文档库 最新最全的文档下载
当前位置:文档库 › 一元三次方程求根公式完整推导过程

一元三次方程求根公式完整推导过程

一元三次方程求根公式完整推导过程
一元三次方程求根公式完整推导过程

求实系数一元三次方程根的实用公式

求实系数一元三次方程根的实用公式 在数学书籍或数学手册中,对一元三次方程求根公式的叙述都是沿用“卡丹公式”,即:对于一元三次方程: 设, 则它的三个根的表达式如下: 其中, 我们先用该公式解一个一元三次方程:。 解: p=- 9,q=6,∴T=- 3,D=- 18, ?? ∴原方程的三个根为

这样求出的三个根的表达式有两个不妥之处: 其一、当时,方程有三个实根(下文给出证明),但这里的、 、表达式不明确。 其二、当时,以及(如此例中的)违背了现行中等数学的表示规范,也不能具体地求出其值。 因此,用“卡丹公式”解出的一元三次方程的根,往往是不实用、不直观、不严密的。 下面我们推导一个实用的改进型求根公式。 实系数一元三次方程可写为(1) 令,代入(1)得(2) 其中, 不失一般性,我们只要讨论实系数一元三次方程的求根公式即可。 不妨设p、q均不为零,令y=u+v(3) 代入(2)得,(4) 选择u、v,使得,即(5) 代入(4)得,(6)

将(5)式两边立方得,(7) 联立(6)、(7)两式,得关于的方程组: ,且 问题归结于上述方程组的求解。 即求关于t的一元二次方程的两根、, 设,,, 又记的一个立方根为,则另两个立方根为,, 其中,为1的两个立方虚根。 以下分三种情形讨论: 1)若,即D>0,则、均为实数, 可求得,, 取,, 在,组成的九个数中, 有且只有下面三组满足,

即、;、;、, 也就是满足, ∴方程(2)的根为,,,这是方程(2)有一个实根,两个共轭虚根,, 其表达式就是前面给出的“卡丹公式”的形式, 这里的根式及都是在实数意义下的。 2)若,即时, 可求得,取 同理,可求得 ∴方程(2)有三个实根,其中至少有两个相等的实根。3)若,即D<0时, ,∴p<0,, 则、均为虚数,求出、并用三角式表示, 就有,,

求根公式推导

21.2 一元二次方程的解法(3)主备人 王家珍 定位导入 学习目标 1.理解一元二次方程求根公式的推导过程,了解公式法的概念,理解用根的判别式判别根的情况; 2.会用公式法解一元二次方程. 3.经历探究一元二次方程求根公式的过程,初步了解从具体到抽象、从特殊到一般的认识规律. 学习重点: 求根公式的推导和公式法的应用. 中招地位和作用 本节课是在学习“直接开平方法”和“配方法”解一元二次方程的基础上,进一步学习一元二次方程的又一种解法,它是一种重要的解法,适合解所有的一元二次方程,是中考解决一些综合题目的基础. 自学探究 问题1.什么叫配方法?配方法的基本步骤是什么? (1)将方程二次项系数化成 1;(2)移项;(3)配方; (4)化为(x + n )= p (n ,p 是常数,p ≥0)的形式; (5)用直接开平方法求得方程的解. 问题2.我们知道,任意一个一元二次方程都可以转化为一般形式 ax 2 + bx + c = 0 (a ≠0) 你能用配方法得出它的解吗?请动手尝试一下. 精讲释疑 1.求根公式的推导: 对于任意一个一元二次方程ax 2 + bx + c = 0 (a ≠0)经过移项,二次项系数化为1,配方,利用直接开平法来解,可得如下: 2 2244)2(a ac b a b x -=+

2.根的判别式 当b 2 - 4ac >0时,方程有两个不相等的实根; 当b 2 - 4ac = 0时,方程有两个相等的实根; 当b 2 - 4ac <0时,方程没有实根. 3.公式法 一般地,一元二次方程 ax 2 + bx + c = 0(a ≠0)的根由方程的系数 a ,b , c 确定.将 a ,b ,c 代入式子就得到方程的根: 利用它解一元二次方程的方法叫做公式法 注解:(1)这个式子叫做一元二次方程的求根公式. (2)运用的前提是b 2-4ac ≥0. (3)由求根公式可知,一元二次方程最多有两个实数根. 4.用公式法解下列方程. (1)2x 2-x-1=0 (2)x 2+1.5=-3x (3)4x 2-3x+2=0 (4)(x-2)(3x-5)=0 分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可. 知识归纳 (1)本节课学了哪些内容? 22442a ac b a b x -±=+a ac b a b x 2422-±=+a ac b b a ac b a b x 2424222-±-=-±-=a ac b b x 242-±-=

一元三次方程求根公式的解法

一元三次方程求根公式的解法 一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax^3+bx^2+cx+d+0的标准型一元三次方程形式化为x^3+px+q=0的特殊型。 一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式。归纳出来的形如 x^3+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和。归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A和B。方法如下: (1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到 (2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3)) (3)由于x=A^(1/3)+B^(1/3),所以(2)可化为 x^3=(A+B)+3(AB)^(1/3)x,移项可得 (4)x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知 (5)-3(AB)^(1/3)=p,-(A+B)=q,化简得 (6)A+B=-q,AB=-(p/3)^3 (7)这样其实就将一元三次方程的求根公式化为了一元二次方程的求根公式问题,因为A 和B可以看作是一元二次方程的两个根,而(6)则是关于形如ay^2+by+c=0的一元二次方程两个根的韦达定理,即 (8)y1+y2=-(b/a),y1*y2=c/a (9)对比(6)和(8),可令A=y1,B=y2,q=b/a,-(p/3)^3=c/a (10)由于型为ay^2+by+c=0的一元二次方程求根公式为 y1=-(b+(b^2-4ac)^(1/2))/(2a) y2=-(b-(b^2-4ac)^(1/2))/(2a) 可化为 (11)y1=-(b/2a)-((b/2a)^2-(c/a))^(1/2) y2=-(b/2a)+((b/2a)^2-(c/a))^(1/2) 将(9)中的A=y1,B=y2,q=b/a,-(p/3)^3=c/a代入(11)可得 (12)A=-(q/2)-((q/2)^2+(p/3)^3)^(1/2) B=-(q/2)+((q/2)^2+(p/3)^3)^(1/2) (13)将A,B代入x=A^(1/3)+B^(1/3)得 (14)x=(-(q/2)-((q/2)^2+(p/3)^3)^(1/2))^(1/3)+(-(q/2)+((q/2)^2+(p/3)^3)^(1/2))^(1/3) 一、(14)只是一元三方程的一个实根解,按韦达定理一元三次方程应该有三个根,不过按韦达定理一元三次方程只要求出了其中一个根,另两个根就容易求出了。由于计算太复杂及这个问题历史上已经解决,我不愿花过多的力气在上面,我做这项工作只是想考验自己的智力,所以只要关键的问题解决了另两个根我就没有花力气去求解。 二、我也曾用类似的方法去求解过一元四次方程的解,具体就是假设一元四次方程的根的形式为x=A^(1/4)+B^(1/4)+C^(1/4),有一次我好象解出过,不过后来多次求解好象说明这种方法求解一元四次方程解不出。不过我认为如果能进一步归纳出A、B、C的形式,应该能求出一元四次方程的求根公式的。由于计算实在太复杂及这个问题古人已经解决了,我后来一直没能完成这项工作。 三、通过求解一元三次方程的求根公式,我获得了一个经验,用演绎法(就是直接推

三次方程的一般解法

一元三次方程的求根公式称为“卡尔丹诺公式” 一元三次方程的一般形式是 x3+sx2+tx+u=0 如果作一个横坐标平移y=x+s/3,那么我们就可以把方程的二次项消 去。所以我们只要考虑形如 x3=px+q 的三次方程。 假设方程的解x可以写成x=a-b的形式,这里a和b是待定的参数。 代入方程,我们就有 a3-3a2b+3ab2-b3=p(a-b)+q 整理得到 a3-b3 =(a-b)(p+3ab)+q 由二次方程理论可知,一定可以适当选取a和b,使得在x=a-b的同时, 3ab+p=0。这样上式就成为 a3-b3=q 两边各乘以27a3,就得到 27a6-27a3b3=27qa3 由p=-3ab可知 27a6 + p = 27qa3 这是一个关于a3的二次方程,所以可以解得a。进而可解出b和根x. 除了求根公式和因式分解外还可以用图象法解,中值定理。很多高次方程是无法求得精确解的,对于这类方程,可以使用二分法,切线法,求得任意精度的近似解。参见同济四版的高等数学。 一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax^3+bx^2+cx+d+0的标准型一元三次方程形式化为x^3+px+q=0的特殊型。 一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式。我归纳出来的形如x^3+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和。归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A和B。方法如下: (1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到 (2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3)) (3)由于x=A^(1/3)+B^(1/3),所以(2)可化为 x^3=(A+B)+3(AB)^(1/3)x,移项可得 (4)x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知(5)-3(AB)^(1/3)=p,-(A+B)=q,化简得 (6)A+B=-q,AB=-(p/3)^3

用求根公式法解一元二次方程教学设计说明

“用求根公式法解一元二次方程”教学设计 一、使用教材 新人教版义务教育课程标准实验教科书《数学》九年级上册 二、素质教育目标 (一)知识教学点 1、一元二次方程求根公式的推导 2、利用公式法解一元二次方程 (二)能力训练点 通过配方法解一元二次方程的过程,进一步加强推理技能训练,同时发展学生的逻辑思维能力。 (三)德育渗透点 向学生渗透由特殊到一般的唯物辩证法思想。 三、教学重点、难点、关键点 1、教学重点:一元二次方程的求根公式的推导过程 2、教学难点:灵活地运用公式法解一元二次方程 3、教学关键点: (1)掌握配方法的基本步骤 (2)确定求根公式中a 、b 、c 的值 四、学法引导 1、教学方法:指导探究发现法 2、学生学法:质疑探究发现法 五、教法设计 质疑—猜想—类比—探索—归纳—应用 六、教学流程 (一)创设情境,导入新课:

前面我们己学习了用配方法解一元二次方程,想不想再探索一种 比配方法更简单,更直接的方法? 大家一定想,那么这节课我们一同来 研究。 < 设计意图 > 数学是一种逻辑性较强的科目,并且有时计算量较 大,如果能简化计算,那是我们所期望的,逐步激发学生的学习欲望。 教师;下面我们先用配方法解下列一元二次方程 学生;(每组一题,每组派一名同学板演) 1.2x 2-4x-1=0 2. x 2+1.5=-3x 3.02 1 22=+-x x 4. 4x 2-3x+2=0 完成后小组进行交流,并进行反馈矫正。 学生:总结用配方法解一元二次方程的步骤 教师板书:(1)移项; (2)化二次项系数为1; (3)方程两边都加上一次项系数的一半的平方; (4)原方程变形为(x+m )2=n 的形式; (5)如果右边是非负数,就可以直接开平方求出方程 的解,如果右边是负数,则一元二次方程无解. 教师:通过以上四个方程的求解,你能试着猜想一下上述问题的求 解的一般规律吗? 学生:独立思考 < 设计意图 > 规律的探索与猜想不仅要体现数学知识的应用,而且 要注重在观察实践中抽象出规律。 (二)新知探索

解一元三次方程的方法

解一元三次方程的方法 解一元三次方程问题是世界数学史上较著名且较为复杂而又有趣味的问题,虚数概念的引进、复数理论的建立,就是起源于解三次方程问题。一元三次方程应用广泛,如电力工程、水利工程、建筑工程、机械工程、动力工程、数学教学及其他领域等。那么,以下是我分享给大家的关于解一元三次方程的方法,欢迎大家的参考学习! 解一元三次方程的方法 解法一是意大利学者卡尔丹发表的卡尔丹公式法。 解法二是中国学者范盛金发表的盛金公式法。 这两种方法都可以解答标准型的一元三次方程,但是卡尔丹公式解题方便。 相关内容: 一元三次方程的解法的历史 人类很早就掌握了一元二次方程的解法,但是对一元三次方程的研究,则是进展缓慢。古代中国、希腊和印度等地的数学家,都曾努力研究过一元三次方程,但是他们所发明的几种解法,都仅仅能够解决特殊形式的三次方程,对一般形式的三次方程就不适用了。 在十六世纪的欧洲,随着数学的发展,一元三次方程也有了固定的求解方法。在很多数学文献上,把三次方程的求根公式称为“卡尔丹诺公式”,这显然是为了纪念世界上第一位发表一元三次方程求根公式的意大利数学家卡尔丹诺。那么,一元三次方程的通式解,是不是卡尔丹诺首先发现的呢?历史事实并不是这样。

数学史上最早发现一元三次方程通式解的人,是十六世纪意大利的另一位数学家尼柯洛?冯塔纳(Niccolo Fontana)。 冯塔纳出身贫寒,少年丧父,家中也没有条件供他念书,但是他通过艰苦的努力,终于自学成才,成为十六世纪意大利最有成就的学者之一。由于冯塔纳患有“口吃”症,所以当时的人们昵称他为“塔尔塔里亚”(Tartaglia),也就是意大利语中“结巴”的意思。后来的很多数学书中,都直接用“塔尔塔里亚”来称呼冯塔纳。 经过多年的探索和研究,冯塔纳利用十分巧妙的方法,找到了一元三次方程一般形式的求根方法。这个成就,使他在几次公开的数学较量中大获全胜,从此名扬欧洲。但是冯塔纳不愿意将他的这个重要发现公之于世。 当时的另一位意大利数学家兼医生卡尔丹诺,对冯塔纳的发现非常感兴趣。他几次诚恳地登门请教,希望获得冯塔纳的求根公式。可是冯塔纳始终守口如瓶,滴水不漏。虽然卡尔丹诺屡次受挫,但他极为执着,软磨硬泡地向冯塔纳“挖秘诀”。后来,冯塔纳终于用一种隐晦得如同咒语般的语言,把三次方程的解法“透露”给了卡尔丹诺。冯塔纳认为卡尔丹诺很难破解他的“咒语”,可是卡尔丹诺的悟性太棒了,他通过解三次方程的对比实践,很快就彻底破译了冯塔纳的秘密。 卡尔丹诺把冯塔纳的三次方程求根公式,写进了自己的学术著作《大法》中,但并未提到冯塔纳的名字。随着《大法》在欧洲的出版发行,人们才了解到三次方程的一般求解方法。由于第一个发表三次方程求根公式的人确实是卡尔丹诺,因此后人就把这种求解方法称为“卡尔丹诺公式”。 卡尔丹诺剽窃他人的学术成果,并且据为已有,这一行为在人类数学史上留下了不甚光彩的一页。这个结果,对于付出

元次方程的求根公式及其推导

一元三次方程的求根公式及其推导 有三个实数根。有三个零点时,当有两个实数根。 有两个零点时,当有唯一实数根。有唯一零点时,当。,有两实根,为,则方程若有唯一实数根。 有唯一零点有一实根,则方程若有唯一实数根。 有唯一零点没有实根,则方程若实数根的个数。 点的个数即方程零即方程则设实数根的判定: 程即可。 因此,只需研究此类方的特殊形式即公式化为均可经过移轴 三次方程由于任一个一般的一元0)()(0)1281(81 1)()(0)()(0)1281(81 1)()(0)()(0)1281(81 1)()(3 3: 0)(0)3(0)()(0)(,0).2(0)()(0)(',0).1(0)(,00)(,)(.1,0,0)2792()3)(39()3(0)3272()3)(3()3(032323221''3333233232323=?<+=?=?=+=?=?>+=?--==- ===<=?===?=>=++=++=++==++=+-++-++=+-++-++=+++x F x F p q F F x F x F p q F F x F x F p q F F p x p x x F p x F x F x F p x F x F x F p q px x x F q px x x F q px x x F q px x D A ABC B B Ax AB AC B Ax D A BC A B A B x A B C A B x A D Cx Bx Ax βαβαβαβα

33 2332323233 232332313223 2132323 2333333333333333333333332332332323212811210861128112108610)1281(81 1)27(41281121086112811210861181281918128190)1281(81 1)27(4027 27,3)(300)(33)(3)(.1.200128100128100128112810)1281(81 10)0.(0.p q q p q q x p q p q p q q a B p q q a A B A p q q a p q q a p q p q p qa a B A q B A p B A q B A p AB q B A p AB q px x B A ABx x ABx B A B A AB B A B A x B A x B A B A B A x q px x p q q px x p q q px x p q p q p q p q p q p +--+++-=≤+=--?? ???+--==++-==??? ????+--=++-=>+=--=-+?????-=+-=?? ????????-=+-==+-=-=++=+--++=+++=+=+=+==++<+=?=++=+=?=++>+=?+=?>+≥式,为: 实数根的方程的求根公上方法只能导出有一个)。故由以,小于零时会出现虚数等于零时只能解出一个但却又无法直接解出(二或三个实数根,,虽然我们清楚方程有若判别式顺序,则有,如果不考虑。则有,若判别式的两根。为一元二次方程,易知,。,即可令, 对比。 即有, 故, 由于。 ,就是设法求出下面的工作为两个待定的代数式。,的形式。其中,程的求根公式应为了一元三次方根公式的归纳,我得到及特殊一元高次方程求一元一次,一元二次以得到。通过对出的,通常由归纳思维式由演绎推理是很难解一元三次方程的求根公实根式的推导: )(求根公式的推导: 有三个实数根。 时,方程有两个实数根。 时,方程有唯一实数根。 时,方程,则有以下结论:。令一定有时, ,则当时方程很容易求解同时为不同时为为研究方便,不妨设

一元三次方程及解法简介

一元三次方程 一元三次方程的标准型为02 3=+++d cx bx ax )0,,,(≠∈a R d c b a 且。一元三次方程的公式解法有卡尔丹公式法与盛金公式法。两种公式法都可以解标准型的一元三次方程。由于卡尔丹公式解题存在复杂性,对比之下,盛金公式解题更为直观,效率更高。 在一个等式中,只含有一个未知数,且未知数的最高次数是3次的整式方程叫做一元三次方程。 【盛金公式】 一元三次方程02 3=+++d cx bx ax )0,,,(≠∈a R d c b a 且 重根判别式:bd c C ad bc B ac b A 3:9;322-=-=-=,总判别式:Δ=AC B 22 -。 当A=B=0时,盛金公式①: c d b c a b x x x 33321-=-=- ===,当Δ=AC B 22 ->0时,盛金公式②:a y y b x 33 123 111---= ; i a y y a y y b x 63623 12 3 113 223 1 13,2-±++-= ;其中2 )4(322 ,1AC B B a Ab y -±-+ =,12-=i .当Δ=AC B 22 -=0时,盛金公式③:K a b x +- =1;232K x x -==,其中)0(≠=A A B K .当Δ= AC B 22-<0时,盛金公式④:a Cos a b x 3321θ --= ,a Sin Cos A b x 3) 333(3 ,2θ θ±+-= ; 其中arcCosT =θ,)11,0(),232( <<->-=T A A aB Ab T . 【盛金判别法】 ①:当A=B=0时,方程有一个三重实根; ②:当Δ=AC B 22 ->0时,方程有一个实根和一对共轭虚根; ③:当Δ=AC B 22 -=0时,方程有三个实根,其中有一个两重根; ④:当Δ=AC B 22 -<0时,方程有三个不相等的实根。 【盛金定理】 当0,0==c b 时,盛金公式①无意义;当A=0时,盛金公式③无意义;当A ≤0时,盛金公式④无意义;当T <-1或T >1时,盛金公式④无意义。当0,0==c b 时,盛金公式①是否成立?盛金公式③与盛金公式④是否存在A ≤0的值?盛金公式④是否存在T <-1或T >1的值?盛金定理给出如下回答: 盛金定理1:当A=B=0时,若b=0,则必定有c=d=0(此时,方程有一个三重实根0,盛金公式①仍成立)。 盛金定理2:当A=B=0时,若b ≠0,则必定有c ≠0(此时,适用盛金公式①解题)。 盛金定理3:当A=B=0时,则必定有C=0(此时,适用盛金公式①解题)。

高次方程求根公式的故事

高次方程求根公式的故事 1545年意大利学者卡丹将一元三次方程ax3 +bx2+cx+d=0的求根公式公开发表,后来人们就把它叫做“卡丹公式(也有人译作“卡尔丹公式”)。事实上,发现公式的人并不是卡丹本人,而是塔尔塔利亚。 塔尔塔利亚是意大利人,出生于1500年。他12岁那年,被入侵的法国兵砍伤了头部和舌头,从此说话结结巴巴,人们就给他一个绰号“塔尔塔利亚”(在意大利语中,这是口吃的意思),真名反倒少有人叫了。他自学成才,成了数学家,宣布自己找到了三次方程的的解法。有人听了不服气,来找他较量,每人各出30道题,由对方去解。结果,塔尔塔利亚30道三次方程的解全做了出来,对方却一道题也没做出来。塔尔塔利亚大获全胜。 后来,意大利医生兼数学家卡丹请求塔尔塔利亚把解方程的方法告诉他,但遭到了拒绝。尽管卡丹千方百计地想探听塔尔塔利亚的秘密,但是在很长时间中塔尔塔利亚都守口如瓶。可是后来,由于卡丹一再恳切要求,而且说要推荐他去当西班牙炮兵顾问,还发誓对此保守秘密,于是塔尔塔利亚在1539年把他的发现写成了一首语句晦涩的诗告诉了卡丹,但是并没有给出详细的证明。 六年后,卡丹不顾原来的信约,在他的著作中将经过改进的三次方程的解法公开发表。他在书中写道:“这一解法来自于一位最值得尊敬的朋友——布里西亚的塔尔塔利亚。塔尔塔利亚在我的恳求之下把这一方法告诉了我,但是他没有给出证明。我找到了几种证法。证法很难,我把它叙述如下。”从此,人们就把一元三次方程的求根公式称为“卡丹公式”,而塔尔塔利亚的名字反而被湮没了,正如他的真名在口吃以后被埋没了一样。 卡丹没有遵守誓言,因而受到塔尔塔利亚及许多文献资料的指责。但是卡丹在公布这一解法时并没有把发现这一方法的功劳归于自己,而是如实地说明了这是塔尔塔利亚的发现,所以算不上剽窃;而且证明过程是卡丹自己给出的,说明卡丹也做了工作。卡丹用自己的工作对塔尔塔利亚泄露给他的秘密加以补充,违背誓言,把秘密公之于世,加速了一元三次方程求根公式的普及和人类探索一元n次方程根式解法的进程。 一元三次方程应有三个根。塔尔塔利亚公式给出的只是一个实根。又过了大

初中数学九年级《一元二次方程求根公式的推导》公开课教学设计

课题 21.2.2公式法 课型 新授 教学媒体 多媒体 教 学 目 标 知识 技能 1.理解一元二次方程求根公式的推导过程. 2.掌握公式结构,知道使用公式前先将方程化为一般形式,通过判别式判断根的情况. 3.会利用求根公式解简单数字系数的一元二次方程. 过程 方法 1.经历从用配方法解数字系数的一元二次方程到解字母系数的一元二次方程,探索求根公式,发展学生合情合理的推理能力,并认识到配方法是理解公式的基础.; 2.通过对公式的推导,认识到一元二次方程的求根公式适用于所有的一元二次方程,操作简单. 3.提高学生的运算能力,并养成良好的运算习惯. 情感 态度 1.感受数学的严谨性和数学结论的确定性. 2.提高学生运算能力,使学生获得成功体验,建立学习信心. 教学重点 求根公式的推导,公式的正确使用 教学难点 求根公式的推导 教学过程设计 教学程序及教学内容 师生行为 设计意图 一、复习引入 导语:我们学习了用配方法解数字系数的一元二次方程,能否用配方法解一般形式的一元二次方程()002≠=++a c bx ax ? 二、探究新知 活动1.学生观察下面两个方程思考它们有何异同? ○ 1;6x 2 -7x+1=0 ○2()002≠=++a c bx ax 活动2.按配方法一般步骤同时对两个方程求解: 1.移项得到6x 2 -7x=-1,c bx ax -=+2 2.二次项系数化为1得到a c x a b x x x -=+-=-22,6167 3.配方得到 x 2 -76 x+( 712)2=-1 6 +(712)2 x 2 + b a x+(2b a )2=- c a +(2b a )2 4.写成(x+m )2 =n 形式得到(x-712)2=25144,(x+2b a )2=2244b ac a - 5.直接开平方得到x-712=±512,注意:(x+2b a )2=2 244b ac a -是否 可以直接开平方? 活动3.对(x+2b a )2=2244b ac a -观察,分析,在0≠a 时对2 244b ac a -的值与0的关系进行讨论 活动4.归纳出一元二次方程的根的判别式和求根公式,公式法. 活动5.初步使用公式解方程6x 2 -7x+1=0. 活动6.总结使用公式法的一般步骤:○1把方程整理成一般形式,确定a,b,c 教师提出问题,学生思考. 学生观察思考尝试回答学生对比进行配方,通过自主探究,合作交流,展开对求根公式的推导 让学生尝试对2 244b ac a -的值进行分析 学生尝试归纳,师生总结 学生初步使用公式,教师规范板书。之后总结使用公式步骤 为推导公式作铺垫,激发学生探索欲望 学生回顾配方法的解题思路,从数字系数过渡到字母系数进行配方,推导公式 对比探究,结合字母表示数的特点,尝试推导求根公式,培养学生发现问题的能力 通过学生亲自解方程的感受与经验,体会数式通性,为感受数学的严谨性和数学结论的确定性. 对2244b ac a -的值的情况具有不确定性进行讨论 为以后熟练使用公式打基础

一元三次方程的卡尔丹公式与盛金公式(精华版)

一元三次方程的卡尔丹公式与盛金公式 (使用MathType5.2软件公式编辑器编辑的精华版) 一元三次方程的解法的历史 人类很早就掌握了一元二次方程的解法,但是对一元三次方程的研究,则是进展缓慢。古代中国、希腊和印度等地的数学家,都曾努力研究过一元三次方程,但是他们所发明的几种解法,都仅仅能够解决特殊形式的三次方程,对一般形式的三次方程就不适用了。 在十六世纪的欧洲,随着数学的发展,一元三次方程也有了固定的求解方法。在很多数学文献上,把三次方程的求根公式称为“卡尔丹诺公式”,这显然是为了纪念世界上第一位发表一元三次方程求根公式的意大利数学家卡尔丹诺。那么,一元三次方程的通式解,是不是卡尔丹诺首先发现的呢?历史事实并不是这样。 数学史上最早发现一元三次方程通式解的人,是十六世纪意大利的另一位数学家尼柯洛·冯塔纳(Niccolo Fontana)。冯塔纳出身贫寒,少年丧父,家中也没有条件供他念书,但是他通过艰苦的努力,终于自学成才,成为十六世纪意大利最有成就的学者之一。由于冯塔纳患有“口吃”症,所以当时的人们昵称他为“塔尔塔里亚”(Tartaglia),也就是意大利语中“结巴”的意思。后来的很多数学书中,都直接用“塔尔塔里亚”来称呼冯塔纳。 经过多年的探索和研究,冯塔纳利用十分巧妙的方法,找到了一元三次方程一般形式的求根方法。这个成就,使他在几次公开的数学较量中大获全胜,从此名扬欧洲。但是冯塔纳不愿意将他的这个重要发现公之于世。 当时的另一位意大利数学家兼医生卡尔丹诺,对冯塔纳的发现非常感兴趣。他几次诚恳地登门请教,希望获得冯塔纳的求根公式。可是冯塔纳始终守口如瓶,滴水不漏。虽然卡尔丹诺屡次受挫,但他极为执着,软磨硬泡地向冯塔纳“挖秘诀”。后来,冯塔纳终于用一种隐晦得如同咒语般的语言,把三次方程的解法“透露”给了卡尔丹诺。冯塔纳认为卡尔丹诺很难破解他的“咒语”,可是卡尔丹诺的悟性太棒了,他通过解三次方程的对比实践,很快就彻底破译了冯塔纳的秘密。 卡尔丹诺把冯塔纳的三次方程求根公式,写进了自己的学术著作《大法》中,但并未提到冯塔纳的名字。随着《大法》在欧洲的出版发行,人们才了解到三次方程的一般求解方法。由于第一个发表三次方程求根公式的人确实是卡尔丹诺,因此后人就把这种求解方法称为“卡尔丹诺公式”。 卡尔丹诺剽窃他人的学术成果,并且据为已有,这一行为在人类数学史上留下了不甚光彩的一页。这个结果,对于付出艰辛劳动的冯塔纳当然是不公平的。但是,冯塔纳坚持不公开他的研究成果,也不能算是正确的做法,起码对于人类科学发展而言,是一种不负责任的态度。 ——资料来源:https://www.wendangku.net/doc/443086286.html,/forum/dispbbs.asp?BoardID=10&id=4262

一般三次方程谢国芳求根公式的推导方法1(利用复三角函数的方法)

一般三次方程的简明新求根公式和根的判别法则 —— 谢国芳 Email: roixie@https://www.wendangku.net/doc/443086286.html, 【摘要】 本文利用复三角函数推导出了远比卡丹公式简明快捷的可直接用来求解 一般三次方程(包括复系数情形)320ax bx cx d +++=的新求根公式,进而又针对实系数的情形讨论了根的情况,得到了方便的根的判别法则。 【关键词】 三次方程 复三角函数 欧拉公式 求根公式 判别法 1 一般三次方程的简化 对于一个一般形式的三次方程320ax bx cx d +++= (0)a ≠, 两边同除以a ,即可化为首项系数为1的三次方程 320b c d x x x a a a + ++=, 然后作变量代换 3b x y a =- , (1) 可消去二次项,将它化为下面的形式: 30y py q ++=, (2) 其中 2233b ac p a -=-, 323922727abc b a d q a --=-. (3) 下面我们把形如式(2)的三次方程称为简约三次方程. 并约定其一次项系数0p ≠.[1] 2 简约三次方程的三角函数解法和求根公式 在方程(2)中作变量代换[2] y z =, (4) 利用三倍角公式 3cos34cos 3cos z z z =-,

方程(2)即化为 cos3z = , (5) 定义参数 χ= , (6) 称之为三次方程3 0y py q ++=的关键比(key ratio),于是式(5)即 cos3z χ=. (7) 当χ为实数且1χ≤时,令1 cos θχ-=,可得其一般解为 32z n θπ=±+, 即 23 3n z θ π =± + ()n ∈ 取0,1,1n =-,即可得到z 在一个周期内的六个值: 22, , 33333z θθπθπ =±±+±- 但cos z 只取下面这三个值: 22cos cos , cos(), cos() 33333z θθπθπ =+- 代入式(4),即得方程3 0y py q ++=的三个根: 1 2 332cos()332)33y y y θθπθπ ?=?? ?? =+?? ?=-??? (8) 其中1 cos θχ-= , χ= (, 1) c c 危. 当关键比χ为绝对值大于1的实数或虚数时,方程(7)在实数域内无解,但如果我们 把三角函数的定义域扩大到复数域,即考虑复变量的三角函数,则对于任意复数χ都可求得其解. 根据复三角余弦函数的定义(欧拉公式): cos 2 iz iz e e z -+=, (9) 方程(7)等价于

一元三次方程的求根公式及其推导

一元三次方程的求根公式及其推导 有三个实数根。有三个零点时,当有两个实数根。 有两个零点时,当有唯一实数根。 有唯一零点时,当。,有两实根,为,则方程若有唯一实数根。 有唯一零点有一实根,则方程若有唯一实数根。 有唯一零点没有实根,则方程若实数根的个数。 点的个数即方程零即方程则设实数根的判定: 程即可。因此,只需研究此类方的特殊形式即公式化为均可经过移轴三次方程由于任一个一般的一元0 )()(0)1281(81 1 )()(0 )()(0)1281(81 1)()(0 )()(0)1281(81 1 )()(3 3: 0)(0)3(0)()(0)(,0).2(0)()(0)(',0).1(0)(,00)(,)(.1,0,0)2792()3)(39()3(0)3272()3)(3()3(0323 23221''33332332 32323=?<+=?=?=+=?=?>+=?--==- = ==<=?===?=>=++=++=++==++=+-++-++=+-++-++=+++x F x F p q F F x F x F p q F F x F x F p q F F p x p x x F p x F x F x F p x F x F x F p q px x x F q px x x F q px x x F q px x D A ABC B B Ax AB AC B Ax D A BC A B A B x A B C A B x A D Cx Bx Ax βαβαβαβα

33 23323232 33 232332313 223213232 32 33333 33333 3333333333333233233232321281121086 1 128112108610)1281(81 1)27(412811210861 12811210861181281918128190)1281(81 1)27(4027 27,3)(300)(33)(3)(.1.200128100128100128112810)1281(81 1 0)0.(0.p q q p q q x p q p q p q q a B p q q a A B A p q q a p q q a p q p q p qa a B A q B A p B A q B A p AB q B A p AB q px x B A ABx x ABx B A B A AB B A B A x B A x B A B A B A x q px x p q q px x p q q px x p q p q p q p q p q p +--+++-=≤+=--?? ?? ?+--==++-==??? ????+--=++-=>+=--=-+?????-=+-=?? ????????-=+-==+-=-=++=+--++=+++=+=+=+==++<+=?=++=+=?=++>+=?+=?>+≥式,为: 实数根的方程的求根公上方法只能导出有一个)。故由以 ,小于零时会出现虚数等于零时只能解出一个但却又无法直接解出(二或三个实数根, ,虽然我们清楚方程有若判别式顺序,则有,如果不考虑。则有, 若判别式的两根。 为一元二次方程,易知,。,即可令, 对比。即有,故, 由于。,就是设法求出下面的工作为两个待定的代数式。,的形式。其中,程的求根公式应为了一元三次方根公式的归纳,我得到及特殊一元高次方程求一元一次,一元二次以得到。通过对出的,通常由归纳思维式由演绎推理是很难解一元三次方程的求根公实根式的推导: )(求根公式的推导:有三个实数根。时,方程有两个实数根。时,方程有唯一实数根。时,方程,则有以下结论: 。令一定有时, ,则当时方程很容易求解同时为不同时为为研究方便,不妨设

一元三次方程求根问题

一元三次方程求根问题 一元三次方程求根问题是一个曾经困扰了人们许多年的问题,后来数学家们在经过非常多的计算后,用巧妙的方法将其解决了。目前,我还不知道一元三次方程求根公式和其推导过程,下面,我就尝试将这个问题解决。 显然,所有的一元三次方程都可以转化为 x 3+bx 2+cx +d =0的形式, 先从一些三次多项式的公式入手,其中有这样一个公式 ()()()B A AB B A AB B A B A B A +-+=--+=+3333 22333 在这里令x =A+B ,m =-3AB ,n =-(A 3+B 3),则上述公式转为 x 3+mx+n=0 这便是一个特殊的一元三次方程。 而 ?????-=+-=n B A m B A 333 3327 所以由一元二次方程的韦达定理得A 3与B 3是方程 0273 2 =-+m ny y 的两根, 不考虑A 与B 之间的顺序,得 ???? ?????+--=++-=22742274223223m n n B m n n A

故3323 3 227422742m n n m n n B A x +--+++-=+= 在解二次方程时,可以通过配方的方法 将 ax 2+bx +c =0 转化为 04422=-+??? ??+a b ac 2a b x a 再将a b x 2+换元,以达到消去一次项的目的。 那么,在解x 3+bx 2+cx +d =0的过程中,是否也有类似的方法呢? 我们可以尝试对其进行“配立方”来消去二次项, 得???? ??-+???? ??-+??? ??+=+++2733323 23b d x b c b x d cx bx x ???? ??+-+??? ??+???? ??-+??? ??+=2723333323 b b c d b x b c b x 这就转为x 3+mx+n=0的形式,带入刚才得到的其求根公式,得 3 2233b t n t n x ---++-= 其中108 441827274,3,27233 32223223c d b bcd c b d m n t b c m b bc d n ++--=+=-=+-= 以上只得出了一元三次方程一个根的求根公式,还不一定是实根,而一元三次方程一般有一或三个实根,原因可能是在上述求解过程中只在实数的范围内运算,并没有考虑到虚数。如果考虑虚数,在复数的范围内运算,一元三次方程应当有三个根。在上述方法中,另两个根可能要应用到虚数的一些概念和性质,若只考虑实数,无法将其解出。 接下来尝试一下在复数范围内,能否将另两个根解出。 设刚才求出的根为x 1=A +B,先考虑x 3+mx+n=0形式的方程,

一元三次方程的解法

一元三次方程的解法 邵美悦 2018年3月23日 修改:2018年4月25日 众所周知,一元二次方程的求根公式是中学代数课程必修知识,通常在初中阶段的数学教材中会进行介绍.一元三次方程和一元四次方程同样有求根公式,1而且其推导过程也是初等的.由于一元三次和四次方程的求解比起一元二次方程要困难得多,并且求根公式的具体形式也不是很实用,所以尽管在一些初等数学的书籍中有相关介绍,但大多数中学生对这些解法并不了解.本文将简要介绍一下一元三次方程的求解方法. 1配方法 一元二次方程 ax 2+bx +c =0,(a =0) 的解法一般会在在初中教材中进行介绍,通用的解法是配方法(配平方法),即利用 a (x + b 2a )2=b 2?4a c 4a 解出x =?b 2a ±√b 2?4ac 2a .当然,在初中教材中会要求a ,b ,c 都是实数,并且判别式b 2?4ac 必须非负.在高中教材引进复数之后,上述求根公式对复系数一元二次方程依然有效,开平方运算√b 2?4ac 也不再受到判别式符号的限制,只需要按照复数开方来理解.2 1值得注意的是,在代数学中可以证明,如果只用系数的有限次加,减,乘,除,以及开k 次方运算(其中k 是正整数),复系数一元五次(或更高次)方程没有求根公式.换句话说,不可能存在仅由系数的有限次加,减,乘,除,以及开k 次方运算构成的公式,使得每一个复系数一元五次方程都可以按该公式求解.这一结论通常称为Abel–Ruffini 定理.不少业余数学爱好者在没有修习过大学近世代数课程的情况下致力于推导高次方程的初等求根公式,这样的努力难免徒劳无功.2这里约定开方运算k √·只需要算出任意一个k 次方根即可. 1

一元二次方程求根公式的推导

一元二次方程求根公式的推导 创新是一个学生学习数学的灵魂,是学业成绩不断提高的不竭动力.因此,同学们在数学学习的过程中,要 怀疑权威——书本和老师,不人云亦云.敢于对同一个问题要另辟途径,探求问题的存在规律,只有这样,我们的数学发展水平才能不断提高. 比如,我们课本对一元二次方程求根公式的推导是通过配方法得到的,即: 对于方程ax 2+bx+c=0(a≠0) (1)方程两边同除以a 得:x 2+a b x+a c =0 (2)将常数项移到方程的右边得:x 2+a b x=﹣a c (3)方程两边同时加上(a b 2)2得:x 2+a b x+(a b 2)2=(a b 2)2﹣a c (4)左边写成完全平方式,右边通分得:(x +a b 2)2=2244a ac b - 由a≠0得,4 a 2>0,所以,当b 2-4ac≥0时,2244a ac b -≥0, 所以,x=a ac b b 242 -±- 除了上述推导方法外,不知道同学们是否思考过:还有其他方法吗? 多思出智慧,多练出成绩.我们也可以这样推导: 方法1:ax 2+bx+c=0(a≠0) 方程两边同乘以4a 得:4 a 2x 2+4abx+4ac=0 方程两边同时加上b 2得:4 a 2x 2+4abx+4ac+b 2=b 2 把4ac 移到方程的右边得:4 a 2x 2+4abx+ b 2=b 2-4ac 将左边写成完全平方式得:(2ax+b)2= b 2-4ac 当b 2-4ac≥0时,有: 2ax+b=±ac b 42- 所以,2ax=﹣b±ac b 42- 因为,a≠0

所以,x=a ac b b 242-±- 方法2:ax 2+bx+c=0(a≠0) 移项得:ax 2+bx=﹣c 方程两边同乘以a 得:a 2x 2+abx=﹣ac 方程两边同时加上(2b )2得:a 2x 2+abx+(2b )2=(2 b )2﹣a c 整理得:(ax+2 b )2=42 b ﹣a c 即:(ax+2 b )2=442a c b - 当b 2-4ac≥0时, ax+2 b =±242a c b - 即:x=a ac b b 242-±- 同学们,没有做不到,只怕想不到.对于任何问题,大家都要想一想:这个问题还有其他的解法吗?问题都可以得到圆满的解决.

相关文档