文档库 最新最全的文档下载
当前位置:文档库 › 有限元六面体网格的典型生成方法及发展趋势

有限元六面体网格的典型生成方法及发展趋势

有限元六面体网格的典型生成方法及发展趋势
有限元六面体网格的典型生成方法及发展趋势

有限元六面体网格的典型生成方法及发展趋势

吕 军,王忠金,王仲仁

(哈尔滨工业大学材料科学与工程学院,黑龙江哈尔滨150001)

摘 要:工程问题三维有限元仿真的主要困难是模型的建立,而模型的建立需要采用合适的方法来生成高质量的三维有限元网格.以金属塑性成形过程的三维有限元仿真为例,说明了采用六面体单元的必要性.针对典型的有限元六面体网格生成方法,系统地分析了各种方法的实现原理和发展趋势,并探讨了六面体网格生成总的发展趋势.分析结果说明,复杂域内六面体网格全自动生成的实现是全自动网格生成真正走向实用化、通用化必须解决的难题.

关键词:数值仿真;有限元法;网格生成;六面体网格

中图分类号:T G302 文献标识码:A 文章编号:0367-6234(2001)04-0485-06

G eneration of finite element hexahedral mesh

and its trend of development

L Jun,WANG Zhong -jin,WANG Zhong -ren

(School of M aterials Science and Engineering,Harbin Institute o f T echnology ,Harbin 150001,China)

Abstract:The major difficulty w ith the 3-D finite element simulation of an engineering problem lies in the construction of models,w hich needs the proper generation of 3-D finite element hex ahedral mesh of high quality.The necessity to use a hex ahedral unit is justified by taking the 3-D finite element simulation of

the plastic formation of metals as an ex ample.T he theories behind and trends of development of different w ays of generating finite element hexahedral meshes are systematically analysed,and the general trend of development for generation of hexadedral mesh is discussed as w ell.It is concluded that the full automatic g eneration of hexahedral mesh in com plex domains is the key to the popularization of full automatic genera -tion of hexahedral mesh.

Key words:numerical simulation;finite element method;mesh generation;hexahedral mesh

有限元法是求解工程问题的一种近似数值方法,近年来在工程领域中得到了广泛的应用

[1,2]

.

有限元仿真的一个重要步骤是对连续体进行离散化,为使离散出的网格能更精确地逼近连续区域和有限元计算的结果在预定误差范围内,应保证离散化后得到质量较高的网格.为此提出了许多方法来生成有限元网格

[35]

.目前,二维有限元

收稿日期:2001-01-20.

基金项目:金属精密热加工重点实验室基金资助项目.作者简介:吕 军(1974-),男,博士研究生;

王仲仁(1934-),男,教授,博士生导师.

网格生成方面已比较成熟,提出了许多行之有效的方法.但在三维有限元网格尤其是六面体网格的生成方面还没有通用的算法,存在许多难点问

题需进一步解决.本文论述了采用六面体单元的必要性,并分析了有限元六面体网格的典型生成方法.最后,对六面体网格生成的发展趋势进行了探讨.

1 采用六面体单元的必要性

在有限元仿真过程中,单元类型的选择对整个有限元仿真的计算效率、自动化程度、计算精度等都将产生重要影响.因此单元类型的选择在各

第33卷 第4期 哈 尔 滨 工 业 大 学 学 报

Vol.33,No.42001年8月

JOURNAL OF HARBIN INST IT UTE OF T ECH NOLOGY

Aug.,2001

个领域的有限元仿真中都占有重要地位.在体积成形刚塑性/刚粘塑性有限元仿真中,单元类型选择的重要性尤为突出.这是因为刚塑性/刚粘塑性有限元仿真有三个突出的特点:(1)塑性成形往往是一个大变形过程,有限元计算中通常需要进行多次网格重划分,而网格重划分需要耗费大量的时间,且每次都会损失一定的精度.(2)塑性变形过程是一个非线性问题,需要进行迭代求解,计算效率问题更为突出.(3)刚塑性/刚粘塑性有限元仿真时必须进行多次工件与模具间的动态接触处理,每一次的处理都会使得工件的有限元模型产生一定的体积损失而影响计算精度.这三种问题的处理都与单元类型的选择密切相关.选择合理的单元类型,就可用较少的网格重划分次数、相同或较少的高斯积分点数来达到较高的计算精度和计算效率,这在有限元仿真中是非常重要的.

六面体单元由于变形特性好、计算精度高等优点而在很多三维有限元仿真领域中得到了广泛的应用.在金属体积成形的三维有限元仿真中,要求单元既要有一定的 刚性 (即抗畸变能力)以避免频繁的网格重划分,又要有一定的 柔性 (即良好的变形特性)以准确地仿真变形过程,还必须有较高的计算精度.在体积成形三维有限元仿真中常采用四面体和六面体单元.大量计算结果表明:采用六面体单元进行三维有限元仿真可采用较少的网格重划分次数达到较高的计算精度,故六面体单元是金属体积成形过程三维有限元仿真的首选单元[6,7].

2 有限元六面体网格的典型生成方法

六面体网格在三维有限元仿真中有四面体网格无法比拟的优越性,但现有的有关三维有限元网格生成方法的文献往往偏重于介绍四面体网格的生成方法,对六面体网格生成方法介绍得很少.实现可靠的、高质量的六面体有限元网格自动生成是三维有限元仿真领域的瓶颈问题.当前,有限元六面体网格的典型生成方法主要有以下几种.

2.1 映射单元法

映射单元法是三维网格生成中最早使用的方法之一.这种方法先把三维实体交互地分成几个大的20节点六面体区,然后使用形函数映射技术把各个六面体区域映射为很多细小的8节点六面体单元[8]

.这种方法易于实现,可以生成规整的结构化网格;缺点是当三维实体的表面是十分复

杂的自由曲面时,该方法的逼近精度不高,且人工

分区十分麻烦、难以实现自动化.近年来,一些研究者采用 整体规划技术(Integer programm ing technique) 来进行实体的自动分区[9],但该技术很难对复杂形体(如塑性加工中的复杂锻件)进行自动分区.

曲面映射是三维映射的特例,采用曲面映射技术可以对几何曲面进行离散化处理[10,11].文献[12]详细研究了基于映射单元法的有限元六面体网格自动生成技术,采用加权因子控制网格生成过程中自然坐标的分割,可以生成密度不同的有限元网格.对原域为单连通凸区域的简单形体及原域为复连通凹区域的复杂形体,该种方法均可生成质量较高的网格,生成的六面体网格如图1所示.

图1 映射单元法F ig.1 M apped element method

映射单元法的发展趋势是:实现简单、规则形状形体的自动分区,提高手工分区的交互性,能方便地进行复杂的三维形体的分区.

2.2 基于栅格法

这种方法预先产生网格模板,然后将要进行网格化的物体加到其上,并在实体内部尽可能多地填充规则的长方体或正方体网格,在实体的边界上根据实体边界的具体特征更改网格的形状和相互连接关系,使得边界上的六面体单元尽可能地逼近物体的边界形状.文献[13]采用这种方法生成了六面体单元.这种方法能实现网格生成的自动化,网格的生成速度也非常快.其最大弱点是边界单元的质量较差;另一个缺点是所生成的单元尺寸相近,网格密度很难得到控制.

1998年发布的MARC/H exM esh 模块中采用了基于栅格法,并对这种方法进行了改进,使得初始填充在实体内部的单元尺寸较大、实体边界单元的尺寸较小,这样可以较好地控制网格密度[14]

.但是,对于复杂三维形体,MARC/HexM esh 模块产生的边界六面体网格的质量仍然不够理想.Tekkaya [15]将改进八叉树法与基于

486 哈 尔 滨 工 业 大 学 学 报 第33卷

栅格法相结合来生成边界过渡网格,首先根据工件的边界来区分内部网格和边界网格,然后应用网格细化和均匀化处理来改进边界单元的质量,如图2所示

.

图2 基于栅格法Fig.2 G rid -based met hod

这种方法的发展趋势是:控制实体内部的初始规则网格的尺寸,以控制最终形成的网格的密

度;采用网格结构重组(包括拆分和合并单元)和网格优化算法来提高边界单元的质量.2.3 几何变换法

这种方法由二维四边形网格经过旋转、扫描、拉伸等几何变换而形成六面体网格,几何变换后删除重节点及四边形、进行单元及节点的重新编号[16]

.这种方法生成的六面体网格如图3所示;优点是比较容易实现,在当今大多数的大型CAD 软件前置处理中均有此功能.但是,这种方法只适用于形状简单的三维形体,且主要依靠人机交互的方式来实现

.

图3 几何变换法

Fig.3 Geometry tr ansformation method

这种方法的发展趋势是使四边形有限元网格能够以自由曲线为路径进行扫描,尽量减少人机交互的步骤.2.4 改进八叉树法

这种方法的基础是三维物体的八叉树表示.所作的改进类似于四叉树法的改进,但三维物体的边界处理更加复杂;它具有改进四叉树法同样

的利弊.Yerry 等[17]首先提出并实现了这种方

法,他们将物体边界简化为42种可能的模式(18种单平面和24种双平面切割八叉元).这种方法与基于栅格法结合生成 过渡网格 ,效果较好[15].著名的有限元分析软件MARC/Auto -Forge 模块中采用了这种方法,生成的六面体网格如图4所示.

图4 改进八叉树法Fig.4 M odified -octree method

这种方法的发展趋势是:与基于栅格法结合使用来提高过渡网格的质量,并减少仿真过程中的畸形单元,提高形体尖角处单元的质量.2.5 模块拼凑法

Yang 等[18,19]把工件分为一定数量的子模块,然后对每一类形状简单的子模块规定一种六面体网格生成方法,整个工件的有限元网格即可由这些子模块内的网格拼凑而成,如图5所示.但是,实际生产中的工件(尤其是模锻件)的形状往往非常复杂,很难对其进行子模块的自动划分,采用专家系统的方法往往也是不可行的.因此,这种方法只能针对形状相对简单和变化较少的工件来生成六面体网格.

这种方法的发展趋势是完善专家系统的知识库,使其能适应更复杂形状工件的子模块自动划分.

2.6 单元转换法

由于多种四面体网格自动生成算法已经达到

实用化的程度,在自动生成四面体网格后,可以把一个直边四节点四面体单元分成四个六面体单元

[20,21]

,这样可以把四面体网格自动地转化为六

面体网格,如图6所示.这种方法的缺点是得到的网格是杂乱无章的非结构化六面体网格,网格的质量不高;为了较好地逼近复杂物体的曲面边界,需要生成较多的直边四面体单元,因而也将得到数量极多的六面体单元,这会使得有限元仿真的时间过长.对同时具有内外复杂边界的三维问题(如内部有空洞缺陷的复杂锻件分析),该方法是实现六面体网格自动生成的一种比较有效的方

487 第4期 吕 军,等:有限元六面体网格的典型生成方法及发展趋势

法.文献[22]对单元转换法进行了改进,将十节点曲边四面体转换为六面体,并采用非线性约束优化算法大幅度提高了六面体网格的单元质量

.

图5 模块拼凑法Fig.5 M odular

method

图6 单元转换法

Fig.6 Element conversion method

这种方法的发展趋势是减少不必要的四面体单元的数量,采用网格结构重组技术以剔除不必要的单元,采用约束优化算法提高六面体单元的质量.

2.7 B 样条曲面拟合插值法

这种方法基于三维物体的边界曲面B 样条表示,采用插值拟合曲面来生成六面体网格[23].在几何构形确定的情况下,这种方法即可自动生成六面体网格.通过调整B 样条函数中的参数可以控制网格密度,生成的六面体网格如图7所示.这种方法的优点是边界曲面逼近好,形体的几何表示与网格生成在数学方法上一致;缺点是局部网格的处理比较困难,这是整体域剖分所带来的问题

.

图7 B 样条曲面拟合插值法

Fig.7 B -spline surface inter polation method

这种方法的发展趋势是采用B 样条曲面和实体造型相结合的方式来描述三维物体,采用模块法来处理物体内部的局部网格.

2.8 采用波前法逐层由实体表面向实体内部生

成六面体网格(Plastering algorithm)

Blacker 和Meyers [24]于1993年提出了这种方法,该方法实际上是二维四边形网格逐层推进生成法[25](Paving algorithm )在三维空间上的拓展.在三维实体内部,各个六面体单元的边与边、面与面之间的相互关系十分复杂,并且只有满足

一定条件的实体表面上的节点才能生成完全的六面体网格,故这种方法的实现具有很高的难度.生成的网格如图8所示.该方法生成的六面体网格的单元质量(尤其是边界单元的质量)是所有算法中最好的,但该方法的实现仍需解决一些技术细节上的问题.

图8 Plastering 算法F ig.8 Plaster ing algorithm

这种方法的发展趋势是优化实体表面的布点,避免在向实体内部逐层推进时产生尺寸过小和形状不合理的单元,避免单元间的裂缝.

2.9 采用中轴面分解和整体规划技术生成六面

体网格

这种方法首先将三维实体分解成一定数量的简单子域,然后在每个子域内生成六面体网格[26]

.在将实体分解成子域过程中采用中轴面(M edial Surface)分解技术,并采用整体规划技术来确定每条边的分割数,进而控制六面体网格的密度[9].根据形体的中轴面可以确定必要的子域,子域可以定义为13种可能类型中的一种[27].中轴面分解方法也可以拓展应用于带有凹边或凹顶点的实体及退化情况,从而可以实现复杂实体(如带有孔、凹角等)的六面体网格生成[28].该方法生成的六面体网格的单元质量很高并且疏密有致,如图9所示.

这种方法的发展趋势是实现复杂形体的全自动中轴面分解;尽可能形成容易网格化的子域;提高边界单元的质量,避免产生形状不好的单元(如

488 哈 尔 滨 工 业 大 学 学 报 第33卷

狭长单元

).

图9 中轴面分解法

Fig.9 M edial surface subdivision method

3 六面体网格生成的发展趋势

有限元六面体网格生成问题近年来成为三维网格生成方法研究的热点和难点,出现了许多种算法,但至今尚未提出一种通用的有限元六面体网格自动生成方法.下列问题将成为六面体网格生成的研究前沿,也将是未来的发展趋势.3.1 开发复杂域六面体网格的全自动生成方法全自动网格生成方法因其高效性、处理复杂情况的能力和便于集成到计算机集成制造系统(CIM S)等优点,已成为网格生成的发展趋势.现有的网格自动生成方法在时效、稳定性和通用性等方面与实用要求都有一些差距,六面体网格生成方面尤为突出,问题的关键在于开发有效、高效的自动生成方法.复杂域的网格生成是全自动网格生成的前提,人们正在研究能在任意复杂域内生成六面体网格的方法,并注重方法的可靠性.复杂域内六面体网格全自动生成的实现是全自动网格生成真正走向实用化、通用化必须解决的难题.

3.2 网格密度定义和控制技术的研究

三维网格密度定义和控制一直没有行之有效的方法,生成疏密有致的六面体网格并且使密网格和疏网格之间的单元均匀过渡将是六面体网格生成的发展趋势之一.

3.3 基于几何造型的六面体网格生成及其集成

基于几何造型的网格生成是通往有限元仿真技术集成到计算机集成制造系统的必由之路,目前的网格生成方法大都从造型系统中得到形体描述,但几乎都与造型系统松散结合.实现六面体网格生成与几何造型系统的集成将是未来的发展方向.

3.4 六面体网格显示技术及正确性检测

六面体网格缺乏有效的显示技术.正因为缺乏直观的显示来验证其正确性,其正确性的检测

就显得格外重要;目前在这方面尚缺乏快速有效的方法.六面体网格显示技术的关键是提出正确、可靠和高效的消隐处理算法.

4 结 论

在三维有限元仿真中采用六面体单元有很多优点,实现可靠、高质量的有限元六面体网格自动生成一直是CAD/CAE 领域内的一个难点,也是

制约三维有限元仿真走向实用化的瓶颈问题.解决这个问题的关键是在现有方法的基础上提出稳定、高效和通用的复杂域六面体网格全自动生成方法,以使得六面体网格在三维有限元仿真领域中的应用真正走向实用化.

参考文献:

[1]

GHOU AL I M A ,DU VAU T G.L ocal analy tical de -sign sensitiv ity analysis of the forging problem using F EM [J].Comput Methods Appl M ech Eng ,1998,163:55-70.[2]

FI SH F,PA NDHEERADI M ,BEL SKY V.Efficient solutions schemes for inter face pr oblems[J].F inite E-l ements in A nalysis and Design,1996,22:267-280.[3]

施云生,沈国强.基于边界适应的有限元网格自动生成及局部调整技术[J].锻压技术,1998(4):28-30.[4]

JO U N M S,L EE M C.Q uadr ilateral finite element generation and mesh quality control for metal for ming simulation[J].Int J N um M et hods Eng,1997,40:4059-4075.[5]

JO E B.T etrahedral mesh gener ation in polyhedral re -gions based on conv ex polyhedron decompositions[J].Int J N um M ethods Eng ,1994,37:693-713.[6]

SCHN EI DERS R.A -grid based alg orithm for the g en -eration of hex ahedr al element meshes[J].Eng w ith Comput,1996(12):168-177.[7]

T EK KA YA A E,K AVA KL I S.3-D simulat ion of metal forming processes w ith auto matic mesh genera -tion[J].Steel Res,1995,66(9):377-383.[8]

COOK W A ,OA KES W R.M apping methods for g enerat ing three -dimensio nal meshes [J].Comput in M ech Eng ,1982,8:67-72.[9]

T A M T ,A RM ST RON G C G.Finite element mesh contr olled by integer pr ograming [J ].Int J Num M ethods Eng ,1993,36:2581-2605.

[10]VA RDHAN I K V R,PRA SA D N S.Mesh genera -tion for spherical and conical sur faces using tr ansfinite inter polation[J].Comput &Struct,1989,32(6):1359-1362.

[11]LA U T S,L O S H.Finite element mesh generation

489 第4期 吕 军,等:有限元六面体网格的典型生成方法及发展趋势

over analytical curved surfaces[J].Comput&Struct,

1996,59(2):301-309.

[12]蒋浩民,刘润广,王忠金,等.基于映射法的三维有

限元网格自动划分[J].塑性工程学报,1998,5

(3):27-31.

[13]LEE Y K,YA NG D Y.A new automatic mesh g en-

eration technique and its application to the finite ele-

ment analysis of practical forging process[J].Adv

T ech Plasticity,1996,1:409-413.

[14]News Letter[J].N ippon MA RC Analysis Res Cor po-

ration Japan,1998,3:9.

[15]T EK KAY A A E.Fully automatic simulation of bulk

metal forming processes[A].Pr oc NU M I FORM 98

[C].Rotter dam:N etherlands,1998.

[16]NAG ESH K,SRI KAN T A.Automatic mesh genera-

t ion in2-D and3-D objects[J].Adv Eng Soft-

w are,1989,11(1):19-25.

[17]YERRY M A,SHEPHARD M S.Automat ic three

dimensional mesh generation by the modified-octree

technique[J].Int J Num M ethods Eng,1984,20

(11):1965-1990.

[18]YA NG D Y,Y OON J H,L EE N K.M odular

remeshing:a practical met hod of3-D remeshing in

forging of complicated Parts[J].A dv T ech P lasticity,

1990,1:171-178.

[19]YOO N J H,YAN G D Y.A three dimensional r igid-

plast ic finite element analysis of bevel gear forging by

using a r emeshing T echnique[J].I nt J M ech Sci,

1990,32(4):277-291.

[20]陈 军.虚拟模具制造及金属成形过程三维仿真技

术[D].上海:上海交通大学,1996.

[21]XIE G,RAM A EK ER J A H,Gr aded mesh genera-

tion and transfo rmation[J].Finite Elements in Analy-

sis and Design,1994,17:41-55.

[22]左 旭.集成于CAD系统的汽车零件多工位体积

成形三维CA E仿真[D].上海:上海交通大学,

1998.

[23]王忠金.模锻过程的三维数值模拟及连杆终锻成形

规律的研究[D].长春:吉林工业大学,1995. [24]BLA CK ER T D,M EY ERS R J.Seams and wedg es

in plastering:a3-D hexahedral mesh generation a-l

gor ithm[J].Eng wit h Comput,1993,9:83-93. [25]BLA CK ER T D,ST EPHENSON M B.Paving:a

new approach to automated quadrilateral mesh genera-

t ion[J].I nt J Num M ethods Eng,1991,32:811-

847.

[26]L I T S,M CK EA G R M,ARM ST RO NG C G.Hex-

ahedral meshing using midpoint subdiv ision and integ er

prog ramming[J].Comput M ethods A ppl M ech Eng,

1995,124:177-193.

[27]PRICE M A,ARM ST RON G C G,SABIN M A.

Hexahedral mesh generation by medial sur face subdiv-i

sion:Part .solids w ith conv ex edges[J].Int J

Num M ethods Eng,1995,38:3335-3359.

[28]PRI CE M A,A RM ST R ONG C G.Hexahedral mesh

generation by medial surface subdiv i sion:Part

solids with flat and concave edges[J].Int J Num

M et hods Eng,1997,40:111-136.

(责任编辑 王小唯)

490

哈 尔 滨 工 业 大 学 学 报 第33卷

有限元网格划分的基本原则

有限元网格划分的基本原则 划分网格是建立有限元模型的一个重要环节,它要求考虑的问题较多,需要的工作量较大,所划分的网格形式对计算精度和计算规模将产生直接影响。为建立正确、合理的有限元模型,这里介绍划分网格时应考虑的一些基本原则。 1 网格数量 网格数量的多少将影响计算结果的精度和计算规模的大小。一般来讲,网格数量增加,计算精度会有所提高,但同时计算规模也会增加,所以在确定网格数量时应权衡两个因数综合考虑。图1中的曲线1表示结构中的位移随网格数量收敛的一般曲线,曲线2代表计算时间随网格数量的变化。可以看出,网格较少时增加网格数量可以使计算精度明显提高,而计算时间不会有大的增加。当网格数量增加到一定程度后,再继续增加网格时精度提高甚微,而计算时间却有大幅度增加。所以应注意增加网格的经济性。实际应用时可以比较两种网格划分的计算结果,如果两次计算结果相差较大,可以继续增加网格,相反则停止计算。 图1 位移精度和计算时间随网格数量的变化 在决定网格数量时应考虑分析数据的类型。在静力分析时,如果仅仅是计算结构的变形,网格数量可以少一些。如果需要计算应力,则在精度要求相同的情况下应取相对较多的网格。同样在响应计算中,计算应力响应所取的网格数应比计算位移响应多。在计算结构固有动力特性时,若仅仅是计算少数低阶模态,可以选择较少的网格,如果计算的模态阶次较高,则应选择较多的网格。在热分析中,结构内部的温度梯度不大,不需要大量的内部单元,这时可划分较少的网格。 2 网格疏密 网格疏密是指在结构不同部位采用大小不同的网格,这是为了适应计算数据的分布特点。在计算数据变化梯度较大的部位(如应力集中处),为了较好地反映数据变化规律,需要采用比较密集的网格。而在计算数据变化梯度较小的部位,为减小模型规模,则应划分相对稀疏的网格。这样,整个结构便表现出疏密不同的网格划分形式。图2是中心带圆孔方板的四分之一模型,其网格反映了疏密不同的划分原则。小圆孔附近存在应力集中,采用了比较密的网格。板的四周应力梯度较小,网格分得较稀。其中图b中网格疏密相差更大,它比图a中的网格少48个,但计算出的孔缘最大应力相差1%,而计算时间却减小了36%。由此可见,采用疏密不同的网格划分,既可以保持相当的计算精度,又可使网格数量减

网格划分模版

生成的网格所能达到的基本指标 1概述 1.1控制网格质量的必要性 在CFD计算中数值误差,也即数值解与微分方程精确解之间的偏差,主要是由截断误差及网格划分不够细密所造成的。而当离散格式的截断误差确定以后,网格的疏密及其分布特性就成了决定离散误差的关键因素。一般在CFD计算中,第一步就是生成计算网格,流场的主要信息都存储在计算网格的节点或者界面上,网格生成质量的高低直接影响着数值分析结果的精度与稳定性。特别是近壁处及通量梯度较大的区域的网格分布最为关键。粗糙的网格会导致数值模拟精度的降低,甚至不能得到收敛解;而过细的网格一方面会耗费过多的计算资源,另一方面也可能导致离散误差的增加,选择适宜的精密网格对于提高计算精度非常关键。因此生成高质量的、适宜的精密网格是获得高精度数值模拟结果的必要条件,在进行CFD计算中必须控制网格的数量及质量。 1.2对计算网格的基本要求 网格分为结构化和非结构化两大类,由于结构化网格在计算精度、计算时间等方面存在相对优势,目前在CFD计算中广泛采用的仍是结构型网格。因此为确保计算结果的正确性及模拟的精度,本课题组要求尽量使用结构化网格,除非在极个别的情况下(如几何结构过于复杂,很难生成结构化网格)才允许使用非结构化网格。 对生成的六面体结构化网格的质量有以下几方面的要求: 首先计算网格中不允许存在负体积,这是保障计算网格正确性的基本要求。 网格单元的总体分布应尽量与主流方向保持一致。 有叶片的区域,应采用绕叶片的O型网格来处理边界层内的流动,另外,O型网格对网格加密很有利。 在所有计算区域的边界处的计算网格线应最大程度的与边界正交,角度最小应大于45°。 计算单元的纵横比不能过大,一般应控制在[1,100]之间,不应高于100。(Aspect Ratio,[1,∞],越接近于1表明网格质量越高)

CFD网格及其生成方法概述

CFD网格及其生成方法概述 作者:王福军 网格是CFD模型的几何表达形式,也是模拟与分析的载体。网格质量对CFD计算精度和计算效率有重要影响。对于复杂的CFD问题,网格生成极为耗时,且极易出错,生成网格所需时间常常大于实际CFD计算的时间。因此,有必要对网格生成方式给以足够的关注。 1 网格类型 网格(grid)分为结构网格和非结构网格两大类。结构网格即网格中节点排列有序、邻点间的关系明确,如图1所示。对一于复杂的儿何区域,结构网格是分块构造的,这就形成了块结构网格(block-structured grids)。图2是块结构网格实例。 图1 结构网格实例 图2 块结构网格实例 与结构网格不同,在非结构网格(unstructured grid)中,节点的位置无法用一个固定的法则予以有序地命名。图3是非结构网格示例。这种网格虽然生成过程比较复杂,但却有着极好的适应性,尤其对具有复杂边界的流场计算问题特别有效。非结构网格一般通过专门的

程序或软件来生成。 图3 非结构网格实例 2 网格单元的分类 单元(cell)是构成网格的基本元素。在结构网格中,常用的ZD网格单元是四边形单元,3D网格单元是六面体单元。而在非结构网格中,常用的2D网格单元还有三角形单元,3D 网格单元还有四面体单元和五面体单元,其中五面体单元还可分为棱锥形(或楔形)和金字塔形单元等。图4和图5分别示出了常用的2D和3D网格单元。 图4 常用的2D网格单元 图5 常用的3D网格单元

3 单连域与多连域网格 网格区域(cell zone)分为单连域和多连域两类。所谓单连域是指求解区域边界线内不包含有非求解区域的情形。单连域内的任何封闭曲线都能连续地收缩至点而不越过其边界。如果在求解区域内包含有非求解区域,则称该求解区域为多连域。所有的绕流流动,都属于典型的多连域问题,如机翼的绕流,水轮机或水泵内单个叶片或一组叶片的绕流等。图2及图3均是多连域的例子。 对于绕流问题的多连域内的网格,有O型和C型两种。O型网格像一个变形的圆,一圈一圈地包围着翼型,最外层网格线上可以取来流的条件,如图6所示。C型网格则像一个变形的C字,围在翼型的外面,如图7所示。这两种网格部属于结构网格。 图6 O型网格 图7 C型网格 4 生成网格的过程

_基于ANSYS的有限元法网格划分浅析

文章编号:1003-0794(2005)01-0038-02 基于ANSYS的有限元法网格划分浅析 杨小兰,刘极峰,陈 旋 (南京工程学院,南京210013) 摘要:为提高有限元数值的计算精度和对复杂结构力学分析的准确性,针对不同分析类型采用了不同的网格划分方法,结合实例阐述了ANSYS有限元网格划分的方法和技巧,指出了采用ANSYS有限元软件在网格划分时应注意的技术问题。 关键词:ANSYS;有限元;网格;计算精度 中图号:O241 82;TP391 7文献标识码:A 1 引言 ANSYS有限元分析程序是著名的C AE供应商美国ANSYS公司的产品,主要用于结构、热、流体和电磁四大物理场独立或耦合分析的CAE应用,功能强大,应用广泛,是一个便于学习和使用的优秀有限元分析程序。在ANSYS得到广泛应用的同时,许多技术人员对ANSYS程序的了解和认识还不够系统全面,在工作和研究中存在许多隐患和障碍,尤为突出的是有限元网格划分技术。本文结合工程实例,就如何合理地进行网格划分作一浅析。 2 网格划分对有限元法求解的影响 有限元法的基本思想是把复杂的形体拆分为若干个形状简单的单元,利用单元节点变量对单元内部变量进行插值来实现对总体结构的分析,将连续体进行离散化即称网格划分,离散而成的有限元集合将替代原来的弹性连续体,所有的计算分析都将在这个模型上进行。因此,网格划分将关系到有限元分析的规模、速度和精度以及计算的成败。实验表明:随着网格数量的增加,计算精确度逐渐提高,计算时间增加不多;但当网格数量增加到一定程度后,再继续增加网格数量,计算精确度提高甚微,而计算时间却大大增加。在进行网格划分时,应注意网格划分的有效性和合理性。 3 网格划分的有效性和合理性 (1)根据分析数据的类型选择合理的网格划分数量 在决定网格数量时应考虑分析数据的类型。在静力分析时,如果仅仅是计算结构的变形,网格数量可以少一些。如果需要计算应力,则在精度要求相同的情况下取相对较多的网格。同样在响应计算中,计算应力响应所取的网格数应比计算位移响应多。在计算结构固有动力特性时,若仅仅是计算少数低阶模态,可以选择较少的网格。如果计算的模态阶次较高,则应选择较多的网格。在热分析中,结构内部的温度梯度不大,不需要大量的内部单元,可划分较少的网格。 (2)根据分析数据的分布特点选择合理的网格疏密度 在决定网格疏密度时应考虑计算数据的分布特点,在计算固有特性时,因为固有频率和振型主要取决于结构质量分布和刚度分布,采用均匀网格可使结构刚度矩阵和质量矩阵的元素不致相差很大,可减小数值计算误差。同样,在结构温度场计算中也趋于采用均匀的网格形式。在计算数据变化梯度较大的部位时,为了更好地反映数据变化规律,需要采用比较密集的网格,而在计算数据变化梯度较小的部位,为了减小模型规模,则应划分相对稀疏的网格,这样整个结构就表现出疏密不同的网格划分形式。 以齿轮轮齿的有限元分析模型为例,由于分析的目的是求出齿轮啮合传动过程中齿根部分的弯曲应力,因此,分析计算时并不需要对整个齿轮进行计算,可根据圣文男原理将整个区域缩小到直接参与啮合的轮齿。虽然实际上参与啮合的齿数总大于1,但考虑到真正起作用的是单齿,通常只取一个轮齿作为分析对象,这样作可以大大节省计算机内存。考虑到轮齿应力在齿根过渡圆角和靠近齿面处变化较大,网格可划分得密一些。在进行疏密不同网格划分操作时可采用ANSYS提供的网格细化工具调整网格的疏密,也可采用分块建模法设置网格疏密度。 图1所示即为采用分块建模法进行网格划分。图1(a)为内燃机中重要运动零件连杆的有限元应力分析图,由于连杆结构对称于其摆动的中间平面,其厚度方向的尺寸远小于长度方向的尺寸,且载荷沿厚度方向近似均匀分布,故可按平面应力分析处 38 煤 矿 机 械 2005年第1期

ICEM万能网格方法介绍

ICEM万能网格方法 众所周知,ICEM CFD以其强大的网格划分能力闻名于世,同其他类似网格划分软件一样,ICEM提供了结构网格和非结构网格划分功能。结构网格质量一般较高,有利于提高数值分析精度,但是对于过于复杂的几何体,其缺点也是显而易见的:需要耗费大量人力思考块的划分方式,且经常造成局部网格质量偏低的局面。而非结构网格因其快速、智能化划分方式获得了人们的青睐,但其网格形式一般呈四面体或三角形,不易于流动方向垂直,进而经常造成数值扩散。 那么有没有更好的网格划分方式,能够将结构网格和非结构网格的优点结合在一起,既能又快又好的生成网格、又提高计算精度呢?答案是肯定的。CFD资料专营店老板在研究所搞数值计算多年,对于网格划分更是非常熟悉,在这里总结了ICEM CFD中两种核心技术----六面体核心网格和混合网格技术的使用方法,这两种办法可以说适用于所有复杂几何体,是万能的!希望能够为因几何结构过于复杂、苦于无法做出较高质量结构网格、却又不想使用非结构网格的同仁们提供新的思路,帮你们打通网格难关! 一、六面体核心网格技术 ICEM CFD中有一种新技术,即六面体核心网格技术,其原理是首先生成四面体网格,然后通过先进算法,将大部分区域内的四面体网格破碎、整合成六面体网格,只有在几何非常复杂或者边缘地带才会保留四面体网格。这样生成的网格集合了四面体网格和六面体网格的优势,既节省时间;因为大部分区域是结构网格、完全可以与流

动方向垂直,因而能够保证计算精度。除此之外,六面体核心网格还能在四面体网格的基础上减少约60%-80%的网格数量,非常有利于充分利用计算机资源,加快计算时间。 效果如图所示: (图1)未使用六面体核心网格技术的网格截面 (图2)使用六面体核心网格技术后的网格截面

CATIA有限元高级划分网格教程

CATIA有限元高级网格划分教程 盛选禹李明志 1.1进入高级网格划分工作台 (1)打开例题中的文件Sample01.CATPart。 (2)点击主菜单中的【开始】→【分析与模拟】→【Advanced Meshing Tools】(高级网格划分工具),就进入【Advanced Meshing Tools】(高级网格划分工具)工作台,如图1-1所示。进入工作台后,生成一个新的分析文件,并且显示一个【New Analysis Case】(新分析算题)对话框,如图1-2所示。 图1-1【开始】→【分析与模拟】→【Advanced Meshing Tools】(高级网格划分工具)(3)在【New Analysis Case】(新分析算题)对话框内选择【Static Analysis】(静力分析)选项。如果以后打开该对话框的时候均希望是计算静力分析,可以把对话框内的【Keep as default starting analysis case】(在开始时保持为默认选项)勾选。这样,下次进入本工作台时,将自动选择静力分析。 (4)点击【新分析算题】对话框内的【确定】按钮,关闭对话框。 1.2定义曲面网格划分参数 本节说明如何定义一个曲面零件的网格类型和全局参数。 (1)点击【Meshing Method】(网格划分方法)工具栏内的【高级曲面划分】按钮

,如图1-3所示。需要在【Meshing Method】(网格划分方法)工具栏内点击中间按钮的下拉箭头才能够显示出【高级曲 面划分】按钮。 图1-2【New Analysis Case】(新分析算题)对话框图1-3【高级曲面划分】按钮

网格生成技术

I 目录 1 概述 (1) 2 结构网格 (3) 2.1 贴体坐标法 (3) 2.2 块结构化网格 (11) 3 非结构网格 (16) 3.1 概述 (16) 3.2 阵面推进法 (16) 3.3 Delaunay三角划分 (19) 3.4 四叉树(2D)/八叉树(3D)方法 (21) 3.5 阵面推进法和Delaunay三角划分结合算法 (22) 4 其他网格生成技术 (23) 4.1 自适应网格 (23) 4.2 混合网格 (25) 4.3 动网格 (26) 4.4 曲面网格 (27) 4.5 重叠网格 (28) 5 网格生成软件 (29) 5.3 Gambit (29) 5.2 ICEM CFD (30) 5.1 TrueGrid (32) 5.2 Gridgen (34)

1 概述 计算流体力学作为计算机科学、流体力学、偏微分方程数学理论、计算几何、数值分析等学科的交叉融合,它的发展除依赖于这些学科的发展外,更直接表现于对网格生成技术、数值计算方法发展的依赖。 在计算流体力学中,按照一定规律分布于流场中的离散点的集合叫网格(Grid),分布这些网格节点的过程叫网格生成(Grid Generation)。网格生成是连接几何模型和数值算法的纽带,几何模型只有被划分成一定标准的网格才能对其进行数值求解,所以网格生成对CFD至关重要,直接关系到CFD计算问题的成败。一般而言,网格划分越密,得到的结果就越精确,但耗时也越多。1974年Thompson等提出采用求解椭圆型方程方法生成贴体网格,在网格生成技术的发展中起到了先河作用。随后Steger等又提出采用求解双曲型方程方法生成贴体网格。但直到20世纪80年代中期,相比于计算格式和方法的飞跃发展,网格生成技术未能与之保持同步。从这个时期开始,各国计算流体和工业界都十分重视网格生成技术的研究。上个世纪90年代以来迅速发展的非结构网格和自适应笛卡尔网格等方法,使复杂外形的网格生成技术呈现出了更加繁荣发展的局面。现在网格生成技术已经发展成为CFD的一个重要分支,它也是计算流体动力学近20年来一个取得较大进展的领域。也正是网格生成技术的迅速发展,才实现了流场解的高质量,使工业界能够将CFD的研究成果——求解Euler/NS方程方法应用于型号设计中。 随着CFD在实际工程设计中的深入应用,所面临的几何外形和流场变得越来越复杂,网格生成作为整个计算分析过程中的首要部分,也变得越来越困难,它所需的人力时间已达到一个计算任务全部人力时间的60%左右。在网格生成这一“瓶颈”没有消除之前,快速地对新外形进行流体力学分析,和对新模型的实验结果进行比较分析还无法实现。尽管现在已有一些比较先进的网格生成软件,如ICEM CFD、Gridgen、Gambit等,但是对一个复杂的新外形要生成一套比较合适的网格,需要的时间还是比较长,而对于设计新外形的工程人员来说,一两天是他们可以接受的对新外形进行一次分析的最大周期。要将CFD从专业的研究团体中脱离出来,并且能让工程设计人员应用到实际的设计中去,就必须首先解决网格生成的自动化和即时性问题,R.Consner等人在他们的一篇文章中,详细地讨论了这些方面的问题,并提出:CFD研究人员的关键问题是“你能把整个设计周期缩短多少天?”。而缩短设计周期的主要途径就是缩短网格生成时间和流场计算时间。因此,生成复杂外形网格的

有限元网格划分

有限元网格划分 摘要:总结近十年有限元网格划分技术发展状况。首先,研究和分析有限元网格划分的基本原则;其次,对当前典型网格划分方法进行科学地分类,结合实例,系统地分析各种网格划分方法的机理、特点及其适用范围,如映射法、基于栅格法、节点连元法、拓扑分解法、几何分解法和扫描法等;再次,阐述当前网格划分的研究热点,综述六面体网格和曲面网格划分技术;最后,展望有限元网格划分的发展趋势。 关键词:有限元网格划分;映射法;节点连元法;拓扑分解法;几何分解法;扫描法;六面体网格 1 引言 有限元网格划分是进行有限元数值模拟分析至关重要的一步,它直接影响着后续数值计算分析结果的精确性。网格划分涉及单元的形状及其拓扑类型、单元类型、网格生成器的选择、网格的密度、单元的编号以及几何体素。在有限元数值求解中,单元的等效节点力、刚度矩阵、质量矩阵等均用数值积分生成,连续体单元以及壳、板、梁单元的面内均采用高斯(Gauss)积分,而壳、板、梁单元的厚度方向采用辛普生(Simpson)积分。 2 有限元网格划分的基本原则 有限元方法的基本思想是将结构离散化,即对连续体进行离散化,利用简化几何单元来近似逼近连续体,然后根据变形协调条件综合求解。所以有限元网格的划分一方面要考虑对各物体几何形状的准确描述,另一方面也要考虑变形梯度的准确描述。为正确、合理地建立有限元模型,这里介绍划分网格时应考虑的一些基本原则。 2.1 网格数量 网格数量直接影响计算精度和计算时耗,网格数量增加会提高计

算精度,但同时计算时耗也会增加。当网格数量较少时增加网格,计算精度可明显提高,但计算时耗不会有明显增加;当网格数量增加到一定程度后,再继续增加网格时精度提高就很小,而计算时耗却大幅度增加。所以在确定网格数量时应权衡这两个因素综合考虑。 2.2 网格密度 为了适应应力等计算数据的分布特点,在结构不同部位需要采用大小不同的网格。在孔的附近有集中应力,因此网格需要加密;周边应力梯度相对较小,网格划分较稀。由此反映了疏密不同的网格划分原则:在计算数据变化梯度较大的部位,为了较好地反映数据变化规律,需要采用比较密集的网格;而在计算数据变化梯度较小的部位,为减小模型规模,网格则应相对稀疏。 2.3 单元阶次 单元阶次与有限元的计算精度有着密切的关联,单元一般具有线性、二次和三次等形式,其中二次和三次形式的单元称为高阶单元。高阶单元的曲线或曲面边界能够更好地逼近结构的曲线和曲面边界,且高次插值函数可更高精度地逼近复杂场函数,所以增加单元阶次可提高计算精度。但增加单元阶次的同时网格的节点数也会随之增加,在网格数量相同的情况下由高阶单元组成的模型规模相对较大,因此在使用时应权衡考虑计算精度和时耗。 2.4 单元形状 网格单元形状的好坏对计算精度有着很大的影响,单元形状太差的网格甚至会中止计算。单元形状评价一般有以下几个指标: (1)单元的边长比、面积比或体积比以正三角形、正四面体、正六面体为参考基准。 (2)扭曲度:单元面内的扭转和面外的翘曲程度。 (3)节点编号:节点编号对于求解过程中总刚矩阵的带宽和波前因数有较大的影响,从而影响计算时耗和存储容量的大小 2.5 单元协调性 单元协调是指单元上的力和力矩能够通过节点传递给相邻单元。为保证单元协调,必须满足的条件是: (1)一个单元的节点必须同时也是相邻点,而不应是内点或边界

WD615采用全六面体进行有限元计算的尝试

WD615采用全六面体进行有限元计算的尝试 一、计算目的 本次计算的目的主要是考察有限元计算结果对网格密度和质量的依耐性,以最大扭矩转速(n =1400rpm ,P max =13.5MPa )为计算工况。 二、载荷确定 工况为最大扭矩工况,n =1400rpm ,P max =13.5MPa 。 曲柄销最大载荷F max =156455.6N ;最小载荷F min =-11875.65N 。 以曲柄销最大载荷F max =156455.6N 为本次计算载荷,计算理论应力集中系数。 三、有限元计算尝试 1、载荷边界 假定曲柄销、主轴颈的载荷分布形式为:轴向二次抛物线,径向圆周120°余弦分布(如下图示)。 X 轴——曲柄销轴颈或主轴颈的轴线方向;L ——曲柄销轴承或主轴承的半长; R ——曲柄销轴颈或主轴颈半径;F max ——曲柄销所受径向最大载荷 密度分布函数为:θθ23cos )1(),(22max L x q x q -= max L 03022max L L 3 3max RLq 5 8dx d cos R )23cos()L x 1(q 4dx ds ),x (q F =????-=??=????--θθθθππ π 可求得:RL F q max max 85?=, θθ23cos )1(),(22max L x q x q -= 由此即可在有限元软件中将该分布函数分别施加于曲柄销及主轴颈的圆周120°载荷面上,施加长度为轴瓦长度。面力向y 轴上的投影的合力等于总力F max 。 2、四分之一曲拐模型(六面体一阶,C3D8I+C3D6,Layers=6,EL=35439,Nodes=39320) 曲柄销和主轴颈圆角(r=5mm )处分别布置了6层网格,并有意沿纵深方向控制了两层网格质量。

ANSYS 网格划分方法总结

(1) 网格划分定义:实体模型是无法直接用来进行有限元计算得,故需对它进行网格划分以生成有限元模型。有限元模型是实际结构和物质的数学表示方法。 在ANSYS中,可以用单元来对实体模型进行划分,以产生有限元模型,这个过程称作实体模型的网格化。本质上对实体模型进行网格划分也就是用一个个单元将实体模型划分成众多子区域。这些子区域(单元),是有属性的,也就是前面设置的单元属性。 另外也可以直接利用单元和节点生成有限元模型。 实体模型进行网格划分就是用一个个单元将实体模型划分成众多子区域(单元)。 (2)为什么我选用plane55这个四边形单元后,仍可以把实体模型划分成三角 形区域集合??? 答案:ansys为面模型的划分只提供三角形单元和四边形单元,为体单元只提供四面体单元和六面体单元。不管你选择的单元是多少个节点,只要是2D单元,肯定构成一个四边形或者是三角形,绝对没有五、六边形等特殊形状。网格划分也就是用所选单元将实体模型划分成众多三角形单元和四边形子区域。 见下面的plane77/78/55都是节点数目大于4的,但都是通过各种插值或者是合并的方式形成一个四边形或者三角形。 所以不管你选择什么单元,只要是对面的划分,meshtool上的划分类型设置就只有tri和quad两种选择。 如果这个单元只构成三角形,例如plane35,则无论你在meshtool上划分设置时tri还是quad,划分出的结果都是三角形。

所以在选用plane55单元,而划分的是采用tri划分时,就会把两个点合并为一个点。如上图的plane55,下面是plane单元的节点组成,可见每一个单元上都有两个节点标号相同,表明两个节点是重合的。 。 同样在采用plane77 单元,进行tri划分时,会有三个节点重合。这里不再一一列出。(3)如何使用在线帮助: 点击对话框中的help,例如你想了解plane35的相关属性,你可以

有限元网格划分和收敛性

一、基本有限元网格概念 1.单元概述?几何体划分网格之前需要确定单元类型.单元类型的选择应该根据分析类型、形状特征、计算数据特点、精度要求和计算的硬件条件等因素综合考虑。为适应特殊的分析对象和边界条件,一些问题需要采用多种单元进行组合建模。? 2.单元分类选择单元首先需要明确单元的类型,在结构有限元分析中主要有以下一些单元类型:平面应力单元、平面应变单元、轴对称实体单元、空间实体单元、板单元、壳单元、轴对称壳单元、杆单元、梁单元、弹簧单元、间隙单元、质量单元、摩擦单元、刚体单元和约束单元等。根据不同的分类方法,上述单元可以分成以下不同的形式。?3。按照维度进行单元分类 根据单元的维数特征,单元可以分为一维单元、二维单元和三维单元。?一维单元的网格为一条直线或者曲线。直线表示由两个节点确定的线性单元。曲线代表由两个以上的节点确定的高次单元,或者由具有确定形状的线性单元。杆单元、梁单元和轴对称壳单元属于一维单元,如图1~图3所示。 ?二维单元的网 格是一个平面或者曲面,它没有厚度方向的尺寸.这类单元包括平面单元、轴对称实体单元、板单元、壳单元和复合材料壳单元等,如图4所示。二维单元的形状通常具有三角形和四边形两种,在使用自动网格剖分时,这类单元要求的几何形状是表面模型或者实体模型的边界面。采用薄壳单元通常具有相当好的计算效率。

??三维单元的网格具有空间三个方向的尺寸,其形状具有四面体、五面体和六面体,这类单元包括空间实体单元和厚壳单元,如图5所示.在自动网格划分时,它要求的是几何模型是实体模型(厚壳单元是曲面也可以)。 ? 4.按照插值函数进行单元分类 根据单元插值函数多项式的最高阶数多少,单元可以分为线性单元、二次单元、三次单元和更高次的单元。 线性单元具有线性形式的插值函数,其网格通常只具有角节点而无边节点,网格边界为直线或者平面.这类单元的优点是节点数量少,在精度要求不高或者结果数据梯度不太大的情况下,采用线性单元可以得到较小的模型规模.但是由于单元位移函数是线性的,单元内的位移呈线性变化,而应力是常数,因此会造成单元间的应力不连续,单元边界上存在着应力突变,如图6所示。

ANSYS有限元分析中的网格划分

ANSYS有限元分析中的网格划分 有限元分析中的网格划分好坏直接关系到模型计算的准确性。本文简述了网格划分应用的基本理论,并以ANSYS限元分析中的网格划分为实例对象,详细讲述了网格划分基本理论及其在工程中的实际应用,具有一定的指导意义。 作者: 张洪才 关键字: CAE ANSYS 网格划分有限元 1 引言 ANSYS有限元网格划分是进行数值模拟分析至关重要的一步,它直接影响着后续数值计算分析结果的精确性。网格划分涉及单元的形状及其拓扑类型、单元类型、网格生成器的选择、网格的密度、单元的编号以及几何体素。从几何表达上讲,梁和杆是相同的,从物理和数值求解上讲则是有区别的。同理,平面应力和平面应变情况设计的单元求解方程也不相同。在有限元数值求解中,单元的等效节点力、刚度矩阵、质量矩阵等均用数值积分生成,连续体单元以及壳、板、梁单元的面内均采用高斯(Gauss)积分,而壳、板、梁单元的厚度方向采用辛普生(Simpson)积分。辛普生积分点的间隔是一定的,沿厚度分成奇数积分点。由于不同单元的刚度矩阵不同,采用数值积分的求解方式不同,因此实际应用中,一定要采用合理的单元来模拟求解。 2 ANSYS网格划分的指导思想 ANSYS网格划分的指导思想是首先进行总体模型规划,包括物理模型的构造、单元类型的选择、网格密度的确定等多方面的内容。在网格划分和初步求解时,做到先简单后复杂,先粗后精,2D单元和3D单元合理搭配使用。为提高求解的效率要充分利用重复与对称等特征,由于工程结构一般具有重复对称或轴对称、镜象对称等特点,采用子结构或对称模型可以提高求解的效率和精度。利用轴对称或子结构时要注意场合,如在进行模态分析、屈曲分析整体求解时,则应采用整体模型,同时选择合理的起点并设置合理的坐标系,可以提高求解的精度和效率,例如,轴对称场合多采用柱坐标系。有限元分析的精度和效率与单元的密度和几何形状有着密切的关系,按照相应的误差准则和网格疏密程度,避免网格的畸形。在网格重划分过程中常采用曲率控制、单元尺寸与数量控制、穿透控制等控制准则。在选用单元时要注意剪力自锁、沙漏和网格扭曲、不可压缩材料的体积自锁等问题ANSYS软件平台提供了网格映射划分和自由适应划分的策略。映射划分用于曲线、曲面、实体的网格划分方法,可使用三角形、四边形、四面体、五面体和六面体,通过指定单元边长、网格数量等参数对网格进行严格控制,映射划分只用于规则的几何图素,对于裁剪曲面或者空间自由曲面等复杂几何体则难以控制。自由网格划分用于空间自由曲面和复杂实体,采用三角形、四边形、四面体进行划分,采用网格数量、边长及曲率来控制网格的质量。 3 ANSYS网格划分基本原则 3.1 网格数量 网格数量的多少将影响计算结果的精度和计算规模的大小。一般来讲,网格数量增加,计算精度会有所提高,但同时计算规模也会增加,所以在确定网格数量时应权衡两个因数综合考虑。 图1 位移精度和计算时间随网格数量的变化 图1中的曲线1表示结构中的位移随网格数量收敛的一般曲线,曲线2代表计算时间随

有限元六面体网格的典型生成方法及发展趋势

有限元六面体网格的典型生成方法及发展趋势 吕 军,王忠金,王仲仁 (哈尔滨工业大学材料科学与工程学院,黑龙江哈尔滨150001) 摘 要:工程问题三维有限元仿真的主要困难是模型的建立,而模型的建立需要采用合适的方法来生成高质量的三维有限元网格.以金属塑性成形过程的三维有限元仿真为例,说明了采用六面体单元的必要性.针对典型的有限元六面体网格生成方法,系统地分析了各种方法的实现原理和发展趋势,并探讨了六面体网格生成总的发展趋势.分析结果说明,复杂域内六面体网格全自动生成的实现是全自动网格生成真正走向实用化、通用化必须解决的难题. 关键词:数值仿真;有限元法;网格生成;六面体网格 中图分类号:T G302 文献标识码:A 文章编号:0367-6234(2001)04-0485-06 G eneration of finite element hexahedral mesh and its trend of development L Jun,WANG Zhong -jin,WANG Zhong -ren (School of M aterials Science and Engineering,Harbin Institute o f T echnology ,Harbin 150001,China) Abstract:The major difficulty w ith the 3-D finite element simulation of an engineering problem lies in the construction of models,w hich needs the proper generation of 3-D finite element hex ahedral mesh of high quality.The necessity to use a hex ahedral unit is justified by taking the 3-D finite element simulation of the plastic formation of metals as an ex ample.T he theories behind and trends of development of different w ays of generating finite element hexahedral meshes are systematically analysed,and the general trend of development for generation of hexadedral mesh is discussed as w ell.It is concluded that the full automatic g eneration of hexahedral mesh in com plex domains is the key to the popularization of full automatic genera -tion of hexahedral mesh. Key words:numerical simulation;finite element method;mesh generation;hexahedral mesh 有限元法是求解工程问题的一种近似数值方法,近年来在工程领域中得到了广泛的应用 [1,2] . 有限元仿真的一个重要步骤是对连续体进行离散化,为使离散出的网格能更精确地逼近连续区域和有限元计算的结果在预定误差范围内,应保证离散化后得到质量较高的网格.为此提出了许多方法来生成有限元网格 [35] .目前,二维有限元 收稿日期:2001-01-20. 基金项目:金属精密热加工重点实验室基金资助项目.作者简介:吕 军(1974-),男,博士研究生; 王仲仁(1934-),男,教授,博士生导师. 网格生成方面已比较成熟,提出了许多行之有效的方法.但在三维有限元网格尤其是六面体网格的生成方面还没有通用的算法,存在许多难点问 题需进一步解决.本文论述了采用六面体单元的必要性,并分析了有限元六面体网格的典型生成方法.最后,对六面体网格生成的发展趋势进行了探讨. 1 采用六面体单元的必要性 在有限元仿真过程中,单元类型的选择对整个有限元仿真的计算效率、自动化程度、计算精度等都将产生重要影响.因此单元类型的选择在各 第33卷 第4期 哈 尔 滨 工 业 大 学 学 报 Vol.33,No.42001年8月 JOURNAL OF HARBIN INST IT UTE OF T ECH NOLOGY Aug.,2001

有限元网格划分方法与基本原理

结构有限元分析中的网格划分技术及其应用实例 结构有限元分析中的网格划分是否直接关系到解算的效果。本文简述了网格划分应用的基本理论,并以空间自由曲面覆盖件和大型整体网络钢筋壳体产品的有限元分析中的网格划分为实例对象,详细讲述了空间自由和三维实体的网格划分基本理论及其在工程中的实际应用,非常具有现实意义和借鉴价值。 一、前言 有限元网格划分是进行有限元数值模拟分析至关重要的一步,它直接影响着后续数值计算分析结果的精确性。网格划分涉及单元的形状及其拓扑类型、单元类型、网格生成器的选择、网格的密度、单元的编号以及几何体素。从几何表达上讲,梁和杆是相同的,从物理和数值求解上讲则是有区别的。同理,平面应力和平面应变情况设计的单元求解方程也不相同。在有限元数值求解中,单元的等效节点力、刚度矩阵、质量矩阵等均用数值积分生成,连续体单元以及壳、板、梁单元的面内均采用高斯(Gauss)积分,而壳、板、梁单元的厚度方向采用辛普生(Simpson)积分。辛普生积分点的间隔是一定的,沿厚度分成奇数积分点。由于不同单元的刚度矩阵不同,采用数值积分的求解方式不同,因此实际应用中,一定要采用合理的单元来模拟求解。 CAD软件中流行的实体建模包括基于特征的参数化建模和空间自由曲面混合造型两种 方法。Pro/E和SoildWorks是特征参数化造型的代表,而 CATIA与Unigraphics等则将特征参数化和空间自由曲面混合造型有机的结合起来。现有CAD软件对表面形态的表示法已经大大超过了CAE软件,因此,在将CAD实体模型导入CAE软件的过程中,必须将CAD模型中其他表示法的表面形态转换到CAE软件的表示法上,转换精度的高低取决于接口程序的好坏。在转换过程中,程序需要解决好几何图形(曲线与曲面的空间位置)和拓扑关系(各图形数据的逻辑关系)两个关键问题。其中几何图形的传递相对容易实现,而图形间的拓扑关系容易出现传递失败的情况。数据传递面临的一个重大挑战是,将导入CAE程序的CAD模型改造成适合有限元分析的网格模型。在很多情况下,导入CAE程序的模型可能包含许多设计细节,如细小的孔、狭窄的槽,甚至是建模过程中形成的小曲面等。这些细节往往不是基于结构的考虑,保留这些细节,单元数量势必增加,甚至会掩盖问题的主要矛盾,对分析结果造成负面影响。 CAD模型的“完整性”问题是困扰网格剖分的障碍之一。对于同一接口程序,数据传递的品质取决于CAD模型的精度。部分CAD模型对制造检测来说具备足够的精度,但对有限元网格剖分来说却不能满足要求。值得庆幸的是,这种问题通常可通过CAD软件的“完整性检查”来修正。改造模型可取的办法是回到CAD系统中按照分析的要求修改模型。一方面检查模型的完整性,另一方面剔除对分析无用的细节特征。但在很多情况下,这种“回归”很难实现,模型的改造只有依靠 CAE软件自身。CAE中最直接的办法是依靠软件具有的“重构”功能,即剔除细部特征、缝补面和将小面“融入”大曲面等。有些专用接口在模型传递过程中甚至允许自动完成这种工作,并且通过网格剖分器检验模型的“完整性”,如发现“完整性”不能满足要求,接口程序可自动进行“完整性”修复。当几何模型距 CAE分析的要求相差太大时,还可利用CAE程序的造型功能修正几何模型。“布尔运算”是切除细节和修理非完整特征的有效工具之一。 目前数据传递一般可通过专用数据接口,CAE程序可与CAD程序“交流”后生成与CAE 程序兼容的数据格式。另一种方式是通过标准图形格式如IGES、 SAT和ParaSolid传递。现有的CAD平台与通用有限元平台一般通过IGES、STL、Step、Parasolid等格式来数据交

最新ANSYS有限元网格划分的基本原则汇总

A N S Y S有限元网格划 分的基本原则

ANSYS有限元网格划分的基本原则 发表时间:2009-4-3 作者: 张洪才 关键字: CAE ANSYS 网格划分有限元 有限元分析中的网格划分好坏直接关系到模型计算的准确性。本文简述了网格划分应用的基本理论,并以ANSYS限元分析中的网格划分为实例对象,详细讲述了网格划分基本理论及其在工程中的实际应用,具有一定的指导意义。 1 引言 ANSYS有限元网格划分是进行数值模拟分析至关重要的一步,它直接影响着后续数值计算分析结果的精确性。网格划分涉及单元的形状及其拓扑类型、单元类型、网格生成器的选择、网格的密度、单元的编号以及几何体素。 从几何表达上讲,梁和杆是相同的,从物理和数值求解上讲则是有区别的。同理,平面应力和平面应变情况设计的单元求解方程也不相同。 在有限元数值求解中,单元的等效节点力、刚度矩阵、质量矩阵等均用数值积分生成,连续体单元以及壳、板、梁单元的面内均采用高斯(Gauss)积分,而壳、板、梁单元的厚度方向采用辛普生(Simpson)积分。辛普生积分点的间隔是一定的,沿厚度分成奇数积分点。由于不同单元的刚度矩阵不同,采用数值积分的求解方式不同,因此实际应用中,一定要采用合理的单元来模拟求解。 2 ANSYS网格划分的指导思想 ANSYS网格划分的指导思想是首先进行总体模型规划,包括物理模型的构造、单元类型的选择、网格密度的确定等多方面的内容。 在网格划分和初步求解时,做到先简单后复杂,先粗后精,2D单元和3D 单元合理搭配使用。为提高求解的效率要充分利用重复与对称等特征,由于工程结构一般具有重复对称或轴对称、镜象对称等特点,采用子结构或对称模型可以提高求解的效率和精度。利用轴对称或子结构时要注意场合,如在进行模态分析、屈曲分析整体求解时,则应采用整体模型,同时选择合理的起点并设置合理的坐标系,可以提高求解的精度和效率,例如,轴对称场合多采用柱坐标系。有限元分析的精度和效率与单元的密度和几何形状有着密切的关系,按照相应的误差准则和网格疏密程度,避免网格的畸形。在网格重划分过程中常采用曲率控制、单元尺寸与数量控制、穿透控制等控制准则。在选用单元时要注意剪力自锁、沙漏和网格扭曲、不可压缩材料的体积自锁等问题 ANSYS软件平台提供了网格映射划分和自由适应划分的策略。映射划分用于曲线、曲面、实体的网格划分方法,可使用三角形、四边形、四面体、五面体和六面体,通过指定单元边长、网格数量等参数对网格进行严格控制,映射划分只用于规则的几何图素,对于裁剪曲面或者空间自由曲面等复杂几何体则难以控制。自由网格划分用于空间自由曲面和复杂实体,采用三角形、四边形、四面体进行划分,采用网格数量、边长及曲率来控制网格的质量。

网格生成技术概述

§9网格生成技术概述 所谓网格划分就是把空间上连续的计算区域划分成许多子区域,并确定每个子区域中的节点。网格划分的实质就是用一组有限个离散的点来代替原来连续的空间。 网格生成技术是计算传热学(NHT)和计算流体力学(CFD)的重要组成部分,在目前的CFD&NHT工作周期中,网格生成所需人力时间约占一个计算任务全部人力时间的60%左右,网格质量的好坏直接影响数值结果的精度,甚至影响数值计算的成败。可见网格生成技术是CFD&NHT作为工程应用的有效工具需要解决的关键技术之一。 最初,因为主要从事理论研究,求解的方程通常是比较简单的模型方程。对于二维问题,常在比较规则的区域内研究问题,此时针对具体的问题可用较简单的代数方法生成网格,并做简单的自适应,网格问题并不突出。但是对于有实际应用价值背景的问题,如航空航天飞行中的高超声速流动、跨音速流动以及其它多介质、高温高压系统的计算流体力学问题。这些问题所涉及的流场十分复杂,会出现各种形式的间断,必须采用非常密的网格才能对间断有较高的分辨,从而达到需要的计算精度。事实上,计算流体力学的发展除了依赖于计算机和数值计算方法的发展以外,还在很大程度上依赖于网格技术的发展。因此,近几十年来网格生成技术己受到越来越多的计算数学家、计算流体力学家的重视,并己经成为计算流体力学发展的一个重要分支。 1. 网格单元的分类 单元(cell)是构成网格的基本元素。在结构网格中,常用的2D网格单元是四边形单元,3D网格单元是六面体单元。而在非结构网格中,常用的2D网格单元还有三角形单元,3D网格单元还有四面体单元和五面体单元,其中五面体单元还可分为棱锥形(或楔形)和金字塔形单元等。图1和图2分别示出了常用的2D和3D网格单元。

四面体和六面体网格比较

四面体和六面体网格比较 在2D中,FLUENT 可以使用三角形和四边形单元以及它们的混合单元所构成的网格。在3D中,它可以使用四面体,六面体,棱锥,和楔形单元所构成的网格。选择那种类型的单元取决于你的应用。当选择网格类型的时候,应当考虑以下问题: 设置时间(setup time) 计算成本(computational expense) 数值耗散(numerical diffusion ) 1.设置时间 在工程实践中,许多流动问题都涉及到比较复杂的几何形状。一般来说,对于这样的问题,建立结构或多块(是由四边形或六面体元素组成的)网格是极其耗费时间的。所以对于复杂几何形状的问题,设置网格的时间是使用三角形或四面体单元的非结构网格的主要动机。然而,如果所使用的几何相对比较简单,那么使用哪种网格在设置时间方面可能不会有明显的节省。 如果你已经有了一个建立好的结构代码的网格,例如FLUENT 4,很明显,在FLUENT中使用这个网格比重新再生成一个网格要节省时间。这也许是你在FLUENT 模拟中使用四边形或六面体单元的一个非常强的动机。注意,对于从其它代码导入结构网格,包括FLUENT 4,FLUENT 有一个筛选的范围。 2.计算成本 当几何比较复杂或流程的长度尺度的范围比较大的时候,可以创建是一个三角形/四面体网格,因为它与由四边形/六面体元素所组成的且与之等价的网格比较起来,单元要少的多。这是因为一个三角形/ 四面体网格允许单元群集在被选择的流动区域中,而结构四边形/六面体网格一般会把单元强加到所不需要的区域中。对于中等复杂几何,非结构四边形/六面体网格能构提供许多三角形/ 四面体网格所能提供的优越条件。 在一些情形下使用四边形/六面体元素是比较经济的,四边形/六面体元素的一个特点是它们允许一个比三角形/四面体单元大的多的纵横比。一个三角形/ 四面体单元中的一个大的纵横比总是会影响单元的偏斜(skewness),而这不是所希望的,因为它可能妨碍计算的精确与收敛。所以,如果你有一个相对简单的几何,在这个几何中流动与几何形状吻合的很好,例如一个瘦长管道,你可以运用一个高纵横比的四边形/六面体单元的网格。这个网格拥有的单元可能比三角形/ 四面体少的多。 3.数值耗散 在多维情形中,一个错误的主要来源是数值耗散,术语也为伪耗散(false diffusion)。之所以称为“伪耗散”是因为耗散不是一个真实现象,而是它对一个流动计算的影响近似于增加真实耗散系数的影响。 关于数值耗散的观点有: 当真实耗散小,即情形出现对流受控时(即本身物理耗散比较小时),数值的耗散是最值得注意的。 关于流体流动的所有实际的数值设计包括有限数量的数值耗散。这是因为数值耗散起于切断错误,而切断错误是一个表达离散形式的流体流动方程的结果。 用于FLUENT 中的二阶离散方案有助于减小数值耗散对解的影响。 数值耗散的总数反过来与网格的分解有关。因此,处理数值耗散的一个方法是改进网格。 当流动与网格相吻一致时,数值耗散减到最小。 最后这一点与网格的选择非常有关。很明显,如果你选择一个三角形/ 四面体网格,那么流动与网格总不能一致。另一方面,如果你使用一个四边形/六面体网格,这种情况也可能会发生,但对于复杂的流动则不会。在一个简单流动中,例如过一长管道的流动,你可以依靠一个四边形/六面体网格以尽可能的降低数值的耗散。在这种情形,使用一个四边形/六面体网格可能有些有利条件,因为与使用一个三角形/ 四面体单元比起来,你将能够使用比较少的单元而得到一个更好的解。

相关文档
相关文档 最新文档