耐热电线电缆料以及其他要求耐热和耐久性的板材,片材,密封垫等制品. TOTM(偏苯三酸三异辛酯) 偏苯三酸三异辛酯增塑剂(TOTM).本品具有良好的性能:如高温稳定性,老化失重,伸长保持率,体积电阻等均较优良,可用于生产105℃级电缆料.性能稳定. 它是添加剂而不是代用品。是增强塑料的塑性和稳定性,变善塑料的耐热性,也不是除去毒性。 子式:C33H54O6分子量:546.78 TOTMYL 耐热和耐久性增塑剂,适用于聚氯乙烯、氯乙烯共聚物、硝酯纤维素、聚甲基丙烯酸甲酯等多种树脂。本品在挥发、耐水抽出、耐迁移、耐低温和电性能等方面性能良好,耐久性与聚合型增塑剂相媲美,而增塑效率和加工性能与邻二甲酸酯类增塑剂相近,同时具有单体型和聚合型增塑剂的一些特点。主要用于耐热电缆料(105℃级)、板材、片材、密封垫等要求耐热和耐久的制品。 产品质量指标 项目 指标 优级品一级品合格品 外观透明液体,无悬浮物总酯含量,% ≥99.0

相关文档