文档库 最新最全的文档下载
当前位置:文档库 › ~(240)Pu自发裂变瞬时平均中子数的绝对测量

~(240)Pu自发裂变瞬时平均中子数的绝对测量

~(240)Pu自发裂变瞬时平均中子数的绝对测量
~(240)Pu自发裂变瞬时平均中子数的绝对测量

14MeV能区中子诱发232Th裂变碎片截面测量

14MeV能区中子诱发232Th裂变碎片截面测量 研究靶核232Th在14MeV中子辐射场下的裂变反应截面,使用中子活化靶核诱发裂变,用14.1MeV,14.5MeV和14.7MeV三种能量的中子分别对232Th 进行辐照活化,中子是在中国工程物理研究院二所的K-400型强流中子发生器上由3H(d,n)4He反应产生。实验用ThO2粉末作为样品,其纯度为99.5%;监督片是Al,其纯度为99.99%。在测量中使用低本底的高纯锗探测器记录γ谱,使用监督片发生27Al(n,α) 24Na反应出射的α射线检测中子通量,利用90Zr(n,2n)89m+g Zr 与93Nb(n,2n)92m Nb的反应截面比测定中子平均能量。 本实验甄别出确定存在的核素有130Sb,138Xe,141Ba,134Te,138Cs,134I,89Rb 七个核素。使用已有的,较为成熟的截面计算公式进行了数据的处理,得到了232Th(n, f)138Xe,232Th(n, f)130Sb,232Th(n, f)141Ba和232Th(n, f)134Te四个反应道的截面值。在对232Th(n, f)134I和232Th(n, f)138Cs两个反应道的截面计算中,因为其有先驱核的衰变或退激的来源,使用相关公式扣除EC或β—等衰变对裂变截面的影响,发现了138Cs和134I主要来源于138Xe和134Te的β- 衰变。 关键词:14MeV中子;活化;232Th;裂变截面 第一章绪论 1.1 研究意义 中子诱发核反应截面能够揭示入射粒子和靶核相互作用机制,研究原子核在高激发态的运动规律加深对核反应机制和核结构的认识。14MeV能区中子引起的裂变反应截面是核工程、核能、核技术应用和核科学研究的基础数据,对于核反应理论模型的建立和完善、核裂变反应堆、核武器的研制,以及对其他交叉学科的研究都具有重要意义,所以核反应截面的测量是极其重要的,裂变各通道的独立裂变截面数据测量工作开展极少,本课题的开展填补了该领域的空白,完善了各裂变反应的具体裂变截面测量数据,为初步建立相关核数据库提供了素材。 跟随着现代化的日益发展,人们对能源的需求愈来愈迫切,因此,能源问题影响着社会的发展进程。而在当今环境也受到了人们广泛的关注,化石燃料的大范围使用已经严重影响了人们所生存的环境,还造成了全球性的温室效应。然而

用遗传算法求解中子能谱

第44卷第10期原子能科学技术Vol.44,No.10 2010年10月Atomic Energy Science and Technology Oct.2010 用遗传算法求解中子能谱 王冬,何彬,张全虎 (第二炮兵工程学院102教研室,陕西西安710025) 摘要:由多球中子谱仪的响应矩阵和测量结果得到中子能谱属于少道解谱问题,存在多种可能解,因此,解谱过程是在解空间中寻找问题的最优解。遗传算法作为优化算法的一种,在求解这类问题上具有很大优势,通过基因操作,遗传算法可获得问题的全局最优解。本文根据中子能谱求解问题的特点,提出了一种新的适应度函数,它由1个距离项和1个惩罚项组成,距离项用于保证计算结果能够再现测量结果,惩罚项用于保证解的连续性,避免求解结果数据的剧烈变化。选择了5种具有代表性的能谱作为真实能谱,并将其与响应函数相乘后的结果作为模拟测量结果,用遗传算法求解的结果与真值符合较好,且能很好地再现模拟测量结果,表明了采用这种适应度函数的遗传算法在求解中子能谱中的可行性。 关键词:多球中子谱仪;中子能谱解谱;遗传算法;适应度函数;惩罚函数 中图分类号:O571.54 文献标志码:A 文章编号:1000-6931(2010)10-1270-06 Unfolding Neutron Spectrum Using Genetic Algorithm WANG Dong,HE Bin,ZHANG Quan-hu (Staffroom102,The Second Artillery Engineering College,Xi’an710025,China) Abstract: Derivation of neutron energy spectrum from multi-sphere neutron spectrome-ter’s experimental data is a kind of few channel problems,and therefore has more thanone solution.Most unfolding methods try to search among the solution space to find thesolution that best fit the measurement data and the response function.As a kind of opti-mization strategy,genetic algorithm could find the global optimal among the searchspace.A new fitness function which contains a distance part and a penalty part was con-structed in this research.The distance part is the square distance between the individualand the measurement data.The penalty part which is a function associated with the con-tinuity of individual was used to avoid intensively change of unfolded data.Five classicalneutron spectra were chosen as benchmark spectra.The results of the benchmark spec-tra multiplied by the response function were acted as input measurement data of theunfolding program.Unfolded results show that they are well agreeable with the truespectra,proven the feasibility of unfolding neutron spectrum using genetic algorithm.Key words:multi-sphere neutron spectrometer;neutron spectrum unfolding;geneticalgorithm;fitness function;penalty function 收稿日期:2009-09-22;修回日期:2010-02-09 作者简介:王冬(1980—),男,河北深泽人,博士研究生,核技术及应用专业

核素裂变样品的分析处理

核素裂变样品的分析处理 5.1 核素的初步甄别 对核素的甄别是一个复杂的过程: (1)先挑选一个测量时间较长的能谱,将γ能谱的每个峰对应的能量记录(除开本底峰); (2)对照已知核数据(考虑峰值左右一小范围),列出每个峰可能会对应的核素,删除从每个峰对应的核素中一部分分支比较小的(本实验考虑将低于3%的忽略,但实际在本实验中分支比小于10%时,其峰一般不能找到),删除半衰期过大过小的核素(依据冷却时间,测量时间,本实验重点考虑半衰期为50-20000s 的核素); (3)初步归纳可能的核素,然后对照核素图[19],看核素对应γ衰变的几个较大分支比的峰是否存在,如果存在,则暂认为该核素存在,留待截面值分析后确定。 5.1.1 核素89Rb 表5.1.1 89Rb衰变的主要特征γ射线能量及分支比 核素半衰期(s) 全能峰序号能量(keV) 分支比 89Rb 909 E1657.77 0.108188 E2947.73 0.100011 E31031.92 0.629 E41248.14 0.45917 E52195.92 0.14467 E62570.20 0.10693 下图中(1)、(2)、(3)和(4)所标出的峰依次是甄别出89Rb 的E1、E2、E3和E4所对应的峰位置。

Channel 图5.1.2

Channel 图5.1.4

Channel 图5.1.5 5.1.5 核素134Te 表5.1.5 134Te衰变的主要特征γ射线能量及分支比核素半衰期(s) 全能峰序号能量(keV) 分支比 134Te 2508 E179.445 0.20945 E2180.891 0.1829 E3201.235 0.0885 E4210.465 0.22715 E5277.951 0.2124 E6435.06 0.1888 E7460.997 0.09735 E8464.64 0.0472 E9565.992 0.18585 E10742.586 0.1534 E11767.2 0.295

【CN109901217A】中子能谱测量系统【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910288957.3 (22)申请日 2019.04.11 (71)申请人 成都理工大学 地址 610000 四川省成都市成华区二仙桥 东三路1号 (72)发明人 杨剑波 庹先国 李锐 成毅  王洪辉 王磊 刘明哲  (74)专利代理机构 北京超凡宏宇专利代理事务 所(特殊普通合伙) 11463 代理人 周宇 (51)Int.Cl. G01T 3/00(2006.01) (54)发明名称中子能谱测量系统(57)摘要本发明提供一种中子能谱测量系统,属于中子能谱测量技术领域,中子能谱测量系统包括支架、中子探测器以及由外向内逐层套设的N个球形空腔,N为大于等于2的整数,支架包括支撑座以及与支撑座连接的承重柱,承重柱的端部伸入球形空腔的几何中心与第N球形空腔固定,承重柱分别与第N球形空腔外的N -1个球形空腔连接;每个球形空腔分别由至少一个子腔拼接而成,组成同一球形空腔的相邻子腔之间固定;中子探测器包括第一中子探测器和/或第二中子探测器,第一中子探测器设置在第N球形空腔的几何中心,第二中子探测器包括多个,多个第二中子探测器在任一球形空腔的周向分布。能满足多样化探测需求,探测设备高度整合,便携性强,适用范 围广。权利要求书1页 说明书7页 附图3页CN 109901217 A 2019.06.18 C N 109901217 A

权 利 要 求 书1/1页CN 109901217 A 1.一种中子能谱测量系统,其特征在于,包括支架、中子探测器以及由外向内逐层套设的N个球形空腔,N为大于等于2的整数,所述支架包括支撑座以及与所述支撑座连接的承重柱,所述承重柱的端部伸入所述球形空腔的几何中心与第N球形空腔固定,且所述承重柱分别与第N球形空腔外的N-1个球形空腔连接,所述支撑座用于提供稳定支撑; 每个所述球形空腔分别由至少一个子腔拼接而成,组成同一球形空腔的相邻子腔之间固定,所述球形空腔内用于填充慢化剂;所述中子探测器包括第一中子探测器和/或第二中子探测器,所述第一中子探测器设置在所述第N球形空腔的几何中心,所述第二中子探测器包括多个,多个所述第二中子探测器在任一所述球形空腔的周向分布设置。 2.根据权利要求1所述的中子能谱测量系统,其特征在于,组成所述球形空腔的相邻子腔之间设置有连通通道,所述球形空腔内填充的液态慢化剂可通过所述连通通道在相邻的子腔之间流动。 3.根据权利要求1或2所述的中子能谱测量系统,其特征在于,所述第二中子探测器包括4个,4个所述第二中子探测器在第二球形空腔内沿周向均布设置。 4.根据权利要求1或2所述的中子能谱测量系统,其特征在于,每个所述球形空腔上分别设置有用于填充所述慢化剂的接口。 5.根据权利要求1所述的中子能谱测量系统,其特征在于,套设在所述第N球形空腔外的至少一个球形空腔与所述支架的连接端固定。 6.根据权利要求2所述的中子能谱测量系统,其特征在于,所述慢化剂包括颗粒状、啫喱状、粉末状或液态物质;所述啫喱状或液态慢化剂用于填充在相邻子腔之间设置有连通通道的球形空腔中。 7.根据权利要求6所述的中子能谱测量系统,其特征在于,所述慢化剂包括主要慢化材料和辅助慢化材料;所述主要慢化材料包括水、植物油、硼酸、重水、石墨、硼、石蜡、锂和聚乙烯中的至少一种,所述辅助慢化材料包括重金属的至少一种。 8.根据权利要求7所述的中子能谱测量系统,其特征在于,填充所述辅助慢化材料的所述球形空腔包括一体成型的重金属球壳形实体。 9.根据权利要求1所述的中子能谱测量系统,其特征在于,所述球形空腔的腔体材料包括金属材料、非金属材料及合金材料的至少一种。 10.根据权利要求1所述的中子能谱测量系统,其特征在于,所述承重柱侧面设置有液体通道,与所述承重柱连接的球形空腔对应设置有连通通道,液体状和啫喱状慢化剂可通过所述液体通道和所述连通通道向所述球形空腔中填充或抽取。 2

核裂变

6 核裂变 [先填空] 1.核裂变 重核被中子轰击后分裂成两个质量差不多的新原子核,并放出核能的过程.2.铀核裂变 用中子轰击铀核时,铀核发生裂变,其产物是多种多样的,其中一种典型的反应是23592U+10n―→14456Ba+8936Kr+310n. 3.链式反应 当一个中子引起一个重核裂变后,裂变释放的中子再引起其他重核裂变,且能不断继续下去,这种反应叫核裂变的链式反应. 4.链式反应的条件 发生裂变物质的体积大于临界体积或裂变物质的质量大于临界质量. [再判断] 1.铀核的裂变是一种天然放射现象.(×) 2.铀块的质量大于临界质量时链式反应才能不停地进行下去.(√)

3.铀核裂变时能释放出多个中子.(√) [后思考] 1.铀核的裂变是一种天然放射现象吗? 【提示】不是.铀核在受到中子轰击后才发生裂变,不是天然放射现象,属于核反应. 2.铀核裂变的核反应方程是唯一的吗? 【提示】不是.铀核裂变的生成物并不确定,所以其核反应方程不是唯一的. [合作探讨] 原子弹一般应该由两部分组成,一是常规炸药部分,一是核部分,核部分是由分成几块的裂变核材料组成,每一块都在临界体积以下,引爆时,借助常规炸药在极短时间内,将这几块核材料合成一体,使总体积超过临界体积,从而发生链式反应. 探讨1:为什么铀块的体积小于临界体积时不能发生链式反应? 【提示】如果每次裂变放出的中子平均有一个能再度引起裂变反应,或者说每一代裂变产生的中子数不少于上一代的中子数,裂变反应就能维持下去.当铀块的体积过小时,裂变产生的中子有的可能从裂变物质中漏出去,有的可能被杂质吸收,所以链式反应未必能持续下去. 探讨2:裂变反应发生后,裂变反应物的质量增加还是减小?为什么? 【提示】减小.裂变反应释放大量的能量,所以发生质量亏损,反应后的质量减小. [核心点击] 1.铀核的裂变和裂变方程 (1)核子受激发:当中子进入铀235后,便形成了处于激发状态的复核,复核中由于核子的激烈运动,使核变成不规则的形状. (2)核子分裂:核子间的距离增大,因而核力迅速减弱,使得原子核由于质子间的斥力作用而分裂成几块,同时放出2或3个中子,这些中子又引起其他铀核裂变,这样,裂变就会不断地进行下去,释放出越来越多的核能. (3)常见的裂变方程:

反应堆堆芯中子能谱在线测量方法研究

反应堆堆芯中子能谱在线测量方法研究 先进核能系统研究的快速发展对核安全提出了更高的要求,同时堆内核测量技术面临更大的挑战。中子能谱是反应堆研究的核心参数之一,发展堆芯中子能谱的在线测量技术对提高核能系统安全有着重要意义。现有反应堆堆芯的中子能谱主要采用离线活化法测量。在线能谱测量技术尚不完善,如3He、6Li夹心谱仪等测量技术存在抗辐照能力差,探测能量范围有限或精度不满足要求等缺点。 发展高精度、宽量程的堆芯中子能谱在线测量技术已成为先进核能系统测控研究的重要发展方向。本论文通过借鉴多球谱仪的中子能谱测量原理,结合能够在堆芯内长期使用的电离室探测器,提出了一种新的堆芯中子能谱测量方法,即多阈值电离室的中子能谱在线测量方法。主要研究内容及创新点包括:(1)多阈值电离室能谱测量方法的蒙卡模拟研究。研究选用堆内使用成熟的具有不同阈值的电离室探测器(235U裂变电离室、238U裂变电离室、包镉NatB电离室),结合“少道解谱”原理,利用解谱软件对中子计数率信息进行反演得到待测中子能谱。 并分别利用参考中子能谱(IAEA318号报告中的纯裂变谱和铅冷快堆谱)和 中国铅冷快堆(CLEAR)能谱对所提出方法进行了可行性验证。验证时,首先利用蒙卡软件SuperMC进行建模并计算,获得了探测器的响应函数;并利用SuperMC计算探测器在参考谱中子场中的计数率,通过解谱软件,结合探测器计数率和响应函数信息反演中子能谱,反演谱和参考谱在大多数能区吻合;再通过SuperMC模拟探测器在CLEAR堆运行情况下的探测器计数率,且研究了3个不同位置的中子能谱情况,计算结果表明,反演谱和初始谱在大多数能区内吻合。参考谱和参考堆的模拟验证计算结果表明,提出的中子能谱在线测量方法具备理论上的可行性。(2)双功能锂铅氚增殖包层(DFLL-TBM)模型中子学实验数据分析。 DFLL-TBM中子学实验是中国科学院核能安全技术研究所为验证DFLL-TBM模块中子学性能开展的实验。本研究完成了该实验活化片反应率的数据分析工作。同时,利用该实验数据,研究实验中3个不同位置布置的3组活化片计数率,采用本研究开发的中子能谱在线测量方法对活化片的计数率信息进行中子能谱解谱分析并与蒙卡计算软件SuperMC的模拟计算结果进行比对。结果表明,通过活化片计数率信息解出的中子能谱与计算谱吻合度优于现有成熟解谱软件的反演结果。

含氢介质内中子能谱测量

第38卷增刊原子能科学技术 Vol.38,Suppl.  2004年7月Atomic Energy Science and Technology J uly 2004 含氢介质内中子能谱测量 安力,陈渊,郭海萍,牟云峰,王新华,朱传新 (中国工程物理研究院核物理与化学研究所,四川绵阳 621900) 摘要:建立了直径34cm 的含氢慢化球和含氢慢化球与<24cm ×30cm 聚乙烯圆柱组合的2种基准装置,加速器的d 2T 中子入射到含氢慢化介质,用<18mm ×20mm 的 晶体闪烁探测器测量了2种实验装置内不同位置的1MeV 以上的中子能谱,并处理成不同能量阈值的中子数。在0.95置信水平下,本测量方法的不确定度为4.8%。关键词:d 2T 中子;二维装置;介质内能谱 中图分类号:O571.54 文献标识码:A 文章编号:100026931(2004)S020089204 Measurement of N eutron Spectrum in Medium Containing H ydrogen AN Li ,CHEN Yuan ,GUO Hai 2ping ,MOU Yun 2feng ,WAN G Xin 2hua ,ZHU Chuan 2xin (Institute of N uclear Physics and Chemist ry ,China Academy of Engineering Physics , P.O.Box 9192213,Mianyang 621900,China ) Abstract : Two benchmarks were established.One is moderation shell containing hydrogen which is 34cm in diameter.The other is composed of the shell and polyethylene cylinder of <24cm ×30cm which are combinatorial.Measurement of neutron energy spectrum above 1MeV changing with different positions of the experimental assemblies were carried out for in 2cident neutrons from outside using d 2T fusion source of accelerator.Meanwhile ,the spectra were transformed integral spectrum.The scintillation detector of stilbene crystal of <18mm ×20mm was used to measure neutron spectrum.At 0.95level of confidence ,the uncertain 2 ty of the measurement is 4.8%. K ey w ords :d 2T neutron ;two dimensional assembly ;neutron spectrum in medium 收稿日期:2004204215;修回日期:2004205215 作者简介:安 力(1973-),男,四川仪陇人,助理研究员,硕士研究生,核物理专业 中子与介质相互作用会产生散射反应等各种过程,当介质是大块物质时,作用过程更加复杂。中子与含C 、H 、O 、N 等低原子序数元素材料的作用不同于与含高原子序数元素材料的作用,它主要表现为弹性散射,能谱软化也较快。在以往的基准实验中,中子源均置于球中心测量泄露出来的中子能谱,而对球、柱组合装置的 基准实验开展较少。鉴于此,本工作拟测量含 氢慢化球、含氢慢化球与<24cm ×30cm 聚乙烯圆柱组合2种实验装置内部的中子能谱。 1 实验装置 含氢慢化球外径34cm ,内径4cm ,厚度15cm ,由上、下两半组成,界面间有一条通球心

中子剂量与防护

中子剂量和防护-正文 中子剂量通常指中子吸收剂量或中子剂量当量(见辐射剂量)。不同能量的中子同人体组织中的元素(氢、氮、氧、碳等)发生不同的相互作用(见中子核反应和宏观中子物理),所产生的具有一定能量的次级带电粒子能够引起电离和激发,从而使肌体受到损伤。剂量学涉及的主要物理问题是散射、核裂变和辐射俘获等. 研究中子在生物组织中不同深度的吸收剂量和剂量当量的模型有:半无穷大板块、有限圆柱体(直径为30厘米,高为60厘米)和椭圆柱体(长半轴为18厘米,短半轴为12厘米,高为60厘米)模型。模型的材料组成应同软组织的相当,密度为1g/cm3。能量范围从10-2eV延伸至 2000MeV。其中对半无穷大板块模型和有限圆柱体模型研究的结果,是目前确定中子注量率-剂量当量率换算系数的基础。 平行中子束垂直入射到一块物质上时,该物质的吸收剂量D随深度的分布(示意图见图1)同γ辐射的情形相似:吸收剂量的最大值并不出现在表面,而是出现在某个深度处,这个深度取决于中子的能量。医学上就是通过调节辐射的能量,把这个最大值对准病变组织的部位进行放射治疗。 放射防护规定:对个人所受剂量的限制是由剂量当量决定的。不同能量中子的有效品质因数坴(见辐射剂量)的数值示于图2。此外,由测得的中子注量率可以换算到剂量当量率。目前各国都采用图3所示的数值。 中子剂量测定主要指中子吸收剂量和剂量当量的测量。此外还包括表示剂量分布的微剂量测量。通常使用组织等效电离室,乙烯-聚乙烯正比计数器,硫酸亚铁剂量计以及量热计等测量吸收剂量。在多数情况下,组织等效电离室是测定快中子吸收剂量最准确的装置仪器。剂量当量测量仅适用于辐射防护,所采用的方法分场所监测和个人监测两类,其响应正比于最大剂量当量。微剂量测定的目的在于从实验上研究辐射在直径为微米量级或更小的球体内能量沉积的空间分布和谱分布。微剂量学所考虑的体积应同生物细胞的大小相当,借以模拟辐射在生物细胞、细胞组分和生物大分子中的能量沉积。常用的测量仪器是低压组织等效气体的“无壁”计数器,但测量方法和数据处理牵涉到很复杂的技术。 中子防护目的在于减少工作人员所受的辐射剂量,并尽可能将它控制在放射防护标准规定的限值以下。职业性放射性工作人员每年所受的剂量当量限值为50mSv(5rem)。表中给出对不同能量的中子相当于25μSv(2.5mrem)每小时的中子注量率以及1mSv(0.1rem)的中子注量。 减少防护工作人员受中子照射的措施除了尽量缩短受照时间、尽可能远离中子源以外,还需对中子源进行有效的屏蔽。 不同能量的中子同物质相互作用有不同的特点(见中子核反应和宏观中子物理)。因此屏蔽热中子要用含吸收截面大、俘获辐射γ光子能量低的材料,如硼、锂以及它们的化合物等。屏蔽快中子时首先需要用慢化能力强的材料将快中子的能量降低,然后用吸收截面大、俘获辐射γ光子能量低的材料加以吸收。快中子慢化的主要过程对于重核及中重核是非弹性散射;对于轻核是同原子核发生弹性散射。对于一次弹性散射,靶原子核的质量越接近中子的质量,中子损失的能量也就越大。因此屏蔽能量不很高的快中子最有效的元素是氢,通常采用的是含氢成分较多的水、石蜡、聚乙烯等轻材料。对于几兆电子伏以上能量的中子,可以用含重核或中重核的材料通过非弹性散射使其能量迅速降低然后再用含氢材料进一步使其慢化,最后被含10B或6Li材料吸收。因此,在规划屏蔽层的布局和确定屏蔽层厚度时必须知道中子能谱及各类材料的不同中子能量的有关反应截面数据,并根据上述特点对屏蔽层填料作合理安排,据某种理论模型进行数学运算。对大型中子源常用的屏蔽计算方法有双群法、多群法和移出扩散法等。放射性同位素中子源的屏蔽计算常用分出截面法和半(或1/10)值层减弱法。 若屏蔽层足够厚,又含有足够量的氢时,可用分出截面法进行计算。在近似计算中,可用裂变中子谱的分出截面。 半(或1/10)值层减弱系指将辐射量(注量、吸收剂量或剂量当量等)降至1/2(或1/10)时所需的屏蔽层厚度。半值层厚度(HVT)同1/10值层厚度(TVT)的换算关系式是:H VT=0.301TVT。 普通混凝土对单能中子的1/10值厚度示于图4。 屏蔽放射性中子源,可以单独使用水、石蜡等;也可兼用其他慢化材料和吸收材料,或将慢化材料和吸收材料混合使用(如含硼聚乙烯、含硼石蜡等)。对大型中子源(如加速器、反应堆)的屏蔽比较复杂,常以普通混凝土和重混凝土等屏蔽材料为主,还要采用铁一类的物质屏蔽γ辐射和快中子。 在中子辐射防护中,除了中子以外还应当特别注意对γ辐射的防护。这是因为反应堆、加速器和很多放射性同位素中子源都伴有很强的γ辐射。在很多情况下,γ辐射的剂量当量大大超过中子的剂量当量。例如,镭-铍中子源的γ剂量当量率约比中子剂量当量率高50倍。即使是被认为γ剂量较少的镅-铍中子源,γ辐射剂量当量率也占总剂量当量率的百分之几十。 在使用放射性同位素中子源时,要严格防止放射性物质的泄漏。特别是使用镭-铍中子源时应经常检查是否有氡气漏出。一旦发现有漏出,就应及时采取措施。 辐射剂量-正文

中子辐照生物效应的理论分析

中子辐照生物效应的理论分析 中子作为构成原子核的基础粒子,它不带电,与物质的相互作用通常是与原子核的相互作用。碳氢氧氮等元素在生物体内的含量很多,中子与生物体的相互作用主要就是与这几种元素原子的相互作用,中子与它们相互作用的概率大小同中子能量有很大的关系,在入射中子能量小于30Mev时,中子同这几种元素的作用类型以弹性散射为主,并在2~10Mev能区存在程度不同的共振。中子诱导的生物效应要高于γ射线,并且中子生物效应还同中子能量、剂量、物理生物因素以及生物终点密切相关。 关键词:中子,生物效应,弹性散射,

第一章引言 1.1中子的性质与应用 1.1.1中子的粒子性与波动性 中子存在于除氢以外的所有原子核中,是组成原子核的重要组分之一,中子主要来源于反应堆、加速器、放射性核素等中子源。自从1932年恰徳维克等人发现中子以来,人们对中子的性质进行了广泛的研究。中子会以高度凝聚态的形式构成中子星物质。[1] 中子的粒子性[1] [2] 质量:chadwick发现中子是通过测量α轰击Be核所产生的未知射线与H、Li、Be、B、C、N等轻核碰撞所产生的反冲核能量,根据能量、动量守恒的规律推算该射线粒子质量的实验完成的。通过某些有中子产生或吸收的核反应,根据运动学关系求出中子质量、中子质子质量差值,是确定中子质量的基本方法。 自旋:中子是自旋为?的费米子,遵守费米统计分布,服从泡利不相容原理。 磁矩:氘核的磁矩小于质子的磁矩表明中子和质子具有相反的磁矩,由磁共振谱仪可以推测出中子磁矩为μn=-1.913042μN,负号表示磁矩矢量方向和自旋角动量方向相反。电中性的中子具有磁矩说明中子内部有结构。在夸克模型中,中子由u、d、d三个夸克组成,分别具有电荷e、- e。 中子寿命:Chadwick于1935年指出自由中子不稳定,它会衰变放出一个质子、一个电子、和一个反中微子并放出0.782Mev的能量;半衰期为10.61±0.61min。这表明了中子的静止质量大于质子质量的实验事实。实验观察到中子衰变是通过从反应堆中子束经电偏转引出正离子,并鉴定正离子为质子而确认的。 中子的波动性[1] [2] 同其他粒子一样,中子除具有粒子性之外还具有波动性。自Chadwick发现中子后,很快观察到热能化中子在多晶铁样品上类似于衍射图像的散射角分布。中子波动性对于中子波在物质结构研究中的应用具有重要意义。电子或电磁辐射与

核素裂变截面分析

核素裂变截面分析 6.1 核反应截面测量原理 6.1.1 裂变截面的计算公式推导 假定样品质量为M ,母核X 的原子量为A ,丰度为η,测量时间为T 3,反应道X(n,b)Y 的截面值为σ,样品辐照时间为T 1,辐照期间的平均中子注量率为φ(由27Al(n,α)24Na 监测反应测得)冷却时间为T 2,如图6.1.1所示。 t 0 t 1 t 2 t 3 图6.1.1 时间示意图 根据人工放射性随时间的生长规律[20],在样品辐照时间T 1内的任一时刻t ,单位时间内产生放射性子核Y 的净数目为: N N A M dt dN A ληφσ-= (6.1.1) 式中,N A 为阿伏伽德罗常量,λ为生成子核Y 的衰变常量。 由初始条件t=0时,N=0解式(6.1.1)可求得,在辐照时间T 1内的任一时刻t ,样品中生成子核Y 的数目为: )1()(t A e A MN t N λλ ηφσ --= (6.1.2) 照射结束(t=T 1)时,样品中生成子核Y 的数目为: λ ηφσληφσλA S MN e A MN T N A t A =-=-)1()(1 (6.1.3) 式中,11T e S λ--=称为饱和因子。 开始测量(t=T 1+T 2)时,样品中生成子核Y 的数目为: 212 )1()()(121T T A T e e A MN e T N T T N λλλλ ηφσ----==+(6.1.4)

设生成的放射性核Y 放出的特征γ射线的分支比为I γ,探测器对其全能峰探测效率为p ε,在测量时间T 3内,测到特征γ射线的全能峰计数为C ,计数的总校正因子F=F s *F c *F g (随后给出计算公式的详细推导),中子注量率随时间波动的校正因子K ,则有效的特征γ射线的全能峰计数应为: ? -+= ?3 21)(T p t dt I e T T N C F ελγλ )1()1(321T T T p A e e e A I K MN λλλγλε φση-----= SD A I K MN p A λε φσηγ= (6.1.5) 式中,)(32232)1(T T T T T e e e e D +-----=-=λλλλ称为测量收集因子。 得, KSD I MN A FC p A εηφλσγ= (6.1.6) 上式为绝对法测量核反应截面的一般计算公式,在实际实验中的中子注量率φ的数值很难准确测定,故而使用相对法测量更容易得出截面值。 顾名思义,相对法就是在实验计算中使用某种核素的核反应已知准确截面值。它的子核与待测核反应的子核半衰期相差不大,用其做成两块监督片来测量中子注量率,在实验中将待测样品夹在这两块监督片中间,辐照完成后,把已知监督片的准确核反应截面值带入绝对法测量核反应截面计算公式中,再使用实验测得的相关数据就可得到准确的平均中子注量率φ的数值。利用得到的φ就可以求解待测样品的核反应截面数值。 使用下标0来表示监督片相应的量,下标x 来表示待测核反应的相应的量,则根据上式,可得 0][][KSD I MN A FC p A εηφλσγ= (6.1.7) x p A x x KSD I MN A FC ][][εηφλσγ= (6.1.8) 通过对上面两个公式的联立(两个公式中中子注量率是相等的),得到 00 0][][][][σλλεηεησγγ??=A FC A FC KSD I M KSD I M x x p p x (6.1.9) 上式即为相对法测量核反应截面中的常用公式。

裂变碎片核发射中子能谱及角分布的模拟计算

" ! 第! 卷第#期 )* !" ) 年#月







$ &! ! % # % '" ( ' ;1 )* < 2" )
+ % . 13 56.127 89 / 1&4 , -/0 24 / / 1 2: %% 5 2
裂变碎片核发射中子能谱及角分布的模拟计算
" " 徐家云" 屈丛会=  黎光武=  顾 ! 牡> 刘小林> 顾先宝= 邵新生" " 中国原子能科学研究院 核物理研究所! 北京 != " = # = ? )!> 四川 成都 !# ) # # 同济大学 波尔固体物理研究所! 上海 !" ) @ $ " 四川大学 物理科学与技术学院! ? =)!> ? ))"
A 摘要 用 蒙 特 卡 罗 方 法 研 究" "B 自 发 二 分 裂 变 过 程 中 裂 变 碎 片 核 发 射 的 中 子 能 谱 和 中 子 角 分 布%文 采 C A 中给出了模拟计算的条件& 步骤和 模 拟 结 果! 细 分 析 了 实 际 测 量 中" "B 自 发 二 分 裂 变 碎 片 核 发 射 的 详 C
中子能谱之间的相互干扰%该模拟分析与测量特定 裂 变 碎 片 核 的 发 射 中 子 谱 的 实 验 研 究 密 切 配 合! 对 相关实验具有指导性参考价值% 关键词 蒙特卡罗方法# 核裂变# 裂变碎片# 中子发射 中图分类号 D E? !!!! 文献标志码 9 A=A +!!! 文章编号) )# > ") * )F! =) = )F@ = " ) $#) *F!
! #%' ) , .( " /0 %1 ( 34 1*)56 ,. "6 "$ (* - *$ #" #)2 # # .( , )7$ # & "+ , $ , " -$ 38 .)# ) -(:;#96 " )1 %$ /0 , % %$"69" $ ,% , ,#9( - # 6
GH B 1F <= " ! IJ 7 4 K = "! % 4:. D < 1F < LH; F < " ! . 5 1 JH M > ! I L7F 1 ! 7 < D H .% . > & = " JH L7F7 ! O+P L1Q 2 4 .1N % 6 .F: 1
" ! #%&' (( , -+ # $1 3! 5 5+ " A ! ! *:$ = " = ! "$ # = "$ $( )*+ ( ./0 *2 4 6 7 8 E9 # 7## 2 ) ! > ! #% ? # "&' (( + 4 3#';#$*% <= / $>2 ! #" % $@1#3! "$ < # ) # ! "$ # ? $( )* , " ' # / /*/ $ *" ++ 3 ;/ ) $? #*' ( ! * 2 ) = ) ! ! #% > 4 " &' (( ,;><;%*4 3#'! + 2#? #*' 3! " $ "#" ) @ ! "$ $ ? +> $( )*+ +# (( " ' # / = $ : $@1# ; % 2 % ) ) " ! #% (
! !
4 6 ($ !9 21 <3 17 4&3 1 13 58Q3N , 1 22 7/&,8N <.4 M 12 7$ < ' : 2,% 1 <7 7 82 24 ., <. QK 3 /&<72 5 Q1 % ,F ) . % Q% , B 3%- , % % 4R 1" "B .75C Q 1C7 - 1 '9 2/ 1. % Q7 8Q2 Q% , 2 7& 2: 8C37 .2 A CN13 . . 34 2, : % 8 .1 1 ,S C : ! 1 : 2<, 22S22,8 9 2 12C312% , 21 < /&<7 % 22Q 2. 2 7 8, 23Q& 7/&, 1K 3 S/ .8 . C QK 3 3Q12 ' : .,322 / C : 2F ,% Q 3 -% 2 34 2, %, %2 3 -, 2/ - & - 175C7 - 1 7 1&T8 9 . 3 1 C% 1 C7 - 1 , : Q C% : % S2 2,3 34 2,K Q7 752 ' :Q Q- &, 1/ <8K 3 K, : - 7<2 2,% S/3 % 4R 1C Q 1C7 - 1 . <7 % %& %U .:, 2 2Q381 <3 1Q 2,7C37 .2 . . 34 2, . Q% 7 84R 1 .27, 23, 7 3C312 % , 23&R 1 V 2. 2,&- 7<2 2, ' : %2 /& 222 / C3 : 227,2 S3- 17 2Q3 - 1Q . = 2> )6 M 12B 3%- , % # <&7 C Q 1#.Q 1C7 - 1 # 2,% -Q.1 % "3 ' % ,F 7& 2: 8 1 / 3 . . C . 34 2, 1 <3 12 .Q 2 Q% Q% % 核 !! 核 裂 变 是 非 常 复 杂 的 物 理 过 程! 科 学 家 们对核裂变已进行长期深入广泛的研究%为在 实验上更好地观测裂变物理过程和获得更多的 裂变物理数据! 目前! 国际上多个实验室建立了
=> 裂变多参数 实 验 测 量 系 统 )F *% 这 类 系 统 能 够
同时测 量 裂 变 的 瞬 发 中 子& 发  射 线& 射 瞬 L
收稿日期) E)F=# " )F") 修回日期) E)F) " )FA" 基金项目 国家自然科学基金资助项目") E ) *!) E ) * =!A# =!#= $ 作者简介 屈丛会"@ =($ 女! ! 河北石家庄人! 硕士研究生! 粒子物理与原子核物理专业 =* 黎光武!K. .27 ' 7 / 1 " 通讯作者 4 &/ ' /

相关文档