文档库 最新最全的文档下载
当前位置:文档库 › 比较生命周期的煤炭空气污染物,国内天然气,液化天然气和代用天然气用于发电

比较生命周期的煤炭空气污染物,国内天然气,液化天然气和代用天然气用于发电

比较生命周期的煤炭空气污染物,国内天然气,液化天然气和代用天然气用于发电
比较生命周期的煤炭空气污染物,国内天然气,液化天然气和代用天然气用于发电

Comparative Life-Cycle Air

Emissions of Coal,Domestic Natural Gas,LNG,and SNG for Electricity Generation

P A U L I N A J A R A M I L L O ,*,?

W .M I C H A E L G R I F F I N ,?,?A N D H .S C O T T M A T T H E W S ?,§

Civil and Environmental Engineering Department,Tepper School of Business,and Department of Engineering and Public Policy,Carnegie Mellon University,5000Forbes Avenue,Pittsburgh,Pennsylvania 15213-3890

The U.S.Department of Energy (DOE)estimates that in the coming decades the United States’natural gas (NG)demand for electricity generation will increase.Estimates also suggest that NG supply will increasingly come from imported liquefied natural gas (LNG).Additional

supplies of NG could come domestically from the production of synthetic natural gas (SNG)via coal gasification -methanation.The objective of this study is to compare greenhouse gas (GHG),SO x ,and NO x life-cycle emissions of electricity generated with NG/LNG/SNG and coal.

This life-cycle comparison of air emissions from different fuels can help us better understand the advantages

and disadvantages of using coal versus globally sourced NG for electricity generation.Our estimates suggest that with the current fleet of power plants,a mix of domestic NG,LNG,and SNG would have lower GHG emissions than coal.If advanced technologies with carbon capture and sequestration (CCS)are used,however,coal and a mix of domestic NG,LNG,and SNG would have very similar life-cycle GHG emissions.For SO x and NO x we find there are significant emissions in the upstream stages of the NG/LNG life-cycles,which contribute to a larger range in SO x and NO x emissions for NG/LNG than for coal and SNG.

1.Introduction

Natural gas currently provides 24%of the energy used by United States homes (1).It is an important feedstock for the chemical and fertilizer industry.Low wellhead gas prices (less than $3/thousand cubic feet (Mcf)(2))spurred a surge in construction of natural-gas-fired power plants:between 1992and 2003,while coal-fired capacity increased only from 309to 313GW,natural-gas-fired capacity more than tripled,from 60to 208GW (3).Adding to this was the Energy Information Agency’s (EIA)prediction of continued low natural gas prices (around $4/Mcf)through 2020(4),lower capital costs,shorter construction times,and generally lower air emissions for natural-gas-fired plants that allowed power generators to meet the clean air standards (5).However,instead of remaining near projected levels,the average

wellhead price of natural gas peaked at $11/Mcf in October 2005(6).This price increase made natural gas uneconomical as a feedstock,so most natural-gas-fired plants are operating below capacity (7).Despite these trends,natural gas con-sumption is expected to increase by 20%of 2003levels by 2030.Demand from electricity generators is projected to grow the fastest.At the same time,natural gas production in the United States and pipeline imports from Canada and Mexico are expected to remain fairly constant (8).The gap between North American supply and U.S.demand can only be met with alternative sources of natural gas,such as imported liquefied natural gas (LNG)or synthetic natural gas (SNG)produced from coal.Current projections by EIA estimate that LNG imports will increase to 16%of the total U.S.natural gas supply by 2030(8).Alternatively,Rosenberg et al.call for congress to promote gasification technologies that use coal to produce SNG.This National Gasification Strategy calls for the United States to produce 1.5trillion cubic feet (tcf)of synthetic natural gas per year within the next 10years (7),equivalent to 5%of expected 2030demand.

The natural gas system is one of the largest sources of greenhouse gas emissions in the United States,generating around 132million tons of CO 2equivalents annually (1).Significant emissions of criteria air pollutants also come from upstream combustion life-cycle stages of the gas.Emissions from the emerging LNG life-cycle stages or from the production of SNG have not been studied in detail.If larger percentages of the U.S.supply of natural gas will come from these alternative sources,then LNG or SNG supply chain emissions become an important part of understanding overall natural gas life-cycle emissions.Also,comparisons between coal and natural gas that concentrate only on the emissions at the utility plant may not be adequate.The objective of this study is to perform a life-cycle analysis (9,10)of natural gas,LNG,and SNG.Direct air emissions from the processes during the life-cycle will be considered,as well as air emissions from the combustion of fuels and electricity used to run the process.A comparison with coal life-cycle air emissions will be presented,in order to have a better understanding of the advantages and disadvantages of using coal versus natural gas for electricity generation.

2.Fuel Life-Cycles

The natural gas life-cycle starts with the production of natural gas and ends at the combustion plant.Natural gas is extracted from wells and sent to processing plants where water,carbon dioxide,sulfur,and other hydrocarbons are removed.The produced natural gas then enters the transmission system.The U.S.transmission system also includes some storage of natural gas in underground facilities such as reconditioned depleted gas reservoirs,aquifers,or salt caverns to meet seasonal and/or sudden short-term demand.From the transmission and storage system,some natural gas goes directly to large-scale consumers,like electric power genera-tors,which is modeled here.The rest goes into local distribution systems that deliver it to residential and com-mercial consumers via low-pressure,small-diameter pipe-lines.

The use of liquefied natural gas (LNG)adds three additional life-cycle stages to the natural gas life-cycle described above.Natural gas is produced and processed to remove contaminants and transported by pipeline relatively short distances to be liquefied.In the liquefaction process,natural gas is cooled and pressurized (11).Liquefaction plants are generally located in coastal areas of LNG exporting countries and dedicated LNG ocean tankers transport LNG

*Corresponding author phone:412-268-8769;fax:412-268-7813;e-mail:pjaramil@https://www.wendangku.net/doc/4a2837892.html,.

?Civil and Environmental Engineering Department.?Tepper School of Business.

§Department of Engineering and Public Policy.

Environ.Sci.Technol.2007,41,6290-

6296

6290

9

ENVIRONMENTAL SCIENCE &TECHNOLOGY /VOL.41,NO.17,2007

10.1021/es063031o CCC:$37.00

?2007American Chemical Society

Published on Web 07/25/2007

to the United States.Upon arriving,the LNG tankers offload their cargo and the LNG is regasified.At this point the regasified LNG enters the U.S.natural gas transmission system.

The coal life-cycle is conceptually simpler than the natural gas life-cycle,consisting of three major steps:coal mining and processing,transportation,and use/combustion.

U.S.coal is produced from surface mines(67%),or underground mines(33%)(1).Mined coal is processed to remove impurities.Coal is then transported from the mines to the consumers via rail(84%),barge(11%),and trucks(5%) (12).More than90%of the coal used in the United States is used by the electric power sector,which is modeled here(8).

The life-cycle of SNG is a combination of some stages from the coal life-cycle and some stages of the natural gas life-cycle.Coal is mined,processed,and transported,as in the coal life-cycle,to the SNG production plant.At this plant, syngas,a mixture of carbon monoxide(CO)and hydrogen (H2),is produced by gasification and converted,via metha-nation,to methane and water.The SNG is then sent to the natural gas transmission system,described above,and on to the electric power generator.

3.Methods for Calculating Life-Cycle Air Emissions

In our study we investigate the life-cycle air emissions from coal,natural gas,LNG,and SNG use.All fossil fuel options are used to produce electricity and combustion emissions are included as a component of the each life-cycle.For GHG, the emissions factors at power plants used are120lb CO2 equiv/MMBtu of natural gas and205lb CO2equiv/MMBtu of coal.The SO x and NO x emissions at power plants are presented in the results section and in the Supporting Information

3.1.Life-Cycle Air Emissions from Natural Gas produced in North America.In2003,the total consumption of natural gas in the United States was over27trillion cubic feet(tcf). Of this,26.5tcf were produced in North America(U.S., Canada,and Mexico)(13).According to the Environmental Protection Agency(EPA),1.07%of the natural gas produced is lost in its production,processing,transmission,and storage (14).Total methane emissions were calculated using the percentage of natural gas lost.It was also assumed that natural gas has an average heat content of1030Btu/ft3(13),and that 96%of the natural gas lost is methane,which has a density of0.0424lb/ft3(14).

In1993the U.S.EPA established the Natural Gas STAR program to reduce methane emissions from the natural gas industry.Data from this program for the reductions in methane lost in the natural gas system,as described in the Supporting Information,were combined with the data described above to develop a range of methane emissions factors for the North American natural gas life-cycle stages.

Carbon dioxide emissions are produced from the com-bustion of natural gas used during various life-cycle stages and from the production of electricity consumed during transport.EIA provides annual estimates of the amount of natural gas used for the production,processing,and transport of natural gas.In2003,approximately1900billion cubic feet of natural gas were consumed during these stages of the natural gas life-cycle(13).Total carbon dioxide emissions were calculated using a carbon content in natural gas of 31.90lb C/MMBtu and an oxidation fraction of0.995(1). According to the Transportation Energy Data Book,3billion kWh were used for natural gas pipeline transport in2003 (15).The average GHG emission factor from the generation of this electricity is1400lb CO2equiv/MWh(16).These CO2 emissions were added to methane emissions to obtain the upstream combustion GHG emission factors for North American natural gas.

SO x and NO x emissions from the natural gas upstream stages of the life-cycle come from the combustion of the fuels used to produce the energy that runs the system,as given in the Supporting Information.Total emissions from flared gas were calculated using the AP42Emission Factors for natural gas boilers(17).A range of emissions from the combustion of the natural gas used during the upstream stages of the life-cycle was developed using the AP42 Emissions Factors for reciprocating engines and for natural gas turbines(17).Emissions from generating the electricity used during natural gas pipeline operations were estimated using the most current average emission factors given by EGRID:6.04lb SO2/MWh and2.96lb NO x/MWh(16).Note that EGRID reports emissions of SO2only.Other references used in this paper report total SO x emission.For this paper, sulfur emission will be reported in terms of SO x emissions.

In addition to emissions from the energy used during the life-cycle of natural gas,SO x emissions are produced in the processing stage of the life-cycle,when hydrogen sulfide(H2S) is removed from the sour natural gas to meet pipeline requirements.A range of SO x emissions from this processing of natural gas was developed using the AP42emissions factors for natural gas processing and for sulfur recovery(17).To use the AP42emission factors for sulfur recovery,we found that in20031945thousand tons of sulfur were recovered from14.7trillion cubic feet of natural gas resulting in a calculated average natural gas H2S mole percentage of0.0226. This was then used with the AP42emission factors for natural gas processing.

3.2.Air Emissions from the LNG Life-Cycle.In2003,500 billion cubic feet of natural gas were imported in the form of LNG(13).In2003,75%of the LNG imported to the United States came from Trinidad and Tobago,but this percentage is expected to decrease as more imports come from Russia, the Middle East,and Southeast Asia(13).According to EIA, the LNG tanker world fleet capacity should have reached890 million cubic feet of liquid(equivalent to527billion cubic feet of natural gas)by the end of2006(18).There are currently 5LNG terminals in operation in the United States,with a combined base load capacity of5.3billion cubic feet per day (about2trillion cubic feet per year).In addition to these terminals,there are45proposed facilities in North America, 18of which have already been approved by the Federal Energy Regulatory Commission(FERC)(19).

Due to unavailability of data for emissions from natural gas production in other countries,it is assumed that natural gas imported to the United States in the form of LNG produces the same emissions from the production and processing life-cycle stages as North American natural gas.Those stages are incorporated for LNG.Most of the natural gas converted to LNG is produced from modern fields developed and operated by multinational oil and gas companies,so they are assumed to be operated in a similar way to those in the United States.

It is expected that transportation of natural gas from the production field to the liquefaction plant would have emissions similar to those of pipeline transport of domestic natural gas.But the emission factor for the U.S.system(which is included in the LNG life-cycle)is based on total pipeline distances of over200000miles(20).Because LNG facilities are closely paired with gas fields,it is expected that the average distance from production field to a LNG facility would be much smaller than200000miles.Also,because there were no reliable data for the myriad of fields and facilities and suspected impact on the overall life cycle would be minimal, this transport from the fields to the liquefaction terminals was ignored.This would slightly underestimate the emissions from the LNG life cycle.

Additional emission factors were developed for the liquefaction,transport,and regasification life-cycle stages of LNG.Tamura et al.have reported emission factors for the VOL.41,NO.17,2007/ENVIRONMENTAL SCIENCE&TECHNOLOGY96291

liquefaction stage in the range of11-31lb CO2equiv/MMBtu (21).The sources of these emissions are outlined in the Supporting Information.

LNG is shipped to the United States via LNG tankers. LNG tankers are the last ship type to use steam turbine technology in their engines.This technology allows for easy use of boil-off gas(BOG)in a gas boiler.Boil-off rates in LNG tankers range between0.15%and0.25%per day when loaded (22,23).When there is not enough BOG available,a fuel oil boiler is used to produce the steam.In addition to this benefit, steam turbines require less maintenance than diesel engines, which is beneficial to these tankers that have to be readily available to leave a terminal in case of emergency(22).

Most LNG tankers currently in operation have a capacity to carry between4.2and5.3million cubic feet of LNG(2.6 and3.2billion cubic feet of gas).There are smaller tankers available,but they are not widely used for transoceanic transport.There is also discussion about building larger tankers(8.8million cubic feet),however none of the current U.S.terminals can handle tankers of this size(18).

The rated power of the LNG tankers ranges between20 and30MW,and they operate under this capacity around 75%of the time during a trip(24,25).The energy required to power this engine is11.6MMBtu/MWh(26).As previously mentioned,some of this energy is provided by BOG and the rest is provided by fuel oil.A loaded tanker with a rated power of20MW,and0.12%daily boil-off rate would consume 3.88million cubic feet of gas per day and4.4tons of fuel oil per day.The same tanker would consume115tons of fuel oil per day on they way back to the exporting country operating under ballast conditions.A loaded tanker with a rated power of30MW,and a0.25%daily boil-off rate would get all its energy from the BOG,with some excess gas being combusted to reduce risks of explosion(22).Under ballast conditions,the same tanker would consume172tons of fuel oil per day.

For LNG imported in2003the average travel distance to the Everett,MA LNG terminal was2700nautical miles(13, 27).In the future LNG could travel as far as far as11700 nautical miles(the distance between Australia and the Lake Charles,LA LNG terminal(27)).This range of distances is representative of distances from LNG countries to U.S. terminals that could be located on either the East or West coasts.To estimate the number of days LNG would travel(at a tanker speed of20knots(22)),these distances were used. This trip length can then be multiplied by the fuel con-sumption of the tanker to estimate total trip fuel consumption and emissions,and these can then be divided by the average tanker capacity to obtain a range of emission factors for LNG tanker transport between2and17lb CO2equiv/MMBtu.

Regasification emissions were reported by Tamura et al. to be0.85lb CO2equiv/MMBtu(21).Ruether et al.report an emission factor of3.75lb of CO2equiv/MMBtu for this stage of the LNG life-cycle by assuming that3%of the gas is used to run the regasification equipment(28).The emission reported by Tamura et al.differs because they assumed only 0.15%of the gas is used to run the regasification terminal, while electricity,which may be generated with cleaner energy sources,provides the additional energy requirements.These values were used as lower and upper bounds of the range of emissions from regasification of LNG.

As done for the carbon emissions,natural gas produced in other countries and imported to the United States in the form of LNG is assumed to have the same SO x and NO x emissions in the production,processing,and transmission stages of the life-cycle as for natural gas produced in North America.Emission ranges for the liquefaction and regasifi-cation of natural gas were calculated using the AP42emission factors for reciprocating engines and natural gas turbines (17).It is assumed that8.8%of natural gas is used in the liquefaction plant(21)and3%is used in the regasification plants(28).Emissions of SO x,and NO x from transporting the LNG via tanker were calculated using the AP42emission factor for natural gas boilers and diesel boilers,as well as the tanker fuel consumption previously described.

3.3.Air Emissions from the Coal Life-Cycle.Greenhouse gas emissions from the mining life-cycle stage were developed from methane releases and from combustion of fuels used at the mines.EPA estimates that methane emissions from coal mines in1997were75million tons of CO2equivalents, of which63million tons came from underground mines and 12million tons came from surface mines(1).CO2is also emitted from mines through the combustion of the fuels that provide the energy for operation.The U.S.Census Bureau provides fuel consumption data for mines in1997(29).These data are available in the Supporting Information.Fuel consumption data were converted to GHG emissions using the carbon content and heat content of each fuel and an oxidation fraction given in EPA’s Inventory of U.S.Green-house Gas Emissions Sources and Sinks(1)(see Supporting Information).Emissions from the generation of the electricity consumed were calculated using an average1997emission factor of1400lb CO2equiv/MWh(16).These total emissions were then converted to an emission factor using the amount of coal produced in1997and the average heat content of this coal.

Emissions from the transportation of coal were calculated using the EIO-LCA tool developed at Carnegie Mellon University(30).To use this tool,economic values for coal transportation were needed.In1997,the latest year for which the EIO-LCA tool has data,84%of coal was transported via rail,11%via barge,and5%via truck.The cost for rail transport, barge,and truck transport was13.9,9.5,and142.7mills/ ton-mile respectively(12).For a million ton-miles of coal transported,EIO-LCA estimates that43.6tons of CO2 equivalents are emitted from rail transportation,5.89tons of CO2equivalents from water transportation,and69tons of CO2equivalents from truck transportation(30).These emissions were then converted to an emission factor by using the average travel distance of coal in each mode(796,337, and38miles by rail,barge,and truck,respectively),the weighted average U.S.coal heat content of10520Btu/lb (31)and the coal production data for1997(see Supporting Information).

The energy consumption data used to develop carbon emissions from the mining life-cycle stage were used to develop SO x and NO x emission factors for coal.AP42 emissions factors for off-road vehicles,natural gas turbines, reciprocating engines,light duty gasoline trucks,large stationary diesel engines,and gasoline engines were used to develop this range of emission factors(17,32).In addition, the average emission factors from electricity generation in 1997(3.92lb NO x/MWh and7.86lb SO2/MWh(16))were used to include the emissions from the electricity used in mines.

SO x and NO x emissions for coal transportation were again calculated using EIO-LCA(30).EIO-LCA estimates that a million ton-miles of coal transported via rail results in emissions of0.02tons of SO x and0.4tons of NO x.A million ton-miles of coal transported via water would emit0.07tons of SO x,and0.36tons of NO x.Finally,a million ton-miles of coal transported via truck would emit0.06tons of SO x,and 1.42tons of NO x(30).These data were added to emissions from mines to find the total SO x and NO x emission factors for the upstream stages of the coal life-cycle.

3.4.Air Emissions from the SNG Life-Cycle.Performance characteristics for two SNG plants are given in the Supporting Information.These plants have a higher heating value efficiency between57%and60%(33,34).Using these efficiencies,emissions from coal mining,processing,and

62929ENVIRONMENTAL SCIENCE&TECHNOLOGY/VOL.41,NO.17,2007

transportation previously obtained were converted to pounds of CO2equiv/MMBtu of SNG.The data were also used to calculate the emissions at the gasification-methanation plant using a coal carbon content of0.029tons/MMBtu and a calculated SNG storage fraction of37%(1).Finally,the emissions from transmission,storage,distribution,and combustion of SNG are the same as those for all other natural gas.

To develop the SO x and NO x emissions from the life-cycle of SNG,the emissions from coal mining and transport developed in the previous section in pounds per MMBtu of coal were converted to pounds per MMBtu of SNG using the efficiencies previously discussed.In addition,the emissions from natural gas transmission and storage were assumed to represent emissions from these life-cycle stages of SNG.The emissions from the gasification-methanation plant were taken from emission data for an Integrated Coal Gasification Combine Cycle(IGCC)plant,which operates with a similar process.Bergerson(35)reports SO x emissions factors from IGCC between0.023and0.15lb/MMBtu coal(0.026-0.17 lb/MMBtu of coal if there is carbon capture),and a NO x emission factor of0.0226lb/MMBtu coal(0.0228lb/MMBtu of coal if there is carbon capture).These were converted to lb/MMBtu of SNG using the same coal-to-SNG efficiencies previously described.

4.Results

https://www.wendangku.net/doc/4a2837892.html,paring Fuel Life-Cycle Emissions for Fuels Used at Currently Operating Power Plants.Emission factors for the fuel life-cycles were calculated as pounds of pollutants per MMBtu of fuel produced,as presented in the Supporting Information.Since coal and natural gas power plants have different efficiencies,1MMBtu of coal does not generate the same amount of electricity as1MMBtu of natural gas/LNG/ SNG.For this reason,emission factors given in Table10S and Table11S in the Supporting Information were converted to pounds of pollutant per MWh of electricity generated. This conversion is done using the efficiency of natural gas and coal power plants.According to the U.S.Department of Energy(DOE),currently operating coal power plants have efficiencies ranging from30%to37%,while currently operating natural gas power plants have efficiencies ranging from28%to58%(36).The life-cycle GHG emissions factors of natural gas,LNG,coal,and SNG described in the Supporting Information were converted to a lower and upper bound emission factor from coal and natural gas power plants using these efficiency ranges.Figure1shows the final bounds for the emission factors for each fuel cycle.The life-cycle for each fuel use includes fuel combustion at a power plant.The combustion-only emissions for each fuel are shown for comparison.The solid horizontal line shown represents the current average GHG emission factor for U.S.electricity generation:1400lb CO2equiv/MWh(16).Note that in this graph no carbon capture and storage(CCS)is performed at any stage of the https://www.wendangku.net/doc/4a2837892.html,S is a process by which carbon emissions are separated from other combustion products and injected into underground geologic formations such as saline formations or depleted oil/gas fields.A scenario in which CCS is performed at power plants as well as in gasification-methanation plants will be discussed in the following section.

It can be seen that combustion emissions from coal-fired power plants are higher than those from natural gas:the midpoint between the lower and upper bound emission factors for coal combustion is approximately2100lb CO2 equiv/MWh,while the midpoint for natural gas combustions is approximately1100lb CO2equiv/MWh.This reflects the known environmental advantages from combustion of natural gas over coal.Figure1also shows that the life-cycle GHG emissions of electricity generated with coal are domi-nated by combustion,and adding the upstream life-cycle stages does not change the emission factor significantly,with the midpoint between the lower and upper bound life-cycle emission factors being2270lb CO2equiv/MWh.For natural-gas-fired power plants the emissions from the upstream stages of the natural gas life-cycle are more significant, especially if the natural gas used is synthetically produced from coal(SNG).The midpoint life-cycle emission factor for domestic natural gas is1250lb CO2equiv/MWh;for LNG and SNG it is1600lb CO2equiv/MWh and3550lb CO2equiv/ MWh,respectively.SNG has much higher emission factors than the other fuels because of efficiency losses throughout the system.It is also interesting to note that the range of life-cycle GHG emissions of electricity generated with LNG is significantly closer to the range of emissions from coal than the life-cycle emissions of natural gas produced in North America.The upper bound life-cycle emission factor for LNG is2400lb CO2equiv/MWh,while the upper bound life-cycle emission factor for coal is2550lb CO2equiv/MWh.

To compare emissions of SO x and NO x from all life-cycles, the upstream emission factors and the power plant efficien-cies from the Supporting Information are used.Emissions of these pollutants from coal and natural gas power plants in operation in2003were obtained from EGRID(37).Table

1 FIGURE1.Fuel Combustion and Life-Cycle GHG Emissions for Current Power Plants.

VOL.41,NO.17,2007/ENVIRONMENTAL SCIENCE&TECHNOLOGY96293

shows life-cycle emissions for each fuel obtained by adding the combustion emissions from EGRID to the transformed upstream emissions.The current average SO x and NO x emission factors for electricity generated in the United States are also shown(16).

It can be seen that coal has significantly larger SO x emissions than natural gas,LNG,or SNG.This is expected since the sulfur content of coal is much higher than the sulfur content of other fuels.SNG,which is produced from coal, does not have high sulfur emissions because the sulfur from coal must be removed before the methanation process.

For NO x,it can be seen that the upstream stages of domestic natural gas,LNG,and even SNG make a significant contribution to the total life-cycle emissions.These upstream NO x emissions come from the combustion of fuels used to run the natural gas system:for domestic natural gas, production is the largest contributor to these emissions;for LNG most NO x upstream emissions come from the liquefac-tion plant;finally,for SNG most upstream NO x emissions come from the gasification-methanation plant.

https://www.wendangku.net/doc/4a2837892.html,paring Fuel Life-Cycle Emissions for Fuels Used with Advanced Technologies.According to the DOE,by2025 65GW of inefficient facilities will be retired,while347GW of new capacity will be installed(8).Advanced pulverized coal(PC),integrated coal gasification combined cycle(IGCC), and natural gas combined cycle(NGCC)power plants could be installed.PC,IGCC,and NGCC plants are generally more efficient(average efficiencies of39%,38%,and50%,respec-tively(38))than the current fleet of power plants.In addition, CCS could be performed with these newer technologies. Experts believe that sequestration of90%of the carbon will be technologically and economically feasible in the next20 years(5,38).Having CCS at PC,IGCC,and NGCC plants decreases the efficiency of the plants to average of30%,33%, and43%,respectively(38).

Figure2was developed using the revised efficiencies for advanced technologies and the GHG emission factors(in lb/MMBtu)described in the Supporting Information.This figure represents total life-cycle emissions for electricity generated with each fuel.Notice that emissions are shown with and without CCS.In the case of SNG with CCS,capture is performed at both the gasification-methanation plant and at the power plant.The solid horizontal line shown represents the current average GHG emission factor for electricity generation in the United States(1400lb CO2equiv/MWh) (16).The upper and lower bound emissions in this figure are closer together than the upper and lower bounds in Figure 1,because only one power plant efficiency value is used, while for Figure1the upper and lower bound efficiency from all currently operating power plants was used(this is especially obvious for the domestic natural gas(NGCC)cases). It can be seen that,in general,life-cycle GHG emissions of electricity generated with the fuels without CCS would decrease slightly compared to emissions from current power plants that use the same fuel(due to efficiency gains).The most efficient natural gas plant currently in operation, however,could have slightly lower emissions than the lower bound for NGCC,LNGG,and SNGCC,due to efficiency differences.Three of the cases,however(PC,IGCC,and SNGCC),would still have higher emissions than the current average emissions from power plants.If CCS were used, however,there would be a significant reduction in emissions for all cases.In addition the midpoints between upper and lower bound emissions from all fuels are closer together,as can be seen in Figure3.This figure also shows how the upstream from combustion emissions of fuels become significant contributors to the life-cycle emission factors when CCS is used.

Table2was developed using the upstream SO x and NO x emission factors obtained in this study and the combustion emissions reported by Bergerson(35)for PC and IGCC plants and by Rubin et al.for NGCC plants(38).These reported combustion emissions can be seen in the Table12S in the Supporting Information.

As can be seen from Table2,if advanced technologies are used there could be a significant reduction of NO x and SO x emissions,even if CCS is not available.It is interesting also to note that a PC plant with CCS could have lower life-cycle emissions than an IGCC plant with CCS.In the PC case all sulfur is removed through flue gas desulfurization.The removed sulfur compounds are then solidified and disposed of or sold as gypsum.In an IGCC plant with CCS,sulfur is removed from the syngas before combustion.In these plants, however,instead of solidifying the sulfur compounds re-moved and disposing them,the elemental sulfur is recovered in a process that generates some additional SO x emissions (35).For NO x,only LNG has higher life-cycle emissions than the average generated at current power plants.

5.Discussion

Natural gas is an important energy source for the residential, commercial,and industrial sectors.In the1990s,the surge in demand by electricity generators and relatively constant natural gas production in North America caused prices to increase,so that in2005these sectors paid58billion dollars more than they would have paid if2000prices remained constant.Cumulative additional costs of higher natural gas prices for residential,commercial,and industrial consumers between2000and2005were calculated to be around120 billion dollars.LNG has been identified as a source of natural gas that might help reduce prices,but even with an increasing supply of LNG,EIA still projects average delivered natural gas prices above$6.5/Mcf in the next25years.This is higher than the$4.5/Mcf average projected price in earlier reports before the natural-gas-fired plant construction boom(4).

In addition to LNG,SNG has been proposed as an alternative source to add to the natural gas mix.The decision to follow the path of increased LNG imports or SNG production should be examined in light of more than just economic considerations.In this paper,we analyzed the effects of the additional air emissions from the LNG/SNG life-cycle on the overall emissions from electricity generation in the United States.We found that with current electricity generation technologies,natural gas life-cycle GHG emissions are generally lower than coal life-cycle emissions,even when increased LNG imports are included.However LNG imports decrease the difference between GHG emissions from coal and natural gas.SNG has higher life-cycle GHG emission than coal,domestic natural gas,or LNG.It is also important to note that upstream GHG emissions of NG/LNG/SNG have a higher impact in the total life-cycle emissions than upstream coal emissions.This is a significant point when considering a carbon-constrained future in which combustion emissions are reduced.

TABLE1.SO x and NO x Combustion and Life-Cycle Emission Factors for Current Power Plants

fuel SO x(lb/MWh)NO x(lb/MWh)

min max min max current electricity mix 6.04 2.96

coal combustion 1.5425.5 2.569.08

life-cycle 1.6025.8 2.839.69 natural gas combustion0.00 1.130.12 5.20

life-cycle0.04 1.490.179.40 LNG life-cycle0.094 2.930.2515.4 SNG life-cycle0.30 3.880.658.08

62949ENVIRONMENTAL SCIENCE&TECHNOLOGY/VOL.41,NO.17,2007

For emissions of SO x ,we found that with current electricity generation technologies,coal has significantly higher life-cycle emissions than any other fuel due to very high emissions at current power plants.For NO x ,however,this pattern is different.We find that with current electricity generation technologies,LNG could have the highest life-cycle NO x emissions (since emissions from liquefaction and regasifi-cation are significant),and that even natural gas produced

in North America could have life-cycle NO x emissions very similar to those of coal.It is important to note that while GHG emissions contribute to a global problem,SO x and NO x are local pollutants and U.S.policy makers may not give much weight to emissions of these pollutants in other countries.

In the future,as newer generation technologies and CCS are installed,the overall life-cycle GHG emissions from electricity generated with coal,domestic natural gas,LNG,or SNG could be similar.Most important is that all fuels with advanced combustion technologies and CCS have lower life-cycle GHG emission factors than the current average emission factor from electricity generation.For SO x we found that coal and SNG would have the largest life-cycle emissions,but all fuels have lower life-cycle SO x emissions than the current average emissions from electricity generation.For NO x ,LNG would have the highest life-cycle emissions and would be the only fuel that could have higher emissions than the current average emission factor from electricity generation,even with advanced power plant design.

We suggest that advanced technologies are important and should be taken into account when examining the possibility of doing major investments in LNG or SNG infrastructure.Power generators hope that the price of natural gas will decrease as alternative sources of natural gas are added to the U.S.mix,so they can recover the investment made

in

FIGURE 2.Fuel GHG Life-Cycle Emissions Using Advanced

Technologies.

FIGURE 3.Midpoint Life-Cycle GHG Emissions Using Advanced Technologies with CCS.

TABLE 2.SO x and NO x Life-Cycle Emission Factors for Advanced Technologies

fuel

SO x (lb/MWh)NO x (lb/MWh)min

max

min

max

current electricity mix 6.04 2.96coal PC w/o CCS

0.24 1.54 1.42 2.46PC w/CCS 0.080.34 1.90 3.61IGCC w/o CCS 0.27 1.570.470.70IGCC w/CCS 0.32 1.830.540.78natural gas NGCC w/o CCS 0.040.200.30 2.57NGCC w/CCS 0.050.240.36 3.01LNG NGCC w/o CCS 0.25 1.040.39 5.89NGCC w/CCS 0.30 1.230.46 6.91SNG

NGCC w/o CCS 0.35 2.150.88 1.85NGCC w/CCS

0.45

2.80

1.03

2.18

VOL.41,NO.17,2007/ENVIRONMENTAL SCIENCE &TECHNOLOGY

9

6295

natural gas plants that are currently producing well under capacity.We suggest that these investments should be viewed as sunk costs.Thus,it is important to re-evaluate whether investing billions of dollars in LNG/SNG infrastructure will lock us into an undesirable energy path that could make future energy decisions costlier than ever expected and increase the environmental burden from our energy infra-structure.

Acknowledgments

This material is based upon work supported by the U.S. National Science Foundation(grant number0628084),the Teresa Heinz Fellows for Environmental Research,the Pennsylvania Infrastructure Technology Alliance,and the Blue Moon Fund.Any opinions,findings,and conclusions expressed in this material are those of the authors and do not necessarily reflect the views of these organizations. Supporting Information Available

Graphical representation of the fuel life-cycles,emissions calculation information,summary of emissions from fuel life-cycles,power plant efficiency information,emissions from advanced technologies,and references,This material is available free of charge via the Internet at http:// https://www.wendangku.net/doc/4a2837892.html,.

Literature Cited

(1)U.S.EPA.Inventory of US Greenhouse Gas Emissions and Sinks:

1990-2002;Office of Global Warming:Washington,DC,2004.

(2)U.S.DOE.Historical Natural Gas Annual:1930Through2000;

Energy Information Administration:Washington,DC,2001.

(3)U.S.DOE.Electric Power Annual;Energy Information Admin-

istration:Washington,DC,2003.

(4)U.S.DOE.Annual Energy Outlook;Energy Information Ad-

ministration:Washington,DC,1999.

(5)Granger,M.;Apt,J.;Lave,L.The U.S.Electric Power Sector and

Climate Change Mitigation;Pew Center on Global Climate Change:Arlington,VA,2005.

(6)U.S.DOE.U.S.Natural Gas Wellhead Price:1973to2006;Energy

Information Administration:Washington,DC,2006.

(7)Rosenberg,W.G.;Walker,M.R.;Alpern, D. C.National

Gasification Strategy:Gasification of Coal&Biomass as a Domestic Gas Supply Option;Harvard University,John F.

Kennedy School of Government:Cambridge,MA,2005. (8)U.S.DOE.Annual Energy Outlook;Energy Information Ad-

ministration:Washington,DC,2006.

(9)ISO.ISO14040-Environmental Management-Life Cycle

Assessment:Principles and Framework;International Organiza-tion for Standardization:Geneva,Switzerland,1997.

(10)Hendrickson,C.;Lave,L.;Matthews,H.S.Environmental Life

Cycle Assessment of Goods and Services:An Input-Output Approach;Resources for the Future:Washington,DC,2006.

(11)U.S.DOE.U.S.LNG Market and Uses:June2004Update;Energy

Information Administration:Washington,DC,2004.

(12)U.S.DOE.Coal Transportation:Rates and Trends in the United

States,1979-2001;Energy Information Administration:Wash-ington,DC,2004.

(13)U.S.DOE.Natural Gas Annual2003;Energy Information

Administration:Washington,DC,2004.

(14)U.S.EPA.Methane Emission From the Natural Gas Industry;

Environmental Protection Agency:Washington,DC,1996. (15)Davis,S.C.;Diegel,S.W.Transportation Energy Data Book,

25th ed.;Oak Ridge National Laboratory:Oak Ridge,TN,2006.(16)U.S.EPA.EGRID Data Highlights;https://www.wendangku.net/doc/4a2837892.html,/cleanrgy/

egrid/samples.htm#highlights(accessed September14,2006) (17)U.S.EPA.AP42Emission Factors Volume I:Stationary Point

and Area Sources;Technology Transfer Network:Clearinghouse for Inventories and Emission Factors:Washington,DC,1995.

(18)U.S.DOE.The Global Liquefied Natural Gas Market:Status&

Outlook;Energy Information Administration:Washington,DC, 2005.

(19)FERC.Existing and Proposed North American LNG Terminals

as of May2006;Office of Energy Projects:Washington,DC, 2006.

(20)Tobin,J.Expansion and Change on the U.S.Natural Gas Pipeline

Network-2002;Energy Information Administration:Wash-ington,DC,2002.

(21)Tamura,I.;Tanaka,T.;Kagajo,T.;Kuwabara,S.;Yoshioka,T.;

Nagata,T.;Kurahashi,K.;Ishitani,H.M.S.Life Cycle CO2 Analysis of LNG and City Gas.Appl.Energy2001,68,301-319.

(22)Sharke,P.In Mechanical Engineering Magazine,July2004.

(23)U.S.DOE.Worldwide Natural Gas Supply and Demand and the

Outlook for Global LNG Trade;Energy Information Administra-tion:Washington,DC,1997.

(24)Corbett,J.J.In LNG Tankers and Air Emissions:Context,

Inventory Methods,Implications;2006.

(25)Corbett,J.J.;Koehler,H.W.Updated Emissions from Ocean

Shipping.J.Geophys.Res.2003,108.

(26)Endresen,O.;Sorgard,E.;Sundet,J.K.;Dalsoren,S.B.;Isaksen,

I.S.A.;Berglen,T.F.;Gravir,G.Emission from International

Sea Transportation and Environmental Impact.J.Geophys.Res., [Atmos.]2003,108.

(27)WorldNewsNetwork.,World Port Distance Calculator;www.d-

https://www.wendangku.net/doc/4a2837892.html,(accessed May31,2006)

(28)Ruether J.;Ramezan,M.G.Eric Life Cycle Analysis of Greenhouse

Gas Emissions for Hydrogen Fuel Production in the US from LNG and Coal;Second International Conference on Clean Coal Technologies for our Future;2005.

(29)U.S.Department of Commerce.1997U.S.Economic Census;

U.S.Census Bureau:Washington,DC,2001.

(30)CMU.Economic Input-Output Life Cycle Assessment Model;

https://www.wendangku.net/doc/4a2837892.html,(accessed May9,2006).

(31)U.S.DOE.Coal Industry Annual1997;Energy Information

Administration:Washington,DC,1997.

(32)U.S.EPA.AP42Emission Factors Volume II:Mobile Sources;

Technology Transfer Network:Clearinghouse for Inventories and Emission Factors:Washington,DC,1995.

(33)Beychok,M.R.Process&Environmental Technology for

Producing SNG&Liquid Fuels;U.S.Environmental Protection Agency:Washington,DC,1975.

(34)Gray,D.;Salerno,S.;Tomlinson,G.Potential Application of

Coal-Derived Fuel Gases for the Glass Industry:A Scoping Analysis;National Energy Technology Laboratory,DOE:Pitts-burgh,PA,2004.

(35)Bergerson,J.A.Future Electricity Generation:An Economic and

Environmental Life Cycle Perspective on Options and Policy Implication;Carnegie Mellon University,Pittsburgh,PA,2005.

(36)https://www.wendangku.net/doc/4a2837892.html,bined(Utility,Non-Utility,and Combined Heat

&Power Plant)Database in Excel Format;Energy Information Administration:Washington,DC,2003.

(37)U.S.EPA.EGRID Emission Data,2002;Clean Energy Office:

Washington,DC,2002.

(38)Rubin, E.S.;Rao, A. B.;Chen, C.In Proceedings of7th

International Conference on Greenhouse Gas Control Technolo-gies(GHGT-7),Vancouver,Canada2004.

Received for review December20,2006.Revised manuscript received May16,2007.Accepted June12,2007.

ES063031O

62969ENVIRONMENTAL SCIENCE&TECHNOLOGY/VOL.41,NO.17,2007

中海油液化天然气产业链管理实践

中海油液化天然气产业链管理实践 中国海洋石油总公司 中海石油气电集团有限责任公司 吴振芳、王家祥、罗伟中、邢云、王建文、赵德廷、杨楚生、邹鸿雁、屈晟、赵伟、马景柱 一、中海油LNG产业链管理实践的背景 1995年初,中国海洋石油总公司(中海油)确立了“油气并举,向气倾斜”的发展战略,加大了天然气勘探和开发力度并对天然气利用领域进行了深入研究,看准我国沿海省市对清洁能源的巨大需求空间,在当时国内天然气消费市场发展缓慢,国际天然气资源供应过剩的情况下,审时度势,充分利用国内外“两种资源、两个市场”,推进并实施了积极、慎重引进国外液化天然气(LNG)资源的规划。同年国家主管部门做出了进口LNG的战略性决策,并委托中海油牵头组织开展我国东南沿海地区进口LNG的规划研究,随后国家批准了广东大鹏LNG站线试点项目。 2006年6月,随着广东大鹏LNG接收站管线(站线)项目正式投产,标志着我国LNG产业进入了一个新的里程碑。到2011年底,中海油除了广东大鹏、福建、上海LNG接收站项目相继建成投产外,还有6个LNG接收站项目进入建设和前期阶段。通过战略研究,中海油狠抓LNG接收站项目这个龙头产业,并积极进入天然气利用的中下游项目,如:沿海天然气管网、燃气发电、城市燃气、小型液化厂、卫星站、加气站、LNG加注站、冷能利用、低温粉碎等,

逐步形成了完整的LNG 产业链,对我国调整能源结构、改善环境质量、提高生活水平、促进经济与环境协调发展做出了重要贡献。 二、中海油LNG 产业链管理实践成果的内涵和创新点 1.成果的内涵 ⑴LNG 产业链概念 LNG 产业链即各个产业部门之间基于LNG 产品的生产、运输、利用所涉及的技术经济关联,并依据特定的逻辑关系和时空布局客观形成的链条式关联形态(详见图1)。LNG 产业链包括上游(即勘探、开发、生产、净化、液化等环节)、中游(即远洋LNG 船运输、接收站和供气主干管网)和下游(即最终市场用户,包括燃气电厂、城市燃气、工业炉用户、工业园区和建筑物冷热电多联供的分布式能源站等),往下通过槽车再次运输进入零售终端用户,如LNG 卫星站、加气站、LNG 加注站,以及再往向下延伸的冷能利用、低温粉碎等与围绕LNG 副产品相关的所有产业集群。 ⑵成果的主要内容 通过16年战略研究和实践,中海油依靠上游的核心产业,同时 陆地槽 车 图1 LNG 产业链示意图 海 洋

中国液化天然气的发展

中国液化天然气的发展 顾安忠石玉美汪荣顺 (XX交通大学机械与动力工程学院,200030) 摘要:文章主要介绍我国在LNG(简称LNG)工厂、LNG接收终端、LNG运输槽车和LNG气化站等方面的研究进展以及XX交通大学在天然气应用基础方面的研究成果。提出了在LNG方面 有待开展的主要工作,即:(1)小型天然气液化装置;(2)LNG冷量利用技术;(3)LNG工业链 中设备的国产化;(4)LNG船技术。我国在发展LNG过程中,必须认识到该行业的三个方面的特 点:LNG的专业化、社会化和国际化。 关键词:LNG工厂 LNG接收终端 LNG槽车 LNG槽船 LNG气化站 为了改变能源结构、改善环境状态、发展西部经济,中国政府十分重视天然气的开发和利用。近十年来,中国的液化天然气(Liquefied natural gas简称LNG)开发已起步,在LNG链的每一环节上都有所发展,尤其是近几年内,在某些环节上的进展还比较大。已建天然气液化工厂有XX的LNG事故调峰站和XX中原天然气液化工厂。XX正在筹建一座规模更大的天然气液化工厂。中国为了引进国外LNG,正在XXXX建造LNG接收终端;并准备在XX建造第二座LNG接收终端。在LNG运输方面,储罐制造商生产的LNG槽车已投入运行,正计划开发制造运输LNG的集装箱。中国政府开始着手建造LNG船的计划。在LNG应用方面,XX、XX、XX、XX和XX等省的一些城镇建立了气化站,向居民或企业提供燃气。为了适应LNG在中国的迅速发展,相应的LNG标准制定工作也已经开展。在高等院校,展开了对天然气应用的基础研究。 天然气是当今世界能源消耗中的重要组成部分,它与煤炭、石油并称为世界能源的三大支柱。天然气是一种洁净的能源。我国具有丰富的天然气资源。随着我国西部大开发中四大工程之一的“西气东输”工程的实施,将有力地促进天然气的开发和利用。 LNG是气田开采出来的天然气,经过脱水、脱酸性气体和重烃类,然后压缩、膨胀、液化而成的低温液体。LNG是天然气的一种独特的储存和运输形式,它有利于天然气的远距离运输、有利于边远天然气的回收、降低天然气的储存成本、有利于天然气应用中的调峰,同时,由于天然气在液化前进行了净化处理,所以它比管道输送的天然气更为洁净。LNG工业链是非常庞大的,主要包括天然气液化、储存、运输、接收终端、气化站等,见图1。

液化天然气运输安全及发展论文

《液化天然气供应技术课程设计》题目液化天然气运输安全与发展 学生 学号 专业年级 院系 指导教师

2014 年10月31日 液化天然气运输安全与发展 摘要:天然气是一种清洁优质能源,近年来,世界天然气产量和消费量呈持续增长趋势。从今后我国经济和社会发展看,加快天然气的开发利用,对改善能源结构,保护生态环境,提高人民生活质量,具有十分重要的战略意义。具有建设投资小、建设周期短、见效快、受外部影响因素小等优点。作为优质的车用燃料,LNG具有辛烷值高、抗爆性好、燃烧完全、排气污染少、发动机寿命长、运行成本低等优点;与压缩天然气(G)相比,LNG则具有储存效率高,续驶里程长,储瓶压力低、重量轻、数量小,建站不受供气管网的限制等等诸多优点。 关键词:液化天然气,液化,运输,安全,发展,应用

1液化天然气的制取与输送 LNG是液化天然气的简称,常压下将天然气冷冻到-162℃左右,可使其变为液体即液化天然气(LNG)。它是天然气经过净化(脱水、脱烃、脱酸性气体)后,采用节流,膨胀和外加冷源制冷的工艺使甲烷变成液体而形成的。LNG的体积约为其气态体积的l/620。天然气的液化技术包括天然气的预处理,天然气的液化及贮存,液化天然气的气化及其冷量的回收以及安全技术等容。LNG利用是一项投资巨大、上下游各环节联系十分紧密的链状系统工程,由天然气开采、天然气液化、LNG运输、LNG接收与气化、天然气外输管线、天然气最终用户等6个环节组成。由于天然气液化后,体积缩小620倍,因此便于经济可靠的运输。用LNG船代替深海和地下长距离管道,可节省大量风险性管道投资,降低运输成本。从输气经济性推算,陆上管道气在3000km左右运距最为经济,超过3500km后,船运液化天然气就占了优势,具有比管道气更好的经济性。LNG对调剂世界天然气供应起着巨大的作用,可以解决一个国家能源的短缺,使没有气源的国家和气源衰竭的国家供气得到保证,对有气源的国家则可以起到调峰及补充的作用,不仅使天然气来源多元化,而且有很大的经济价值。 LNG作为城市气化调峰之用比用地下储气库有许多优点。例如:它选址不受地理位置、地质结构、距离远近、容量大小等限制,而且占地少、造价低、工期短、维修方便。在没有气田、盐穴水层的城市,难以建地下储气库,而需要设置LNG调峰。这项技术在国外已比较成熟,如美国、英国和加拿大的部分地区采用LNG调峰。我国也正在引进这项技术。液化天然气蕴藏着大量的低温能量,在1个大气压下,到常温气态大约可放出879KJ/kg的能量,利用其冷能可以进行冷能发电、空气分离、超低温冷库、制造干冰、冷冻食品等。由于LNG工厂在预处理时已脱除了气体的杂质,因此LNG作为燃料燃烧时所排放的烟气中S02及NOx含量很少。因此被称为清洁能源,广泛用于发电、城市民用燃气及工业燃气,减少了大气污染,有利于经济与环境的协调发展。

简析天然气产业链及企业

简析天然气产业链及企 业 Document number:PBGCG-0857-BTDO-0089-PTT1998

2017 受益于经济发展、城市化推进和环保政策趋严等因素,我国天然气消费量得到了较快的增长。能源安全角度出发,本土非常规气尚处于起步阶段,页岩气和煤层气发展空间广阔。 我国天然气供应由本土常规气、本土非常规气、进口气三部分构成。本土常规气经过数十年开发后进入瓶颈期,产量后续增长潜力有限,本土非常规气尚处于起步阶段,体量偏小,因此大幅增加进口气成为支撑下游消费放量的关键,LNG接收站优先受益。 数据来源:Wind、中商产业研究院整理 注:2017年全年天然气销量和消费量增速依据国家能源局公布的2017年1月-10月外推得到;2020年天然气产量依据天然气发展十三五规划得到,2020年天然气消费依据能源发展十三五规划测算得到,即2020年我国能源消费总量要低于50亿吨标煤,如果假设2020年能源实际消费量约为49亿吨,叠加天然气消费占比达到10%的规划目标,按照标煤与天然气之间的折算系数为吨标煤/万方天然气,则可测算出2020年天然气消费总量约为3684亿方。 天然气产业链一览 天然气产业链是指以天然气及其副产品的产出、输送或投入作纽带所形成的上下关联衔接的产业集合。根据盈利模式和主要产出的不同,天然气产业链可作如下划分:上游勘探生产:主要指天然气的勘探开发,相关资源集中于中石油、中石化和中海油。此外,还包括LNG海外进口部分。

中游运输:包括通过长输管网、省级运输管道、LNG运输船和运输车等。我国的天然气中游也呈现垄断性,中石油、中石化和中海油居于主导地位。 下游分销:常规的燃气分销公司主要涵盖三块业务:燃气接驳、燃气运营和燃气设备代销。城镇化率、燃气覆盖人口、煤改气等环保政策落地进度是促进上述三块业务发展的核心。 资料来源:中商产业研究院 相关企业 中石油 中国石油天然气集团公司(简称“中国石油”)是国有重要骨干企业,是以油气业务、工程技术服务、石油工程建设、石油装备制造、金融服务、新能源开发等为主营业务的综合性国际能源公司,是中国主要的油气生产商和供应商之一。最新消息显示:2017年6月30日,中国石油天然气集团公司荣获中国商标金奖的商标创新奖。2017年7月12日,中国石油天然气集团公司获国资委2016年度经营业绩考核A级。 中石化 中国石油化工集团公司是1998年7月国家在原中国石油化工总公司基础上重组成立的特大型石油石化企业集团,是国家独资设立的国有公司、国家授权投资的机构和国家控股公司。公司注册资本2316亿元,董事长为法定代表人,总部设在北京。 公司对其全资企业、控股企业、参股企业的有关国有资产行使资产受益、重大决策和选择管理者等出资人的权力,对国有资产依法进行经营、管理和监督,并相应承担保值增值责任。中国石油化工股份有限公司先后于2000年10月和

液化石油气运输安全管理制度

液化石油气运输安全管理制度 一、液化气槽车运输管理 1、液化石油气的汽车运输应配固定的驾驶员和押运员,驾驶员和押运员必须经专业部门培 训,考试合格持证上岗,驾驶员和押运员必须熟悉下述安全技术知识: (1)应执行国家颁发的《液化石油气槽车安全管理规定》及市《关于化学危险物品安全运输的规定》。 (2)液化石油气的物理化学性质。 (3)槽车及盛装液化石油气容器的技术技能,装卸作业安全操作规程,防火灭火知识,以及发生事故的吃力办法。 (4)城市和公路运输安全知识。 (5)能熟练使用车上的灭火器材和紧急切断装置。 2、驾驶员在行驶时除必须遵守交通规则,听从交通管理人员的指挥外,还应遵守下列规定:(1)槽车应持有由市劳动局颁发的《槽车使用证》,并应安全设施齐全,印有色带和严禁烟火标志及具有良好静电导除装置(排气管上有火星熄灭装置)。 (2)按当地公安、交通管理部门规定的时间、地点、路线和车速行驶。 (3)车上应有押运人员。 (4)不准拖挂其他车辆,不得携带其他易燃、易爆等危险物品,禁止其他人员搭乘。(5)车上严禁吸烟。 (6)通过涵洞、立交桥时,必须注意标高,并减速行驶。 (7)当罐内液化气温度达40°C时,应采取防止继续升温升压措施,把槽车开到阴凉处或喷水降温。 3、槽车的停放必须遵守下列要求: (1)槽车应停放在指定的专用停车场和车库内,重车只能停在停车场,不准停放在车库。(2)不准将槽车停放在机关、学校、厂矿、桥梁、仓库、车站、码头和人员稠密的公共场所及有明火地方。 (3)雷雨时,槽车运输不准装卸,不准停放在大树下。 (4)途中确需停放时,驾驶员和押运员不得同时远离槽车,必须留有一人监护,车辆停靠应注意行人,不要靠近或停留,以防发生意外事故。 (5)停放位置应通风良好,十米以内不得有明火和建筑物,夏季应有遮阳措施,防止暴晒。 (6)途中发生故障检修时,应采用不产生火花的工具,不准明火作业。 (7)途中停放超过六小时,应与当地公安部门联系,并按指定地点停放。 (8)重车不得随意停放过夜,若确需停放过夜,须向主管领导汇报,并在公安部门指定地点存放,同时派人看管。 4、运输途中发生液化石油气泄漏时的处置措施: (1)关阀堵漏,切断气源。如阀门失灵,要采取倒罐、降压或用木塞、橡皮软圈紧固等措施,以防止继续泄漏。 (2)熄灭火源,防止爆炸。发现泄漏时不准启动车辆,迅速熄灭下风方向和周围的一切火源,设立警戒区,断绝交通,防止其他机动车辆及带火种人员盲目进入泄漏区。(3)立即向当地公安消防部门及本单位领导汇报,同时设置警戒线,采取防火灭火措施,并组织泄漏区人员向逆风方向疏散。 5、运输途中因液化气大量泄漏而起火时的处置措施:

液化天然气产业链安全技术研究(2020年)

( 安全论文 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 液化天然气产业链安全技术研 究(2020年) Safety is inseparable from production and efficiency. Only when safety is good can we ensure better production. Pay attention to safety at all times.

液化天然气产业链安全技术研究(2020年) 摘要:针对液化天然气易燃、易爆、低温等特性以及产业链长的特征,介绍了产业链各环节、各类用户的安全技术特点与要求,论述了LNG泄漏引发的安全风险及防范措施,提出了实施全面安全管理的建议。 关键词:液化天然气;泄漏;安全技术;全面安全管理;产业链 1概述 “甲烷先锋号”装载2000t 世界上最早使用LNG的时间是1959年, 的LNG从美国的路易斯安那州出发穿过大西洋运抵英国泰晤士的Canvery岛。在我国,2000年2月,第一座天然气液化工厂在上海建成投产,标志着我国大规模利用LNG开始。第一座大型LNG接收站(在深圳大鹏湾)建成投产于2006年6月,进口澳大利亚LNG,供

应广东部分城市燃气和电厂。 经过近几年的快速发展,中国LNG已形成一个极具发展潜力的新型产业,国产LNG与进口资源有机结合,互为补充,平衡发展。2009年,我国LNG的使用量已达到800×104 t/a以上,预计未来5年,国产LNG产能将达到350×104 t/a,进口LNG接收站规模可望突破5000×104 t/a。 作为一个发展历史较短、技术含量较高的新领域,LNG产业安全技术具有许多独特之处,从生产到利用历经多个环节,产业链长且密切联系、相互依存,气相-液相-气相多次转换,易燃易爆,低温,使其安全管理问题错综复杂。因此,深入研究LNG产业链各环节的安全保障技术,对于促进行业稳妥发展有着十分重要的意义。 2LNG产业链 LNG的主要组分是甲烷(CH4 ),气相体积分数一般在85%以上,还含有一定量的乙烷、丙烷及微量的氮气等组分。

液化天然气工厂的安全管理(通用版)

液化天然气工厂的安全管理 (通用版) Safety management is an important part of enterprise production management. The object is the state management and control of all people, objects and environments in production. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0332

液化天然气工厂的安全管理(通用版) 一、LNG液化工厂的潜在危险性 1、LNG的定义及其特性 LNG的定义:天然气在常压下,当冷却至约-162℃时,则由气态变成液态,称为液化天然气(英文LiquefiedNaturalGas,简称LNG)。液化天然气的体积约为同量气态天然气体积的1/600,大大方便存储和运输。 基本特性有:主要成份为甲烷,还有少量的乙烷、丙烷以及氮等其他成份组成。沸点为-162.5℃,熔点为-182℃,着火点为650℃。爆炸范围:上限为15%,下限为5%。 2、LNG潜在的危险性 LNG虽是在低温状态下储存、气化,但和管输天然气一样,均为

常温气态应用,这就决定了LNG潜在的危险性: (1)低温的危险性:由于LNG泄漏时的温度很低,其周围大气中的水蒸气被冷凝成“雾团”,LNG的低温危险性能使相关设备脆性断裂和遇冷收缩,从而损坏设备和低温灼伤操作者。 (2)BOG的危险性:外界传入的能量能引起LNG的蒸发,这就是BOG(蒸发气体)。故要求LNG储罐有一个极低的日蒸发率,要求储罐本身设有合理的安全系统放空。否则,BOG将大大增加,严重者使罐内温度、压力上升过快,直至储罐破裂。 (3)火灾的危险性:天然气在空气中百分含量在5%-15%(体积%),遇明火可产生爆燃。因此,必须防止可燃物、点火源、氧化剂(空气)这三个因素同时存在。 (4)翻滚的危险性:储罐内的LNG长期静止将形成两上稳定的液相层,下层密度大于上层密度。当外界热量传入罐内时,两个液相层睚发传质和传热并相互混合,液层表面也开始蒸发,下层由于吸收了上层的热量,而处于“过热”状态。当二液相层密度接近时,可在短时间内产生大量气体,使罐内压力急剧上升,这主是翻滚现

中国LNG产业链核心技术发展方向

全球LNG产业发展历史悠久,天然气液化、LNG接收气化技术发展与设施建设为国际LNG贸易和LNG大规模应用奠定了基础。目前世界上LNG共有20个出口国家,42个进口国家,LNG贸易量同比增长8.3%,达到3.14亿t。传统的LNG生产国如卡塔尔、澳大利亚等与新兴的俄罗斯、美国等LNG供应量增长潜力巨大,中国、日本、韩国以及欧洲部分国家是目前主要的LNG进口国。 在全球能源结构升级和环保治理等政策驱动影响下,我国天然气消费高速增长,2018年国内天然气表观消费总量达2803亿m3,其中进口LNG5378万t,占天然气供应总量的26%;2019年国内天然气表观消费量达3067亿m3,其中进口LNG6025万t,占天然气供应总量的27%。进口LNG已经成为我国天然气供应的重要来源之一,为我国快速增长的天然气消费提供了支持和保障。从远期国内市场供需平衡来看,国际LNG资源供应充裕,贸易灵活性提高,我国LNG进口规模仍将大幅增长。 自2006年中国海洋石油集团有限公司(以下简称“中国海油”)在深圳大鹏的第1个LNG接收站建成投产起,我国LNG产业经过10余年的快速发展,已经形成了完整的产业链。目前,国内已建成22座LNG沿海接收站(含LNG储备库),年接收能力已超9000万t。伴随着国内LNG产业的发展,LNG技术得到同步孕育发展和创新突破。目前,我国已建立了从上游天然气产出、分离液化,中游运输、接收及储存,到下游的天然气利用的完整产业链核心技术体系,部分核心自主技术和核心装备制造能力已达到国际领先水平。

本文聚焦LNG产业链上、中、下游关键环节,对天然气液化技术、LNG接收站技术、LNG储运技术、LNG终端利用技术和LNG关键设备的国产化以及LNG产业标准化等发展现状进行了阐述,对其未来发展趋势进行了展望,并提出了相关技术发展建议。 1中国LNG产业链核心技术发展现状 LNG产业链上游主要包括气田产出天然气、天然气的净化分离及液化等;中游包括运输船舶、终端站(储罐和再气化设施)和供气主干管网等;下游,即最终市场用户,如联合循环电站、城市燃气公司、工业和城市居民用户、工业园区和建筑物冷热电多联供的分布式能源站等。本节以LNG产业链关键环节为例,介绍国内LNG核心技术发展现状。 1.1天然气液化与FLNG技术 1.1.1天然气液化技术 我国天然气液化技术发展相对较晚,早期的技术研发主要集中在上海交通大学、哈尔滨工业大学、中国科学院等高校或研究院,后续深冷行业单位和石油企业陆续引进液化技术,建造天然气液化装置,并逐渐开始探索大中型天然气液化技术及装备的研发。2001年11月建成投产的我国首套工业化的天然气液

关于大力发展中国液化天然气

关于大力发展中国液化天然气(LNG)产业战略价值的思考 1 LNG调整中国能源结构战略意义 随着人类的进步,来自地球深处的天然气将成为环保能源重要发展方向,从洁净能源来讲,2l世纪将是天然气时代。由于天然气资源分布的非均匀性,以及中国经济高速发展孕育的强大能源需求,特别是能源紧缺的沿海发达地区对环保的高质量追求,中国的液化天然气(LNG)产业将充分发挥其长距离、非管输的特点,近几年将会获得高速、不可阻挡的跨越式发展,继而演变成为中国不可或缺的重要能源支柱。 目前世界上的巨型大气田资源还没有得到充分的利用,LNG仍处于买方市场,这就为中国抓住机会尽快实现从煤炭为主的能源时代向以石油天然气为主的能源时代过渡创造了有利条件。借助中国巨大的天然气市场需求优势,还可以实现“以市场换资源”的方式去分享世界天然气资源,通过投资参股上游天然气资源开发,不仅可以保证中国LNG长期、足量供应,还可以获得上游天然气田开采的丰厚利润,这对中国的国家能源战略将起到重要推动作用。 LNG远洋运输的安全性、价格波动的相对稳定性及其环保价值针对原油和成品油的进口将能发挥更独特的天然优势,天然气广泛应用于天然气发电、城市居民用气、工业燃料、天然气空调、LNG汽车等领域,可以大范围地替代煤炭、燃料油、液化石油气、少部分成品油,使中国的能源结构得以实现战略性调整。因此,LNG之对于中国完全可以作为重点发展的产业予以支持和推动。

2 LNG 对中国境内天然气资源的战略调峰价 经过多年的勘探开发,中国石油、中国石化、中国海油虽然在新疆、陕西、四川、重庆、河南、中国近海等地区找到了一些天然气资源,并通过“西气东输”、“川气东输”、“陕气进京”、“中原气辐射”、“海气上岸”等管道进入终端销售市场。随着用气量的逐步提高、峰谷用量差距的加大以及长输管道的安全性,特别是用气量较大的浙江、上海、江苏、山东、北京、天津、河北等沿海省市,都需要第二气源进行战略调峰和用气安全保证。 中国沿海多点的LNG接收站借助其站址与市场匹配的灵活性、规模的人为可调性和世界资源的多样性,LNG完全可以起到对陆上天然气资源的战略调峰作用,LNG产业的发展将大大缓解陆上天然气资源匹配市场的不可控因素,从而在全国范围内实现天然气的安全与稳定供应。 LNG接受站除了可以作为基本气源供应外,其战略调峰功能应给予特别政策支持,以体现调峰的市场价值。 3 LNG实现中国能源的战略储备保证价值 中国经济的高速发展对能源的战略储备要求越来越迫切,石油的战略储备只是国家能源战略储备主要内容,但不是全部内容。把天然气的战略储备也应纳入到国家能源战略储备议事日程当中来,特别是在天然气供大于求的国际市场大背景下,更要倍加关注。 中国陆上或海上发现的天然气田,不少仍处于建设期,对天然气地质储量的认识还处于三类探明阶段,对构造、断层、储层变化

液化天然气LNG储运罐车泄漏应急处置技术与方法

液化天然气(LNG)储运罐车泄漏应急处置技术与方法 2015-06-18天然气汽车产业资讯天然气汽车产业资讯1、LNG储运罐车的结构 特征以及事故特点 LNG是液化天然气的简称,LNG的主要成分是甲烷,它是天然气经过净化(脱水、脱烃、脱酸性气体)后,采用节流、膨胀和外加冷源制冷的工艺使甲烷变成液体 而形成的。由于LNG的体积约为其气态体积的1/600,LNG的重量又仅为同体积水的45%左右,所以LNG一旦发生大量泄漏就能迅速与空气混合达到爆炸极限。LNG储运罐车液罐目前均为真空粉末绝热卧式夹套容器,双层结构,由内胆和外壳套合而成。内外罐连接采用玻璃钢支座螺栓紧固连接,后支座为固定连接,前支座为滑动连接,以补偿温度变化引起罐体伸缩。夹套内填装膨胀珍珠岩并抽真空,加排管、排气管等由内容器引出,经真空夹套引至外壳后底与管路操作系统相连接,液罐通过U形副梁固定在汽车底盘上。 LNG运输罐车常见事故类型可分为翻车、碰撞,剐擦、追尾等4类。其中,翻车、碰撞和追尾事故在所有类型道路的储运罐车事故中均占较高比例,通常对罐体及其尾部阀门会直接造成严重破坏,致使泄漏概率最高。由于储运罐车的结构与制作材料特殊,特别是其外层保护壳体与环梁大多由具有很高抗压强度的碳钢材料构成,一般情况下,外壳体的破损、断裂情况事故很少。目前,各种信息显示国内外还没有此类情况发生,绝大部分事故均为罐体外壳的各种气相管与装置管道、安全装置与连接处的断裂与泄漏。 2、LNG储运罐车泄漏后果分析 2. 1气化超压爆炸 当外来的热量传入储运罐车时会导致LNG温度上升气化,使罐内压力升高,瞬 间产生大量气体,当罐内压力上升速度超过泄压装置的排泄速度后,罐体将可能产生物理性爆炸。 2. 2 LNG冷爆炸 在LNG泄漏遇到水的情况下,LN G会从水中迅速吸收热量,因为水与LNG之间有非常高的热传递速率,导致气体瞬间膨胀,LNG将激烈地沸腾并伴随大的响声、喷出水雾,导致LNG冷爆炸。 火灾2. 3 LNG. LNG与空气或氧气混合后,能形成爆炸性混合气体,与火源发生预混(动力)燃烧。 2. 4对人的低温冻伤 由于LNG的温度为-162℃,是深冷液体,皮肤直接与低温物体表面接触,皮肤

简析我国天然气产业链和企业

WORD 格式可编辑2017

受益于经济发展、城市化推进和环保政策趋严等因素,我国天然气消费量得到了较快的增长。能源安全角度出发,本土非常规气尚处于起步阶段,页岩气和煤层气发展空间广阔。 我国天然气供应由本土常规气、本土非常规气、进口气三部分构成。本土常规气经过数十年开发后进入瓶颈期,产量后续增长潜力有限,本土非常规气尚处于起步阶段,体量偏小,因此大幅增加进口气成为支撑下游消费放量的关键,LNG 接收站优先受益。 数据来源:Wind、中商产业研究院整理 注:2017年全年天然气销量和消费量增速依据国家能源局公布的2017年1月-10月外推得到;2020年天然气产量依据天然气发展十三五规划得到,2020年天然气消费依据能源发展十三五规划测算得到,即2020年我国能源消费总量要低于50亿吨标煤,如果假设2020年能源实际消费量约为49亿吨,叠加天然气消费占比达到10%的规划目标,按照标煤与天然气之间的折算系数为13.3吨标煤/万方天然气,则可测算出2020年天然气消费总量约为3684亿方。

天然气产业链一览 天然气产业链是指以天然气及其副产品的产出、输送或投入作纽带所形成的上下关联衔接的产业集合。根据盈利模式和主要产出的不同,天然气产业链可作如下划分:上游勘探生产:主要指天然气的勘探开发,相关资源集中于中石油、中石化和中海油。此外,还包括LNG海外进口部分。 中游运输:包括通过长输管网、省级运输管道、LNG运输船和运输车等。我国的天然气中游也呈现垄断性,中石油、中石化和中海油居于主导地位。 下游分销:常规的燃气分销公司主要涵盖三块业务:燃气接驳、燃气运营和燃气设备代销。城镇化率、燃气覆盖人口、煤改气等环保政策落地进度是促进上述三块业务发展的核心。 资料来源:中商产业研究院 相关企业

2019年中国液化天然气(LNG)液化石油气(LPG)发展现状分析

2019年中国液化天然气(LNG)液化石油气(LPG)发展现状分析 2019年1-11月份,全国能源工业投资增长态势良好。1-11月份,石油和天然气开采业固定资产投资(不含农户)3384亿元,同比增长31.6%。 一、液化天然气(LNG)行业发展现状 液化天然气(简称LNG)是通过制冷的方式,在常压下将气态的天然气温度降至-162℃而得到的液体它是一种运输方便清洁高效的能源,(液态热值为2.16×1010J/m3,气态天然气的热值为3.6×107J/m3)一方LNG可转化为600方的气态天然气,故天然气液化后可以大大节约储存空间并且在同等条件下运输更方便更安全很多发达国家都在大力发展LNG产业如美国韩国日本等我国正在实现从以煤炭消费为主向以油气消费为主的过度,LNG在国家资源战略中的地位日益明显。 LNG主要成分为甲烷,含有少量的C2C3以及N2等其他组分爆炸下限高,约为5%。由于液化天然气的主要成分是甲烷,燃烧后的产品是二氧化碳和水,因此液化天然气是一种高质量的燃料,一立方液化天然气可以供应1000个家庭一天的生活天然气需求。目前,液化天然气主要用于城市管网供气高峰负荷和城区燃气、车辆燃料的供气。 根据国家统计局数据显示,2019年我国液化天然气产量为1165万吨,同比增长29.4%。 从省市区看,陕西、内蒙古、四川、山西、新疆是国内液化天然气主产省区,2019年上述五地液化天然气产量均超过100万吨,产量分别为262.1、 256.1、

136.6、116.8、114.5万吨。从区域看,西北、华北、西南是国内液化天然气主产地区,2019年合计产量占全国比重89.54%。 2019年,中国共进口液化天然气6048万吨。中国目前是世界上最大的天然气进口国,加上其管道能力。2019年中国新增2个沿海LNG接收站,现有22个沿海LNG接收站,年接收能力为9035万吨。全年与中国港口相连的液化天然气船舶数量为1329艘,船舶来自世界29个国家。 截至2019年12月底,中国沿海液化天然气接收站有22个。总接收能力为9035万吨/年。其中,华南地区11个,华东地区6个,华北区5个。2019年LNG进口接收站,按接收量排名排列:南港、大鹏、青岛、鲁东和宁波列TOP5,前5个接收站LNG进口量超过全国进口量的50%。 二、液化石油气(LPG)行业发展现状 与天然气一样,液化石油气(LPG)也是一种清洁能源,易于运输、气化和应用设备成熟。它既适合使用独立、分散的个人或群体,又适用于集中供应,包括瓶装供应和管道供应,技术已完全成熟和产业化。此外,贸易、运输系统完善,产品安全性能、使用效果也完全被用户所接受。 根据国家统计局数据显示,2019年我国液化石油气产量4135.7万吨,同比增长8.8%。 从省市区看,山东、广东、辽宁、江苏是国内液化石油气主产省区,2019年上述四地液化石油气产量均超过200万吨,产量分别为1407.2、 461.5、337.5、214.6万吨。从区域看,华东、华南、东北是国内液化石油气主产地区,2019年合计产量占全国比重80.45%。

液化天然气的危险性与安全 防护

液化天然气的危险性与安全防护LNG(液化天然气)是将天然气净化深冷液化而成的体,它是一种清洁、优质燃料。LNG的体积约为其气态体积的1/600,故液化了的天然气更有利于远距离运输、储存,使天然气的应用方式更灵活、范围更广。 LNG从6O年代开始商业化至今已有3O多年的历史,随着天然气液化技术不断进步,液化成本比2O年前降低了5O ,大大增加了LNG与其他能源的竞争力,LNG成为了当今世界能源供应增长速度最快的领域。国内LNG产业起步于上世纪9O年代末,先后有上海LNG调峰站、中原油田LNG 工厂投产一批与中原LNG相配套的LNG应用工程也相继投入运行。而一批规模更大的LNG工厂和广东、福建青岛等进口LNG接受终端也正在紧锣密鼓地筹建中。新疆广汇150X 10 m。/d的LNG工厂在2004年即将投产。可以预见,未来数年内,LNG将广泛应用于工业和民用的各个领域。1.LNG的基本特性 (1)组成 LNG主要成分为甲烷,另外还含有少量的乙烷、丙烷、N 及其他天然气中通常含有的物质。不同工厂生产的LNG具有不同的组分,主要取决于生产工艺和气源组分,按照欧洲标准EN1160的规定,LNG的甲烷含量应高于75 ,氮含量应低于5 。尽管LNG的主要组成是甲烷,但不能认为LN等同于纯甲烷,对它的特性的分析和判断,在工程实践中大都要用气体处理软件(工艺包)进行计算,以得出符合实际的结果。常用的计算软件有HYSIM 和PROCESS11等。 (2)LNG的特性 密度:LNG的密度取决于其组分,通常为43O~470 kg/m。,甲烷含量越高,密度越小;密度还是液体温度的函数,温度越高,密度越小,变化的梯度为1.35 kg/m。·℃ 。LNG的密度可直接测量,但一般都通过气体色谱仪分析的组分结果计算出密度,该方法可参见ISO 6578。温度:LNG的沸腾温度也取决于其组分,在大气压力下通常为?166 157℃ ,在一般资料上介绍的162.15℃是指纯甲烷的沸腾温度。沸腾温度随蒸气压力的变化梯度为1.25 X 10 ℃/Pa,LNG的温度常用铜/铜镍热电偶或铂电阻温度计进行测量。LNG的蒸发:LNG贮存在绝热储罐中,任何热量渗漏到罐中,都会导致一定量的液体气化为气体,这种气体就叫做蒸发气。蒸发气的组成取决于液体的组成,一般地,LNG 蒸发气含有2O 的N ,8O的甲烷及微量的乙烷,蒸发气中N 的含量可达

中国液化天然气产业链

液化天然气是气田开采出来的天然气,经过脱水、脱酸性气体和重烃类,然后压缩、膨胀、液化而成的低温液体。LNG是天然气的一种独特的储存和运输形式,它有利于天然气的远距离运输有利于边远天然气的回收、降低天然气的储存成本、有利于天然气应用中的调峰。同时,由于天然气在液化前进行了净化处理,所以它比管道输送的天然气更为洁净。液化天然气工业链是非常庞大的,主要包括天然气液化、储存、运输、接收终端、气化站等,见图l。 图 1 液化天然气工业链 Fig.1 LNG Industry Chain 近十年来,中国的液化天然气(LNG)产业已起步,在液化天然气链的每一环节上都有所发展。下面分别介绍我国在LNG工业链各环节:即LNG工厂、LNG接收终端、LNG运输、LNG气化站等方面的现状和进展。 1液化天然气工业链 1.1液化天然气工厂 我国从20世纪80年代末开始就进行液化天然气装置的实践。下面介绍的小型液化天然气装置的研制与开发,为我国探索天然气液化技术提供了宝贵的经验。 1.1.1中科院低温中心等单位研制的天然气液化装置 中科院低温中心与四川省绵阳燃气集团总公司、中国石油天然气总公司勘探局、吉林油田管理局等单位联合研制了两台天然气液化设备,一台容量为0.3m3/hLNG,采用了天然气自身压力膨胀制冷循环。另一台容量为0.5m3/h LNG,采用了氮气膨胀闭式制冷循环。 图 2天然气膨胀液化装置流程示意图

Fig.2 Natural Gas Expand-liquefied Flow Chart 1.1.2中原天然气液化工厂 2001年,我国第一座小型生产性质的天然气液化装置在中原油田试运行成功,这标志着我国在生产液化天然气方面迈开了关键的一步。其生产的LNG通过槽车运输的方式供应给山东、江苏等省的一些城市。中原油田有较丰富的天然气储量,天然气远景储量为2800×10sm3,现已探明地质储量为947.57×10m3/d.这些天然气能为液化装置提供较长期稳定的气源。该液化装置生产LNG的能力为15.0×104m3/d,原料气压力为12Mpa,温度为30~C,甲烷含量93.35%~95.83%。采用丙烷和乙烯为制冷剂的级联式循环,图3为液化流程示意图。 图 3中原天然气液化流程示意图 Fig.3 Natural Gas Liquefied Flow Chart(Zhongyuan Pl~t) 1.1.3上海LNG事故调峰站 建于上海的LNG事故调峰站是我国第一座调峰型天然气液化装置,该调峰站是东海天然气供应上海城市燃气工程下游部分中的一个重要组成部分。它主要用于东海天然气中上游工程因不可抗拒的因素(如台风等)停产、输气管线事故或冬季调峰时向管网提供可靠的天然气供应,确保安全供气。该LNG事故调峰站的流程由法国索菲燃气公司设计开发的整体结合式级联型液化流程(Integral Incorporated Cascade).简称为CII液化流程,见图4。

第五章—中国液化天然气(LNG)产业发展分析

第五章 2010年度 中国液化天然气(LNG)产业发展分析 第一节 中国液化天然气(国产)产业现状分析液化天然气(Liquefied Natural Gas,简称LNG)是天然气的一种形式。其一般生产工艺过程是将气田开采出来的天然气,经过脱水、脱酸性气体、脱其余杂质处理后,采用制冷工艺,深冷至-162℃变为液体。 目前,世界上LNG应用技术已经成为一门新兴技术正在迅猛发展。中国液化天然气工业起步比较晚,但近10多年,在LNG链上的每一环节都有所发展,尤其是近几年在某些环节上进展较大。如广东大鹏、福建和上海LNG接收站已经投产,另有十几个LNG项目正在设计和规划中,小型液化厂和卫星气化站也得到了蓬勃发展。 我国从20世纪80年代末开始进行小型LNG装置的实践,第一台实现商业化的液化装置是于2001年建成的中原油田天然气液化装置,第一台事故调峰型液化装置是于2000年建成的上海浦东天然气液化装置。在引进液化技术的同时,国内有关企业也开始注重自己开发天然气液化技术,并已基本掌握了小型天然气液化技术。 一、LNG在中国的主要应用领域 在生态环境污染日益严重的形势面前,为了优化能源消费结构,改善大气环境,实现可持续发展的经济发展战略,人们选择了天然气这种清洁、高效的生态型优质能源和燃料。现在,无论是工业还是民用,都对天然气产生了越来越大的依赖性。液化天然气是天然气的液态形式,在某些情况下,选择液化天然气比选择气态天然气具有更多的优点。LNG的应用实际上就是天然气的应用,但由于其特性,LNG又比天然气有着更广泛的用途。 (一)工业用LNG 1、发电 LNG使用高效且经济,在发电中,天然气的热能利用率可达55%,高于燃油和煤,尤其是

LNG产业链

LNG产业链 整个LNG产业链大致可以分为三段,每段都包括几个环节。第一段:LNG产业链的上游,包括勘探、开发、净化、分离、液化等几个环节。第二段:中游,包括装卸船运输,终端站(包括储罐和再气化设施)和供气主干管网的建设。第三段:下游,即最终市场用户,包括联合循环电站,城市燃气公司,工业炉用户,工业园区和建筑物冷热电多联供的分布式能源站,天然气作为汽车燃料的加气站用户,以及作为化工原料的用户等等。这些用户,大部分是通过干线管网供气的,也可以是通过LNG冷储罐箱运输-再气化供气的。 液化天然气工业链是非常庞大的,主要包括天然气液化、储存、运输、接收终端、气化站等。 液化天然气是气田开采出来的天然气,经过脱水、脱酸性气体和重烃类,然后压缩、膨胀、液化而成的低温液体。近十年来,中国的液化天然气(LNG)产业已起步,在液化天然气链的每一环节上都有所发展。我国在LNG工业链各环节:即LNG工厂、LNG接收终端、LNG运输、LNG气化站等方面的现状和进展。 优点: LNG具有燃烧清洁的特性,其燃烧排放的二氧化碳比石油少25%,有利于环境保护。其最大的优点是体积只有等量气态天然气的1/610,因此可弥补天然气在运输和储存方面所固有的缺陷,无论是用大型船只跨洋运输还是通过装载储罐的卡车运输都

很适合。特别是在冬季用气高峰期,可以将事先储存备用的LNG 用于调峰,使用起来非常灵活。 LNG是一种清洁、高效的能源。由于进口LNG有助于能源消费国实现能源供应多元化、保障能源安全,而出口LNG有助于天然气生产国有效开发天然气资源、增加外汇收入、促进国民经济发展,因而LNG贸易正成为全球能源市场的新热点。 LNG是天然气的一种独特的储存和运输形式,它有利于天然气的远距离运输有利于边远天然气的回收、降低天然气的储存成本、有利于天然气应用中的调峰。同时,由于天然气在液化前进行了净化处理,所以它比管道输送的天然气更为洁净。 随着国际石油价格暴涨,能源和电力成本大幅度增加,液化天然气(LNG)冷能利用开始进入人们的视线。对人均能源资源只有世界一半的中国而言,LNG冷能利用更显得必要。 每吨LNG的气化过程,相当于释放了830兆至860兆焦耳的冷能,同样的制冷方式需要850千瓦时电能,如果将冷能用于其他项目,每吨LNG可节电500至700千瓦时。 引进LNG将对优化中国的能源结构,有效解决能源供应安全、生态环境保护的双重问题,实现经济和社会的可持续发展发挥重要作用。 缺点 LNG生产成本相对较高,造成最后到用户的气价增加,保存也是个问题,气态液化后是超低温状态,通过蒸发气化进入发

中国LNG应用现状及前景3-9全解

一、慨述 近年来,随着世界天然气产业的迅猛发展,液化天然气(LNG)已成为国际天然气贸易的重要部分。与十年前相比,世界LNG贸易量增长了一倍,出现强劲的增长势头。 据国际能源机构预测,2010年国际市场上LNG的贸易量将占到天然气总贸易量的30%,到2020年将达到天然气贸易量的40%,占天然气消费量的15%。至2020年全球天然气消费量将继续以年2%~3%的增长率增长,而LNG在天然气贸易市场中所占份额也将逐步增大,达到8%的年增长率。LNG在国际天然气贸易中发展势头如此强劲,地位越来越重要,这都得益于世界LN6应用技术的发展。世界上普遍认为:液化天然气工业是当代天然气工业的一场革命,其发展已经历了六十多年的历史,形成了从液化,储存,运输,汽化到终端利用的一整套完整的工艺技术和装备。 LNG是天然气的一种储存和运输形式,其广泛使用有利于边远天然气的回收和储存,有利于天然气远距离运输,有利于天然气使用中的调峰和开拓市场,以及扩展天然气的利用形式。 我国早在六十年代,国家科委就制订了LNG发展规划,六十年代中期完成了工业性试验。四川石油管理局威远化工厂拥有国内最早的天然气深冷分离及液化的工业生产装置,除生产He外,还生产LNG。进入九十年代,我国进一步开始了液化天然气技术的实践,中科院低温中心联合有关企业,分别在四川和吉林研究建成了两台液化天然气装置,一台容量为每小时生产0.3方LNG,采用自身压力膨胀制冷循环,一台容量为每小时生产O.5方LNG,采用氮气膨胀闭式制冷循环。与国外情况不同的是,国内天然气液化的研究都是以小型液化工艺为目标。 随着我国天然气工业的发展,在液化天然气技术实践的基础上,通过引进国外技术,第一台事故调峰型天然气液化装置于2000年在上海浦东建成,第一台商业化的天然气液化装置于2001年在中原油田建成。这标志着,在引进国外天然气液化技术的基础上,国内天然气液化应用技术开始全面推开,随后在新疆,

关于液化天然气道路运输安全现状分析与对策研究

关于液化天然气道路运输安全现状分析与对策 研究 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

关于液化天然气道路运输安全现状分析与对策研究论文摘要:在目前液化天然气需求旺盛的情况下,液化天然气道路运输市场也越来越活跃液化天然气道路运输安全问题已经成为途经各地尤其是已发生过安全事故地区的热点问题因此,要从运输公司、运输从业人员、罐车生产厂家及危险货物运输管理部门等各方面提出安全措施及要求。 论文关键词:液化天然气;危险货物运输;罐车 0前言 随着我国能源结构的调整,特别是很多城市采用液化天然气作为城市燃气气源以来,液化天然气的消耗量逐年增加。为了满足当前我国对于液化天然气的需求,2005年初,河南中原油田建设了全国首家液化天然气工厂,国内其他省份也相继建设了一些液化天然气工厂,如新疆都善等,有力地促进了液化天然气道路运输的快速发展。 采用低温罐车方式储运液化天然气,可以发挥道路运输方式的灵活性,有效地补充当前供气网络不足的问题,利用远海、荒漠地区的天然气资源,扩大天然气的供应范围。由于液化天然气市场需求旺盛,液化天然气道路运输企业快速发展,如今已形成了几个较大规模的液化天然气道

路运输实体,各类运输车辆达到上千辆,运输业务遍及全国各地,最远的运距达到4000多公里。 危险货物运输关乎人民生命财产安全,一直是人们关注和研究的热点问题。液化天然气作为2.1类危险货物,尤其是陆续发生的一些运输安全事故,引起了人们的广泛关注。 1液化天然气特性及罐车安全性分析 液化天然气是将天然气净化、深冷液化而成的液体,主要由甲烷组成,它是一种清洁、优质的燃料。液化天然气的体积约为其气态体积的 1/600,有利于远距离的运输和储存.液体温度一般为-162℃-150℃,属于低温液体。液化天然气易发生火灾、爆炸事故或造成低温冻伤等危害,尤其具有易燃易爆的特性,如发生液化天然气泄漏,气化的天然气会与周围空气迅速混合,如果达到5%~16%的爆炸极限,四周又存在点火源,则可能造成十分严重的后果。 液化天然气道路运输载体为液化天然气罐车和罐式集装箱,两者的主体结构基本相同,罐式集装箱主要用于多式联运,方便罐体装卸。我国已有多家专业液化天然气运输罐车及罐式集装箱生产厂家,产品按照《压力容器安全技术监察规程》、《低温绝热压力容器》(GB18442-2001),《液化天然气罐式集装箱》(JB/T4780-2002)等要求生产和检验。罐体为

相关文档
相关文档 最新文档