文档库 最新最全的文档下载
当前位置:文档库 › 90°方截面弯管的湍流计算

90°方截面弯管的湍流计算

90°方截面弯管的湍流计算
90°方截面弯管的湍流计算

各类钢管计算重量公式

注:公式中长度单位为米,面积单位为平方米,其余单位均为毫米长方形的周长=(长+宽)X2 正方形的周长=边长X4 长方形的面积=长X宽正方形的面积=边长X边长三角形的面积=底X高十2 平行四边形的面积=底X高梯形的面积=(上底+下底)X高十2 直径=半径X2半径=直径一2 圆的周长=圆周率X直径=圆周率X半径X2 圆的面积=圆周率X半径X半径长方体的表面积=(长X宽+长X高+宽X高)X2 长方体的体积=长X宽X高正方体的表面积=棱长X棱长X6 正方体的体积=棱长X棱长X棱长圆柱的侧面积=底面圆的周长X高圆柱的表面积=上下底面面积+侧面积圆柱的体积=底面积X高圆锥的体积=底面积X高十3 长方体(正方体、圆柱体)的体积=底面积X高周长一C,面积一S, 正方形: a—边长 C = 4a ; S= a2 长方形: a、b —边长 C = 2(a+b) ; S = ab 三角形: a、b、c—三边长,H —a边上的咼,s—周长的一半,A,B,C一内角 其中s= (a+b+c)/2 S = ah/2 =ab/2 sinC =[s(s-a)(s-b)(s-c)]1/2 =a2si nBsi nC/(2si nA) 四边形: d,D 一对角线长,久一对角线夹角 S= dD/2 sin a

平行四边形: a,b —边长,h —a边的高,a—两边夹角 S= ah =absin a 菱形: a —边长,a—夹角,D 一长对角线长,d 一短对角线长 S= Dd/2 =a2sin a 梯形: a和b 一上、下底长,h 一咼,m —中位线长

S=nr2 = nd2/4 扇形: r —扇形半径,a —圆心角度数 C = 2r + 2 冗r x(a/360) S=nr2 x(a/360) 弓形: S= r2/2 (nai80-sin a) =r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2 = na2/360 - b/2 [?r2-(b/2)2]1/2 =r(l-b)/2 + bh/2 ybh/3 圆环: R —外圆半径,r —内圆半径,D —外圆直径,d —内圆直径 S=*R2-r2) 冗(D2-d2)/4 椭圆: D —长轴,d —短轴 圆: S = (a+b)h/2 =mh r —半径,d 一直径C =nd = 2 Tt r 1一弧长,b 一弦长,h 一矢咼, r —半径,a —圆心角的度数

弯管一般知识及计算下料方法

第一章煨管设备及弯管计算弯管按其制作方法不同,可分为煨制弯管、冲压弯管和焊接弯管。煨制弯管又分为冷煨和热煨两种。本章着重介绍常用煨管设备的结构特点、性能及操作等方面的知识,以及煨制弯管的下料计算。 第一节弯管的一般知识 弯管是改变管道方向的管件。在管子交叉、转弯、绕梁等处,都可以看到弯管。 煨制弯管具有较好的伸缩性、耐压高、阻力小等优点。因此,在施工中常被采用。 弯管的主要形式有:各种角度的弯头、U形管、来回弯(或称乙字弯)和弧形弯管等,如图1—1所示。 弯头是带有一个任意弯曲角的管件,它被用在管子的转弯处。弯头的弯曲半径用R表示。R较大时,管子的弯曲部分就较大,弯管就比较平滑;R较小时,管子的弯曲部分就较小,弯得就较急。 来回弯是带有两个弯曲角(一般为135°)的管件。来回弯管子弯曲端中心线间的距离叫做来回弯的高度,用字母h表示。室内采暖立支管与干管及散热器连接,管道与不在同一平面上的接点连接时,一般需采用来回弯。 U形管是成正半圆形的管件。管子的两端中心线问的距离d等于两倍弯曲半径R。U形管可代替两个90°弯头,经常用来连接上下配置的两个圆翼形散热器。 图1-1弯管的主要形式 弧形弯管是带有三个弯曲角的管件。中间角一般成90°,侧角成135°。弧形弯管用于绕过其它管子,在有冷热水供应的卫生设备配管时,经常采用弧形弯管。 弯管尺寸由管径、弯曲角度和弯曲半径三者确定。弯曲角度根据图纸和施工现场实际情况确定,然后制出样板,照样板煨制并按样板检查煨制管件弯曲角度是否符合要求。样板可用圆钢煨制,圆钢的直径根据所煨管径的大小选用,10-14mm即可。弯管的弯曲半径应按管径大小、设计要求及有关规定而定。既不能过大,也末虚选得太小。因为弯曲半径过大,不但用材料多,而且管子弯曲部分所占的地方也大,这样会给管道装配带来困难;弯曲半径选

fluent湍流设置

湍流边界条件设置 在流场的入口、出口和远场边界上,用户需要定义流场的湍流参数。在FLUENT 中可以使用的湍流模型有很多种。在使用各种湍流模型时,哪些变量需要设定,哪些不需要设定以及如何给定这些变量的具体数值,都是经常困扰用户的问题。本小节只讨论在边界上设置均匀湍流参数的方法,湍流参数在边界上不是均匀分布的情况可以用型函数和UDF(用户自定义函数)来定义,具体方法请参见相关章节的叙述。 在 大多数情况下,湍流是在入口后面一段距离经过转捩形成的,因此在边界上设置均匀湍流条件是一种可以接受的选择。特别是在不知道湍流参量的分布规律时,在边 界上采用均匀湍流条件可以简化模型的设置。在设置边界条件时,首先应该定性地对流动进行分析,以便边界条件的设置不违背物理规律。违背物理规律的参数设置 往往导致错误的计算结果,甚至使计算发散而无法进行下去。 在Turbulence Specification Method (湍流定义方法)下拉列表中,可以简单地用一个常数来定义湍流参数,即通过给定湍流强度、湍流粘度比、水力直径或湍流特征长在边界上的值来定义流场边界上的湍流。下面具体讨论这些湍流参数的含义,以保证在设置模型时不出现违背流动规律的错误设置: (1)湍流强度(Turbulence Intensity) 湍流强度I的定义为:I=Sqrt(u’*u’+v’*v’+w’*w’)/u_avg (8-1) 上式中u',v' 和w' 是速度脉动量,u_avg是平均速度。 湍流强度小于1%时,可以认为湍流强度是比较低的,而在湍流强度大于10%时,则可以认为湍流强度是比较高的。在来流为层流时,湍流强度可以用绕流物体的几何特征粗略地估算出来。比如在模拟风洞试验的计算中,自由流的湍流强度可以用风洞的特征长度估计出来。

管折弯

第一节弯管的一般知识 弯管是改变管道方向的管件。在管子交叉、转弯、绕梁等处,都可以看到弯管。 煨制弯管具有较好的伸缩性、耐压高、阻力小等优点。因此,在施工中常被采用。 弯管的主要形式有:各种角度的弯头、U形管、来回弯(或称乙字弯)和弧形弯管等,如图1—1所示。 弯头是带有一个任意弯曲角的管件,它被用在管子的转弯处。弯头的弯曲半径用R表示。R较大时,管子的弯曲部分就较大,弯管就比较平滑;R较小时,管子的弯曲部分就较小,弯得就较急。 来回弯是带有两个弯曲角(一般为135°)的管件。来回弯管子弯曲端中心线间的距离叫做来回弯的高度,用字母h表示。室内采暖立支管与干管及散热器连接,管道与不在同一平面上的接点连接时,一般需采用来回弯。 U形管是成正半圆形的管件。管子的两端中心线问的距离d等于两倍弯曲半径R。U形管可代替两个90°弯头,经常用来连接上下配置的两个圆翼形散热器。 图1-1弯管的主要形式 弧形弯管是带有三个弯曲角的管件。中间角一般成90°,侧角成135°。弧形弯管用于绕过其它管子,在有冷热水供应的卫生设备配管时,经常采用弧形弯管。 弯管尺寸由管径、弯曲角度和弯曲半径三者确定。弯曲角度根据图纸和施工现场实际情况确定,然后制出样板,照样板煨制并按样板检查煨制管件弯曲角度是否符合要求。样板可用圆钢煨制,圆钢的直径根据所煨管径的大小选用,10-14mm即可。弯管的弯曲半径应按管径大小、设计要求及有关规定而定。既不能过大,也末虚选得太小。因为弯曲半径过大,不

但用材料多,而且管子弯曲部分所占的地方也大,这样会给管道装配带来困难;弯曲半径选得太小时,弯头背部管壁由于过分伸长而减薄,使其强度降低,而在弯头里侧管壁被压缩,形成皱纹状态。因此,一般规定:热煨弯管的弯曲半径应不小于管子外径的3.5倍;冷煨弯管的弯曲半径应不小于管子外径的4倍;焊接弯头的弯曲半径应不小于管子外径的1.5倍;冲压弯头弯曲半径应不小于管子外径。 弯管时,弯头里侧的金属被压缩,管壁变厚;弯头背面的金属被拉伸、管壁变薄。弯曲半径越小,弯头背面管壁减薄就越严重,对背部强度的影响就越大。为了使管子弯曲后不致对原有的工作性能有过大改变,一般规定管子弯曲后,管壁减薄率不得超过15%。管壁减薄率可按下式进行计算: 式中A——管子弯曲后外侧母线处管壁的减薄率(%); D W——管子外径(mm); R——弯管的弯曲半径(mm)。 弯管时,由于管子弯曲段内外侧管壁厚度的变化,还使得弯曲段截面由原来的圆形变成了椭圆形。弯管断面形状的改变,会使管子的过流断面面积减小,从而增加流体阻力,同时还会降低管子承受内压力的能力,因此,一般对弯管的椭圆率做以下规定:管径小于或等于150mm时,椭圆率不得大于10%;管径小于或等于200mm时,椭圆率不得大于8%。 管道的椭圆率可按下式进行计算: 式中T——椭圆率(%); d1——最大椭圆变形处的长径(mm); d2——最大椭圆变形处的短径(mm)。 应用水、煤气钢管和直缝焊接钢管制作冷煨弯管或热煨弯管时,管子的焊缝应位于距侧面中心线45°的地方,如图1-2所示。以免弯曲时,管子焊缝开裂。

紊流参数的确定

决定湍流参数 在入口、出口或远场边界流入流域的流动,FLUENT需要指定输运标量的值。本节描述了对于特定模型需要哪些量,并且该如何指定它们。也为确定流入边界值最为合适的方法提供了指导方针。 使用轮廓指定湍流参量 在入口处要准确的描述边界层和完全发展的湍流流动,你应该通过实验数据和经验公式创建边界轮廓文件来完美的设定湍流量。如果你有轮廓的分析描述而不是数据点,你也可以用这个分析描述来创建边界轮廓文件,或者创建用户自定义函数来提供入口边界的信息。一旦你创建了轮廓函数,你就可以使用如下的方法: ●Spalart-Allmaras模型:在湍流指定方法下拉菜单中指定湍流粘性比,并在在湍流粘性 比之后的下拉菜单中选择适当的轮廓名。通过将m_t/m和密度与分子粘性的适当结合,FLUENT为修改后的湍流粘性计算边界值。 ●k-e模型:在湍流指定方法下拉菜单中选择K和Epsilon并在湍动能(Turb. Kinetic Energy)和湍流扩散速度(Turb. Dissipation Rate)之后的下拉菜单中选择适当的轮廓名。 ●雷诺应力模型:在湍流指定方法下拉菜单中选择K和Epsilon并在湍动能(Turb. Kinetic Energy)和湍流扩散速度(Turb. Dissipation Rate)之后的下拉菜单中选择适当的轮廓名。 在湍流指定方法下拉菜单中选择雷诺应力部分,并在每一个单独的雷诺应力部分之后的下拉菜单中选择适当的轮廓名。 湍流量的统一说明 在某些情况下流动流入开始时,将边界处的所有湍流量指定为统一值是适当的。比如说,在进入管道的流体,远场边界,甚至完全发展的管流中,湍流量的精确轮廓是未知的。 在大多数湍流流动中,湍流的更高层次产生于边界层而不是流动边界进入流域的地方,因此这就导致了计算结果对流入边界值相对来说不敏感。然而必须注意的是要保证边界值不是非物理边界。非物理边界会导致你的解不准确或者不收敛。对于外部流来说这一特点尤其突出,如果自由流的有效粘性系数具有非物理性的大值,边界层就会找不到了。 你可以在使用轮廓指定湍流量一节中描述的湍流指定方法,来输入同一数值取代轮廓。你也可以选择用更为方便的量来指定湍流量,如湍流强度,湍流粘性比,水力直径以及湍流特征尺度,下面将会对这些内容作一详细叙述。 湍流强度I定义为相对于平均速度u_avg的脉动速度u^'的均方根。 小于或等于1%的湍流强度通常被认为低强度湍流,大于10%被认为是高强度湍流。从外界,测量数据的入口边界,你可以很好的估计湍流强度。例如:如果你模拟风洞试验,自由流的湍流强度通常可以从风洞指标中得到。在现代低湍流风洞中自由流湍流强度通常低到0.05%。. 对于内部流动,入口的湍流强度完全依赖于上游流动的历史,如果上游流动没有完全发展或者没有被扰动,你就可以使用低湍流强度。如果流动完全发展,湍流强度可能就达到了百分之几。完全发展的管流的核心的湍流强度可以用下面的经验公式计算:

管道刷油防腐工程量计算规则

第一节工程量计算公式 第12.1.1条除锈、刷油工程。 1.设备筒体、管道表面积计算公式: S =π×D×L 式中π──圆周率; D──设备或管道直径; L──设备筒体高或管道延长米。 2.计算设备筒体、管道表面积时已包括各种管件、阀门、人孔、管口凹凸部分,不再另外计算。 第12.1.2条防腐蚀工程。造价工程师 1.设备筒体、管道表面积计算公式同1 2.1.1。 2.阀门、弯头、法兰表面积计算式。 ⑴阀门表面积。 S =π×D×2.5D×K×N 式中D──直径; K──1.05; N──阀门个数。 ⑵弯头表面积。 S =π×D×1.5D×2π×N/B 式中D──直径; N──弯头个数; B值取定为:90°弯头B=4;45°弯头B=8。 ⑶法兰表面积。 S =π×D×1.5D×K×N 式中D──直径; K──1.05; N──法兰个数。 3.设备和管道法兰翻边防腐蚀工程量计算式。 S =π×(D A) ×A 式中D──直径; A──法兰翻边宽。 第12.1.3条绝热工程量。 1.设备筒体或管道绝热、防潮和保护层计算公式。 V =π×(D 1.033δ) ×1.033δ S =π×(D 2.1δ 0.0082) ×L 式中D──直径; 1.033、 2.1—调整系数; δ──绝热层厚度; L──设备筒体或管道长; 0.0082—捆扎线直径或钢带厚。 2.伴热管道绝热工程量计算式。 ⑴单管伴热或双管伴热(管径相同,夹角小于90°时)。 D' = D1 D2 (10~20mm) 式中D'──伴热管道综合值;

D1──主管道直径; D2──伴热管道直径; (10~20 mm)──主管道与伴热管道之间的间隙。 ⑵双管伴热(管径相同,夹角大于90°时)。 D' = D1 1.5D2 (10~20 mm) ⑶双管伴热(管径不同,夹角小于90°时)。 D'= D1 D伴大(10~20mm) 式中D'──伴热管道综合值; D1──主管道直径。 将上述D'计算结果分别代入公式⑺、⑻计算出伴热管道的绝热层、防潮层和保护层工程量。 3.设备封头绝热、防潮和保护层工程量计算公式。 V =[(D 1.033δ)/2]2π×1.033δ×1.5×N S =[(D 2.1δ)/2]2×π×1.5×N 4.阀门绝热、防潮和保护层计算公式 V =π×(D 1.033δ)×2.5D×1.033δ×1.05×N S =π×(D 2.1δ)×2.5D×1.05×N 5.法兰绝热、防潮和保护层计算公式。 V =π×(D 1.033δ)×1.5D×1.033δ×1.05×N S =π×(D 2.1δ)×1.5D×1.05×N 6.弯头绝热、防潮和保护层计算公式。 V =π×(D 1.033δ)×1.5D×2π×1.033δ×N/B S =π×(D 2.1δ)×1.5D×2π×N/B 7.拱顶罐封头绝热、防潮和保护层计算公式。 V =2πr×(h 1.033δ) ×1.033δ S =2πr×(h 2.1δ)

windfarmer中湍流定义

WindFarmer中湍流定义 1. 关于风速的估计设计等效湍流(通道10):使用Frandsen方法估计设计等效湍流,并使用Wohler系数进行加权调整。(Wohler系数是和组件的材料和尺寸相关的,可以从S-N的对数-对数曲线的斜率-循环应力S对疲劳循环次数N的幅度中得到,4一般是简单的钢组件,10-15之间是简单的复合材料组件)。为了描述疲劳寿命的变化,而不只是描述湍流带来的载荷影响,所以输出量使用Wohler 系数进行加权调整。该通道10计算的特征或代表湍流强度值可以用于比较允许设计水平。 (摘自《风场湍流强度的计算及其对风电机组选型的影响》作者王承凯) 2. 关于风速和风向的未计算且未加权的平均湍流(通道11):使用Frandsen方法估计的设计等效湍流。考虑平均湍流强度,排除任何Wohler权值或者因数值。 3. 风机入射湍流(通道7):入射湍流强度,包含其他风机的尾流影响。 4. 风机环境湍流(通道8):不计尾流的湍流强度。 5. 实际工程计算得到的风机入射湍流与环境湍流值一样。 5. 对风机载荷更具体的分析,需要使用粘性涡流模型来获得在风电场中实际的

湍流强度,以及特定的风机设计参数,需要使用Bladed软件来建模风机载荷。 6. WindFarmer中附加湍流的计算公式(摘自windfarmer理论手册) Iadd = 5.7Ct0.7Iamb0.68(x/x n)-0.96 Ct:thrust coefficient x: the distance downstream x n:the calculated length of the near wake(using the method proposed in [3.9, 3.10])风速标准偏差的标准偏差值可以有MCP+模块计算,并在WTI文件当中输出

弯管工艺守则

弯管工艺守则

山东五征集团农业装备事业部管理文件 SC-NZ290300-2015004 版/次:A/0 弯管工艺守则 2015-9-24发布 2015-9-25实施

农业装备事业部技术部发布 前言 本规定是山东五征集团农业装备事业部结构件车间弯管设备使用支持性文件,目的是规范农业装备事业部结构件车间(以下简称结构件车间)弯管设备的正确使用和日常管理,使之制度化。通过实施,保证作业质量,提高员工的工作效率,保障良好的工作秩序。 本程序依据GB/T 28763-2012给出的规则起草。 本程序由山东五征集团有限公司农业装备事业部技术部提出。 本程序由山东五征集团有限公司农业装备事业部技术部归口。 本程序由山东五征集团农业装备事业部技术部负责组织起草。 本程序主要起草人: 审核: 会签:

参数名 称 参数值最大弯 管外径/mm 10 16 2 5 3 8 4 2 6 6 3 7 6 8 9 11 4 15 9 16 8 21 9 27 3 最大弯管壁厚/mm 1. 2 1. 2 3 4 4 5 5 5 6 8 12 12 16 20 4.3 弯管机的弯管外径范围为:当弯管最大外径小于114mm时,为0.3至1倍的弯管最大半径;当弯管最大外径大于或等于114mm时,为0.4至1倍的弯管最大半径。 4.4结构件车间弯管机弯管参数: 弯管机型 号 弯管外径mm 弯管壁厚mm 弯曲半径mm DWFB63 19至63 ≤5 50至250 DWFB114 48至114 ≤8 100至750 5 结构件车间现有的弯管模具 材料类型材料规格mm 壁厚 mm 弯曲半径(默认为中径)mm 对应设备 圆管φ16 2 58 DWFB63 φ25 2 50 DWFB63 φ25 2 150 DWFB63 φ33 3 101.5 DWFB63 Φ35 4 60 DWFB63 Φ42 3 100 DWFB63

定义湍流参数

FLUENT6.1全攻略 6 定压强跳跃、流动方向、环境总压和总温。 (9)出口通风条件:在出口处给定损失系数、流动方向、环境总压和总温。 (10)排气风扇条件:在假设出口处存在排气风扇的情况下,给定出口处的压强跳跃和静压。 8.2.2 定义湍流参数 在流场的入口、出口和远场边界上,用户需要定义流场的湍流参数。在FLUENT 中可以使用的湍流模型有很多种。在使用各种湍流模型时,哪些变量需要设定,哪些不需要设定以及如何给定这些变量的具体数值,都是经常困扰用户的问题。本小节只讨论在边界上设置均匀湍流参数的方法,湍流参数在边界上不是均匀分布的情况可以用型函数和UDF (用户自定义函数)来定义,具体方法请参见相关章节的叙述。 在大多数情况下,湍流是在入口后面一段距离经过转捩形成的,因此在边界上设置均匀湍流条件是一种可以接受的选择。特别是在不知道湍流参量的分布规律时,在边界上采用均匀湍流条件可以简化模型的设置。在设置边界条件时,首先应该定性地对流动进行分析,以便边界条件的设置不违背物理规律。违背物理规律的参数设置往往导致错误的计算结果,甚至使计算发散而无法进行下去。 在Turbulence Specification Method (湍流定义方法)下拉列表中,可以简单地用一个常数来定义湍流参数,即通过给定湍流强度、湍流粘度比、水力直径或湍流特征长在边界上的值来定义流场边界上的湍流。下面具体讨论这些湍流参数的含义,以保证在设置模型时不出现违背流动规律的错误设置: (1)湍流强度(Turbulence Intensity ) 湍流强度I 的定义如下: avg u w v u I 2 22'''++= (8-1) 上式中'u 、'v 和'w 是速度脉动量,avg u 是平均速度。 湍流强度小于1%时,可以认为湍流强度是比较低的,而在湍流强度大于10%时,则可以认为湍流强度是比较高的。在来流为层流时,湍流强度可以用绕流物体的几何特征粗略地估算出来。比如在模拟风洞试验的计算中,自由流的湍流强度可以用风洞的特征长度估计出来。在现代的低湍流度风洞中,自由流的湍流强度通常低于0.05%。 内流问题进口处的湍流强度取决于上游流动状态。如果上游是没有充分发展的未受扰流动,则进口处可以使用低湍流强度。如果上游是充分发展的湍流,则进口处湍流强度可以达到几个百分点。如果管道中的流动是充分发展的湍流,则湍流强度可以用公式(8-2)计算得到,这个公式是从管流经验公式得到的:

管道表面积计算公式

第十一册刷油、防腐蚀、绝热工程 (一)工程量计算公式 1、除锈、刷油工程。 (1)设备筒体、管道表面积计算公式: S=π×D×L 式中π——圆周率; D——设备或管道直径; L——设备筒体高或管道延长米。 (2)计算设备筒体、管道表面积时已包括各种管件、阀门、法兰、人孔、管口凹凸部分,不再另外计算。 2、防腐蚀工程。 (1)设备筒体、管道表面积计算公式同(1)。 (2)阀门表面积计算式:(图一) S=π×D×2.5D×K×N 图一

式中D——直径; K——1.05; N——阀门个数。 (3)弯头表面积计算式:(图二) 图二 S=π×D×1.5D×K×2π×N/B 式中D——直径; K——1.05; N——弯头个数; B值取定为:90°弯头B=4;45°弯头B=8。 (4)法兰表面积计算式:(图三) S=π×D×1.5D×K×N 图三

式中D——直径; K——1.05; N——法兰个数。 (5)设备和管道法兰翻边防腐蚀工程量计算式:(图四) 图4 S=π×(D+A)×A 式中D——直径; A——法兰翻边宽。 (6)带封头的设备防腐(或刷油)工程量计算式:(图五)

图五 S=L×π×D+(D[]22)×π×1.5×N 式中N——封头个数; 1.5——系数值。 3、绝热工程量。 (1)设备筒体或管道绝热、防潮和保护层计算公式: V=π×(D+1.033δ)×1.033δ S=π×(D+2.1δ+0.0082)×L图五 式中D——直径 1.033、 2.1——调整系数; δ——绝热层厚度; L——设备筒体或管道长; 0.0082——捆扎线直径或钢带厚。 (2)伴热管道绝热工程量计算式: ①单管伴热或双管伴热(管径相同,夹角小于90°时)。

弯管下料计算

一、90°弯管的计算 90°弯管在管道工程中应用最广,其弯曲半径月因制作方法不同而异。对于冷煨弯管,常取R=(4~6)D;热煨弯管取R=4D;冲压弯头或焊接弯头,常取R=(1~1.5)D。弯曲半径确定以后,即可计算出弯曲部分的下料长度,并能确定热煨时的加热长度,如图1-3所示。从图中可知,管道弯曲后,其弯曲段的外弧、内弧不是原来的直管实际长度,而只有弯管中心线的长度在弯曲前后不变,其展开长度等于原直管段长度。现设弯曲段起止端点分别为a、b,当弯曲角为90°时,管子弯曲段的长度正好是以r为半径所画圆的周长的1/4,其弧长用弯曲半径来表示,即为 弧长 由式(1-3)可知,90°弯管弯曲段的展开长度为弯曲半径的1.57倍。 图1-3 90°弯臂 在弯制U形弯、反向双弯头或方形伸缩器时,如以设计图样要求或实际测量得出的两个相邻90°弯头的中心距尺寸进行划线煨制,那么弯成的两个弯头中心距将比原来的距离要大些,这是由于金属管材加热弯曲时产生延伸的结果。下料时,应将两个弯头中心距减去这一延伸误差,再划出第二个弯头中心线和加热长度,这样才能使两个弯头弯好后,中心线间的距离正好等于所需要的尺寸。延伸误差如图1-4所示,其数值可按下式进行计算: 式中△L——延伸长度(mm); R——弯曲半径(mm); ——第二个弯曲角的角度(°)。

图1-4U形弯划线示意图 1-第一个弯头 2-规定的第二个弯头中心线位置 3-实际第二个弯头中心线位置4-第二个弯头 下面以方形伸缩器为例,说明弯管划线下料计算方法。 在图1-5a中,已知方形伸缩器的尺寸单位为mm,管径为DNl50,弯曲半径R=4DN=600mm。 若划线在图1-5b的直线上进行,并以左边端点o为起点,由图上可以看出 Oa=1500—R=1500—600=900mm ab是弯曲部分,其弧长为 ab=1.57R=1.57 X 600=942mm 从a到d由两个反向90°弯加一直管段bc组成,直管段bc的长度应减去延伸误差△L,则 bc=2100—2R—△L 由式(1—4)可知 △L=600X(1—0.00875×90)=127.5mm 那么bc=2100—2×600—127.5=772.5mm 依此类推,便可计算出各管段的下料长度,如图1—5b所示,划线工作便可顺利进行。 在实际工作中,煨制多个弯头组成的管件时,划线工作都分几次去完成。首先在草图上计算出各段下料长度,选取适当长度的直管;然后从一端开始逐个弯头进行制作,在前一个弯头制作好之后,再划下一个,以便处理在弯管工作中的尺寸误差。 图1—5b方形伸缩器的下料 二、任意弯管的计算 任意弯管是指任意弯曲角度和任意弯曲半径的弯管。这种弯管弯曲部分的展开长度可按下式进行计算: 式中L——弯曲部分的展开长度(mm);

钢管、管件表面积计算公式

钢管表面积计算公式,管道除锈、防腐、刷油计算公式 一、如何计算设备、管道除锈、刷油工程量?(1)设备简体、管道表面积计算公式:。 S=πDL(1-1)式中π--圆周率;D--设备或管道直径;L--设备筒体高或管道延伸米。(2)计算设备筒体、管道表面积时已包含各种管件、阀门、人孔、管口凹凸部分,不再另外计算。 二、如何计算设备、管道防腐蚀工程量?(I)设备筒体、管道表面积计算公式为: S=πDL(1-2)式中π--圆周率,取3.14;D--设备简体、管道直径(m);L--设备筒体、管道高或延伸米(m)。(2)设备上的人孔、管口所占面积不另计算,同时在计算设备表面积时也不扣除。其工程量计算方法见下例。 三、阀们、弯头和法兰?如何计算其防腐蚀工程量?阀们指在工艺管道上,可以兴许灵 活控制管内介质流量的装置,统称阀们或阀件。弯头是用来改变管道的走向。常用弯头的弯曲角度为90°、45°和180°,180°弯头也称为U形弯管,也有用特殊角度的,但为数极少。法兰是工艺管道上起连接效用的一种部件。这类连接形式的应用范围非常广泛,如管道与工艺设备连接,管道上法兰阀门及附件的连接。采用法兰连接既有安装拆卸的灵活性,又有可靠的密封性。阀门、弯头、法兰表面积计算式如下。 (1)阀门表面积:S=πD×2.5DKN(1-3)式中D--直径;K一一系数,取1.05;N--阀门个数。 (2)弯头表面积:S=πD×1.5DK×2π/B×N (1-4)式中D--直径;K--系数,取1.05 N--弯头个数;B值取定为:90°弯头.B=4;45°弯头B=8 (3)法兰表面积:S=πD×1.5DKN(1-5)式中D--直径;K--系数,取1.05;N--法兰个数。(4)设备和管道法兰翻边防腐蚀工程量计算式。S=π(D+A)A(1-6)式中D--直径;A--法兰翻边宽。 四、如何计算绝热工程的工程量?(1)设备简体或管道绝热、防潮和保护层计算公式: V=π(D+1.033δ)X1.033δL(1-7)S=π(D+2.18δ+0.0082)L(1-8)式中V--绝 热层体积;S--绝热层面积;D--直径;1.033、2.1--调解系数;d--绝热层厚度;L--设备筒体或管道长;0.0082--捆扎线直径或钢带厚。(2)伴热管道绝热

弯管工艺守则

山东五征集团农业装备事业部管理文件 SC-NZ290300-2015004 版/次:A/0 弯管工艺守则 2015-9-24发布 2015-9-25实施农业装备事业部技术部发布

前言 本规定是山东五征集团农业装备事业部结构件车间弯管设备使用支持性文件,目的是规范农业装备事业部结构件车间(以下简称结构件车间)弯管设备的正确使用和日常管理,使之制度化。通过实施,保证作业质量,提高员工的工作效率,保障良好的工作秩序。 本程序依据GB/T 28763-2012给出的规则起草。 本程序由山东五征集团有限公司农业装备事业部技术部提出。 本程序由山东五征集团有限公司农业装备事业部技术部归口。 本程序由山东五征集团农业装备事业部技术部负责组织起草。 本程序主要起草人: 审核: 会签: 批准:

弯管工艺守则 1 范围 1.1 本程序适用于金属管材在冷态下弯曲的缠绕式数控弯管机。 1.2 本程序适用于农装结构件车间DW63与DW114型号单头液压弯管机。 2 规范性引用文件 下列文件对本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新程序适用于本文件。 GB/T 28763-2012 数控弯管机 3术语和定义 数控弯管机 至少应有主轴回转、卡头直线运动及卡头旋转的三轴运动,并用数控系统控制的弯管机。 4弯管机参数 4.1 弯管机主参数是弯管最大外径。 4.2 弯管机的主参数和基本参数应符合下表规定 4.3 弯管机的弯管外径范围为:当弯管最大外径小于114mm时,为0.3至1倍的弯管最大半径;当弯管最大外径大于或等于114mm时,为0.4至1倍的弯管最大半径。 4.4结构件车间弯管机弯管参数: 5 结构件车间现有的弯管模具

弯管的基本知识

学习资料 上次我们学习了弯管的基本知识,这次我们对管件的基本知识进行学习。 所为管件,顾名思义就是管路中的部件称为管件,管件的种类可分为弯头、三通、大小头、封头、异径弯头、翻边短接等,随着工业管路的需求品种可能更多。其中弯头分为长半径弯头和短半径弯头和异径弯头。三通分为三通、四通和多通。这其中分为等径和异径,大小头分为同心和偏心。翻边短接分为长型和短型。他们的类别和代号在GB/T12459-2005中可以查到。 1.5DN称为长半径弯头,1DN称为短半径弯头,也有的地方需要2DN、 2.5DN,但不属于12459-2005标准规定,我们通常也称为非标管件。 三通和四通有等径和异径之分,等径是指三个口径相等称为等径。三个口径不相等称为异径。 封头的形状有椭圆型、半球型、蝶型,在使用中中低压管道一般采用椭圆型,电力高压一般采用半球型。还有封头组合件、三通组合件等多种多样。 对管件的加工方面,一般多采用扩和缩两种加工工艺,就是以钢管做加工毛坯料,通过扩和缩的加工方法使其改变所需产品的形状,既能不破坏原有组织的结构和机械性能,又能保证所需管件用途的质量和机械性能。如推制弯头就是采用扩径的方法加工的一样。根据正常的1.5DN弯头扩径比例为1.4~1.5倍的比率比较理想,大小头和三通的加工工艺采用缩口的加工方法加工而成,封头采用钢板模压法压制而成。 下面咱们学习一下弯头推制过程作业指导书和三通作业指导书。然后学习一些金属材料知识。 根据GB12459-2005标准中碳钢及低合金钢无缝弯头的加工要求。以感应加热推制成型的加工工艺。我们编写的有作业指导书和工艺卡等文件。无缝推制弯头的原理是将无缝弯

湍流边界条件参数的设置

2011-8-30蓝色流体|流体专业论坛专注流体 - Pow… 标题: [fluent相关]湍流边界条件参数的设置 作者: ifluid 时间: 2009-4-14 15:02 标题: 湍流边界条件参数的设置 在流场的入口、出口和远场边界上,用户需要定义流场的湍流参数。在FLUENT 中可以使用的湍流模型 有很多种。在使用各种湍流模型时,哪些变量需要设定,哪些不需要设定以及如何给定这些变量的具 体数值,都是经常困扰用户的问题。本小节只讨论在边界上设置均匀湍流参数的方法,湍流参数在边 界上不是均匀分布的情况可以用型函数和UDF(用户自定义函数)来定义,具体方法请参见相关章节的 叙述。 在大多数情况下,湍流是在入口后面一段距离经过转捩形成的,因此在边界上设置均匀湍流条件是一种可以接受的选择。特别是在不知道湍流参量的分布规律时,在边界上采用均匀湍流条件可以简 化模型的设置。在设置边界条件时,首先应该定性地对流动进行分析,以便边界条件的设置不违背物 理规律。违背物理规律的参数设置往往导致错误的计算结果,甚至使计算发散而无法进行下去。在 Turbulence Specification Method (湍流定义方法)下拉列表中,可以简单地用一个常数来定义湍 流参数,即通过给定湍流强度、湍流粘度比、水力直径或湍流特征长在边界上的值来定义流场边界上 的湍流。下面具体讨论这些湍流参数的含义,以保证在设置模型时不出现违背流动规律的错误设置: (1)湍流强度(Turbulence Intensity) 湍流强度I的定义为: I=Sqrt(u’*u’+v’*v’+w’*w’)/u_avg 上式中u',v' 和w' 是速度脉动量,u_av g是平均速度。 湍流强度小于1%时,可以认为湍流强度是比较低的,而在湍流强度大于10%时,则可以认为湍流强 度是比较高的。在来流为层流时,湍流强度可以用绕流物体的几何特征粗略地估算出来。比如在模拟 风洞试验的计算中,自由流的湍流强度可以用风洞的特征长度估计出来。在现代的低湍流度风洞中, 自由流的湍流强度通常低于0.05%。 内流问题进口处的湍流强度取决于上游流动状态。如果上游是没有充分发展的未受扰流动,则进口处可以使用低湍流强度。如果上游是充分发展的湍流,则进口处湍流强度可以达到几个百分点。如 果管道中的流动是充分发展的湍流,则湍流强度可以用公式(8-2)计算得到,这个公式是从管流经验公 式得到的: I=u’/u_avg=0.16*Re_DH^-0.125 其中Re_DH是Hy draulic Diameter(水力直径)的意思,即式(8-2)中的雷诺数是以水力直径为特 征长度求出的。 (2)湍流的长度尺度与水力直径 湍流能量主要集中在大涡结构中,而湍流长度尺度l则是与大涡结构相关的物理量。在充分发展的管流中,因为漩涡尺度不可能大于管道直径,所以l 是受到管道尺寸制约的几何量。湍流长度尺度l 与管道物理尺寸L关系可以表示为: l = 0.07L 式中的比例因子0.07是充分发展管流中混合长的最大值,而L则是管道直径。在管道截面不是圆形 时,L可以取为管道的水力直径。

FLUENT中湍流参数的定义

FLUENT 中湍流参数的定义 2011-07-28 10:46:03| 分类:默认分类|举报|字号订阅 流场的入口、出口和远场边界上,用户需要定义流场的湍流参数。在FLUENT 中可以使用的湍流模型有很多种。在使用各种湍流模型时,哪些变量需要设定,哪些不需要设定以及如何给定这些变量的具体数值,都是经常困扰用户的问题。本小节只讨论在边界上设置均匀湍流参数的方法,湍流参数在边界上不是均匀分布的情况可以用型函数和UDF(用户自定义函数)来定义,具体方法请参见相关章节的叙述。 在大多数情况下,湍流是在入口后面一段距离经过转捩形成的,因此在边界上设置均匀湍流条件是一种可以接受的选择。特别是在不知道湍流参量的分布规律时,在边界上采用均匀湍流条件可以简化模型的设置。在设置边界条件时,首先应该定性地对流动进行分析,以便边界条件的设置不违背物理规律。违背物理规律的参数设置往往导致错误的计算结果,甚至使计算发散而无法进行下去。 在Turbulence Specification Method (湍流定义方法)下拉列表中,可以简单地用一个常数来定义湍流参数,即通过给定湍流强度、湍流粘度比、水力直径或湍流特征长在边界上的值来定义流场边界上的湍流。下面具体讨论这些湍流参数的含义,以保证在设置模型时不出现违背流动规律的错误设置: (1)湍流强度(Turbulence Intensity)

湍流强度I的定义为: I=Sqrt(u’*u’+v’*v’+w’*w’)/u_avg (8-1) 上式中u',v' 和w' 是速度脉动量,u_avg是平均速度。 湍流强度小于1%时,可以认为湍流强度是比较低的,而在湍流强度大于10%时,则可以认为湍流强度是比较高的。在来流为层流时,湍流强度可以用绕流物体的几何特征粗略地估算出来。比如在模拟风洞试验的计算中,自由流的湍流强度可以用风洞的特征长度估计出来。在现代的低湍流度风洞中,自由流的湍流强度通常低于0.05%。 内流问题进口处的湍流强度取决于上游流动状态。如果上游是没有充分发展的未受扰流动,则进口处可以使用低湍流强度。如果上游是充分发展的湍流,则进口处湍流强度可以达到几个百分点。如果管道中的流动是充分发展的湍流,则湍流强度可以用公式(8-2)计算得到,这个公式是从管流经验公式得到的: I=u’/u_avg=0.16*Re_DH^-0.125 (8-2) 其中Re_DH是Hydraulic Diameter(水力直径)的意思,即式(8-2)中的雷诺数是以水力直径为特征长度求出的。 (2)湍流的长度尺度与水力直径 湍流能量主要集中在大涡结构中,而湍流长度尺度l则是与大涡结构相关的物理量。在充分发展的管流中,因为漩涡尺度不可能大于管道直径,所以l 是受到管道尺寸制约的几何量。湍流长度尺度l 与管道物理尺寸L 关系可以表示为: l = 0.07L (8-3)

常用面积计算公式教学内容

常用面积计算公式

【面积计算方法】 长方形:S=ab(长方形面积=长×宽) 正方形:S=a^2(正方形面积=边长×边长) 平行四边形:S=ab(平行四边形面积=底×高) 三角形:S=ab÷2(三角形面积=底×高÷2) 梯形:S=(a+b)×h÷2【梯形面积=(上底+下底)×高÷2】 圆形(正圆):S=∏r^2【圆形(正圆)面积=圆周率×半径×半径】 圆形(正圆外环):S=∏R^2-∏r^2【圆形(外环)面积=圆周率×外环半径×外环半径-圆周率×内环半径×内环半径】 圆形(正圆扇形):S=∏r^2×n/360【圆形(扇形)面积=圆周率×半径×半径×扇形角度/360】 长方体表面积:S=2(ab+ac+bc)【长方体表面积=(长×宽+长×高+宽×高)×2】正方体表面积:S=6a^2(正方体表面积=棱长×棱长×6) 圆体(正圆)表面积:S=4∏r^2【圆体(正圆)表面积=圆周率×半径×半径×4】 体积的计算方法 长方体:V=abh(长方体体积=长×宽×高) 正方体:V=a^3(正方体体积=棱长×棱长×棱长) 圆柱(正圆):V=∏r^2×h【圆柱(正圆)体积=圆周率×底半径×底半径×高】 圆锥(正圆):V=∏r^2×h÷3【圆锥(正圆)体积=圆周率×底半径×底半径×高÷3】 圆柱体:体积=πr^2*H,表面积=2πr(H+r) 圆锥体:体积=1/3πr^2*H,表面积=πr(l+r):其中l=(r^2+H^2)^(1/2)

9.如何计算设备、管道除锈、刷油工程量? (1)设备简体、管道表面积计算公式:。 S=πDL (1—1) 式中π——圆周率; D——设备或管道直径; L——设备筒体高或管道延长米。 (2)计算设备筒体、管道表面积时已包括各种管件、阀门、人孔、管口凹凸部分,不再另外计算。 10.如何计算设备、管道防腐蚀工程量? (I)设备筒体、管道表面积计算公式为: S=πDL (1—2) 式中π——圆周率,取3.14; D——设备简体、管道直径(m); L——设备筒体、管道高或延长米(m)。 (2)设备上的人孔、管口所占面积不另计算,同时在计算设备表面积时也不扣除。其工程量计算方法见下例。 11.什么是阀们、弯头和法兰?如何计算其防腐蚀工程量? 阀们指在工艺管道上,能够灵活控制管内介质流量的装置,统称阀们或阀件。 弯头是用来改变管道的走向。常用弯头的弯曲角度为90°、45°和180°,180°弯头也称为U形弯管,也有用特殊角度的,但为数极少。 法兰是工艺管道上起连接作用的一种部件。这种连接形式的应用范围非常广泛,如管道与工艺设备连接,管道上法兰阀门及附件的连接。采用法兰连接既有安装拆卸的灵活性,又有可靠的密封性。 阀门、弯头、法兰表面积计算式如下。 (1)阀门表面积:

管道面积、重量-计算公式

工程量(面积)计算公式 1、除锈、刷油工程。 (1)设备筒体、管道表面积计算公式: S=π×D×L 式中π——圆周率; D——设备或管道直径; L——设备筒体高或管道延长米。 (2)计算设备筒体、管道表面积时已包括各种管件、阀门、法兰、人孔、管口凹凸部分,不再另外计算。 2、防腐蚀工程。 (1)设备筒体、管道表面积计算公式同(1)。 (2)阀门表面积计算式:(图一) S=π×D×2.5D×K×N 图一

式中D——直径; K——1.05; N——阀门个数。 (3)弯头表面积计算式:(图二) 图二 S=π×D×1.5D×K×2π×N/B 式中D——直径; K——1.05; N——弯头个数; B值取定为:90°弯头B=4;45°弯头B=8。 (4)法兰表面积计算式:(图三) S=π×D×1.5D×K×N 图三

式中D——直径; K——1.05; N——法兰个数。 (5)设备和管道法兰翻边防腐蚀工程量计算式:(图四) 图4 S=π×(D+A)×A 式中D——直径; A——法兰翻边宽。 (6)带封头的设备防腐(或刷油)工程量计算式:(图五)

图五 S=L×π×D+(D[]22)×π×1.5×N 式中N——封头个数; 1.5——系数值。 3、绝热工程量。 (1)设备筒体或管道绝热、防潮和保护层计算公式: V=π×(D+1.033δ)×1.033δ S=π×(D+2.1δ+0.0082)×L图五式中D——直径 1.033、 2.1——调整系数; δ——绝热层厚度; L——设备筒体或管道长; 0.0082——捆扎线直径或钢带厚。 (2)伴热管道绝热工程量计算式: ①单管伴热或双管伴热(管径相同,夹角小于

湍流边界条件的设置

1、湍流强度 定义:速度波动的均方根与平均速度的比值 小于1%为低湍流强度,高于10%为高湍流强度。 计算公式: I=0.16*(re)^(-1/8) 式中:I—湍流强度,re—雷诺数 2、湍流尺度及水力直径 湍流尺度(turbulence length):a physical quantity related to the size of the large eddies that contain the energy in turbulent flows。 通常计算方式: l=0.07L L为特征尺度,可认为是水力直径,因数0.07是基于充分发展的湍流管流中的混合长度的最大值。 湍流参数的选取: (1)充分发展的内部流动,选取湍流强度(intensity)和水力直径(hydraulic diameter) (2)导流叶片流动、穿孔板等流动,选取强度(intensity)和长度尺度(length scale)。 (3)四周为壁面引起湍流边界层的流动,选取强度(intensity)和长度尺度(length scale),使用边界层厚度,特征长度等于0.4倍边界层,输入此值到turbulence length scale中。 3、湍动能(Kinetic energy) 湍流模型中最常见的物理量(k)。利用湍流强度估算湍动能: k=3/2*(u*I)^2 其中:u—平均速度,I—湍流强度 4、湍流耗散率(turbulent disspipation rate)

湍流耗散率即传说中的ε。通常利用k和湍流尺度l估算ε计算公式为: cu通常取0.09,k为湍动能,l为湍流尺度 5、比耗散率ω 计算公式为: ω=k^0.5/(l*c^0.25) 式中:k为湍动能,l为湍流尺度,c为经验常数,常取0.09

相关文档