文档库 最新最全的文档下载
当前位置:文档库 › Abstract Critical heat flux of R-407C in upflow boiling in a vertical pipe

Abstract Critical heat flux of R-407C in upflow boiling in a vertical pipe

Abstract Critical heat flux of R-407C in upflow boiling in a vertical pipe
Abstract Critical heat flux of R-407C in upflow boiling in a vertical pipe

Critical heat ?ux of R-407C in up?ow boiling in a vertical pipe

R.Sindhuja,A.R.Balakrishnan,S.Srinivasa Murthy

*

Department of Chemical Engineering,Indian Institute of Technology Madras,Chennai 600036,Tamil Nadu,India

Received 7June 2007;accepted 18June 2007

Available online 5July 2007

Abstract

The critical heat ?ux (CHF)in forced convective up?ow has been investigated in a uniformly heated vertical tube of 12.7mm internal diameter and 3m length for di?erent reduced pressures ranging from 0.32to 0.98,with non-azeotropic ternary refrigerant mixture R-407C as the working ?uid.The onset of CHF was determined by the sudden rise in the wall temperature of the electrically heated tube.Experiments were performed over a wide range of parameters:mass ?ux values from 200to 2000kg/m 2s,pressure from 15to 45.6bar and heat ?ux from 5to 80kW/m 2.The results show considerably lower critical heat ?ux at higher pressures as in the case of pure ?uids.Finally,a comparison of the experimental data with the available pure ?uid correlations has been performed.ó2007Elsevier Ltd.All rights reserved.

Keywords:R407C;Critical Heat Flux;Vertical Pipe;Up?ow

1.Introduction

Global concern over damage to the ozone layer has resulted in the replacement of chlorine containing refriger-ants (CFCs and HCFCs)with non-chlorinated alternatives such as the hydro?uorocarbons (HFCs)[1–3].In some cases,binary and ternary refrigerant mixtures have been employed since the required properties could be easily obtained.While it would be preferable to have azeotropes as replacements,it is rather di?cult to ?nd such mixtures in practice.Hence,many non-azeotropic refrigerant mixtures (NARMs)are currently being used.In addition to satisfy-ing the basic requirements,NARMs may also improve the system performance by means of their gliding temperature during phase change [4,5].The ?uid chosen for the present study,R-407C is a 23/25/52wt%ternary mixture of R-32,R-125and R-134a.This o?ers a close match to the widely used refrigerant R-22in terms of thermodynamic proper-

ties [6–8]allowing the utilization of this mixture in existing machinery without major modi?cations.

Studies on the boiling of NARMs under vertical forced ?ow are scarce.A knowledge of the pressure drop,heat transfer coe?cient and parametric behavior can reduce costs by avoiding both under-design and over-design of evaporators,boilers and other two-phase process equip-ments.In addition,the critical heat ?ux (CHF)information is essential as this limiting condition forms an important boundary when considering the performance of heat exchange equipment in which evaporation is occurring.The CHF condition is characterized by a sharp reduction of the local heat transfer coe?cient which results from the replacement of the liquid adjacent to the heat transfer surface by vapor.For the case where the surface heat ?ux is the independent variable,the condition manifests itself by a sharp increase in surface temperature as the critical heat ?ux value is reached.Likewise,a considerably reduced heat ?ux will result when the condition is reached using a temperature-controlled heating surface.

There are basically two classes of CHF,namely depar-ture from nucleate boiling (DNB)and dry out (DO).While DNB occurs at low qualities or lower ?uid enthalpy,DO is generally experienced at high qualities or higher ?uid

1359-4311/$-see front matter ó2007Elsevier Ltd.All rights reserved.doi:10.1016/j.applthermaleng.2007.06.030

*

Corresponding author.Present address:Department of Mechanical Engineering,Indian Institute of Technology Madras,Chennai 600036,Tamil Nadu,India.Tel.:+914422574680;fax:+914422574652.E-mail address:ssmurthy@iitm.ac.in (S.S.Murthy)https://www.wendangku.net/doc/472715316.html,/locate/apthermeng

Available online at https://www.wendangku.net/doc/472715316.html,

Applied Thermal Engineering 28(2008)

1058–1065

enthalpies where nucleation is suppressed and the?ow pat-tern is likely to be annular[9].The term‘dryout’is used to imply the drying out of the liquid?lm that causes the CHF condition and is the subject of present study.

While CHF has been studied extensively for pure?uids, very few studies on the CHF of mixtures in forced convec-tive boiling have been reported.Earlier experimental stud-ies reported by Collier and Thome[9]on CHF in forced ?ow with binary mixtures were mainly related to low exit quality conditions,and did not include refrigerant mix-tures.A non-linear behavior of CHF was observed for both non-azeotropic and azeotropic mixtures.Auracher and Marroquin[10]measured the CHF for an R-13B1/R-114 mixture?owing in an electrically heated vertical stainless steel tube.The experimental results showed,in e?ect,a lin-ear behavior of CHF with varying mixture composition. Thus,the literature reports present apparently contradic-tory results on the dependence of CHF on mixture composition.

Celata et al.[11]investigated the CHF in forced convec-tive up?ow at di?erent compositions of binary mixtures of R-12and R-114.Their experiments showed nearly linear dependence of the critical heat?ux on the composition of the mixture even though deviations from linearity were detected as a function of thermal hydraulic conditions. Their study focused on the CHF in the annular?ow regime,and on the relationship between the mixture com-position and the onset of the boiling crisis.A linear depen-dence of CHF on the inlet mole fraction was observed in the case of DNB type crisis,while this dependency was neg-ligible under the DO conditions.

Auracher and Marroquin[12]studied the e?ects of length of the heated section,local quality or subcooling and mole fraction on CHF and minimum heat?ux of?lm boiling(MHF)for the binary refrigerant mixture R-13B1/ R-114.Their investigation was limited to CHF caused by DNB.

Most of the correlations and models that predict the CHF in forced convective boiling have been developed for pure?uids and are limited to low pressures.Recently, Vijayarangan et al.[13]conducted experimental studies to obtain CHF data for R-134a over a wide range of pressures approaching the critical conditions.This study discusses the four principal approaches available for the prediction of CHF and presents a new correlation,a modi?ed version of the existing correlation by Katto and Ohno[14].Hence, this study provides CHF information at near critical pres-sures that has been lacking in the literature.It should be noted that the literature mentioned above only deal with pure?uids and binary mixtures,and CHF data for ternary mixtures such as R-407C has not been reported so far.

The objective of the present study is to obtain CHF data for R-407C in vertical up?ow over a range of system pres-sure,mass?ux and heat?ux conditions with a?xed inlet subcooling.Since the CHF of mixtures at high qualities is independent of the inlet mole fraction of the compo-nents,an attempt is made to obtain the CHF data for ter-nary refrigerant mixture R-407C considering it to be an equivalent pure?uid with an overall bulk?uid composition known to be23/25/52%by wt.However,the changes in the local composition of the individual components along the boiling length of the test section and the corresponding

Nomenclature

C p speci?c heat capacity(kJ/kg K) d diameter(m)

G mass?ux(kg/m2s)

g acceleration due to gravity(m/s2)

h enthalpy(kJ/kg)

I current(A)

L length of the tube(m)

m mass?ow rate(m/s)

P absolute pressure(bar)

Pr Prandtl number

P R reduced pressure

Q heat supplied(W)

q heat?ux(kW/m2)

Re Reynolds number

T temperature(°C)

V voltage(V)

We Weber number

x quality

z location(m)

D T sub subcooling(°C)Greek symbols

l viscosity of liquid(Ns/m2)

k latent heat of evaporation(kJ/kg) q density(kg/m3)

r surface tension(N/m) Subscripts

cr critical

CHF critical heat?ux

Exp experimental

imp imposed

l liquid

Pre predicted

R reduced pressure

s saturation

v vapor

0corresponding to zero quality

R.Sindhuja et al./Applied Thermal Engineering28(2008)1058–10651059

phase properties of the mixtures are being evaluated in this study.

2.Experimental set-up

The experimental set-up used in the present investiga-tion has been described in detail in reference[13].It con-sists of the primary loop(or the working?uid loop),the chilling unit loop,the cooling water loop and the data acquisition system.The schematic diagram of the experi-mental set-up is shown in Fig.1.

In the primary loop,the working?uid,R-407C?ows in a closed circuit.The loop consists of a refrigerant pump,an accumulator,a mass?ow meter,the test section,pressure transducers,?ow regulating valves and a receiver tank. The refrigerant is circulated through the loop by a hermet-ically sealed oil-free canned motor pump.A piston type accumulator is used to vary and maintain the desired pres-sure level of the loop.A pre-calibrated micromotion mass ?ow meter is used to measure the mass?ow rate at the delivery of the pump.A?ow and pressure regulating valve is positioned in between the mass?ow meter and the pump. The required?ow rate at the test section can be set by oper-ating the main and bypass valves provided at the pump delivery.The vertical up?ow test section is positioned after the mass?ow meter as shown in Fig.1.The liquid–vapor mixture from the test section is condensed in the cooling loop and the liquid is fed to the receiver tank connected to the suction end of the pump.

The entire closed loop of the test rig was subjected to a hydrostatic pressure test at60bar to ensure leak free oper-ation at45bar with R-407C.Before?lling up the rig with R-407C,a?ne vacuum of the order of0.1Pa was created using a direct driven vacuum pump to ensure proper?lling of the refrigerant.

The chilling unit loop is another closed loop system which enables the test?uid,R-407C,in the primary loop to be operated at pressures from atmospheric to pressures as high as the critical pressure(46.3bar).It consists of three condensers connected in parallel and designed to work at di?erent pressures and temperatures.The?rst condenser works in the temperature range of33–86°C which corre-sponds to a test section pressure of range15–46.3bar,and uses tap water as the heat sink.The condenser works with cooling water on the shell side and the refrigerant R-407C on the tube side.The cooling water is circulated using a3 HP pump.The required?ow rate of the cooling water can be controlled by adjusting the main valve and the bypass valves.The?ow rate is measured by a rotameter positioned on the delivery side of the pump.The inlet and outlet tem-peratures of the cooling water are measured using T-type thermocouples.The second and the third condensers are designed to operate in the temperature ranges of18–33°C andà3to18°C,which correspond to test section pressures of10–15bar and5–10bar,respectively.These two condens-ers form a closed loop and use the refrigerants R-22and R-404a respectively to provide the heat sink to the primary coolant.The chilling unit loop is equipped with a hermeti-cally sealed compressor to circulate the refrigerants through the condenser units.The condensers are shell-and-tube heat exchangers in which R-407C?ows on the tube side and R-22and R-404a on the shell side.Depending on the operat-ing pressure and temperature of the test?uid in the primary loop,only one of the condensers is operated at any time.

1060R.Sindhuja et al./Applied Thermal Engineering28(2008)1058–1065

The data reported here have been obtained using the water-cooled condenser alone and cover the pressure range of15–45.6bar.

The test set-up was subject to a hydrostatic pressure test at up to60bar to ensure leak free operation at45.6bar with R-407C.Before?lling up the test loop with R-407C, a vacuum of the order of0.1Pa was created using a vac-uum pump to ensure no other gases are present.

The test section where the two-phase?ow is studied is made of stainless steel(SS-304)and has an inner diameter of12.7mm and an outer diameter of16.7mm.The heated length of the test section is3.24m.A low voltage,high cur-rent DC power supply(maximum of17V DC,800A)is used to heat the test section.The DC power is supplied through two copper bus bars of100mm width and7mm thickness connected across the test section.The test section is well insulated with asbestos rope and polyurethane foam to minimize heat losses to the surroundings.

Details of the instrumentation on the test section are shown in Fig.2.The bulk?uid temperature is measured at the inlet(T?),and outlet(T fo)of the test section and at four(T f1–T f4)intermediate locations using mineral insu-lated T-type thermocouples of1.10mm outside diameter. The wall temperature of the test section is measured at39 axial locations(T w1–T w39)along the heated length using T-type thermocouples with bead diameter of0.8mm.The thermocouples were calibrated before installation as well as in situ.The nominal accuracy of each thermocouple is

0.1°C.

A di?erential pressure transducer is used to measure the pressure drop across the test section.In addition,absolute pressure transducers are located at the test section inlet and at the outlet.The pressure transducers are electrically iso-lated by means of a te?on seating and bushes in between the?anges and bolts to which the transducers are connected.

3.Experimental procedure

The critical heat?ux experiments were conducted as fol-lows.Liquid R-407C from the receiver tank is circulated through the electrically heated test section with the help of the hermetically sealed canned motor pump.Once the system is stabilized at predetermined values of inlet temper-ature,mass?ux and pressure,the readings from the abso-lute pressure transducer,di?erential pressure transducer, inlet and outlet temperatures and mass?ow rates are recorded through the data acquisition system.For set val-ues of pressure,?ow rate,heat?ux and inlet subcooling, the rise in the tube wall temperature is monitored.If a sud-den rise in the wall temperature at any location is not detectable,the heat?ux value in terms of the product of (V·I)power input is increased and the other?ow param-eters are adjusted if necessary and the wall temperature is again observed.This process is continued until one of the thermocouples shows a signi?cant rise in wall temperature. The power supply is automatically shut-o?when one of the measured wall temperatures exceeds a given limiting value (viz.150°C).These experiments are repeated for di?erent ?ow conditions.The pressure in the test loop is adjusted by turning on the piston accumulator.The temperature of the?uid at the inlet of test section is maintained by con-trolling the temperature and the mass?ow rate of cooling water?owing through the heat exchangers.

The critical heat?ux experiments were conducted over a pressure range of15–45.6bar(corresponding to reduced pressures of0.32–0.98)and a mass?ux range of200–1200kg/m2s.The inlet subcooling was maintained at 3°C for all cases.The heat?ux at which a signi?cant rise in the wall temperature was recorded,was taken as the critical heat?ux.Due to the limitation in the DC power supply,experiments in the higher mass?ux range of 1400–2000kg/m2s were conducted at?xed heat?uxes of 50,60,70and80kW/m2by varying the mass?ux for a ?xed test section pressure and inlet subcooling and record-ing the wall temperatures.In some of these cases,the wall temperature showed a sudden rise after a particular dis-

R.Sindhuja et al./Applied Thermal Engineering28(2008)1058–10651061

tance from the inlet and the CHF here corresponds to the DO condition.

4.Data reduction

In order to calculate the experimental CHF and the CHF by predictive methods,thermodynamic properties of the liquid and vapor mixtures are necessary.For binary or multicomponent mixtures,these properties change along the boiling length of the tube and are dependent on the mole fraction of the individual components in addition to the primary system variables such as pressure and temper-ature.As this evaluation procedure is complicated for ter-nary mixtures and cannot be done by simple means,these are calculated by using REFPROP[16].

During the evaporation of non-azeotropic mixtures,the vapor composition of the more volatile component is in most cases greater than its composition in the liquid phase. Consequently,the local bubble point temperature increases as the concentration of the less volatile component in the liquid phase rises during evaporation along the heated tube.The local change in enthalpy during evaporation of a binary/multicomponent mixture as given by Collier and Thome[9],is due to(a)latent heat to the fraction of liquid vaporized,(b)sensible heat to the fraction of?uid in the liquid phase heated to a higher bubble point temperature and(c)sensible heat to the fraction of?uid in the vapor phase heated to a higher bubble point temperature.This local change in enthalpy,dh is given by the equation below d h?d x kte1àxTC p l d TtxC p g d Te1Twhere d T–rise in the bubble point temperature.

Where only a small change in the enthalpy is considered (or for a very small heated section of the tube),the isobaric speci?c heats and the vapor quality may be assumed con-stant and the above equation reduces to

h?h0tx kte1àxTC p leTàT0TtxC p geTàT0Te2Twhere h0–enthalpy at zero vapor quality and T0–corre-sponding temperature.

The?uid always enters the test section under subcooled conditions with a known inlet enthalpy.The bulk enthalpy of the?uid at any location is obtained by adding the enthalpy rise due to heating of the?uid to the inlet enthalpy.

h?h0eT;P;zTt

Q

m

e3T

where h0(T,P,z)–enthalpy at zero vapor quality as a func-tion of bulk?uid temperature,pressure and?uid composi-tion at the inlet conditions(subcooled).

The inlet pressure and the pressure drop along the test section are measured and the local pressure is evaluated by assuming a linear pressure drop.

Assuming a thermodynamic equilibrium,the local qual-ity(x)at any location z,can be evaluated using the energy balance x?

1

k

h0t

Q

m

àh l;s

e4T

where h l,s–saturation enthalpy at location z.

A reasonable evaluation of the required properties is possible if a closed system evaporation and thermodynamic equilibrium at various locations along the test section is assumed,as suggested by Auracher and Marroquin[10]. As the pressure,bulk?uid enthalpy and the overall bulk composition are known,the desired properties such as the local quality and the composition of the individual components and other thermodynamic and transport prop-erties of the mixture can be calculated from the above equations and the REFPROP simulation tool[16].

5.Results and discussion

CHF experiments have been carried out over a range of test section pressures and mass?uxes at?xed inlet subcool-ing of3°C.The overall test matrix is summarized in Table 1in terms of the range of parameters investigated.

The location of the sudden rise in wall temperature along the length of the tube is shown in Fig.3for various test section pressures and for a mass?ux of200kg/m2s. The wall temperature is also shown plotted against the local quality calculated along the length of the tube for a

Table1

Range of parameters investigated in the present study

P(bar)15,20,25,30,35,40,42,44,45.6

P R0.32,0.43,0.54,0.64,0.75,0.86,0.90,0.95,0.98

G(kg/m2s)200,400,600,800,1000,1200,1400,1600,1800,2000 q(kW/m2)50,60,70,80and variable in the range of5to80

D T sub(°C)3

1062R.Sindhuja et al./Applied Thermal Engineering28(2008)1058–1065

test section pressure of 30bar and mass ?ux 200kg/m 2s in Fig.4.The CHF here corresponds to the DO condition.Assuming that the dryout condition occurred at the same quality for a given set of pressure,mass ?ux,inlet subcool-ing and overall bulk composition at the inlet,the CHF (q CHF )is given as

q CHF ?q imp z

e5T

Assuming that thermodynamic equilibrium conditions exist at every location,the composition changes of the indi-vidual components along the length of the test section,as well as change in the bulk ?uid temperature have been cal-culated using REFPROP and are shown in Fig.5for a test section pressure of 30bar and mass ?ux 200kg/m 2s.

Fig.6shows the dependence of CHF on system pressure and inlet mass ?ux.The measured CHF values are plotted along the test section pressure (in terms of reduced pres-sure)for mass ?ux values of 200,600,1200and 1600kg/m 2s.The CHF follows a similar trend for all the mass ?uxes tested.For a given mass ?ux,CHF decreases,as expected,as the system pressure increases.The experimen-tal data of Celata et al.[11]for binary refrigerant mixtures and Vijayarangan et al.[13]for pure refrigerant,as well as the current data for ternary refrigerant mixture show sim-ilar results.In general,the CHF is less for low mass ?uxes and also a signi?cant e?ect of mass ?ux on the CHF is seen at high pressures (reduced pressure >0.75).6.Experimental data prediction

Most of the correlations and models developed to pre-dict CHF in forced convective boiling are available only for pure ?uids and no method is available in the literature to predict the CHF for ternary mixtures.In this study,

an

R.Sindhuja et al./Applied Thermal Engineering 28(2008)1058–1065

1063

attempt is made to employ the pure ?uid correlations for the case of non-azeotropic ternary mixtures using the phys-ical properties of the mixture as suggested by Celata et al.[11].Among a number of pure ?uid correlations available in the literature,two well-established methods of predicting CHF,the dimensionless look-up table method of Groene-veld et al.[15],the generalized CHF correlation of Katto and Ohno [14],as well as Vijayarangan et al.[13]correla-tion for pure refrigerant,have been used for the prediction of present data.

The overall comparison of all the three prediction meth-ods with the CHF data of the present study is shown in Figs.7–9.The deviation from the experimental value is

plotted as a function of the reduced pressure.It is clear from these ?gures that both Katto and Ohno [14]and Gro-eneveld et al.[15]prediction methods su?er from over pre-diction,which is severe especially at high reduced pressures.The pure ?uid correlation of Vijayarangan et al.[13]was developed taking into consideration the strong e?ect of mass ?ux on the CHF and also the signi?-cant over prediction of the CHF at high reduced pressures by earlier correlations.This correlation is in good agree-ment with the experimental data over the entire range of pressures investigated.The correlation proposed by Vijay-arangan et al.[13]is shown in the following equation

q CHF G k ?0:0051q v q l 0:133rq l G 2

L

1=31

1t0:0031eL =d T Pr 0:147Re 0:25

()e6T

The range of dimensionless groups for which the above correlation is valid are given below:1:4?104

1:09?10à8

The good agreement between the Vijayarangan et al.[13]correlation and the experimental data may be attrib-uted to the fact that DO and the corresponding CHF are mainly a result of hydrodynamic behavior and mixture e?ects are relatively negligible.Similar results were observed by Celata et al.[11]for binary refrigerant mix-tures of R-12/R-114.From the data prediction discussed here,it can be seen that the Vijayarangan et al.[13]corre-lation can be successfully used to predict the CHF values of ternary mixture used.

1064R.Sindhuja et al./Applied Thermal Engineering 28(2008)1058–1065

7.Uncertainties involved in the measurements

In the present study the measured variables are the liquid temperature,wall temperature,absolute pressure, mass?ow rate,voltage and current.The uncertainty in the measurement of temperature is±0.1%.The uncertainty in the measurement of mass?ow rate is±0.5%.The uncer-tainty in the measurement of absolute and di?erential pres-sure is±0.25%.The uncertainty in the measurement of voltage and current is±1%and±1%,respectively.There-fore,the uncertainty in the measurement of critical heat ?ux using the Mo?at procedure[17]lies within±4.21%.

8.Conclusions

Experiments to determine CHF have been conducted for a uniformly heated vertical tube with ternary non-azeotro-pic refrigerant mixture R-407C.The CHF decreases as the system pressure increases as in the case of pure?uids and binary mixtures.Existing predictive methods for pure?u-ids,such as the look-up table method of Groeneveld et al.[15],the generalized CHF correlation of Katto and Ohno[14]and Vijayarangan et al.[13]correlation for pure refrigerants,have been used for the prediction of the exper-imental data.Vijayarangan et al.[13]correlation developed for pure refrigerant agrees well with the present data over the entire range of investigation.

References

[1]EPA report CFCs and stratospheric ozone,United States Environ-

mental Protection Agency,December,1987.

[2]Montreal Protocol on Substances That Deplete the Ozone Layer

Final Act,United Nations Environment Programme,1987.

[3]Copenhagen Amendments to Montreal Protocol,1992.

[4]W.Mulory,M.Kau?eld,M.McLinden,D.Didion,Experimental

evaluation of two refrigerant mixtures in a breadboard air condi-

tioner,in:Proc.Int.Inst.Refrigeration,Purdue Conference on CFCs Commissions B1,B2,E1and E2,1988,pp.27–34.

[5]H.Kruse,The advantage of non-azeotropic refrigerant mixtures for

heat pump application,Int.J.Refrig.4(1981)119–125.

[6]R.Ko¨ster,G.Herres,P.Kaupmann,P.Hu¨bner,In?uence of the heat

?ux in mixture boiling:experiments and correlations,Int.J.Refrig.20

(8)(1997)598–605.

[7]D.Jung,Y.Song,B.Park,Performance of alternative refrigerant

mixtures for HCFC22,Int.J.Refrig.23(2000)466–474.

[8]Ki-J.Park, D.Jung,Thermodynamic performance of HCFC22

alternative refrigerants for residential air-conditioning applications, Energy Build.39(2007)675–680.

[9]J.G.Collier,J.Thome,Convective Boiling and Condensation,third

ed.,McGraw-Hill,New York,1994.

[10]H.Auracher,A.Marroquin,Forced convection critical heat?ux and

transition boiling of mixtures?owing upward in a vertical tube.

European Two-phase Flow Group Meeting,Paper B1,Stockholm,1–3June,1992.

[11]G.P.Celata,M.Cumo,T.Setaro,Critical heat?ux in up?ow

convective boiling of refrigerant binary mixtures,Int.J.Heat Mass Transfer37(7)(1994)1143–1153.

[12]H.Auracher,A.Marroquin,Critical heat?ux and minimum heat?ux

of?lm boiling of binary mixtures?owing upwards in a vertical tube, in:J.C.Chen(Ed.),Convective Flow Boiling,Taylor and Francis, 1996,pp.213–218.

[13]B.R.Vijayarangan,S.Jayanti,A.R.Balakrishnan,Studies on critical

heat?ux in?ow boiling under near critical pressures,Int.J.Heat Mass Transfer49(1–2)(2006)259–268.

[14]Y.Katto,H.Ohno,An improved version of the generalized

correlation of critical heat?ux for the forced convective boiling in uniformly heated vertical tubes,Int.J.Heat Mass Transfer27(1984) 1641–1648.

[15]D.C.Groeneveld,L.K.H.Leung,F.J.Erbacher,P.L.Kirillov,V.P.

Bobkov,W.Zeggel,An improved table look-up method for predict-ing critical heat?ux,in:Proceedings NURETH-6,Sixth International Topical Meeting on Nuclear Reactor Thermal Hydraulics,vol.1, 1993,pp.223–230.

[16]M.Huber,J.Gallagher,M.McLinden,G.Morrison,REFPROP,ver

7.0.NIST Standard Reference Database23,National Institute of

Standards and Technology,Gaithersburg,Maryland,USA,1996. [17]R.J.Mo?at,Describing the uncertainties in experimental results,Exp.

Therm.Fluid Sci.1(1988)3–17.

R.Sindhuja et al./Applied Thermal Engineering28(2008)1058–10651065

同步电机数学模型地建立和仿真

同步电机数学模型的建立和仿真 :包邻淋 专业:控制工程 学号:1402094

摘要 (3) 1同步电机数学模型的建立 (4) 1.1模型的导出思路 (4) 1.2变量置换用的表达式 (5) 1.4电机实用模型 (6) 1.5电机实用模型的状态空间表达式 (8) 1.6电机模型参数的确定 (10) 2 同步电机数学模型的仿真 (13) 2.1同步发电机仿真模型 (13) 2.2不同阶次模型的仿真分析 (14) 参考文献 (17)

摘要 一般发电机存在临诸多问题,建立精确地描述同步发电机的数学模型是十分必要的[1]。电力系统数字仿真因具有不受原型系统规模和结构复杂性限制,能保证被研究系统的安全性,且具有良好的经济性、方便性等优点。 常用的同步发电机数学模型由同步发电机电路方程及转子运动方程两部分组成。同步发电机电路方程又分为基本方程和导出模型两类[4]。对于不同的假设条件,同步发电机模型可作不同程度的简化,因此同步发电机的导出模型也有不同的形式。同一假设条件下,不同的同步发电机数学模型,其主要区别在于电机的转子绕组数,有d,q,f,D,Q5个绕组的电压方程和磁链方程,外加2个转子运动方程,则称之为转子7阶模型[5]。如果转子绕组数减少,则发电机方程组的阶数也相应减少。 本文通过MATLAB/simulink进行仿真计算,比较采用不同的同步发电机模型时,对系统的稳定性分析的影响。在此基础上提出在不同情况下进行电力系统仿真计算选取同步发电机数学模型的方法。

1同步电机数学模型的建立 1.1模型的导出思路 由于定转子间的相对运动,基于空间静止不动的三相坐标系所建立的原始方程,磁链方程式中会出现变系数,这对方程组的求解和模型的建立造成了很大的困难。现在通用的方法是对原始方程做d q变换(又称为派克变换),将原方程从a b c三相静止不动坐标系变为与转子相对静止的d q坐标系。 基本方程中有d,q,f,D,Q5个绕组的电压方程和磁链方程,外加2个转子运动方程,若设,则原方程为5阶,若转子运动方程为,;所含变量为,。。在化为实用模型时 和保留,用取代,再用5个磁链方程消去3个转子电流,以及2个定子磁链,而 则用实用变量代替。 经过上述思路导出的实用模型,除了以及引入的等效实用变量之外方程中系数都是同步电机技术参数中的电抗和时间

(各电机设计软件对比)电磁场软件对比优势

Infolytica软件与同类软件的区别 Infolytica与Ansys、Ansoft、Flux软件对比如下:

●这里主要介绍下Infolytica与Ansoft、Flux对比中的优势: ?建模方面:Infolytica应用于任何二维、三维结构建模,可导入、导出其他格 式,如SA T、Pro/E、Catia、STEP、IGES、Investor等,模型识别能力较强。 Ansoft Maxwell、Flux模型识别能力方面不好,导出的cad模型dxf图纸不能直接标注。 ?剖分功能:Infolytica具有网格自适应剖分功能和求解阶次自适应功能,具备 市场唯一的二维1~4阶和三维1~3阶求解能力,可以在保证精度的情况下,快速求解2D/3D问题。而Ansoft网格剖分技术只适合于低端或二维领域,也只有在二维领域才能跟Infolytica相提并论,在处理三维大型复杂问题时则明显不足。 ?3D电磁分析中:速度和精度上Infolytica软件高于Ansoft和Flux软件。 ?二次开发方面:Infolytica具有丰富的脚本和操作过程详细而简洁的函数记 录,非常方便使用者二次开发。而Ansoft、Flux 操作记录非常复杂, 给二次开发带来困难。Ansoft通过宏来实现,对用户的编程能力要求太高。 ?不同之处:Infolytica具有市场上唯一支持六自由度和多运动部件瞬态运动求 解器,而Ansoft、Flux不具备这两种功能。 ?多参数和多目标优化:Infolytica强大的参数化功能,结合优化模块OptiNet 可以进行多参数和多目标的优化,Flux这个功能较好,Ansoft有这个功能,但没有温度功能,更不能对磁热耦合结果进行优化。 ?全球5大领先优势:磁场MagNet和电场ElecNet的耦合,应用粒子加速、 CRT电子轨迹和电弧研究;磁场MagNet和温度场ThermNet双向耦合分析; 电场ElecNet和温度场ThermNet双向耦合分析;优化模块OptiNet可以优化磁场MagNet 和温度场ThermNet耦合结果、电场ElecNet和温度场ThermNet 耦合结果;电磁场的六自由度、多运动体的独家分析能力。

网格化安全管理系统产品解决方案

网格化安全管理系统产品 解决方案 2020年10月30日

目录 1.概述 (1) 1.1背景 (1) 1.2安全管理工作现状 (1) 1.3网格化管理的必要性 (1) 2.系统建设意义 (2) 2.1实现安全信息网格化全面管理 (3) 2.2基于移动互联网技术实现安全信息网格化移动性监管 (4) 2.3直观准确的安全事件上报及安全运营监管 (5) 3.系统设计目标和原则 (6) 3.1设计目标 (6) 3.2设计原则 (6) 3.2.1先进性设计 (7) 3.2.2可靠性设计 (7) 3.2.3标准化设计 (7) 3.2.4易用性设计 (7) 3.2.5经济性设计 (8) 4.系统设计 (8) 4.1系统设计架构 (9) 4.2组网拓扑 (10) 4.3软件架构 (11) 5.系统功能 (12) 5.1用户管理 (13) 5.2系统管理 (14) 5.3预案管理 (14) 5.4安全管理 (21) 5.5安全信息 (23) 5.6工作流定制 (23) 5.7事件统计 (24) 5.8定制化应用 (25) 5.9智能终端APP应用 (25) 5.9.1网格化安全管理 (25) 5.9.1.1用户管理 (25) 5.9.1.2预案管理 (25) 5.9.1.3安全信息 (26) 5.9.1.4安全管理 (27) 5.9.1.5系统管理 (29) 5.9.2音视频对讲通信 (30) 5.9.2.1录音录像及IM协同办公 (30) 5.9.2.2集群对讲 (31)

5.9.2.3视频对讲 (31) 5.9.2.4语音通信 (32) 5.9.2.5服务端软件 (32) 5.9.2.6客户端软件 (32) 6.配置清单 (33)

启明星辰产品安全项目解决方案

安全解决方案的使命就是在先进的理念与方法论的指导下,综合运用安全技术、产品、工具,提供客户化的服务,全面系统地解决客户面临的安全问题。 1.理念与方法论 理念与方法论主要关注如何将各种安全要素有效地配合来满足安全需求。一个解决方案中最核心的部分是解决方案所基于的理念与方法论,它好比解决方案的神经中枢。尤其是对那些看起来相似的安全需求,基于不同的理念与方法论会得到大相径庭的安全解决方案。 良好安全理念和方法论力图挖掘和把握信息安全的本质规律,以便为客户提供可行的,易实施的安全解决方案。 2.需求获取 客户的安全需求是整个解决方案的起源和持续的推动力。没有对客户本身、客户的行业、客户的业务、客户系统的安全需求做详细和准确的分析之前,不可能得到切合实际的解决方案。

在需求分析过程中,会采用多种需求分析方法。比如,BDH方法,就是从业务、分布、层次等三个方向进行分解,同时考虑业务分解后的各要素之间的内在联系,力求完整而准确地获取客户的安全需求。 3.安全措施 安全措施是解决方案中具体的方法、技术、服务和产品等的集合,但又不是简单的堆砌。一个解决方案除了要有正确的安全理念和方法作为基础,全面、清晰地把握客户安全需求之外,还要对可用的各种安全措施(产品与服务)的特点有准确的了解和把握,深刻理解各种措施之间的内在联系,取长补短,充分发挥服务和产品的特性,最终提供有效的实施方案。 4.安全实现 安全实现是解决方案的最后一步。所谓“行百里者半九十”,优秀的安全解决方案必须通过完美地实现才能真正生效,满足客户的安全需求。 在努力完善理念和方法论的同时,要注重安全实现与执行。从项目管理、质量保障等方面全面加强。 二、解决方案指导思路 三观安全包括:微观安全、宏观安全和中观安全。

对转式永磁无刷直流电机的建模与仿真_李延升

第44卷 2011年 第4期 4月 M ICR OM OTOR S V ol 44.N o 4 A pr 2011 收稿日期:2010-04-07 基金项目:西北工业大学研究生创业种子基金项目 作者简介:李延升(1983),男,博士研究生,研究方向为电机与电器。E-m a i:l liyanchao mm@yahoo .co https://www.wendangku.net/doc/472715316.html, 窦满峰(1967),男,教授,博导,研究方向为电机与电器。 对转式永磁无刷直流电机的建模与仿真 李延升,窦满峰,雷金莉 (西北工业大学,西安 710072) 摘 要:该文根据对转式与普通永磁无刷直流电机区别,建立了对转永磁无刷直流电机的数学模型,采用M atlab /S i m u li nk 仿真软件建立了电机的仿真模型,并对电机带螺旋桨负载进行仿真分析。仿真结果表明:仿真波形与理论分析基本一致,验证该模型的有效性,为对转式永磁无刷直流电机的控制算法研究提供了工具。关键词:对转式;无刷直流电机;建模;仿真 中图分类号:TM 36+1 文献标志码:A 文章编号:1001-6848(2011)04-0019-04 M odeli ng and Si m ul ati on of the Contra -rotati ng BLDC M otor Control Syste m LI Yansheng ,DOU M anfeng ,LE I Jinli (N ort h w estern P oly technical University ,X i an 710072,China ) Abst ract :Contra -rotati n g per m anentm agnet br ush less DC m otor uses per m anentm agnet as the ou ter rotor , the ar m ature w inding as the i n ner rotor ,both inner and outer rotor i n teracts on the reverse ro tation by m eans of t h e m agne tic force .Based on the ana l y sis of the m athe m atica lm odel o f contra -rotating BLCDM,the mode l of BLDC M w as estab lished by the m odu lar design in M atlab /S i m ulink ,and the si m ulati o n experi m ent w as acco m p li s hed w ith a pr ope ller loads .The si m ulati o n resu lts are consistentw ith t h e theory analysis ,and the m ethod is va li d .The para m eter of th ism ethod is suitable for verif y ing the reasonability o f other contr o l algo -rit h m s and provides a ne w w ay fo r further research o f the con tra -rotati n g BLDC M.K ey w ords :contra -rotati n g ;BLCDM;m odeli n g ;si m u lati o n 0 引 言 对转式无刷直流电机直接驱动对转螺旋桨,在水下航行器中广泛应用 [1] 。它与普通永磁无刷直流 电机比较,除永磁体部分可以旋转,电枢部分也相对静止部分旋转,即电磁转矩驱动两个转子朝相反的方向旋转。以电枢部分为参照系来观察永磁体部分的旋转行为,可以发现对转式永磁无刷直流电机与普通的永磁无刷直流电动机的电流方程、电压平衡方程一致,数学模型中仅仅多了一个运动方程 [2] 。 根据这一思路,本文根据对转永磁无刷直流电机的数学模型,在S i m u li n k 软件中建立仿真模型,并对其进行仿真分析。 1 对转式BLDC M 数学模型 无刷直流电机的基本物理量有电磁转矩、电枢电流、反电动势和转速等 [3] ,这些物理量的计算与 电机的气隙磁场分布、绕组形式有十分密切的关系。 对于稀土永磁无刷直流电动机,其气隙磁场波形可以为方波也可以为正弦波或梯形波,这与选用电机的磁路结构和永磁体的形状有关。本文研究的对转式永磁无刷直流电机,其气隙磁场波形为方波,绕组中感应电动势为梯形波,采用方波电流驱动。在分析和仿真控制系统时,可直接利用电机原有的相变量来建立数学模型,既方便,又能获得准确结果。 假定永磁无刷直流电机工作在二相导通星形三相六状态下,工作过程中磁路不饱和,不计涡流和磁滞损耗,三相绕组完全对称,那么三相绕组的电压平衡方程式为:U a U b U c =R 000R 000R i a i b i c +L -M 000L -M 00 L -M d i a d t d i b d t d i c d t +e a e b e c (1)

基于proteus的步进电机电机仿真

基于proteus的步进电机电机仿真 摘要:步进电机广泛应用在生产实践的各个领域。它最大的应用是在数控机床的制造中,因为步进电机不需要A/D转换,能够直接将数字脉冲信号转化成为角位移,所以被认为是理想的数控机床的执行元件。本设计利用proteus仿真软件进行电路仿真,系统通过设置四个按键分别控制不进电机的起止、圈数、方向、不进速度,使用1602液晶显示以上参数。整个系统具有稳定性好,实用性强,操作界面友好等优点。 关键词:proteus 仿真不进电机拍数 一、Proteus简介 Proteus ISIS是英国Labcenter公司开发的电路分析与实物仿真软件。它运行于Windows操作系统上,可以仿真、分析(SPICE)各种模拟器件和集成电路,该软件的特点是: ①实现了单片机仿真和SPICE电路仿真相结合。具有模拟电路仿真、数字电路仿真、单片机及其外围电路组成的系统的仿真、RS232动态仿真、I2C调试器、SPI调试器、键盘和LCD系统仿真的功能;有各种虚拟仪器,如示波器、逻辑分析仪、信号发生器等。 ②支持主流单片机系统的仿真。目前支持的单片机类型有:68000系列、8051系列、AVR系列、PIC12系列、PIC16系列、PIC18系列、Z80系列、HC11系列以及各种外围芯片。 ③提供软件调试功能。在硬件仿真系统中具有全速、单步、设置断点等调试功能,同时可以观察各个变量、寄存器等的当前状态,因此在该软件仿真系统中,也必须具有这些功能;同时支持第三方的软件编译和调试环境,如Keil C51uVision2等软件。 ④具有强大的原理图绘制功能。总之,该软件是一款集单片机和SPICE分析于一身的仿真软件,功能极其强大。 二、整体电路分析 如下图,整个设计以STC89C51单片机为中心,由复位电路,时钟电路,电机驱动,步进电机,显示电路等组成,硬件模块如图2-1所示: 图1 硬件模块图

电磁仿真软件flux教程

电磁场仿真软件教程 随着电磁场和微波电路领域数值计算方法的发展,在最近几年出现了大量的电磁场和微波电路仿真软件。在这些软件中,多数软件都属于准3维或称为2.5维电磁仿真软件。例如,Agilent 公司的ADS(Advanced Design System)、AWR公司的Microwave Office、Ansoft公司的Esemble、Serenade和CST公司的CST Design Studio等。目前,真正意义上的三维电磁场仿真软件只有Ansoft公司的HFSS、CST公司的Mafia、CST Microwave Studio、Zeland公司的Fidelity和IMST GmbH公司的EMPIRE。从理论上讲,这些软件都能仿真任意三维结构的电磁性能。其中,HFSS (HFSS是英文高频结构仿真器(High Frequency Structure Simulator)的缩写)是一种最早出现在商业市场的电磁场三维仿真软件。因此,这一软件在全世界有比较大的用户群体。由于HFSS进入中国市场较早,所以目前国内的电磁场仿真方面HFSS的使用者众多,特别是在各大通信技术研究单位、公司、高校非常普及。 德国CST公司的MicroWave Studio(微波工作室)是最近几年该公司在Mafia软件基础上推出的三维高频电磁场仿真软件。它吸收了Mafia软件计算速度快的优点,同时又对软件的人机界面和前、后处理做了根本性的改变。就目前发行的版本而言,CST的MWS的前后处理界面及操作界面比HFSS好。Ansoft也意识到了自己的缺点,在刚刚推出的新版本HFSS (定名为Ansoft HFSS V9.0)中,人机界面及操作都得到了极大的改善。在这方面完全可以和CST媲美。在性能方面,两个软件各有所长。在速度和计算的精度方面CST和ANSOFT 成绩相差不多。值得注意的是,MWS采用的理论基础是FIT(有限积分技术)。与FDTD(时域有限差分法)类似,它是直接从Maxwell方程导出解。因此,MWS可以计算时域解。对于诸如滤波器,耦合器等主要关心带内参数的问题设计就非常适合;而HFSS采用的理论基础是有限元方法(FEM),这是一种微分方程法,其解是频域的。所以,HFSS如果想获得频域的解,它必须通过频域转换到时域。由于,HFSS是用的是微分方法,所以它对复杂结构的计算具有一定的优势。 另外,在高频微波波段的电磁场仿真方面也应当提及另一个软件:ANSYS 。ANSYS是一个基于有限元法(FEM)的多功能软件。该软件可以计算工程力学、材料力学、热力学和电磁场等方面的问题。它也可以用于高频电磁场分析(应用例如:微波辐射和散射分析、电磁兼容、电磁场干扰仿真等)。其功能与HFSS和CST MWS类似。但由于该软件在建模和网格划分过程中需要对该软件的使用规则有详细的了解,因此,对一般的工程技术人员来讲使用该软件有一定困难。对于高频微波波段通信、天线、器件封装、电磁干扰及光电子设计中涉

互联网安全解决方案

以太科技信息数据安全防“脱库”解决方案 1.前言 近日不断有黑客陆续在互联网上公开提供国内多家知名网站部分用户数据库下载,国内外媒体频繁报道,影响恶劣,引起社会广泛关注。其中涉及到游戏类、社区类、交友类等网站用户数据正逐步公开,各报道中也针对系列事件向用户提出密码设置策略等安全建议。 注册用户数据作为网站所有者的核心信息资产,涉及到网站及关联信息系统的实质业务,对其保密性的要求强度不言而喻。随着网站及微博实名制规定的陆续出台,如果在实名制的网站出现用户数据泄露事件,将会产生更恶劣的影响。 针对近期部分互联网站信息泄露事件,工信部于2011年12月28日发布通告要求:各互联网站要高度重视用户信息安全工作,把用户信息保护作为关系行业健康发展和企业诚信建设的重要工作抓好抓实。发生用户信息泄露的网站,要妥善做好善后工作,尽快通过网站公告、电子邮件、电话、短信等方式向用户发出警示,提醒用户修改在本网站或其他网站使用的相同用户名和密码。未发生用户信息泄露的网站,要加强安全监测,必要时提醒用户修改密码。 各互联网站要引以为戒,开展全面的安全自查,及时发现和修复安全漏洞。要加强系统安全防护,落实相关网络安全防护标准,提高系统防入侵、防窃取、防攻击能力。要采用加密方式存储用户信息,保障用户信息安全。一旦发生网络安全事件,要在开展应急处置的同时,按照规定向互联网行业主管部门及时报告。 工信部同时提醒广大互联网用户提高信息安全意识,密切关注相关网站发布的公告,并根据网站安全提示修改密码。提高密码的安全强度并定期修改。 2.信息泄密的根源 2.1.透过现象看本质 2.1.1.攻击者因为利益铤而走险 攻击者为什么会冒着巨大的法律风险去获取用户信息? 2001年随着网络游戏的兴起,虚拟物品和虚拟货币的价值逐步被人们认可,网络上出现了多种途径可以将虚拟财产转化成现实货币,针对游戏账号攻击的逐步兴起,并发展成庞大的虚拟资产交易市场; 2004年-2007年,相对于通过木马传播方式获得的用户数据,攻击者采用入侵目标信息系统获得数据库信息,其针对性与攻击效率都有显著提高。在巨额利益驱动下,网络游戏服务端成为黑客“拖库”的主要目标。 2008年-2009年,国内信息安全立法和追踪手段的得到完善,攻击者针对中国境内网络游戏的攻击日趋收敛。与此同时残余攻击者的操作手法愈加精细和隐蔽,攻击目标也随着电子交易系统的发展扩散至的电子商务、彩票、境外赌博等主题网站,并通过黑色产业链将权限或数据转换成为现实货币。招商加盟类网站也由于其本身数据的商业业务价值,成为攻击者的“拖库”的目标。 2010年,攻防双方经历了多年的博弈,国内网站安全运维水平不断提升,信息安全防御产品的成熟度加强,单纯从技术角度对目标系统进行渗透攻击的难度加大,而通过收集分析管理员、用户信息等一系列被称作“社会工程学”的手段的攻击效果

三相异步电机的建模与仿真

电气与电子信息工程学院 《计算机仿真及应用B》题目 学号: 姓名: 班级: 任课老师:

三相异步电动机的建模与仿真 一.实验题目三相异步电动机的建模与仿真 二.实验原理 三相异步电动机也被称作感应电机,当其定子侧通入电流后,部分磁通将穿过短路环,并在短路环内产生感应电流。短路环内的电流阻碍磁通的变化,致使有短路环部分和没有短路环部分产生的磁通有相位差,从而形成旋转磁场。转子绕组因与磁场间存在着相对运动而产生感应电动势和感应电流,即旋转磁场与转子存在相对转速,并与磁场相互作用产生电磁转矩,使转子转起来,从而实现能量转换。 三相异步电动机具有结构简单,成本较低,制造,使用和维护方便,运行可靠以及质量 较小等优点,从而被广泛应用于家用电器,电动缝纫机,食品加工机以及各种电动工具,小型电机设备中,因此,研究三相异步电动机的建模与仿真。 三.实验步骤 1. 选择模块 首先建立一个新的simulink 模型窗口,然后根据系统的描述选择合适的模块添加至模型窗口中。建立模型所需模块如下: 1) 选择simPowerSystems 模块库的Machines 子模块库下的Asynchronous Machine SI Units 模块作为交流异步电机。 2) 选择simPowerSystems 模块库的Electrical Sources 子模块库下的Three-Phase Programmable Voltage Source 模块作为三相交流电源。 3) 选择simPowerSystems 模块库的Three-Phase Library 子模块库下的Three-Phase Series RLC Load 模块作为串联RLC 负载。 4) 选择simPowerSystems 模块库的Elements 子模块库下的Three-Phase Breaker 模块作为 三相断路器,Ground 模块作为接地。 5) 选择SimPowerSystems 模块库的Measurements 子模块库下的Voltage Measurement 模块 作为电压测量。 6) 选择Sources 模块库下的Constant 模块作为负载输入。 7) 选择Signals Rounting 模块库下的Bus Selector 模块作为直流电动机输出信号选择器。 8) 选择Sinks 模块库下的Scope 模块。 9) 选择SimPowerSystems 模块库的Measurements 子模块库下的Three-phase V-I Measurements 用于创建子系统。 2. 搭建模块将所需模块放置合适位置,再将模块从输入端至输出端进行相连,搭建完的串电阻起 动simulink 模型如图 1 所示

H3C安全产品方案

网络安全方案 1 方案设计 如上图所示,在两台S12518核心交换机之间透明部署一台高性能防火墙H3C F1000-E。在教育网专网出口处部署一台高性能超万兆防火墙H3C F5000-A5,在数据中心网络出口处部署一台高性能防火墙H3C F1000-E。 2 产品介绍 2.1 H3C SecPath F5000-A5防火墙 SecPath F5000-A5是针对大型企业、运营商和数据中心市场推出的超万兆防火墙。

SecPath F5000-A5采用多核多线程、FPGA硬件逻辑等先进处理器,基于Crossbar无阻塞交换矩阵分布式硬件架构,将系统管理和业务处理相分离,整机吞吐量达到40Gbps。 SecPath F5000-A5支持外部攻击防范、内网安全、流量监控、邮件过滤、网页过滤、应用层过滤等功能,能够有效的保证网络的安全;采用ASPF(Application Specific Packet Filter)应用状态检测技术,可对连接状态过程和异常命令进行检测;支持多种VPN业务,如L2TP VPN、GRE VPN 、IPSec VPN和动态VPN等,可以构建多种形式的VPN;提供丰富的路由能力,支持RIP/OSPF/BGP/路由策略及策略路由;支持IPv4/IPv6双协议栈。 SecPath F5000-A5防火墙充分考虑网络应用对高可靠性的要求,采用互为冗余备份的双电源(1+1备份)模块,支持可插拔的交、直流输入电源模块;业务接口卡支持热插拔,充分满足网络维护、升级、优化的需求;支持双机状态热备。 产品特点 全球最先进的架构 完美的分布式架构:控制层面和数据处理层面并行处理,控制层面完成任务调度、路由计算、策略管理及其他服务,数据层面完成基于流的转发、状态检测和访问控制。控制层面和数据处理层面各自分工又密切联系,解决万兆安全的性能瓶颈难题。 优异的无阻塞交换网技术:采用了先进的Crossbar无阻塞交换网技术,引入了交换矩阵交换方式处理数据业务,真正实现整机安全业务的线速处理。 市场领先的安全防护功能 增强型状态安全过滤:支持基础、扩展和基于接口的状态检测包过滤技术;支持H3C 特有ASPF应用层报文过滤(Application Specific Packet Filter)协议,支持对每一个连接状态信息的维护监测并动态地过滤数据包,支持对应用层协议的状态监控。 抗攻击防范能力:包括多种DoS/DDoS攻击防范、ARP欺骗攻击的防范、超大ICMP 报文攻击防范、地址/端口扫描的防范、Tracert报文控制功能;静态和动态黑名单功能;MAC 和IP绑定功能;支持智能防范蠕虫病毒技术。 应用层内容过滤:可以有效的识别网络中各种P2P模式的应用,并且对这些应用采取 限流的控制措施,有效保护网络带宽;支持邮件过滤,提供SMTP邮件地址、标题、附件和内容过滤;支持网页过滤,提供HTTP URL和内容过滤。

经典-同步电机模型的MATLAB仿真h

安徽工业大学工商学院课程设计(论文)同步电机模型的MATLAB仿真 学生姓名:李春笋 学号:111842161 专业班级:气1142 指导教师:范国伟 2013年12月20日

摘要 采用电力电子变频装置实现电压频率协调控制,改变了同步电机历来的恒速运行不能调速的面貌,使它和异步电机一样成为调速电机大家庭的一员。本文针对同步电机中具有代表性的凸极机,在忽略了一部分对误差影响较小而使算法复杂度大大增加的因素(如谐波磁势等),对其内部电流、电压、磁通、磁链及转矩的相互关系进行了一系列定量分析,建立了简化的基于abc三相变量上的数学模型,并将其进行派克变换,转换成易于计算机控制的d/q坐标下的模型。再使用MATLAB中用于仿真模拟系统的SIMULINK 对系统的各个部分进行封装及连接,系统总体分为电源、abc/dq转换器、电机内部模拟、控制反馈四个主要部分,并为其设计了专用的模块,同时对其中的一系列参数进行了配置。系统启动仿真后,在经历了一开始的振荡后,各输出相对于输出时间的响应较稳定。关键词:同步电机 d/q模型 MATLAB SIMULINK 仿真。 The Simulation Platform of Synchronous Machine by MATLAB Abstract: The utilization of transducer realizes the control of voltage’s frequency. It changes the situation that Synchronous Machine is always running with constant speed. Just like Asynchronous Machine, Synchronous machine can also be viewed as a member of the timing machine. This thesis intends to aim at the typical salient pole machine in Synchronous Machine. Some quantitative analysis are made on relations of salient pole machine among current, voltage, flux, flux linkage and torque, under the condition that some factors such as harmonic electric potential are ignored. These factors have less influence on error but greatly increase complexity of arithmetic. Thus, simplified mathematic model is established on the basis of a, b, c three phase variables. By the Park transformation, this model is transformed to d, q model which, is easy to be controlled by computer. Simulink is used to masking and linking all the parts of the system. The system can be divided into four main parts, namely power system, abc/dq transformation, simulation model of the machine and feedback control. Special blocks are designed for the four parts and a series of parameters in these parts are configured. The results of simulation show that each output has a satisfactory response when there is disturbance. Key Words: Synchronous Machine Simulation d/q Model MATLAB SIMULINK

ANSYS与ansoft电机仿真步骤

A N S O F T建模 1、在ANSOFT软件中建立电机模型 第一步、在ANSOFT绘制电机模型 第二步、选择“Modeler”菜单下的“Export”项会出现下面的窗口 选择保存为“step”格式的文件。这时可以退出ANSOFT软件。 ANSYS仿真 一、稳态温度仿真 第一步创建稳态温度仿真模型 第二步、添加材料及属性,属性主要为“导热系数” 选择“Engineering data”→”Edit” 开始添加材料 第三步、添加完材料后,导入在ANSOFT下创建的电机模型,选择“Geometry”按下面选项选择 选择ANSOFT下保存的“step”格式的电机模型 第四步、导入模型后,给模型添加材料。选择“Model”→”Edit” 进入下面的窗口,按下面的步骤给电机的各个部分选择对应的材料。 第五步、添加完材料后,返回主窗口,更新修改后的工程文件 如果没有问题, 会变为 第六步、添加热载荷 首先添加自由度,在温度场分析中选择为温度,按下面窗口选择。 接下来,编辑温度,并选择应用区域,这儿定义整个模型的初始温度相同。 下面添加热载荷,按下面的窗口选择,这里选择“热生成率”。 编辑添加的热生成率数值,并选择应用区域,这儿选择所有的绕组。 添加完载荷后,更新一下工程文件,通过后,可以选择“Solve”进行求解。 如果求解成功后,左边的窗口会变成右边的窗口。 第七步、查看仿真结果。按下面的窗口选择观察变量。 二、瞬态温度仿真 第一步、建立瞬态温度分析模型 第二步、添加材料及属性,方法与稳态时相同。但材料的属性不同,这里需要添加材料的“密度”、“导热系数“、“比热容”。“Toolbar”窗口如下。 按照各个选项添加数据。 除了添加载荷不同,接下来的步骤与稳态时相同。 设置仿真步数为多步。 按下窗口设置载荷数据,设置为“阶梯数据”。 1 / 1

产品质量安全风险防控实施方案

编号:AQ-BH-02560 ( 文档应用) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 产品质量安全风险防控实施方 案 Implementation plan of product quality and safety risk prevention and control

产品质量安全风险防控实施方案 说明:实施方案是指对某项工作,从目标要求、工作内容、方式方法及工作步骤等做出全面、具体而又明确 安排的计划类文书,是应用写作的一种文体。 为了及时分析排查产品质量安全隐患,加强重点产品质量安全风险防控,及时组织开展好隐患整治,推进产品质量安全监管工作,根据区政府和上级质监部门关于严格事中事后监管,加强产品质量安全风险防控工作的有关要求,结合部门实际,制定本方案。 一、总体要求 以坚守不发生系统性、区域性、行业性产品质量安全风险为底线,以组织开展重点产品、重点行业、重点区域质量安全隐患排查和整治行动为手段,通过落实风险防控工作责任制,综合运用日常巡查、专项检查、监督抽查、执法打假等多种措施,全面彻底收集分析排查和整治辖区内的质量安全隐患,努力做到不忽视任何一个领域、不放过任何一个环节、不漏掉任何一个疑点,着力把各类质量安全隐患消除在萌芽状态,全面推进质量安全监管工作。 二、风险防控和整治重点

(一)重点产品:以日用消费品、食品相关产品、危险化学品及其包装物等直接涉及安全健康、影响国计民生的重要工业产品为主。重点做好汽柴油、食品包装材料及容器、危化品及其包装物、电线电缆、消防产品、农资等重点产品的质量安全排查整治工作。 (二)重点行业:以近年来企业消费者投诉反映产品质量问题较为突出、关系安全健康、监督抽查合格率较低、媒体曝光和报道较为关注的化工、电线电缆、农资、建材等行业为重点。近期重点围绕国家取消工业产品生产许可证管理的产品、成品油生产中非法调和非法添加、电线电缆以次充好以及农资、建材行业的以不合格产品冒充合格产品等违法行为开展风险防控和排查整治。 (三)重点区域:以产品质量安全隐患较为集中的重点产品、重点企业所在区域为重点,综合采取多种形式、多种手段开展好质量安全隐患的风险排查和防控整治。 在确定的重点产品、重点企业、重点区域基础上,各股室应当结合各自实际,对本辖区内需要开展风险防控和排查整治的重点进行细化调整,及时组织开展好相应的产品质量安全隐患风险防控和

异步电动机动态数学模型的建模与仿真.docx

目录 1 设计意义及要求 (3) 1.1设计意义 (3) 1.2设计要求 (3) 2 异步电动机动态数学模型 (4) 2. 1 异步电动机动态数学模型的性质 (4) 2. 2 异步电动机的三相数学模型 (5) 2.3坐标变换 (7) 2. 3.1坐标变换的基本思路 (7) 2. 3.2三相 - 两相变换( 3 / 2 变换) (7) 2. 3.3静止两相 - 旋转正交变换( 2 s / 2 r 变换) ...................................... 2.4状态方程 (10) 3 模型建立 (12) 3. 1 ACMo t o r 模块 (12) 3.2坐标变换模块 (13) 3. 2.1 3/ 2 t r a n s f o r m 模块 (13) 3. 2.22s/2rtransform 模块 (13) 3. 2.32r / 2s t r an s f or m 模块 (14) 3. 2.4 2/ 3 t r a n s f o r m 模块 (15) 3. 2.5 3/ 2 r t r a ns f o r m 模块 (16) 3.3仿真原理图 (17) 4 仿真结果及分析 (20) 5 结论 ........................................................ 参考文献..................................................... 摘要 对一个物理对象的数学模型,在不改变控制对象物理特性的前提下采用一定的变换手段,可以获得相对简单的数学描述,以简化对控制对象的控制。对异步电机的数学分析也不例外,在分析异步电机的数学模型时主要用到的是坐标变换。

永磁同步电机的建模与仿真

研究生设计性实验论文 题目永磁同步电机的建模与仿真 专业机械工程课程名称、代码新能源汽车关键技术年级 2 013级姓名 学号 2131170103 时间 2014 年 1 月 任课教师成绩

永磁同步电机的数学建模与仿真 1. 永磁同步电机建模的流程图 2. 坐标变换的基本原理 电机控制中的坐标系有两种,一种是静止坐标系,一种是旋转坐标系。 (1)三相定子坐标系(A, B, C坐标系) 如图2-3所示,三相交流电机绕组轴线分别为A,B,C,彼此之间互差120度空间电角度,构成了一个A-B-C三相坐标系。空间任意一矢量V在三个坐标上的投影代表了该矢量在三个绕组上的分量。 (2)两相定子坐标系(α一β坐标系) 两相对称绕组通以两相对称电流也能产生旋转磁场。对于空间的任意一矢量,数学描述时习惯采用两相直角坐标系来描述,所以定义一个两相静止坐标系,即α一β坐标系,它的α轴和三相定子坐标系的A轴重合,β轴逆时针超前α轴90度空间电角度。由于轴固定在定子A相绕组轴线上,所以α一β坐标系也是静止坐标系。 (3)转子坐标系(d-q坐标系) 转子坐标系d轴位于转子磁链轴线上,q轴逆时针超前d轴90度空间电角度,该坐标系和转子一起在空间上以转子角速度旋转,故为旋转坐标系。对于同步电动机,d轴是转子磁极的轴线。永磁同步电机的空间矢量图如图2-3所示。 图中A、B、C为定子三相静止坐标系,选定α轴方向与电机定子A相绕组轴线一致,α-β为定子两相静止坐标系,转子坐标系d-q与转子同步旋转;θ为转子磁极d轴相对定子A相绕组或a轴的转子空间位置角;δ为定、转子磁链矢量

s ψ 、f ψ间夹角,即电机功角[8 ,9]。 图1静止两相坐标系到旋转两相坐标系变换 图2 坐标变换矢量图 从三相定子坐标系(A,B,C坐标系)变换到静止坐标系(α,β坐标系)的关系式为: ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - - - = ? ? ? ? ? ? c b a ? ? ? ? ? β α 2 3 2 1 2 3 2 1 1 3 2 (2-1) 从两相静止坐标系(α,β坐标系)变换到两相旋转坐标系(d,q坐标系)的关系式为: ? ? ? ? ? ? ? ? ? ? ? ? - = ? ? ? ? ? ? β α ? ? θ θ θ θ ? ? cos sin sin cos q d(2-2)从两相旋转坐标系(d,q坐标系)变换到两相静止坐标系(α,β坐标系)的关系式为:

Flux永磁电机动态退磁计算

永磁同步电机磁钢退磁计算 磁钢退磁风险及退磁性能评估是永磁电机无法回避的问题,本文针对永磁同步电机,说明采用Altair Flux 进行磁钢退磁分析的过程。 1、退磁率评估 所谓退磁率评估其实是一个电磁场后处理过程,在执行完成瞬态磁场计算后,根据指定的退磁评估点(如90%剩磁Br),由软件提取永磁体中的磁场强度H和磁密B,计算出永磁体内部的新的剩磁Br’,并计算出永磁体剩磁低于指定退磁点剩磁的面积或体积大小,即永磁体中出现退磁现象且低于指定剩磁的占比。而静态退磁评估是指在瞬态磁场计算过程中,永磁体的剩磁始终保持不变,即不考虑永磁体退磁、回复过程及引起的磁场变化和设备电气性能输出的变化(如电机电磁转矩下降)。 2、动态退磁分析 动态退磁指的是在磁场计算过程之中同时考虑永磁体由于退磁及回复过程(recoil)导致的永磁体结构中剩磁的改变,以及在新剩磁数值下的磁场分布。Altair Flux2019.1新增永磁体动态退磁分析功能,即在瞬态磁场计算过程中软件自动计算并更新永磁体退磁后的剩磁材料属性,并用于下一时间步的磁场计算。Flux 中要考虑永磁体动态退磁过程,只需在永磁体材料属性定义界面中勾选中“求解过程中考虑退磁”选项即可,其他分析设置过程与常规瞬态磁场分析设置相同,无需额外的特别设定。Flux软件计算永磁退磁过程中会自动考虑永磁体的回复线,软件内部根据定义的非线性退磁曲线结合Preisach磁滞回线模型进行。 动态退磁分析适用于2D和3D瞬态磁场分析,且在瞬态分析中初始计算设置为从静态计算开始。该退磁过程只考虑由于反向磁场引起的退磁,不考虑由于温度变化引起的热退磁。 以8极48槽三相永磁同步电机2D瞬态磁场分析为例,计算模型以及使用磁钢材料属性如下图所示:

USDP产品安全解决方案

USDP产品安全解决方案

XX市星系数据资讯XX 2002年6月目录1引言3 2网络安全3 2.1网络规划3 2.2防火墙3 2.3VPN 4 3系统安全6 3.1核心策略分层安全防护6 3.2操作系统的安全配置7 3.3数据库系统的安全配置7 3.4应用服务器的安全配置7 3.5实时入侵检测8 3.6安全漏洞评估系统8 3.7病毒防护8 4数据安全9 4.1存储安全9 4.2传输安全9 4.3容灾系统10 5应用安全13 5.1用户安全14 5.2数据安全14 5.3功能安全14 6管理安全14 6.1内部管理安全15 6.2外部管理安全15 7结论15

1引言 对于一个企业来说,安全在信息化管理系统的实施中是至关重要的。有时,一个关键数据的丢失,可能会造成企业很多业务的中止,或给其生产带来一系列的麻烦,所以,企业信息系统的安全性成为企业实施信息化管理系统的首要考虑因素。一般来说,安全主要包括以下两个方面,第一是本身非人为的安全性,这主要包括雷电,地震或服务器本身摔坏或其它因素使某些硬件和软件造成不可修复性损坏,这部分的安全措施主要是对数据进行及时备份。第二个安全方面是企业本身的信息系统要做到防病毒,防黑客或非合法用户的访问。通常来讲,第二个环节是重中之重,因为黑客,病毒攻击的可能性随时会存在。 XX星系的USDP产品在设计之初,就以安全,适用,灵活为设计原则。在安全方面,USDP采取了多层安全结构体系(分为网络安全、系统安全、数据安全、应用安全、管理安全),从根本上解决了企业信息化的安全隐患,使信息系统可以24*7的安全稳定地运行。多层安全结构体系是紧密联系的,从技术和业务两个方面上来保证系统的安全。 2网络安全 USDP产品采用B/S体系结构,所以在保证产品安全时,首先要保证网络系统的安全,在网络安全方面,我们采用了如下解决方案:网络规划、VPN、防火墙等。 2.1网络规划 一个成功的安全的网络系统设计,要先从网络规划开始,因为网络的拓扑结构是和安全性息息相关的,如果网络的设计有问题,那么对整个系统构成不仅仅是性能上的问题,更有可能在安全上引起隐患。XX星系可以根据客户的实际情况,为客户设计出合理,经济的安全网络方案。 2.2防火墙 所谓“防火墙”,就是一种将内网和外网分开的方法,实际上是一种隔离技术。防火墙是在两个网络通讯时执行的一种访问控制尺度,它能允许你“同意”的人和数据进入你的网络,同时将你“不同意”的人和数据拒之门外,最大限度地阻止网络中的黑客来访问你的网 络,防止他们更改、拷贝、毁坏你的重要信息。它相当于一个阀门,一个过滤器或者说国家的海关、边防检查站,负责审查经过的数据和信息,根据设定的规则处理不同的情况。由此可见,建立一个安全的防火墙系统并不仅仅取决于购买了什么牌子的设备,更重要的是在于使用者是否了解本企业网络的情况、掌握用户的实际需求并正确地付诸实施。 一般的安全来说:防火墙是必不可少的,因为内部服务主机不能完全暴露在外网上,因

相关文档
相关文档 最新文档