文档库 最新最全的文档下载
当前位置:文档库 › 矩形微带天线

矩形微带天线

矩形微带天线
矩形微带天线

一.微带天线简介

微带天线的概念首先是有Deschaps于1953年提出来的,经过20年左右的发展,Munson和Howell于20世纪70年代初期造出了实际的微带天线。微带天线由于具有质量轻、体积小,易于制造等优点,现今已经广泛应用于个人无线通信中。

上图是一个简单的微带贴片天线的结构,由辐射元、介质层和参考地三部分组成。与天线性能相关的参数包括辐射元的长度L、辐射元的宽度W、介质层的厚度h、介质的相对介点常数ε和损耗正切tanδ、介质的长度LG和宽度WG。图中所示的天线是采用微带线来馈电的,本次我要设计的矩形微带贴片天线采用的是同轴线馈电,也就是将同轴线接头的内芯线穿过参考地和介质层与辐射元相连接。

对于矩形贴片微带天线,理论分析时采用传输线模型来分析其性能。矩形贴片微

带天线的工作模式是TM 10模,意味着电场在长度L 方向上有λg /2的改变,而在

宽度W 方向上保持不变,如图所示,在长度方向上可以看成有两个终端开路的缝隙辐射出电磁能量,在宽度方向的边缘由于终端开路,所以电压值最大电流值最小。从图中可以看出微带线边缘的电场可以分解成垂直参考地的分量和平行于参考地的分量两部分,两个边缘的垂直电场分量大小相等、方向相反,平行电场分量大小相等、方向相反;因此,远区辐射电场垂直分量相互抵消,辐射电场平行于天线表面。

假设矩形贴片的有效长度设为L e ,则有

L e =λg /2

式中,λg 表示导波波长,有

λg =λ0/ε

式中,λ0表示自由空间波长;εe 表示有效介电常数,且

εe =21)121(2121-+-++w h εε

式中,εr 表示介质的相对介电常数;h 表示介质厚度;w 表示微带贴片的宽度。

因此,可计算出矩形贴片的实际长度L ,有

L=L e -2ΔL=λ0/e ε-2ΔL=

2102-e f c εΔL 式中,c 表示真空中的光速;f 0表示

ΔL 表示等效的辐射缝隙的长度,且有

ΔL=0.412h

()()()()

8.0264.0258.03.0++-+h W h W εε 矩形贴片的宽度W 可以由下式计算, W=21

2102-??? ??+εf c

对于同轴线馈电的微带贴片天线,在确定了贴片长度L 和宽度W 之后,还需要确定同轴线馈点的位置,馈点的位置会影响天线的输入阻抗。在微波应用中通常是使用50Ω的标准阻抗,因此需要确定馈点的位置使天线的输入阻抗等于50Ω.

对于如图所示的同轴线馈电的微带贴片天线,坐标原点位于贴片的中心以 (x f ,y f )表示馈点的位置坐标。

对于TM 10模式,在W 方向上的电场强度不变,因此理论上的W 方向上的任一点都

可以作为馈点,为了避免激发TM 1n 模式,在W 方向上的馈点的位置一般取在中心

点,即

y f =0

在L 方向上电场有λg /2的改变,因此在长度L 方向上,从中心点到两侧,阻抗

逐渐变大;输入阻抗等于50Ω时的馈点可以由下式计算,

x f =

)(2L L ξ 式中, )121(2121

21)(l h L +--++=εεξ

上述分析都是基于参考地平面是无限大的基础上的,然而实际设计中,参考地都是有限面积的,理论分析证明来了当参考地平面比微带贴片大出6h 的距离时,计算结果就可以达到足够的准确,因此设计中参考地的长度L GND 和宽度W GND 只需

要满足以下条件即可,

L GND ≥L+6h

W GND ≥W+6h

二.设计指标和天线结构参数计算

我这次设计的矩形微带天线工作于ISM 频段,其中心频率为2.45GHz ;无线

局域网(WLAN )、蓝牙、ZigBee 的无线网络均可以工作在该频段上。选用的介质板材为Rogers R04003,其相对介电常数εr =3.38,厚度h=5mm ;天线使用同轴

线馈电。微带天线的三个关键参数如下:工作频率f 0=2.45GHz ;介质板材的相对

介电常数εr =3.38;介质厚到h=5mm 。

1.矩形贴片的宽度W

把c=3.0×108

m/s ,f0=2.45GHz ,εr =3.38带入,可以计算出微带天线矩形

贴片的宽度,即

W=0.0414m=41.4mm 2.有效介电常数εr

把h=5mm ,W=41.4mm ,εr =3.38带入,可以计算出有效介电常数,即

εe =2.95

3.辐射缝隙的长度ΔL

把h=5mm ,W=41.4mm ,εe =2.95带入,可以计算出微带天线辐射缝隙的长度,

ΔL=2.34mm

4.矩形贴片的长度L

把c=3.0×108m/s,f0=2.45GHz,εe=2.95,ΔL=2.34mm带入可以计算出微带天线矩形贴片的长度,即

L=31.0mm

5.参考地的长度L GND和宽度W GND

把h=5mm,W=41.4mm,L=31.0mm分别带入,可以计算出微带天线参考地的长度和宽度,即

L

GND ≥61.8mm W

GND

≥71.4mm

6.同轴线馈点的位置坐标(x f,y f)

把ε

r

=3.38,W=41.4mm,L=31.0mm分别带入,可以计算出微带天线同轴线馈

点的位置坐标(x

f ,y

f

),即

x f =9.5mm y f =0mm

三.HFSS设计与建模概述

我本次所设计的天线使用同轴线馈电的微带结构,HFSS工程可以选择模式驱动求解类型。在HFSS中如果需要计算远区辐射场,必须设置辐射边界或者PML 边界表面,这里使用辐射边界条件。为了保证计算的准确性,辐射边界表面距离辐射源通常要大于1/4个波长。因此使用了辐射边界表面,所以同轴馈线的信号输入/输出端口位于模型内部,因此端口激励方式需要定义为集总端口激励。

天线的中心频率为2.45GHz,因此设置HFSS的求解频率为2.45GHz,同时添加1.5~3.5GHz的扫描设置,分析天线在1.5~3.5GHz频段内的回波损耗或者电压驻波比。如果天线的回波损耗或者电压驻波比扫频结果显示谐振频率没有落在2.45GHz上,还需要添加参数扫描分析,并进行优化设计,改变微带贴片的尺寸和同轴线馈点的位置,以达到良好的天线性能。

1.微带天线建模概述

使用HFSS设计的微带贴片天线模型如下,模型的中心位于坐标原点。

参考地和微带贴片使用理想导体来代替,在HFSS中可以通过给一个二维平面模型分配理想导体边界条件的方式来模拟理想薄导体。参考地放置于坐标z=0

≥61.8mm,的xOy平面上,由前面计算出的参考地的长度和宽度分别为长度L

GND

≥71.4mm,我所取的参考地的长度和宽度都取了90mm。介质层位于参考宽度W

GND

地的正上方,其高度为5mm,长度和宽度都取80mm。微带贴片放置与z=5的xOy 平面,由前面计算出其长度和宽度的初始值分别为L=31.0mm,宽度W=41.4mm;设置其长度沿着x轴方向,宽度沿着y轴方向。使用半径为0.5mm的圆柱体模拟同轴馈线的内芯,圆柱体与z轴平行放置,由前面计算可知圆柱体的底面圆坐标位于(9.5,0,0);设置圆柱体材质为理想导体(pec);圆柱体顶部于微带贴片相接,底部与参考地相接;在与圆柱体相接的参考地面上需要挖出一个半径为1.5mm的圆孔,作为信号输入输出端口,该端口的激励方式设置为集总端口激励。在模型建好之后,在设置辐射边界条件。辐射边界表面距离辐射源通常需要大于1/4波长,2.45GHz时自由空间中1/4波长约为35mm,所以在这里设置辐射边界表面距离微带天线模型35mm,整个微带天线模型的长×宽×高为90mm×90mm×5mm,所以辐射边界表面的长×宽×高可以设置为160mm×160mm×75mm。

为了方便后续参数扫描分析和优化设计,在建模时分别定义设计变量Length、Width和Xf来表示微带贴片的长度、宽度和同轴线的馈点位置。

2.HFSS设计环境概述

求解类型:模式驱动求解

建模操作

建模原型:长方体、圆柱体、矩形面、圆面

模型操作:相减操作

边界条件和激励

边界条件:理想导体边界、辐射边界

端口激励:集总端口激励

求解设置

求解频率:2.45Ghz

扫频设置:快速扫频,扫频范围为1.5~3.5GHz

Optimetrics

参数扫描分析

优化设计

数据后处理:S参数扫频曲线、VSWR、Smith圆图、天线方向图、天线参数

四.新建HFSS工程

1.运行HFSS并新建工程

双击桌面上的HFSS快捷方式,启动HFSS软件。HFSS运行后,会自动新建一个工程文件,选择主菜单【File】>【Save As】命令,从弹出的菜单中选择【Rename】命令项,把设计文件重新命名为Patch。

2.设置求解类型

设置当前设计为驱动求解类型。

从主菜单栏选择【HFSS】>【Solution Type】,打开如图所示的对话框,选择Driven Modal单选按钮,然后单击ok按钮,退出对话框,完成设置。

五.创建微带天线模型

1.设置默认的长度单位

设置当前设计在创建模型时使用的默认长度单位为毫米。

从主菜单栏选择【3D Modeler】>【Unite】命令,打开如图所示的“模型长度单位设置”对话框。在该对话框中,Select unite项选择毫米单位(mm),然后单击ok按钮,退出对话框,完成设置。

2.建模相关选项设置

从主菜单栏选择【Tools】>【Options】>【Modeler Options】命令,打开3D Modeler Options对话框,选中Drawing选项卡界面的Edit properties of new primitive复选框,如图所示。然后单击确定按钮,退出对话框,完成设置。

3.创建参考地

在z=0的xOy面上创建一个顶点位于(-45mm,-45mm),大小为90mm×90mm 的矩形面作为参考地,命名为GND,并分配理想导体边界条件。

(1)查看工具栏,确认三维模型窗口的当前工作平面为xOy面,即工具快捷方

式处显示。

(2)从主菜单栏选择【Draw】>【Rectangle】命令,进入创建矩形面模型的状态。在三维模型窗口的任一位置单击鼠标左键确定一个点;然后在xy面上移动鼠标光标,在绘制出一个矩形后单击鼠标左键确定第二个点,此时弹出矩形面“属性”对话框。

(3)单击该对话框的Command选项卡,在Position项对应的Value值处输入矩形面起始点坐标(-45,-45,0),在XSize项对应的Value处输入矩形面的长度90,YSize项对应的Value值输入矩形面的宽度90;然后单击对话框的Attribute 选修卡,在Name项对应的Value值处输入矩形面的名称GND,单击Transparent 项对应的Value值按钮,设置模型透明度为0.6,单击确定按钮结束。

(4)按下快捷键Ctrl+D(或者在菜单栏中【View】>【Fit All】>【Active View】),适合窗口大小全屏显示创建的矩形面模型。

(5)在三维模型窗口单击右键,从弹出菜单中选择【Assign Boundary】>【Perfect】打开如图所示的对话框,为选中的矩形面GND分配理想导体边界条件。

(6)在打开的对话框中,Name项对应的文本框处输入PerfE_GND,将理想导体边界命名为PerfE_GND,然后单击ok按钮结束。此时理想导体边界条件的名称会添加到工程树的Boundaries节点下。

4.创建介质板层

创建一个80mm×80mm×5mm的长方体作为介质板层,介质板层的底部位于参考地上,其顶点坐标为(-40,-40,0)介质板的材料为R04003,介质板命名为Substrate。

(1)从主菜单栏选择【Draw】>【Box】命令,画好一个矩形。此时弹出长方体的“属性”对话框。

(2)单击对话框Command选项卡,输入顶点坐标(-40,-40,0)长、宽和高80、80和5。

(3)单击对话框的Attribute选项卡,修改名字为Substrate,单击Material 项对应的Value值按钮,打开如下所示的对话框,搜索并选中介质材料Rogers R04003,然后单击确定按钮;单击Color项对应的Edit按钮,修改模型的颜色;单击Transparent项对应的Value值按钮,设置透明度为0.6;最后单击确定按钮,完成设置。

(4)按下快捷键Ctrl+D,适合窗口大小全屏显示的创建模型。

5.创建微带贴片

在z=0的xOy面上创建一个顶点坐标为(-15.5mm,-20.7mm,5mm),大小为31.0mm×41.4mm的矩形面作为贴片,命名为Patch,并为其分配理想导体边界条件。

(1)从主菜单栏选择【Draw】>【Rectange】命令,画出一个矩形面,弹出矩形面“属性”对话框。

(2)单击该对话框的Command选项卡,修改起始坐标(-15.5,-20.7,5),输入矩形面的长度31.0和宽度41.4.然后单击对话框的Attribute选项卡,修改名字为Patch;修改颜色;设置透明度为0.4;最后单击确定按钮。

(3)按下快捷键Ctrl+D,适合窗口大小全屏显示创建的模型。

(4)在操作历史树中,单击选择新建的微带贴片Patch,选中后的模型会高亮显示。

(5)在三维模型窗口单击右键,从弹出的菜单中选择【Assign Boundary】>【Perfect E】打开如下所示的对话框,给微带贴片Patch分配理想导体边界条件,并将理想导体边界命名为PerfE_Patch,然后单击确定。

6.创建同轴馈线的内芯

创建一个圆柱体作为同轴馈线的内芯,圆柱体的半径为0.5mm,长度为5mm,圆柱体底部圆心坐标为(9.5mm,0,0),材料介质为理想导体,同轴馈线命名为Feed。

(1)从主菜单栏中选择【Draw】>【Cylinder】命令,画出一个圆柱体,弹出“属性”对话框。

(2)单击该对话框的Command选项卡,输入底面圆心坐标(9.5,0,0),输入半径0.5,高度5

(3)单击对话框的Attribute选项卡,修改名字为Feed,设置长方体的材料为pec,然后单击确定按钮,完成设置。创建后的模型如下。

7.创建信号传输端口面

同轴线需要穿过参考地面,传输信号能量。因此需要在参考地面GND上开一个远孔允许能量传输。圆孔的半径为1.5mm,圆心坐标为(9.5mm,0,0),并将其命名为Port。

(1)从主菜单栏选择【Draw】>【Circle】命令,画好一个圆,弹出“属性”对话框。

(2)单击该对话框的Command选项卡,输入圆心坐标(9.5,0,0)输入半径1.5,然后单击Attribute选项卡,修改名字Port,最后单击确定,生成一个圆面port,跌加在参考地面GND上。

(3)按住Ctrl键,同时从操作历史树中按先后顺序单击选择面GND和Port;然后从主菜单选择【3D Modeler】>【Boolean】>【Substrate】命令,打开如下所示的对话框;确认对话框的Blank栏显示的是GND,Tool Parts栏显示的是Port,表明使用参考地模型GND减去圆面Port;为了保留圆面Port本身,请选中对话框的Clone tool objects before subtracting复选框。然后单击ok,执行操作。执行操作后,即从GND模型中挖去了一块与圆面一样大小的圆孔,同时保留了圆面Port本身。

(4)按下Ctrl+D,适合窗口大小全屏显示所以已创建的模型。

8.创建辐射边界表面

创建一个长方体,其顶点坐标为(-80,-80,-35),长方体的长,宽,高为160mm×160mm×75mm,长方体模拟自由空间,因此材质为真空,长方体命名为Air。创建好这样的一个长方体之后,设置其四周表面为辐射边界条件。

(1)从主菜单栏选择【Draw】>【Box】,画好一个长方体,弹出长方体“属性”对话框。

(2)单击对话框的Command选项卡,输入顶点坐标(-80,-80,-35),输入长,宽和高160,160和75.

(3)单击对话框的Attribute选项卡,修改名字为Air;查看Material项对应的Value值,确认其为真空;设置透明度为0.8,单击确定,完成设置。

(4)按下Ctrl+D快捷键,适合窗口大小全屏显示所有已创建的模型。

(5)在操作历史树中,单击选择新建的长方体Air。

(6)在三维模型窗口单击右键,从弹出的菜单中选择【Assign Boundary】>【Radiation】命令,打开如下对话框,直接单击对话框ok按钮,将长方体Air 四周设置为辐射边界条件。

自此,微带贴片天线的模型就完全创建好了。

六.设置激励端口

设置同轴线信号端口面(即圆面Port)的激励方式为集总端口激励。

(1)展开操作历史树下的Sheets节点,选择圆面Port;选中后,模型会高度显示。

(2)在三维模型窗口单击右键,从弹出的菜单中选择【Assign Excitation】>

【Lumped Port】打开如图所示的对话框,设置Port面为集总端口激励方式。

(3)在该对话框中,Name项对应的文本框输入端口激励名称P1;Resistance

和Reactance项分别输入50和0,然后单击下一步。

(4)在新打开的界面中,单击Integration Line项的None,从其下拉菜单表中单击New Line…,设置集总端口的积分校准线。在状态栏的X,Y和Z文本框中输入积分线起点坐标(10,0,0),然后按回车键确定;紧接着在状态栏的dX,dY和dZ文本框中输入1,0,0然后按回车确认;状态栏的输入状态如图所示。

(5)此时,退出设置积分线状态,回到“集总端口设置”对话框,单击下一步按钮直到结束,完成集总端口激励方式设置。

(6)设置完成后,集总端口激励P1会添加到工程树的Excitations节点下,单击Excitations节点左侧的+按钮,展开该节点,选中激励P1,然后单击工具

栏按钮,放大显示上面添加的激励端口P1,如图所示。1所指的就是积分校准线。

七.添加和使用变量

添加设计变量Length,初始值为31.0mm,用以表示微带贴片的长度;添加设计变量Width,初始值为41.4mm,用以表示微带贴片的宽度;添加设计变量Xf,初始值为9.5mm,用以表示同轴线的圆心点的X坐标。

1.添加设计变量

(1)从主菜单栏选择【HFSS】>【Design Properties】命令,打开“设计属性”对话框,单击对话框的Add…按钮,打开Add Property对话框。

(2)在对话框,Name项输入变量名Length,Value项输入变量的初始值31mm,然后单击ok按钮;此时,添加了变量Length。

(3)重复步骤(2),添加变量Width和Xf,其初始值分别为41.4mm和9.5mm。

(4)最后单击“设计属性”对话框的确定按钮,完成变量定义。

2.在模型中使用变量

使用变量Length和Width表示微带贴片Patch的长度和宽度,并设置微带贴片的起点坐标为(-Length/2,-Width/2,5mm)。使用变量Xf代替同轴馈线Feed 的底部圆心和集总端口Port的圆心在x方向的坐标。

(1)展开操作历史树下的Sheets节点,找到并展开Perfect E节点,在展开Perfect E节点下的Patch节点,双击Patch节点下的CreateRectangle,打开微带贴片Patch的“属性”对话框。

(2)在对话框中,把Position项对应的Value值由原来的(-15.5,-20.7,5)改为(-Length/2,-Width/2,5mm),把XSize和YSize项对应的Value值由原来的31和41.4改为变量Length和Width。

(3)单击确定,完成设置。

(4)重复步骤(1)在操作历史树pec节点下找到并展开Feed节点,在Feed 节点下双击CreateCylinder,打开同轴馈线Feed的“属性”对话框。在该对话框中,把Center Position项对应的Value值由原来的(9.5,0,0)改为(Xf,0,0),然后单击确定按钮完成。

(5)重复步骤(1)在操作历史书Sheets>Lumped Port节点下找到并展开Port,

在Port节点下双击CreateCircle,打开同轴馈线Feed的“属性”对话框。在该对话框中,把Center Position项对应的Value值由原来的(9.5,0,0)改为(Xf,0,0)。然后单击确定完成。

八.求解设置

本次设计的微带贴片天线中心频率在2.45GHz,因此设置HFSS的求解频率为2.45Ghz;同时添加1.5~3.5GHz的扫描设置,选择快速扫频类型,分析天线在1.5~3.5GHz频段的回波损耗或者电压驻波比。

1.求解设置

(1)右键单击工程树下的Analysis节点,从弹出的菜单中选择【Add Solution Setup】命令,打开如下的对话框。

(2)在该对话框中,Setup Name项保留默认名字,Solution项输入2.45GHz,Maximum Number of Passes项输入15,Maximum Delta S项输入0.02,其他项保持默认设置。然后单击确定按钮,完成设置。

(3)完成设置后,求解设置的名称Setup1会添加到工程树的Analysis节点下。

2.扫描设置

(1)展开工程树Analysis节点,选中求解设置项Setup1,单击右键,从弹出菜单中选择【Add Frequency Sweep】,打开Edit Sweep对话框,进行扫描设置。

(2)在该对话框中,Sweep Name项保留默认名称,Sweep Type项选择快速扫频类型Fast;在Frequency Setup栏,Type项现在LinearCount,start项输入1.5GHz,Stop项输入3.5Ghz,Count项输入41.然后单击ok按钮,完成扫频设置。

(3)设置完成后,扫频设置项的名称Sweep1会添加到工程树Analysis节点的Setup1下面。

九.设计检查和运行仿真分析

通过前面的操作,我们已经完成了模型创建和求解设置等HFSS设计的前期工作,接下来就可以运行仿真计算,并查看分析结果了。在运行仿真计算前,通常需要进行设计检查,检查设计的完整性和正确性。

从主菜单栏现在【HFSS】>【Validation】命令,进行设计检查。此时,会弹出如下所示的“检查结果显示”对话框,该对话框中的每一个项都显示图标√,表示当前的HFSS设计正确,完整。单击Close关闭对话框,准备运行仿真计算。

右键单击工程树下的Analysis节点,从弹出的菜单中选择【Analyze All】命令,进行仿真计算。仿真计算过程中,工作界面上的进度条窗口会显示出求解进度,信息管理窗口也会有相应的信息提示,并会在仿真计算完成后,给出完成提示信息。

.

十.查看天线的谐振点

查看天线信号端口回波损耗的扫描分析结果,给出天线的谐振点。

(1)右键单击工程树下的Results节点,在弹出菜单中选择【Output Variable】命令,打开报告设置对话框。

(2)在该对话框中,确定Solution项选择的是Setup1:Sweep1,Domain项选择的是Sweep,在Category栏选中S Parameter,Quantity栏选中S(P1,P1),Function栏选中dB。

(3)此时生成S11在1.5到3.5GHz的扫频曲线报告。

(4)单击选中的曲线,然后标记出曲线的最小值点m1,并在图中显示出最小点的坐标。可以看出,当频率为2.35GHz时,S11最小,S11最小值约为-15.1dB。

基于HFSS矩形微带贴片天线的仿真设计报告

.. .. .. 矩形微带贴片天线的仿真设计 实验目的:运用HFSS的仿真能力对矩形微带天线进行仿真 实验容:矩形微带天线仿真:工作频率7.55GHz 天线结构尺寸如表所示: 名称起点尺寸类型材料 Sub -14.05,-16,0 28.1,32,0.794 Box Rogers 5880 (tm)GND -14.05,-16,-0.05 28.1,32,0.05 Box pec Patch -6.225,-8,0.794 12.45 , 16, 0.05 Box pec MSLine -3.1125,-8,0.794 2.49 , -8 , 0.05 Box pec Port -3.1125,-16,-0.05 2.49 ,0, 0.894 Rectangle Air -40,-40,-20 80,80,40 Box Vacumn 一、新建文件、重命名、保存、环境设置。 (1)、菜单栏File>>save as,输入0841,点击保存。 (2). 设置激励终端求解方式:菜单栏HFSS>Solution type>Driven Termin ,点击OK。

(3)、设置模型单位:3D Modeler>Units选择mm ,点击OK。 (4)、菜单栏Tools>>Options>>Modeler Options,勾选”Edit properties of new pri”, 点击OK。 二、建立微带天线模型 (1)、插入模型设计 (2)、重命名

输入0841 (3)点击创建GND,起始点:x:-14.05,y:-16,z:-0.05,dx:28.1,dy:32,dz:0.05 修改名称为GND, 修改材料属性为 pec, (4)介质基片:点击,:x:-14.05,y:-16,z:0。dx: 28.1,dy: 32,dz: 0.794, 修 改名称为Sub,修改材料属性为Rogers RT/Duriod 5880,修改颜色为绿色,透明度0.4。

矩形微带天线设计与分析

矩形微带天线设计与分析 万聪,沈诚诚, 王一平 2011级通信2、4班 沈诚诚:主要负责资料准备与整理 王一平:主要负责论文的格式与后期资料扩充 万聪:主要负责设计模型 三人共同学习hfss软件设计模型,共同参与讨论编写论文,发扬团结合作的精神,克服所遇到问题,完成好老师布置的作业。 摘要:微带天线以其体积小、重量轻、低剖面等独特的优点引起了相关领域的广泛重视,已经被广泛应用在1OOMHz—1OOGHz的宽广频域上的大量的无线电设备中。本文介绍了一种谐振频率为2.45GHz,天线输入阻抗为50Ω的使用同轴线馈电的矩形微带天线。本论文给出了详细的设计流程:根据理论经验公式初步计算出矩形微带天线的尺寸,然后在HFSS里建模仿真,根据仿真结果反复调整天线的尺寸,直到仿真结果中天线的中心频率不再偏离2.44GHz为止。微带天线固有的缺陷是窄带性,它的窄带性主要是受尺寸的影响,在不改变天线中心频率的前提下,通过理论经验公式与仿真软件的结合,给出了微带天线比较合理的尺寸。通过HFSS 13.0软件对该天线进行仿真、优化,最终得到最佳性能。 关键词:微带天线、谐振频率、HFSS

Abstract: the microstrip antenna has attracted wide attention from related fields with the advantages of small volume, light weight, low profile, unique, a lot of radio equipment has been widely applied in broad frequency range 1OOMHz - 1OOGHz of the. This paper introduces a 2.45GHz resonant frequency, input impedance of the antenna for the rectangular microstrip antenna using a 50 ohm coaxial feed. This paper gives a detailed design process: according to the theory of empirical formula calculated the size of rectangular microstrip antenna, then modeling and Simulation in HFSS, repeated adjustment according to the simulation results of the antenna size, until the simulation results in the center frequency antenna can not depart from the 2.44GHz to stop. The inherent defects of microstrip antenna is narrow, narrow band it is mainly affected by the size, in the premise of not changing the antenna center frequency, through a combination of theoretical formula and simulation software, the reasonable size of microstrip antenna. The antenna is simulated by HFSS 13 software, optimization, and ultimately get the best performance. Keywords: microstrip antenna, resonant frequency, HFSS

微带天线设计

08通信 陆静晔0828401034

微带天线设计 一、实验目的: ● 利用电磁软件Ansoft HFSS 设计一款微带天线 ? 微带天线的要求:工作频率为2.5GHz ,带宽(S11<-10dB )大于5%。 ● 在仿真实验的帮助下对各种微波元件有个具体形象的了解。 二、实验原理: 微带天线的概念首先是由Deschamps 于1953年提出来的,经过20年左右的发展,Munson 和Howell 于20世纪70年代初期制造出了实际的微带天线。微带天线由于具有质量轻、体积小、易于制造等优点,现今已经广泛应用于个人无线通信中。 图1-1是一个简单的微带贴片天线的结构,由辐射源、介质层和参考地三部分组成。与天线性能相关的参数包括辐射源的长度L 、辐射源的宽度W 、介质层的厚度h 、介质的相 对介电常数εr 和损耗正切tan δ、介质层的长度LG 和宽度WG 。图1-1 所示的微带贴片天线是采用微带线来馈电的,本次将要设计的矩形微带贴片天线采用的是同轴线馈电,也就是将同轴线接头的内芯线穿过参考地和介质层 与辐射源相连接。 对于矩形贴片微带天线,理论分析时可以采用传输线模型来分析其性能。矩形贴片微带天线的工作主模式是TM 10模,意味着电场在长度L 方向上有λg /2的改变,而在宽度W 方向上保持不变,如图1-2(a )所示,在长度L 方向上可以看作成有两个终端开路的缝隙辐射出电磁能量,在宽度W 方向的边缘由于终端开路,所以电压值最大电流值最小。从图1-2(b )可以看出,微带线边缘的电场可以分解成垂直于参考地的分量和平行于参考地的分量两部分,两个边缘的垂直分量大小相等、方向相反,平行电场分量大小相等、方向相反;因此,远区辐射电场垂直分量相互抵消,辐射电场平行于天线表面。 图1-1

微带天线仿真设计(5)讲解

太原理工大学现代科技学院 微波技术与天线课程设计 设计题目:微带天线仿真设计(5) 专业班级 学号 姓名 指导老师

专业班级 学号 姓名 成绩 设计题目:微带天线仿真设计(5) 一、设计目的: 通过仿真了解微带天线设计 二、设计原理: 1、微带天线的结构 微带天线是由一块厚度远小于波长的介质板(成为介质基片)和(用印刷电路或微波集成技术)覆盖在他的两面上的金属片构成的,其中完全覆盖介质板一片称为接触板,而尺寸可以和波长想比拟的另一片称为辐射元。 微带天线的馈电方式分为两种,如图所示。一种是侧面馈电,也就是馈电网络与辐射元刻制在同一表面;另一种是底馈,就是以同轴线的外导体直接与接地板相连,内导体穿过接地板和介质基片与辐射元相接。 微带天线的馈电 (a )侧馈 (b )底馈 2、微带天线的辐射原理 用传输线模分析法介绍矩形微带天线的辐射原理。矩形贴片天线如图: … …………… …… …… …… … …装 …… …… …… …… … …… …… …… 订… …… … …… …… …… …… …… … …线 …… …… …… …… … …… …… ……

设辐射元的长为L,宽为ω,介质基片的厚度为h。现将辐射元、介质基片和接地板视为一段长为L的微带传输线,在传输线的两端断开形成开路,根据微带传输线的理论,由于基片厚度h<<λ,场沿h方向均匀分布。在最简单的情况下,场沿宽度ω方向也没有变化,而仅在长度方向(L≈λ/2)有变化。在开路两端的电场均可以分解为相对于接地板的垂直分量和水平分量,两垂直分量方向相反,水平分量方向相同,因而在垂直于接地板的方向,两水平分量电场所产生的远区场同向叠加,而两垂直分量所产生的场反相相消。因此,两开路端的水平分量可以等效为无限大平面上同相激励的两个缝隙,缝的电场方向与长边垂直,并沿长边ω均匀分布。缝的宽度△L≈h,长度为ω,两缝间距为L≈λ/2。这就是说,微带天线的辐射可以等效为有两个缝隙所组成的二元阵列。 经过查阅资料,可以知道微带天线的波瓣较宽,方向系数较低,这正是微带天线的缺点,除此之外,微带天线的缺点还有频带窄、损耗大、交叉极化大、单个微带天线的功率容量小等.在这个课设中,借助EDA仿真软件Ansoft HFSS进行设计和仿真。Ansoft公司推出的基于电磁场有限元方法(FEM)的分析微波工程问题的三维电磁仿真软件,Ansoft HFSS 以其无与伦比的仿真精度和可靠性,快捷的仿真速度,方便易用的操作界面,稳定成熟的自适应网格剖分技术,使其成为高频结构设计的首选工具和行业标准,并已广泛应用于航

用ADS设计微带天线.

用ADS 设计微带天线 一、原理 本微带天线采用矩形微带贴片来进行设计。 假设要设计一个在2.5GHz 附近工作的微带天线。我采用的介质基片, εr= 9.8, h=1.27mm 。理由是它的介电系数和厚度适中,在2.5GHz 附近能达到较高的天线效率。并且带宽相对较高。 由公式:2 /1212-? ? ? ??+=r r f c W ε=25.82mm 贴片宽度经计算为25.82mm 。 2 /1121212 1-?? ? ?? +-+ += w h r r e εεε=8.889; ()()()()8.0/258.0264.0/3.0412.0+-++=?h w h w h l e e εε ?l=0.543mm ; 可以得到矩形贴片长度为: l f c L e r ?-= 22ε=18.08mm 馈电点距上边角的距离z 计算如下: ) 2( cos 2 ) (cos 2)(5010 2 2z R z G z Y e r in ?===λεπβ 2 20 90W R r λ= (0λ<

计算结果:在这类介质板上,2.5GHz时候50Ω传输线的宽度为1.212mm。 二、计算 基于ADS系统的一个比较大的弱点:计算仿真速度慢。特别是在layout下的速度令人无法承受,所以先在sonnet下来进行初步快速仿真。判断计算值是否能符合事实。 sonnet中的仿真电路图如下:

S11图象如下: 可见,按照公式计算出来的数据大致符合事实上模拟出来的结果。但是发现中心频率发生了偏移,这主要是由于公式中很多的近似引起的。主要的近似是下面公式引起 2 20 90W R r λ= (0λ<

900MHz同轴馈电矩形微带天线设计与HFSS仿真

900MHz 同轴馈电矩形微带天线设计与HFSS 仿真 微带天线它是在一块厚度远小于工作波长的介质基片的一面敷以金属辐射片、一面敷以金属薄层做接地板而成。辐射片可以根据不同的要求设计成各种形状。 微带天线馈电有多种馈电方式,如微带线馈电、同轴线馈电、耦合馈电和缝隙馈电等。其中,最常用的是微带线馈电和同轴线馈电两种馈电方式。 同轴线馈电又称背馈,它是将同轴插座安装在接地板上,同轴线内的导体穿过介质基片接在辐射贴片上。若寻取正确的馈电点位置,就可以获得良好的匹配。 1 矩形微带天线的特性参数 1.1 微带辐射贴片尺寸估算 设计微带天线的第一步是选择合适的介质基片,假设介质的介电常数为r ε,对于工作频率f 的矩形微带天线,可以用下式设计出高效率辐射贴片的宽度ω,即为: 2 1 )2 1(2-+=r f c εω(1) 式中,c 是光速,8 10*3=c 。 辐射贴片的长度一般取为 2 e λ,e λ是介质内的导波波长,即为: e e f c ελ= (2) 式中,e ε是有效介电常数,即为: 2 1 )121(2 1 2 1 -+-+ += ω εεεh r r e (3) 考虑到边缘缩短效应后,实际上的辐射单元长度L 应为: L f c L e ?-= 22ε(4) 式中,L ?是等效辐射缝隙长度,即为: ) 8.0)(258.0() 264.0)(3.0(412.0+-++=?h h h L e e ωεωε(5)

2. 同轴馈电矩形微带天线设计 在使用同轴馈电时,在阻抗匹配方面,在主模10TM 工作模式下,馈电点在矩形辐射贴片长度L 方向边缘处(x=±L/2)的输入阻抗最高,约为100Ω-400Ω。馈电点在宽度ω方向的位移对输入阻抗的影响很小。但在宽度方向上偏离中心位置时,会激发n TM 1模式,增加天线的交叉极化辐射。因此,宽度方向上馈电点的位置一般取在中心点。 由下式可以近似计算出输入阻抗为50Ω时的馈电点的位置: )1 1(2 1re L L ξ- = (6) 式中, 2 1 )121(21 2 1 )(-+-+ += L h L r r re εεξ(7) 3. 设计要求 使用HFSS 设计中心频率为915MHz 的矩形微带天线,并给出天线参数。介质基片采用厚度为1.6mm 的RF4环氧树脂板,天线馈电方式采用50Ω同轴线馈电。 x 图1 同轴馈电俯视图 天线初始尺寸的计算: 辐射贴片宽度:mm 77.99=ω 辐射贴片长度:mm L 89.77= 50Ω匹配点初始位置1L ,计算出初始位置后,然后再使用HFSS 的参数扫描分析和优化设计功能,分析给出50Ω匹配点的实际位置即可,mm L 91.191=。

矩形微带天线设计

班级: 姓名: 学号: 指导教师:徐维 成绩: 电子与信息工程学院 信息与通信工程系

1微带天线简介 微带天线的概念首先是有Deschaps 于1953年提出来的,经过20年左右的发展,Munson 和Howell 于20世纪70年代初期造出了实际的微带天线。微带天线由于具有质量轻、体积小,易于制造等优点,现今已经广泛应用于个人无线通信中。 假设矩形贴片的有效长度设为L e ,则有 L e =λg /2 式中,λg 表示导波波长,有 λg =λ0/ε 式中,λ0表示自由空间波长;εe 表示有效介电常数,且 εe =21)121(2121-+-++w h εε 式中,εr 表示介质的相对介电常数;h 表示介质厚度;w 表示微带贴片的宽度。 因此,可计算出矩形贴片的实际长度L ,有 L=L e -2ΔL=λ0/e ε-2ΔL=2102-e f c εΔL 式中,c 表示真空中的光速;f 0表示天线的工作频率;ΔL 表示等效的辐射缝隙的长度,且有 ΔL=0.412h ()()()() 8.0264.0258.03.0++-+h W h W εε 矩形贴片的宽度W 可以由下式计算, W=21 2102-??? ??+εf c 对于同轴线馈电的微带贴片天线,在确定了贴片长度L 和宽度W 之后,还需要确定同轴线馈点的位置,馈点的位置会影响天线的输入阻抗。在微波应用中通常是使用50Ω的标准阻抗,因此需要确定馈点的位置使天线的输入阻抗等于50Ω.对于如图所示的同轴线馈电的微带贴片天线,坐标原点位于贴片的中心以(x f ,y f )表示馈点的位置坐标。

对于TM 10模式,在W 方向上的电场强度不变,因此理论上的W 方向上的任一点都可以作为馈点,为了避免激发TM 1n 模式,在W 方向上的馈点的位置一般取在中心点,即 y f =0 在L 方向上电场有λg /2的改变,因此在长度L 方向上,从中心点到两侧,阻抗逐渐变大;输入阻抗等于50Ω时的馈点可以由下式计算, x f =) (2L L ξ 式中, )121(2121 21)(l h L +--++=εεξ 上述分析都是基于参考地平面是无限大的基础上的,然而实际设计中,参考地都是有限面积的,理论分析证明来了当参考地平面比微带贴片大出6h 的距离时,计算结果就可以达到足够的准确,因此设计中参考地的长度L GND 和宽度W GND 只需要满足以下条件即可, L GND ≥L+6h W GND ≥W+6h 2设计指标和天线结构参数计算 我这次设计的矩形微带天线工作于ISM 频段,其中心频率为 2.45GHz ;无线局域网(WLAN )、蓝牙、ZigBee 的无线网络均可以工作在该频段上。选用的介质板材为Rogers R04003,其相对介电常数εr =3.38,厚度h=5mm ;天线使用同轴线馈电。微带天线的三个关键参数如下:工作频率f 0=2.45GHz ;介质板材的相对介电常数εr =3.38;介质厚到h=5mm 。 1.矩形贴片的宽度W 把c=3.0×108 m/s ,f0=2.45GHz ,εr =3.38带入,可以计算出微带天线矩形贴片的宽度,即 W=0.0414m=41.4mm

矩形微带天线

一.微带天线简介 微带天线的概念首先是有Deschaps于1953年提出来的,经过20年左右的发展,Munson和Howell于20世纪70年代初期造出了实际的微带天线。微带天线由于具有质量轻、体积小,易于制造等优点,现今已经广泛应用于个人无线通信中。 上图是一个简单的微带贴片天线的结构,由辐射元、介质层和参考地三部分组成。与天线性能相关的参数包括辐射元的长度L、辐射元的宽度W、介质层的厚度h、介质的相对介点常数ε和损耗正切tanδ、介质的长度LG和宽度WG。图中所示的天线是采用微带线来馈电的,本次我要设计的矩形微带贴片天线采用的是同轴线馈电,也就是将同轴线接头的内芯线穿过参考地和介质层与辐射元相连接。 对于矩形贴片微带天线,理论分析时采用传输线模型来分析其性能。矩形贴片微

带天线的工作模式是TM 10模,意味着电场在长度L 方向上有λg /2的改变,而在 宽度W 方向上保持不变,如图所示,在长度方向上可以看成有两个终端开路的缝隙辐射出电磁能量,在宽度方向的边缘由于终端开路,所以电压值最大电流值最小。从图中可以看出微带线边缘的电场可以分解成垂直参考地的分量和平行于参考地的分量两部分,两个边缘的垂直电场分量大小相等、方向相反,平行电场分量大小相等、方向相反;因此,远区辐射电场垂直分量相互抵消,辐射电场平行于天线表面。 假设矩形贴片的有效长度设为L e ,则有 L e =λg /2 式中,λg 表示导波波长,有 λg =λ0/ε 式中,λ0表示自由空间波长;εe 表示有效介电常数,且 εe =21)121(2121-+-++w h εε 式中,εr 表示介质的相对介电常数;h 表示介质厚度;w 表示微带贴片的宽度。 因此,可计算出矩形贴片的实际长度L ,有 L=L e -2ΔL=λ0/e ε-2ΔL= 2102-e f c εΔL 式中,c 表示真空中的光速;f 0表示 ΔL 表示等效的辐射缝隙的长度,且有 ΔL=0.412h ()()()() 8.0264.0258.03.0++-+h W h W εε 矩形贴片的宽度W 可以由下式计算, W=21 2102-??? ??+εf c 对于同轴线馈电的微带贴片天线,在确定了贴片长度L 和宽度W 之后,还需要确定同轴线馈点的位置,馈点的位置会影响天线的输入阻抗。在微波应用中通常是使用50Ω的标准阻抗,因此需要确定馈点的位置使天线的输入阻抗等于50Ω. 对于如图所示的同轴线馈电的微带贴片天线,坐标原点位于贴片的中心以 (x f ,y f )表示馈点的位置坐标。

矩形微带贴片天线设计及仿真

《现代电子电路》课程设计题目矩形微带天线的设计与仿真 单位(院、系):信息工程学院 学科专业: 电子与通信工程 学号:416114410159 姓名:曾永安 时间:2011.4.25

矩形微带天线的设计与仿真 学科专业:电子与通信工程学号:416114410159 姓名:曾永安指导老师:吴毅强 摘要:本文介绍了一种谢振频率为2.45GHz,天线输入阻抗为50Ω的使用同轴线馈电的矩形微带天线。通过HFSS V10软件对该天线进行仿真、优化,最终得到最佳性能。 关键词:HFSS,微带线,天线

Design and Simulation of Rectangular Microstrip Antenna Abstract:This paper introduces a rectangular microstrip antenna which works at resonance frequency of 2.45GHz and antenna input impedance of 50Ω and is fed by coaxial cable. The model of the antenna is set up a nd simulated by ANSOFT HFSS V10 ,and the optimal parameters of the microstrip antenna are obtained as well. Key words:HFSS,Microstrip,Antenna

1.引言 微带天线的概念首先是由Deschamps于1953年提出来的,经过20多年的发展,Munson和Howell于20世纪70年代初期制造了实际的微带天线。微带天线结构简单,体积小,能与载体共形, 能和有源器件、电路等集成为统一的整体,已被大量应用于100MHz~100GHz宽频域上的无线电设备中, 特别是在飞行器和地面便携式设备中得到了广泛应用。微带天线的特征是: 比通常的微波天线有更多的物理参数, 可以有任意的几何形状和尺寸;能够提供50Ω输入阻抗,不需要匹配电路或变换器;比较容易精确制造, 可重复性较好;可通过耦合馈电, 天线和RF电路不需要物理连接;较易将发射和接收信号频段分开;辐射方向图具有各向同性。本文设计的矩形微带天线工作于ISM频段,其中心频率为2.45GHz;无线局域网、蓝牙、ZigBee等无线网络均可工作在该频段上。选用的介质板材为Rogers R04003,其相对介电常数εr=3.38,厚度h=5mm;天线使用同轴线馈电。 2.微带贴片天线理论分析 图1是一个简单的微带贴片天线的结构,由辐射元、介质层和参考地三部分组成。与天线性能相关的参数包括辐射元的长度L、辐射元的宽度W、介质层的厚度h、介质的相对介电常数 r和损耗角正切tanδ、介质层的长度LG和宽度WG。图1所示的微带贴片天线采用微带线馈电,本文将要设计的矩形微带天线采用的是同轴线馈电,也就是将同轴线街头的内芯线穿过参考点和介质层与辐射元相连接。 图1 微带天线的结构

HFSS矩形微带贴片天线的仿真设计报告

基于HFSS矩形微带贴片天线的仿真设计 实验目的:运用HFSS的仿真能力对矩形微带天线进行仿真实验内容:矩形微带天线仿真:工作频率 天线结构尺寸如表所示: 一、新建文件、重命名、保存、环境设置。 (1)、菜单栏File?save as,输入Antenna,点击保存。 (2).设置激励终端求解方式:菜单栏HFSS>Solution type>Driven Termin ,点击OK (3)、设置模型单位:3D Modeler>Units 选择mm,点击OK (4)、菜单栏Tools>>Options>>Modeler Options, 勾选” Edit properties of new pri ” ,点击OK 二、建立微带天线模型 (1)点击三仓U 建GND,起始点:x:0 ,y:0 ,z: ,dx:,dy:32,dz:

(2) 介质基片:点击 :比,:x:0, y:0 , z:0。dx: , dy: 32 , dz:-, 修改名称为Sub,修改 材料属性为 Rogers RT/Duriod 5880,修改颜色为绿色 点击OK (3) 建立天线模型patch , 点击^已,x:,y: 8, z:0 ,dx: ,dy: 16 ,dz: 命名为patch ,点击OK (4) 建立天线模型微带线 MSLine 点击’硏,x:,y: 0, ,z: 0 , dx: ,dy: 8 ,dz:, 命名为MSLine,材料pec,透明度 选中 Patch 和 MSLine,点击 Modeler>Boolean>Unite (5) 、建立端口。创建供设置端口用的矩形,该矩形连接馈线与地 Modeler>Grid Plane>XZ ,或者设置回厂刁冈 习 点击 e ,创建Port 。命名为port 双击 Port 下方 CreatRectangle 输入:起始点:x: ,y: 0,z:-,尺寸:dx: ,dy: 0 ,dz: (6) 、创建 Air 。 点击1 ,x:-5 ,y:-5 ,z:, dx:, dy:42, dz: 修改名字为Air ,透明度. 三、设置边界条件和端口激励。 (1)设置理想金属边界:选择 GND 右击Assign Boundaries>>Pefect E 将理想边界命名为:PerfE_GND ,点击OK (2)、设置边界条件:选择 Port ,点击 Assign Boundaries>>Pefect E 在对话框中将其命名为 PerfE_Patch ,点击0K ,透明度。 修改名称为GND,修改材料属性为pec ,

天线CAD大作业微带天线设计

天线CAD大作业 学院:电子工程学院 专业:电子信息工程

微带天线设计 一、设计要求: (1)工作频带1.1-1.2GHz ,带内增益≥4.0dBi ,VSWR ≤2:1。微波基板介电常数为r ε = 6,厚度H ≤5mm ,线极化。总结设计思路和过程,给出具体的天线结构参数和仿真结果,如VSWR 、方向图等。 (2)拓展要求:检索文献,学习并理解微带天线实现圆极化的方法,尝试将上述天线设计成左旋圆极化天线,并给出轴比计算结果。 二、设计步骤 计算天线几何尺寸 微带天线的基板介电常数为r ε= 6,厚度为 h=5mm,中心频率为 f=1.15GHz,s m /103c 8?=天线使用50Ω同轴线馈电,线极化,则 (1)辐射切片的宽度2 1 )2 1(2-+=r f c w ε=69.72mm (2)有效介电常数2 1)12 1(2 1 2 1 r e - +-+ += w h r εεε=5.33 (3)辐射缝隙的长度) 8.0/)(258.0() 264.0/)(3.0(h 412.0+-++=?h w e h w e L εε=2.20 (4)辐射切片的长度L e f c L ?-=22ε=52.10mm (5)同轴线馈电的位置L1 21 )121(21 2 1)(re - +-++= L h r r L εεξ=5.20 )1 1(21re L L ξ-= =14.63mm 三、HFSS 设计 (1)微带天线建模概述 为了方便建模和后续的性能分析,在设计中定义一系列变量来表示微带天线的结构尺寸,变量的定义及天线的结构尺寸总结如下:

微带天线的HFSS设计模型如下: 立体图俯视图 模型的中心位于坐标原点,辐射切片的长度方向沿着x轴,宽度方向沿着y 轴。介质基片的大小是辐射切片的2倍,参考地和辐射切片使用理想导体来代替。对于馈电所用的50Ω同轴线,这用圆柱体模型来模拟。使用半径为0.6mm、坐标为(L1,0,0);圆柱体顶部与辐射切片相接,底部与参考地相接,及其高度使用变量H表示;在与圆柱体相接的参考地面上需要挖一个半径为1.5mm的圆孔,作为信号输入输出端口,该端口的激励方式设置为集总端口激励,端口归一化阻抗为50Ω。模型建立好后,设置辐射边界条件。辐射边界表面距离辐射源通常需要大于1/4波长,1.15GHz时自由空间中1/4个波长约为65.22mm,用变量length 表示。 (2) HFSS设计环境概述 *求解类型:模式驱动求解。 *建模操作 ①模型原型:长方体、圆柱体、矩形面、圆面。 ②模型操作:相减操作 *边界条件和激励 ①边界条件:理想导体边界、辐射边界。 ②端口激励:集总端口激励。 *求解设置:

GHz矩形微带贴片天线设计

燕山大学 课程设计说明书 题目: 基于ADS的矩形微带贴片天线的设计 学院(系):理学院 年级专业:电子信息科学与技术13 学号: 学生姓名:张凤麒任春宇 指导教师:徐天赋 教师职称:副教授 燕山大学课程设计(论文)任务书 院(系):理学院基层教学单位:电子信息科学与技术13

说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。年月日燕山大学课程设计评审意见表

基于ADS的矩形微带贴片天线设计 The Design of Rectangular microstrip patch antenna with ADS 摘要:本文研究了通信系统中的矩形微带贴片天线。首先介绍了矩形微带贴片的背景及微带馈电的设计考虑。使用了安捷伦辅助仿真工具ADS对2GHz矩形微带贴片天线结构及相应的参数进行了设置仿真及优化,尽可能达到其相应的技术指标。 Abstract:This paper studies the rectangular microstrip patch antenna in communication system. Firstly, the background of rectangular microstrip patch and the design considerations of microstrip feed are introduced. The microstrip patch antenna structure and corresponding parameters of 2GHz rectangular microstrip patch antenna are simulated and optimized by ADS, and the corresponding technical index is reached as far as possible. 关键词:矩形微带贴片天线 ADS 设计 Keyword:Rectangular microstrip patch antenna ADS design 一.矩形微带贴片天线的背景 微带贴片天线由于具有质量轻、体积小,易于制造等优点,现今已经广泛应用于个人无线通信中。微带贴片天线由接地板、介质基片和介质基片上的辐射贴片构成的,其中辐射贴片可以是任意的几何形状,但是只有有限的几何形状能计算出辐射特性,比如矩形,圆形,椭圆形,三角形、半圆形、正方形等比较规则的几何形状,其中矩形和圆形贴片的研究最多,可以作为单独的天线使用也可以作为阵元使用。当然在实际应用中,也有矩形和圆形贴片达不到要求的情况,这就促使了人们对各种几何形状微带贴片天线的研究。本文选用矩形贴片来研究微带天线。

北大天线理论课件:第六章__微带天线

第六章 缝隙天线与微带天线 §6.1 缝隙天线 缝隙天线:开在波导或谐振腔上缝隙,用以辐射或接收电磁波。 6.1.1 理想缝隙天线 理想缝隙天线:开在无限大、无限薄的理想导体平面上的直线缝隙,用同轴传输线激励。 假设位于yoz 平面上的无限大理想导体平面上开有宽度为ω (λω <<)、长度2/2λ=l 的缝隙。缝隙被激励后,只存在垂直 于长边的切向电场,并对缝隙的中点呈对称驻波分布,其表达示为: ()()[]y m e z l k E z E ?sin --= m E ---缝隙中间波腹处的场强值。 缝隙相当于一个磁流源,由电场分布可得到等效磁流密度为: ()[]()[]? ??<-->-=?-==0,?sin 0,?sin ?0 x e z l k E x e z l k E E n J z m z m z m 等效磁流强度为:

()[]()[]? ??<-->-=?=?0,sin 20,sin 2x z l k E x z l k E l d E I m m l m ωω 也就是说,缝隙可等效成沿Z 轴放置的、与缝隙等长的线状磁对 称阵子。 根据对偶原理,磁对称阵子的辐射场可由电对称阵子的辐射场对偶得出。对于电对称阵子,电流分布为: )(sin )(z l k I z I -= 辐射场表达式: θ θθsin )cos()cos cos(60kl kl r Ie j E jkr -=- ()()? ?π?sin cos cos cos 2kl kl r Ie j H jkr -=- 由此得到0>x 半空间,磁对称阵子的辐射场为: ()()? ?πω? sin cos cos cos kl kl r e E j E jkr m m --=- ()? ?μεπωθ sin cos cos cos kl kl r e E j H jkr m m -=- 在0

一种L型探针馈电的微带共形天线设计

一种L型探针馈电的微带共形天线设计 【摘要】微带贴片天线以其剖面小、体积小、结构简单等优点在近年来得到了极大的发展,尤其是运用在机载共形天线上。本文结合L型探针的馈电方式,并综合使用了加载短路探针的方法实现了天线剖面r=198mm,h=25mm的共形化设计,极大降低了天线尺寸、减小了剖面面积,使天线更好的与载体共形并节约载体空间。 【关键词】微带共形天线;L型探针馈电;短路探针加载 0 引言 共形天线作为机载天线的一种重要形式,必须具有体积小、剖面低、可探测性低、抗损伤性高等特点,因此能够用作共形天线的天线形式主要有各种微带和缝隙天线(也有其它形式但比较少)。而缝隙天线主要是在平板、圆筒或圆柱等结构上直接开槽的一种天线形式,优点是结构简单,但同时也存在着频带窄,在大功率时容易击穿等缺点。相比较起来则是微带天线作为共形天线更为常见。微带天线是一种由薄介质基片,其上用金属沉积矩形、圆形或其他几何形状的辐射元,而背面贴以金属接地板的天线。 本文提出的L型探针的馈电方式,使这种微带天线具有结构紧凑、剖面低、辐射效率高、易与载体共形等优点。 1 设计原理 1.1 L型馈电探针的原理 该结构相当于空气介质基板的微带贴片天线。天线辐射机理为[1]:L型探针的垂直部分产生感抗,水平部分和贴片之间产生容抗,两者相消产生谐振,使天线呈现宽频带或者多频带。通过与同轴电缆相连,L型探针上将存在交变电场,电场方向为探针水平臂所指方向,交变电场将引起变化的磁场,磁场方向与电场方向垂直。当磁力线垂直穿过贴片时,又将产生变化的电场。这种变化的电磁场经过金属底板的反射后辐射出去。 1.2 微带天线小型化的技术 1.2.1 辐射贴片开槽 研究发现,对辐射贴片进行开槽,贴片表面电流的路径将发生弯曲,导致有效路径变长。因此,在贴片几何尺寸保持不变的情况下,采用开槽贴片可以增大天线有效长度,降低天线的谐振频率,从而实现天线小型化。 不过,辐射贴片表面开槽也有相应的缺点。天线表面开槽后会有垂直于主激

HFSS 矩形微带贴片天线的仿真设计报告

基于H F S S矩形微带贴片天线的仿真设计 实验目的:运用HFSS的仿真能力对矩形微带天线进行仿真 实验内容:矩形微带天线仿真:工作频率7.55GHz 天线结构尺寸如表所示: 名称起点尺寸类型材料 Sub 0,0,0 28.1,32, -0.79 Box Rogers 5880 (tm) GND 0,0,-0.79 28.1,32, -0.05 Box pec Patch 7.03 , 8 , 0 12.45 , 16, 0.05 Box pec MSLine 10.13,0,-0. 79 2.49 , 8 , 0.05 Box pec Port 10.13,0,-0. 79 2.49 ,0, 0.89 Rectangle Air -5,-5,-5.79 38.1 , 42, 10.79 Box Vacumn 一、新建文件、重命名、保存、环境设置。 (1)、菜单栏File>>save as,输入Antenna,点击保存。 (2). 设置激励终端求解方式:菜单栏HFSS>Solution type>Driven Termin ,点击OK。 (3)、设置模型单位:3D Modeler>Units选择mm ,点击OK。 (4)、菜单栏Tools>>Options>>Modeler Options,勾选”Edit properties of

new pri”, 点击OK。 二、建立微带天线模型 (1)点击创建GND,起始点:x:0,y:0,z:-0.79,dx:28.1,dy:32,dz:-0.05 修改名称为GND, 修改材料属性为 pec, (2)介质基片:点击,:x:0,y:0,z:0。dx: 28.1,dy: 32,dz: - 0.794,修改名称为Sub,修改材料属性为Rogers RT/Duriod 5880,修改颜色为绿色,透明度0.4。 点击OK (3) 建立天线模型patch, 点击,x:7.03,y: 8, z:0 ,dx: 12.45,dy: 16,dz: 0.05 命名为patch,点击OK。 (4) 建立天线模型微带线MSLine 点击,x:10.13,y: 0, ,z: 0 , dx:2.46,dy: 8,dz: 0.05, 命名为MSLine,材料pec, 透明度0.4 选中Patch和MSLine,点击Modeler>Boolean>Unite (5)、建立端口。创建供设置端口用的矩形,该矩形连接馈线与地。Modeler>Grid Plane>XZ,或者设置 点击,创建Port。命名为port 双击Port下方CreatRectangle 输入:起始点:x: 10.13,y: 0,z:- 0.84,尺寸: dx:2.46,dy: 0,dz: 0.89 (6)、创建Air。 点击,x:-5,y:-5,z:-5.79, dx:38.1, dy:42, dz:10.79

基于Zigbee的一种矩形微带天线的设计

基于Zigbee的一种矩形微带天线的设计 杨永侠,杨琳 (西安工业大学电子信息工程学院,陕西西安710032) 【摘要】针对传统的无线模块中直立式天线体积大,功耗高等不足,本文提出了用微带天线替代传统的直立式天线的方法。文中根据项目需求确定微带天线的材料、形状、类型,估算出天线的尺寸,在ADS设计软件环境下,介绍了基于Zigbee的中心频率为2.4GHz微带天线的整个设计流程,利用ADS仿真软件建立天线模型并对其仿真,最后通过优化匹配和调整天线模型使天线的特性达到最佳、参数符合项目要求。 【关键词】微带天线,ADS软件,反射系数,优化匹配 Design of A kind of Rectangular Microstrip Antenna Based on Zigbee YangYongXia,YangLin (School of Electronics and Information Engineering, Xi'an Technological University,Xi'an 710032 China) 【Abstract】In this paper we presented a solution to improve the shortcoming which the upright antenna is too big, and the power consumption is too high. The solution is that use the microstrip antenna in place of the traditional upright antenna. In this paper we determined the materials, the shape and the type of the microstrip antenna according to the requirements of the project, and we estimated the size of the antenna. Then we introduced the process of the design of microstrip antenna at frequency of 2.4 GHz based on Zigbee under the environment of ADS(Agilent). And then we built the antenna model and simulated it in ADS. At last we made the antenna parameters optimum and the antenna characteristics comply with the requirements of the project through adjusting the antenna model and optimizing and matching. 【Key words】microstrip antenna, ADS, reflection coefficient, Optimal matching 0引言 随着科学技术的发展,无线传感网络越来越多地被应用于工业生产、安全监测等领域。对于一个无线系统来说,能正确地发送和接收信息是最基本的要求。天线作为无线通信中不可缺少的部分就是用来发送和接收电磁波,对无线系统起着非常重要的作用。而常用的无线传输模块中的直立式天线体积太大。为了这一问题,本文选择使用微带天线,不仅可以减小无线传输设备的体积,也可降低设备功耗、降低成本。本文以Zigbee网络中的WSN节点为对象,完成基于CC2430芯片的2.4GHZ 微带天线的设计,从而为构成小体积、低功耗的WSN 测控系统节点基本硬件奠定基础。本文详细论述微带天线设计的原理、设计的过程以及阻抗匹配方案。 1天线类型的选择 1.1微带天线的辐射原理 微带天线即在有金属接地板的介质基片上沉积或贴附所需形状导体贴片构成的微波天

相关文档
相关文档 最新文档