文档库 最新最全的文档下载
当前位置:文档库 › 气体比热容比的测定(实验报告)

气体比热容比的测定(实验报告)

气体比热容比的测定(实验报告)
气体比热容比的测定(实验报告)

装订

线

实验报告

课程名称:指导老师:成绩:

实验名称:气体比热容比的测定实验类型:测定实验同组学生姓名:

一、实验目的和要求(必填)二、实验内容和原理(必填)

三、主要仪器设备(必填)四、操作方法和实验步骤

五、实验数据记录和处理六、实验结果与分析(必填)

七、讨论、心得

一、实验目的和要求

测定空气的定压比热容和定容比热容之比k

二、实验内容和原理

测定比热容比的方法有好多种。本实验通过测定物体在特定容器中的振动周期来计算k值。实验基本装置如图1-1所示,振动物体小球的直径比玻璃管直径仅小0.01-0.02mm

。它能在此精密的玻璃管中上下移动,在瓶子的壁上有一小口,并插入一根细管,通过它各种气体可以注入到烧瓶中。

钢球A的质量为m,半径为r(直径为d),当瓶子内压力p满足下面条件时钢球A处

于力平衡状态。这时

2

r

mg

p

p

+

=,式中

b

p为大气压力。为了补偿由于空气阻尼引起振动物体A振幅的衰减,通过C管一直注入一个小气压的气流,在精密玻璃管B的中央开设有一个小孔。当振动物体A处于小孔下方的半个振动周期时,注入气体使容器的内压力增大,引起物体A向上移动,而当物体A处于小孔上方的半个振动周期时,容器内的气体将通过小孔流出,使物体下沉。以后重复上述过程,只要适当控制注入气体的流量,物体A能在玻璃管B的小孔上下作简谐振动,振动周期可利用光电计时

装置来测得。

若物体偏离平衡位置一个较小距离x ,则容器内的压力变化p ?,物体的运动方程为:

p r dt

x d m ?=222π (1-1) 因为物体振动过程相当快,所以可以看作绝热过程,绝热方程

k pv =常数 (1-2)

将(1-2)式求导数得出:

V

V pk p ?-=?,x r V 2π=? (1-3) 将(1-3)式代入(1-1)式得 04222=+x mV pk r dt x d π 此式即为熟知的简谐振动方程,它的解为

T mV pk r ππω242== 4242644pd T m V pr T m V k == (1-4) 式中各量均可方便测得,因而可算出k 值。由气体运动论可以知道,k 值与气体分子的自由度数有关,对单原子气体(如氩)只有三个平动自由度,双原子气体(如氢)除上述3个平动自由度外还有2个转动自由度。对多原子气体,则具有3个转动自由度,比热容比k 与自由度f 的关系为f f k 2+=。理论上得出: 单原子气体(e H Ar ,) 3=f 67.1=k 双原子气体(222,,O H N )5=f 4.1=k 多原子气体(42,CH CO ) 6=f 29.1=k 本实验装置主要系玻璃制成,且对玻璃管的要求特别高,振动物体的直径仅比玻璃管内径小0.01mm 左右,因此振动物体表面不允许擦伤。平时它停留在玻璃管的下方(用弹簧托住)。若要将其取出,只需在它振动时,用手指将玻璃管壁上的小孔堵住,稍稍加大气流量物体便会上浮到管子上方开口处,就可以方便地取出,或将此管由瓶上取下,将球倒出来。 振动周期采用可预置测量次数的数字计时仪,采用重复多次测量。 振动物体直径采用螺旋测微计测出,质量用物理天平称量,烧瓶容积由实验室给出,大气压力由气压表自行读出,并换算

2/m N )/10013.1760(25m N mmHg ?=。

1.接通电源,调节气泵上气量调节旋钮,使小球在玻璃管中以小孔为中心上下振动。注意,气流过大或过小会造成钢珠不以玻璃管上小孔为中心的上下振动,调节时需要用手挡住玻璃管上方,以免气流过大将小球冲出管外造成钢珠或瓶子损坏。

2.打开周期计时装置,次数设置为50次,按下执行按钮后即可自动记录振动50次周期所需的时间。

3.若不计时或不停止计时,可能是光电门位置放置不正确,造成钢珠上下振动时未挡光,或者是外界光线过强,此时须适当挡光。

4.重复以上步骤五次。

5.用螺旋测微计和物理天平分别测出钢珠的直径d 和质量m ,其中直径重复测量五次。

三、主要仪器设备

DH4602气体比热容比测定仪;螺旋测微计;物理天平。

四、操作方法和实验步骤 1、仪器在使用前应可靠固定,玻璃容器应垂直放置,以免小球振动时碰到管壁,造成测量误差。垂直度可以通过调节玻璃容器本身和底座上的三个螺钉来实现。 2、气泵的输出通过输气软管接入玻璃容器,连接时注意不要漏气,否则小球不

能上下振动。

3、光电门的输出插头接到计时测试仪的后面板的专用插座上。

4、气泵的电源插头接到计时测试仪的后面板的二芯插座上,通过接通计时测试仪的前面板的气泵电源开关,可以接通或关闭气泵的电源。

5、接好仪器的电源,打开后面板上的电源开关,仪器接通电源。

6、计时测试仪的程序预置周期为30=T (默认值),即:小球来回经过光电门的次数为12+=n T 次。据具体要求,若要设置50次,先按“置数”开锁,再按上调(或下调)改变周期T ,当达到T=50时,再按“置数”锁定。

7、此时按执行键开始计时,信号灯不停闪烁,即为计时状态,这时数显表显示计时周期的个数。当小球经过光电门的周期次数达到设定值,数显表头将显示具体时间,单位“秒”。需要再执行“50”周期时,无须重新设置,只要按“返回”即可回到上次刚执行的周期数“50”,再按“执行”键,便可以第二次计时。当按复位或断电再开机时,程序从头预置30次周期,须重复上述步骤。

8、本计时器的周期设定范围0-99次。计时范围为0-99.99s ,分辨率为0.01s 。

五、实验数据处理和记录

本实验提供的玻璃瓶的有效体积为:351450cm ±;

小球质量约为g 4,小球半径约为mm 5。

T1 = 15.52s (30周期)

T2 = 25.86s (50周期)

T = 0.5172s

六、实验结果与分析

在忽略容器体积V 、大气压p 测量误差的情况下估算空气的比热容及其不确定度:k k ?±

4242644pd T m V pr T m V k ==

V = 351450cm ± m = 4g

p = 1.013*105 N/m 2

d = 5mm

T = 0.5172s

k = 1.5116±0.0052

七、讨论、心得

1、注入气体量的多少对小球的运动情况有没有影响?

有。不适当的气体量会导致气流过大或过小,则会导致小球的振动中心偏离原先玻璃管上的小孔。

空气比热容比的实验报告

空气比热容比的测量 实验目的: 1.用绝热膨胀法测定空气的比热容比。 2.观测热力学过程中状态变化及基本物理规律。 3.学习气体压力传感器和电流型集成温度传感器的原理及使用方法。实验原理: 对理想气体的定压比热容C p和定容比热容C v 之关系由下式表示: C p —C v =R(1) (1) 式中,R为气体普适常数。气体的比热容比r值为: r= C p /C v (2) 气体的比热容比现称为气体的绝热系数,它是一个重要的物理量,r值经常出现在热力学方程中。 测量r值的仪器如图〈一〉所示。实验时先关闭活塞C 2 ,将原处于环境大气 压强P 0、室温θ 的空气从活塞C 1 ,处把空气送入贮气瓶B内,这时瓶内空气压 强增大。温度升高。关闭活塞C 1,待稳定后瓶内空气达到状态I(P ,θ ,V 1 ),V 1 为贮气瓶容积。 然后突然打开阀门C 2,使瓶内空气与大气相通,到达状态II(P 1 ,θ ,V 1 )后, 迅速关闭活塞C 2 ,由于放气过程很短,可认为是一个绝热膨胀过程,瓶内气体压强减小,温度降低,绝热膨胀过程应满足方程: P1V1’=P0V2’(3) 在关闭活塞C 2之后,贮气瓶内气体温度将升高,当升到温度θ 0 时,原状态为 I(P 1,θ ,V 1 )体系改变为状态III(P 2 ,θ ,V 2 ),应满足: P1V1=P0V2(4) 由(3)式和(4)式可得到: r=(log P0-log P1)/(logP2-log P1) 利用(5)式可以通过测量P 0、P 1 和P 2 值,求得空气的比热容比r值。 实验装置:

图〈一〉实验装置中1为进气活塞塞C 1,2为放气活塞C 2 ,3为电流型集成温 度传感器AD590,它是新型半导体温度传感器,温度测量灵敏度高,线性好,测温 范围为-50℃至150℃。AD590接6V直流电源后组成一个稳流源,见图〈二〉,它的测温灵敏度为1μA/℃,若串接5KΩ电阻后,可产生5mv/℃的信号电压,接0~2V量程四位半数字电压表,可检测到最小0.02℃温度变化。4为气体压力传感器探头,由同轴电缆线输出信号,与仪器内的放大器及三位半数字电压表相接。当待测气体压强为环境大气压P 0 时,数字电压表显示为0;当待测气体压强为 P +10.00KPa时,数字电压表显示为200mv;仪器测量气体压强灵敏度为20mv/KPa,测量精度为5Pa。 实验内容: 1.按图〈一〉接好仪器的电路,AD590的正负极请勿接错。用Forton式 气压计测定大气压强P 0,用水银温度计测环境室温θ 。开启电源,将 电子仪器部分预热20分钟,然后用调零电位器调节零点,把三位半数字电压表表示值调到0。 2.把活塞C 2关闭,活塞C 1 打开,用打气球把空气稳定地徐徐进入贮气瓶

(fb212型气体比热容比的测定)实验讲义

(FB212型气体比热容比测定仪)实验讲义 气体比热容比的测定 比热容是物质的重要参量,在研究物质结构、确定相变、鉴定物质纯度等方面起着重要 的作用。本实验将介绍一种较新颖的测量气体比热容的方法。 【实验目的】 测定空气分子的定压比热容与定容比热容之比γ值。 【实验原理】 气体的定压比热容P C 与定容比热容V C 之比 V P C /C =γ,在热力学过程特别是绝热过程中是一个 很重要的参数,测定的方法有好多种。这里介绍一种较新颖的方法,通过测定物体在特定容器中的振动周期来计算γ值。实验基本装置如图1所示,振动物体小球D 的直径比玻璃諧振腔E 直径仅小mm 02.0~01.0 。它能在此精密的玻璃諧振腔E 中上下移动,在储气瓶A 的壁上有一充气孔B ,并插入一根细管,通过它各种气体可 以注入到储气瓶A 中。 钢球D 的质量为m ,半径为 r (直径为d ),当瓶子内压力P 满足下面条件时,钢球 D 处于力平衡状态,这时2 L m g P P r π?=+ ?,式中L P 为大气压强 。为了补偿由于空气阻尼引起振动物体D 振幅的衰减,通过B 管不断注入一个小气压的气流,在精密玻璃諧振腔E 的中央开设有一个小孔C 。当振动物体A 处于小孔下方的半个振动周期时,注入气体使储气瓶A 内压力增大,引起物体D 向上移动,而当物体D 处于小孔上方的半个振动周期时,容器内的气体将通过小孔流出,使储气瓶A 内压力减小从而使物体D 下沉。以后重复上述过程,只要适当控制注入气体的流量,物体D 能在玻璃諧振腔E 的小孔C 上下作简谐振动,振动周 期可利用光电计时装置来测得。 若物体偏离平衡位置一个较小距离dx ,则容器内的压力变化dp ,物体的运动方程为:

空气比热容比测定实验报告(实验数据及其处理)

007 实验报告 评分: 课程: ******** 学期: ***** 指导老师: **** 年级专业: ***** 学号:****** 姓名:!习惯一个人007 实验3-5空气比热容比的测定 一、实验目的 1. 用绝热膨胀法测定空气的比热容。 2. 观察热力学过程中状态变化及基本物理规律。 3. 学习气体压力传感器和电流型集成温度传感器的原理及使用方法。 二、实验原理 测量仪器如图4-6-1所示。1为进气活塞C 1,2 为放气活塞C 2,3为电流型集成温度传感器,4为气体压力传感器探头。实验时先关闭活塞C 2,将原处于环境大气压强为P 0、室温为T 0的空气经活塞C 1送入贮气瓶B 内,这时瓶内空气压强增大,温度升高。关闭活塞C 1,待瓶内空气稳定后,瓶内空气达到状态Ⅰ(101,,V T P ) ,V 1为贮气瓶容积。 然后突然打开阀门C 2,使瓶内空气与周围大气相通,到达状态Ⅱ(),,220V T P 后,迅速关闭活塞C 2。由于放气过程很短,可认为气体经历了一个绝热膨胀过程,瓶内气体压强减小,温度降低。绝热膨胀过程应满足下述方程 r r o r o r T p T p 1 1 11 --= (3-5-2) 在关闭活塞C 2之后,贮气瓶内气体温度将升高,当升到温度T 0时,原气体的状态为Ⅰ(101,,V T P )改变为状态Ⅲ(202,,V T P ) ,两个状态应满足如下关系: 0 21T p T p o = (3-5-3) 由(3-5-2)式和(3-5-3)式,可得 )lg /(lg )lg (lg 1210P P P P --=γ (3-5-4) 利用(3-5-4)式可以通过测量P 0、P 1和P 2值,求得空气的比热容比γ值。

一气体定压比热容测定

工程热力学实验 指导书 哈尔滨理工大学 热能与动力工程实验室

实验一 气体定压比热容测定实验 一.实验目的 1. 了解气体比热测定装置的基本原理和构思。 2. 熟悉本实验中测温、测压、测热、测流量的方法。 3. 掌握由基本数据计算出比热值和比热公式的方法。 4. 分析本实验产生误差的原因及减小误差的可能途径。 二.实验原理 引用热力学第一定律解析式,对可逆过程有: pdv du q +=δ 和 vdp dh q -=δ 定压时0=dp p p T h dT vdp dh dT q c ??? ????=??? ??-=??? ??=δ 此式直接由p c 的定义导出,故适用于一切工质。 在没有对外界作功的气体的等压流动过程中: p Q m dh δ1= 则气体的定压比热容可以表示为: ()122 1t t m Q c p t t pm -= kJ/kg ?℃ 式中:m ——气体的质量流量,kg/s ; p Q ——气体在等压流动过程中的吸热量,kJ/s 。 由于气体的实际定压比热是随温度的升高而增大,它是温度的复杂函数。实验表明,理想气体的比热与温度之间的函数关系甚为复杂,但总可表达为: +++=2et bt a c p 式中a 、b 、e 等是与气体性质有关的常数。在离开室温不很远的温度范围内,空气的定压比热容与温度的关系可近似认为是线形的,假定在0-300℃之间,空气真实定压比热与温度之间进似地有线性关系: bt a c p += 则温度由1t 至2t 的过程中所需要的热量可表示为:

()dt bt a q t t ?+=2 1 由1t 加热到2t 的平均定压比热容则可表示为: ()2211 22121t t b a t t dt bt a c t t t t pm ++=-+=? 若以(t 1+t 2)/2为横坐标,21t t pm c 为纵坐标(如下图所示),则可根据不同温度范 围的平均比热确定截距a 和斜率b,从而得出比热随温度变化的计算式bt a +。 大气是含有水蒸气的湿空气。当湿空气气流由温度1t 加热到2t 时,其中水蒸气的吸热量可用式下式计算: ()dt t m Q t t w w ?+=2 10001172.0844.1 式中:w m ——气流中水蒸气质量,kg/s 。 则干空气的平均定压比热容由下式确定: ()()1212)(')(21t t m m Q Q t t m m Q c w w p w p t t pm ---=--= 式中:'p Q ——为湿空气气流的吸热量。 三.实验设备

空气比定压热容的测定

气比定压热容的测定 一、实验目的 (1)了解比热容测定装置的设备组成及各设备的作用,掌握比热容测定方法。 (2)掌握本实验中的温度、压力、流量、热量等的测定方法。 (3)掌握计算比热值和求得比热容公式的方法,并计算空气的比定压热容。 (4)列表示平均比热容与温度的关系,并用方程表示。 二、实验原理 实验台通过在定压条件下加热空气,根据空气温度的变化和流量的大小测出空气的定压比热容,即根据()()[]K kg /kJ 1221?-=t t m Q c p t t p 确定,式中:m 为气体 的质量流量,kg/s ;p Q 为气体在等压流动过程中的吸热量,kJ/s 。 在距室温不很远的温度围,空气的比定压热容与温度的关系可近似认为是线性的,即可近似表示为bt a c p +=,由1t 加热到2t 的平均比热容为 2 )(21122121t t b a t t bt a c t t t t p ++=-+=?,因此,若以221t t +为横坐标,p c 为纵坐标,则可根据不同温度围的平均比热容确定截距a 和斜率 b ,从而得出比热容随温度变化的近似关系式。 (1)空气中水蒸气容积成分iv ?的确定。大气是含有水蒸气的湿空气,当湿 空气的温度由1t 加热到2t 时,根据布置在流量计出口的干湿球温度计读数t 、 w t ,从干湿球温度计的湿度表中查的空气的相对湿度?,再由?和干球温度t 从湿空气的焓湿图查出含湿量d ,则可用下式计算出空气中水蒸气的容积成分(也称为体积分数) %100622/1622/iv ?+=d d ? 式中:d 为含湿量,g (水蒸气)/kg (干空气)。 (2)湿空气的吸热量p Q 的确定。当比热议出口空气温度稳定时,湿空气吸收的热量即为电热器消耗的电功率。功率的测定方法有两种,一种是根据测量的电压和电流计算;另一种由功率表直接测量。吸热量的单位为kJ/s 。 (3)干空气质量流量m 的确定 ) (15.27305.287/1000/10)1()8.9(iv 0+??-??+==t h p T R V p m a a a a τ? 式中:0p 为当地的大气压力,Pa ;a p 为干空气的压力,Pa ;a V 为干空气的体积,

空气比热容比实验报告

竭诚为您提供优质文档/双击可除空气比热容比实验报告 篇一:实验报告空气比热容比的测定 1.实验名称 空气比热容比的测定2.实验目的 (1)了解绝热、等容的热力学过程及有关状态方程。(2)测定空气的比热容比。 3.实验原理:主要原理公式及简要说明、原理图 (1)热力学第一定律及定容比热容和定压比热容热力学第一定律:系统从外界吸收的热量等于系(:空气比热容比实验报告)统内能的增加和系统对外做功之和。考虑在准静态情况下气体由于膨胀对外做功为dA?pdV,所以热力学第一定律的微分形式为 dQ?de?dA?de?pdV(1) 定容比热容cv是指1mol的理想气体在保持体积不变的情况下,温度升高1K所吸收的热量。由于体积不变,那么由(1)式可知,这吸收的热量也就是内能的增加(dQ=de),所以

?dQ?de ?cv???dT??dT(2)??v 由于理想气体的内能只是温度的函数,所以上述定义虽然是在等容过程中给出,实际上 任何过程中内能的变化都可以写成de=cvdT 定压比热容是指1mol的理想气体在保持压强不变的情况下,温度升高1K所吸收的热量。即 ?dQ? ?(3)cp???dT???p 由热力学第一定律(3)式,考虑在定压过,就有 dV?dQ??de? ??????p(4) dT?dT?p?dT?p 由理想气体的状态方程pV=RT可知,在定压过程中入(4)式,就得到定压比热容与定容比热容的关系 dVRde ?,又利用?cv代dTpdT cp?cv?R(5) R是气体普适常数,为8.31J/mol·K,引入比热容比?为 ??cp/cv(6) 在热力学中,比热容比是一个重要的物理量,它与温度

气体比热容比的测定实验报告及数据

气体比热容比的测定实验报告及数据课气体比热容比的测定 1、学习测定空气比热容比的方法。题 教学目 2、熟练掌握物理天平和螺旋测微器的使用方的 法。 3、熟练掌握直接测量值和间接测量值不确定度 重难 1、物理天平的调节和使用。的计算。 点 2、各物理量不确定度的计算。 教学方讲授、演示、提问、讨论、操作相结合。 学 3学时。法 时 一、前言 气体的定压比热容和定体比热容的比值称为比热容比。气体的值在许多热力学过程特别是绝热过程中是一个很重要的参数。由气体动理论可知,理想气体的值为: (1) 式中为气体分子的自由度,对于单原子分子 ;对于双原子刚性分子, ;对于多原子刚性分子,。实验中气体的比热容比常通过绝热膨胀法、绝热压缩法等方法来测定。本实验将采用一种比较新颖的方法,即通过测定小球在储气瓶玻璃管中的振动周期来计算空气的值。 二、实验仪器 FB212型气体比热容比测定仪、支撑架、小型气泵、TW-1型物理天平、0-25mm 外径千分尺等。

三、实验原理 如图1所示,钢球A位于精密细玻璃管B中,其直径仅仅比玻璃管直径小 0.01-0.02mm,使之能在玻璃管中上下移动,瓶上有一小孔C,可以通过导管将 待测气体注入到玻璃瓶中。 图1 设小球质量为m,半径为r,当瓶内气压P满足下式时,小球处于平衡位置: (2) 设小球从平衡位置出发,向上产生微小正位移x,则瓶内气体的体积有一 微小增量: (3) 与此同时瓶内气体压强将降低一微小值,此时小球所受合外力为: (4) 小球在玻璃管中运动时,瓶内气体将进行一准静态绝热过程,有绝热方程: (5) 两边微分,得 (6) 将(3)、(4)两式代入(6)式,得: (7) 由牛顿第二定律,可得小球的运动方程为: (8) 可知小球在玻璃管中作简谐振动,其振动周期为: (9) 最后得气体的值为: (10)

气体定压比热测定实验指导书

气体定压比热测定实验指导书 气体定压比热容的测定实验是工程热力学基本实验之一,实验中涉及温度、压力、热量(电功率)、流量等基本量的测量,计算中用到比热及混合气体(湿空气)方面的基本知识。本实验的目的是增加热物性实验研究方面的感性认识,促进理论联系实际,有利于培养分析问题和解决问题的能力。. 一、实验要求 1. 了解气体比热测定装置的基本原理和构思。 2. 熟悉本实验中测温、测压、测热、测流量的方法。 3. 掌握由基本数据计算出比热值和比热公式的方法。 4. 分析本实验产生误差的原因及减小误差的可能途径。 二、实验装置介绍 1、实验所用的设备和仪器仪表由风机、流量计,比热仪本体、电功率调节测量系统共四部分组成,实验装置系统如图1所示。 2、装置中采用湿式流量计测定气流流量,流量计出口的恒温槽用以控制测定仪器出口气流的温度。装置可以采用小型单级压缩机或其它设备作为气源设备,并用钟罩型气罐维持供气压力稳定。气流流量用调节阀1调整。 3、比热容测定仪本体(图2)由内壁镀银的多层杜瓦瓶2,进口温度计1和出口温度计8(铂电阻温度计或精度较高的水银温度计)电加热器3和均流网4,绝缘垫5,旋流片6和混流网7组成。 4、气体自进口管引入,进口温度计4测量其初始温度,离开电加热器的气体经均流网4均流均温,出口温度计8测量加热终了温度,后被引出。 5、该比热仪可测300℃以下气体的定压比热。 三、实验方法及数据处理 实验中需要测定干空气的质量流量g m 、水蒸气的质量流量w m 、电加热器的加热量(即气流吸热量)'p Q 和气流温度等数据,测定方法如下: 1.干空气的质量流量g m 和水蒸气的质量流量w m 电加热器不投入,摘下流量计出口与恒温槽连接的橡皮管,把气流流量调节到实验流量值附近,测定流量计出口的气流干球温度0t 和湿球温度

大学物理空气比热容的测量实验报告

大物实验报告撰写模板2 空气比热容比的测定 在热学中比热容比是一个基本物理量。过去,由于实验测量手段的原因使得对它的测量误差较大。现在通过先进的传感器技术使得测量便得简单而准确。本实验通过压力传感器和温度传感器来测量空气的比热容比。 一、实验目的 1. 用绝热膨胀法测定空气的比热容。 2. 观察热力学过程中状态变化及基本物理规律。 3. 学习气体压力传感器和电流型集成温度传感器的原理及使用方法。 二、实验原理 理想气体定压摩尔热容量和定体摩尔热容量之间的关系由下式表示 R C C v p =- (4-6-1) 其中, R 为普适气体常数。气体的比热容比γ定义为 v p C C = γ (4-6-2) 气体的比热容比也称气体的绝热系数,它是一个重要的物理量,其值经常出现在热力学方程中。 测量仪器如图4-6-1所示。1为进气活塞C 1,2 为放气活塞C 2,3为电流型集成温度传感器,4为气体压力传感器探头。实验时先关闭活塞C 2,将原处于环境大气压强为P 0、室温为T 0的空气经活塞C 1送入贮气瓶B 内,这时瓶内空气压强增大,温度升高。关闭活塞C 1,待瓶内空气稳定后,瓶内空气达到状态Ⅰ(101,,V T P ) ,V 1为贮气瓶容积。 然后突然打开阀门C 2,使瓶内空气与周围大气相通,到达状态Ⅱ(),,220V T P 后,迅速关闭活塞C 2。由于放气过程很短,可认为气体经历了一个绝热膨胀过程,瓶内气体压强减小,温度降低。绝热膨胀过程应满足下述方程 γ γ2011V P V P = (4-6-3) 在关闭活塞C 2之后,贮气瓶内气体温度将升高,当升到温度T 0时,原气体的状态为Ⅰ(101,,V T P )改变为状态Ⅲ(202,,V T P ) ,两个状态应满足如下关系:

实验一 空气定压比热容测定

实验一 空气定压比热容测定 一、实验目的 1.增强热物性实验研究方面的感性认识,促进理论联系实际,了解气体比热容测定的基本原理和构思。 2.学习本实验中所涉及的各种参数的测量方法,掌握由实验数据计算出比热容数值和比热容关系式的方法。 3.学会实验中所用各种仪表的正确使用方法。 二、实验原理 由热力学可知,气体定压比热容的定义式为 ( )p p h c T ?=? (1) 在没有对外界作功的气体定压流动过程中,p dQ dh M =, 此时气体的定压比热容可表示 为 p p T Q M c )(1??= (2) 当气体在此定压过程中由温度t 1被加热至t 2时,气体在此温度范围内的平均定压比热容可由下式确定 ) (1221 t t M Q c p t t pm -= (kJ/kg ℃) (3) 式中,M —气体的质量流量,kg/s; Q p —气体在定压流动过程中吸收的热量,kJ/s 。 大气是含有水蒸汽的湿空气。当湿空气由温度t 1被加热至t 2时,其中的水蒸汽也要吸收热量,这部分热量要根据湿空气的相对湿度来确定。如果计算干空气的比热容,必须从加热给湿空气的热量中扣除这部分热量,剩余的才是干空气的吸热量。 低压气体的比热容通常用温度的多项式表示,例如空气比热容的实验关系式为 3 16 2 7 4 10 87268.410 02402.410 76019.102319.1T T T c p ---?-?+?-=(kJ/kgK) 式中T 为绝对温度,单位为K 。该式可用于250~600K 范围的空气,平均偏差为0.03%,最大偏差为0.28%。 在距室温不远的温度范围内,空气的定压比热容与温度的关系可近似认为是线性的,即可近似的表示为 Bt A c p += (4) 由t 1加热到t 2的平均定压比热容则为 m t t t t pm Bt A t t B A dt t t Bt A c +=++=-+= ? 2 2 11 22 1 2 1 (5) 这说明,此时气体的平均比热容等于平均温度t m = ( t 1 + t 2 ) / 2时的定压比热容。因此,可以对某一气体在n 个不同的平均温度t m i 下测出其定压比热容c p m i ,然后根据最小二乘法原理,确定

1空气定压比热的测定

实验一空气定压比热的测定 气体定压比热的测定是工程热力学的基本实验之一。实验中涉及温度、压力、热量(电功)、流量等基本量的测量;计算中用到比热及混合气体(湿空气)的方面的基本知识。 一、实验目的 1、了解比热测定装置的基本原理和构思。 2、熟悉本实验中的测温、测压、测热量、测流量的方法。 3、掌握由基本数据计算出比热值和求得比热公式的方法。 4、增加热物性研究方面得感性认识,促进理论联系实际。 5、分析本实验产生误差得原因及减小误差得可能途径。 二、原理及计算 气体定压比热的定义为,在没有对外界做功的气体等压流动过程中, 则气体的热容可表示为。当气体在此等压过程中,由温度t1加热到温度t2时,气体在此温度范围内的平均定压比热值可由下式确定 kJ/kg.K,即单位质量的工质温度升高一度时所吸收的热量。 式中: m—气体的质量流量。㎏/s Qp—气体在等压流动过程中的吸热量。kJ/s 大气是含有水蒸汽的湿空气,当湿空气的温度由t1加热到温度t2时,根据流量计出口空气的干湿球温度计读数,可从湿空气的焓湿图查出含湿量d(即比湿度ω)克/千克干空气,并根据下式计算出水蒸汽的容积成分: 电热器消耗的电功率可由电压和电流的乘积计算。如要考虑电表的内耗,应扣除毫安表的内耗。设毫安表的内阻为RmA欧(Ω),则可得电热器单位时间放出的热量:

J/s 也可由功率表直接读出。 干空气流量(质量流量)为: = ㎏/s 水蒸汽的流量(质量流量)为: =㎏/s 水蒸汽吸收的热量为: = = = J/s 干空气的定压比热为: J/㎏.K 由以上计算过程可以看出,要测量计算气体的定压比热Cpm,需要测定的有关量分别是:

金属比热容测定

热学实验论文 。混合法测定金属的比热容 物质比热容的测量属于量热学范围,由于量热实验的误差一般较大,所以要做好量热实验必须仔细分析产生各种误差的原因,并采取相应措施设法减小误差。 测定固体或液体的比热容,在温度变化不太大时常用混合量热法、冷却法、电流量热器法。本实验用混合法测定金属的比热容。 一、实验目的 1. 学习热学实验的基本知识,掌握用混合法测定金属的比热容的方法; 2. 学习一种修正系统散热的方法。 二、仪器及用具 量热器,水银温度计,物理天平,待测金属粒,停表,量筒,烧杯及电加热器等。 三、实验原理 1. 用热平衡原理侧比热容 在一个与环境没有热交换的孤立系统中,质量为m 的物体,当它的温度由最初平衡态0θ变化到新的平衡态i θ时,所吸收(或放出)的热量Q 为 )(0θθ-=i mc Q (1) 式中mc 称为该物体的热容,c 称为物体的比热容,单位为J/(kg·K )。 用混合法测定固体比热容的原理是热平衡原理。把不同温度的物体混合在一起时,高温物体向低温物体传递热量,如果与外界没有任何热交换,则他们最终达到均匀、稳定的平衡温度,这时称系统达到了热平衡。高温物体放出的热量1Q 与低温物体吸收的热量2Q 相等,即 1Q =2Q (2) 本实验的高温部分由量热器内筒、搅拌器、水银温度计和热水等组成,而处于室温的金属粒为系统的低温部分。设量热器内筒和搅拌器(二者为同种材料制成)的质量为1m ,比热容为1c ;热水质量为2m ,比热容为2c ;水银温度计的质量为3m ,比热容为3c ,它们的共同

温度为1θ。待测金属粒的质量为M ,比热容为c ,温度与室温0θ相同。将适量金属粒倒入量热器内筒中,经过搅拌后,系统达到热平衡时的温度为2θ。假设系统与外界没有任何热交换,则根据式(2)可知,实验系统的热平衡方程为 )())((022*******θθθθ-=-++Mc c m c m c m (3) 式中33c m 为温度计的热容,其值用1.92V(J/K)表示,这里的V 表示温度计浸入水中部分的 体积,单位用3cm 。于是,式(3)可写成 )())(92.1(02212211θθθθ-=-++Mc V c m c m 则金属粒的比热容c 为 )() )(92.1(02212211θθθθ--++=M V c m c m c (4) 式中M 、1m 、2m 均可由天平称衡;V 可用量筒采用排水法测出;1c 、2c 查书后附录二或由实验室给出,0θ为室温。若能知道1θ和2θ的值,便可计算出金属粒的比热容c 。下面通过修正系统散热误差的方法求出1θ和2θ的值。 2. 系统散热误差的修正(面积补偿法) 在热学实验中,系统不可能完全绝热,必然存在着散热现象,因此,必须对系统的散热进行修正。修正散热的方法之一就是对温度进行修正,其方法是通过作图用外推法求出实验系统的高温部分(量热器内筒、热水、搅拌器、水银温度计等)混合前的温度1θ以及混合后系统达到热平衡时的温度2θ。图2-25所示的是实验系统的温度随时间变化的曲线。图 中AB 段是未投入金属粒前系统的散热温度变化曲线; B 点对应的时刻为金属粒投入热水中的时刻。B C 段是金属粒投入量热器热水中以后,系统进行热交换过程的散热曲线;C D 段是系统内热交换达到热平衡后的散热温度变化曲线。在BC 段实际上同时进行着两个过程,一是由于系统向空气散热而导致热水温度下降,二是由于金属粒投入后的吸热效应而使热水温度下降。现在就来考虑在有热量损失的情况下,应用面积补偿法,求出由于投入金属粒而使水温降低的实际数值。其具体做法是:在曲线上过对应于室温0θ的点G 作垂直横轴的直线,然后延长AB 到 E ,延长DC 到 F ,使BE G 面积等于GFC 面积,这样在BEGFC 和BGC 这两条图线各自相应的过程中所损失的热量是相等的,因而可将原来的BGC 过程等

-空气比热容比的测量实验报告

南昌大学物理实验报告课程名称:普通物理实验(2) 实验名称:空气比热容比的测量 学院:专业班级: 学生姓名:学号: 实验地点:座位号: 实验时间:

一、 实验目的: 1. 学习用绝热膨胀法测定空气的比热容比。 2. 观察热力学过程中状态变化及基本物理规律。 3. 学习气体压力传感器和电流型集成温度传感器的原理及使用方法。 二、 实验仪器: 气压计、FD-TX-NCD 空气比热容测定仪。 三、 实验原理: 遵循两条基本原则:其一是保持系统为孤立系统;其二是测量一个系统 的状态参量时,应保证系统处于平衡态。 气体的定压比热容P C 和定容比热容V C 之比称为气体的比热容比,用符号γ 表示(即p V C C γ=),又称气体的绝热系数。 如图所示,实验开始时,首先打开活塞C2,储气瓶与大气相通,当瓶内充满与周围空气同压强同温度的气体后,再关闭活塞C2。 打开充气活塞C1,将原处于环境大气压强为0p 、室温为0T 的空气,用打气球从活塞C1处向瓶内打气,充入一定量的气体,然后关闭充气活塞C1。此时瓶内空气被压缩而压强增大,温度升高,等待瓶内气体温度稳定,即达到与周围温度平衡。此时的气体处于状态I(1p ,1V ,0T ),其中1V 为储气瓶容积。 然后迅速打开放气阀门C2,使瓶内空气与周围大气相通,瓶内气体做绝热膨胀,将有一部分体积为V ?的气体喷泻出储气瓶。当听不见气体冲出的声音,即瓶内压强为大气压强0p ,瓶内温度下降到1T (1T <0T ),此时,立即关闭放气阀门C2,。由于放气过程较快,瓶内保留的气体由状态I(1p ,1V ,0T )转变为状态II (0p ,2V ,1T )。

气体定压比热测定

1 干气体定压比热测定实验 干气体定压比热的测定是工程热力学的基本实验之一。实验中涉及温度、压力、热量(电功)、流量等基本量的测量;计算中用到比热及混合气体(混空气)方面的知识。 一、实验目的 1. 了解实验装置的基本原理和结构。 2. 熟悉温度、压力、热量、流量等基本量的测量方法。 3. 掌握由基本数据计算出比热值和求得比热公式的方法。 4. 分析产生误差的原因及减小误差的途径。 二、实验原理 本实验测定的是干空气的定压质量比热P C ,而不是定压容积比热P C ¢。 P C :P =const 时,1kg 气体温度升高1K 时所吸收的热量,kJ/(kg K) ; P C :P =const '时,1Nm 3气体温度升高1K 时所吸收的热量,kJ/(kg K) 。 根据定义,对于1kg 工质, P q C t = D kJ/(kg K) (1) 对于mkg 工质, P Q C m t = D kJ/(kg K) (2) 在这里我们所求的就是干空气的定压质量比热P C ,“干”用下标“g ”表示,即 g P g Q C m t = D kJ/(kg K) (3) 各参数值的测定如下: (1)t ?测定:我们将一定流量的气体通入比热仪,在比热仪中队气体进行加热后气体流出。这样,气体进入比热仪与流出比热仪就存在了温度差t ?,只要我们在比热仪进口设置温度计1t 和出口设置温度计2t ,即可求出21-t t t ?=。 (2)g m 的测定:由于干空气的质量不好测定,我们可以测定空气的质量流量g m kg/s ,干空气符合理想气体定律: g g g P V m R T = kg/s (4) 分母上,g R 为干空气的气体常数,287J/(kg K)g R = ; 0T 为干空气热力学温度,00(273.15)T t K =+ 分子上,g P 为空气中干空气的分压力,根据道尔顿分压定律,

实验报告-空气比热容比的测量

大学物理实验报告 实验3-5 空气比热容比的测量 一、实验目的: 测量室温下的空气比热容比 二、实验原理: 理想气体的定压摩尔热容为 p C ,定容摩尔热容为v C ,气体的比热容比γ值 为: v p C C = γ,γ又称摩尔热容比。 瓶内贮入气体后,将瓶内的气体看成由两部分组成,一部分是放气后进入大气的气体,另一部分是放气前在瓶内具有体积V1,放气后,这部分气体充满贮气瓶,体积为V2,以放气后留在瓶内的这部分气体为系统,实验中系统经三个状态, Ⅰ???→?绝热膨胀),,(011T V P Ⅱ???→?定容升温 ),,(20x T V P Ⅲ),,(022T V P 由于气体处于状态Ⅰ和状态Ⅲ时,气体的量不变,温度相同时应有 2211V P V P =,另外状态Ⅰ至状态Ⅲ是绝热过程,应有γγ2011V P V P =,此二式联立解 得 121 0lg lg lg lg P P P P --= γ(3-5-3) 所以只要测出环境大气压强0 P 和瓶内气体初末态的压强1P 、2P ,即可通过 上式求出气体的比热容比。 三、实验器材: 储气瓶一套(包括玻璃瓶、活塞两只、橡皮球、打气球)、两只传感器(扩散硅压力传感器和电流型集成温度传感器AD590各一只)、测量空气压强的三位半数字电压表、测空气温度的四位半数字电压表、连接电缆以及电阻。 四、实验步骤:

(1)按图3-5-2接线,注意AD590的正负极。用Forton式气压计测定大气 压强,0P用水银温度计测环境温度0T。 (2)开启电源,将电子仪器部分预热20min,然后用调零电位钮调节零点,把三位半数字电压表示值调到0。 (3)将2C关闭,与打气手球相连的活塞1C打开,用打气球把空气稳定地徐 徐输入贮气瓶内,关闭活塞1C,稳定后测量并记录此时温度(该温度即为瓶内 T',再测量并记录气体的温度,也为室温T0(℃),此温度在电压表上显示为0 瓶内压强1P'(电压表示数)。 (4)突然打开活塞2C,当贮气瓶的空气压强降低至环境大气压强0P时(这 时放气声消失),迅速关闭2C。 T时记下贮气瓶内气体的压强(5)当贮气瓶内空气稳定,温度上升至室温0 P'。 2 (6)记录完毕后,打开2C放气,当压强显示降到“0”时关闭2C。 (7)重复步骤2~6。 (8)用式(3-5-3)进行计算,求得空气比热容比值。

实验 气体定压比热测定

实验 气体定压比热测定 一、实验目的 1. 了解气体比热测定装置的基本原理和装置结构。 2. 熟悉本实验中温度、压力、热量、流量的测量方法。 3. 掌握由测量数据计算定压比热的方法。 4. 分析本实验中误差产生的原因及减小误差的可能途径。 二、实验原理 根据定压比热的概念,气体在t ℃时的定压比热表示为 p dq c dt = (1) 当式(1)的温度间隔dt 为无限小时,p c 即为某一温度t 时气体的真实定压比热(由于气体的定压比热随温度的升高而增大,所以在给出定压比热的数值时,必须指明是哪个温度下的定压比热)。如果已得出()p c f t =的函数关系,温度由1t 至2t 的过程中所需要的热量即可按下式求得: 22 21 1 ()d p q c dt a bt ct t ==+++?? (2) 上式采用逐项积分来求热量十分复杂。在本实验的温度测量范围内(不高于300℃),空气的定压比热与温度的关系可近似认为是线性,即可表示为: p c a bt =+ (3) 则温度由1t 至2t 的过程中所需要的热量可表示为: ()2 1 d t t q a bt t =+? (4) 由1t 加热到2t 的平均定压比热容则可表示为: ()2 1 2 1 1 2 21 d 2 t t t p t a bt t t t c a b t t ++==+-? (5) 实验中,通过实验装置是湿空气,当湿空气气流由温度1t 加热到2t 时,其中水蒸气的吸热量可用式(4)计算,其中 1.833a =,0.0003111b =,则水蒸气的吸热量为: ()2 1 w w 1.8330.0003111d t t Q m t t =+? ()() 22 w 21211.8330.0001556kJ/s m t t t t ??=-+-?? (6) 式中:w m ——气流中水蒸气质量,kg/s 。 则干空气的平均定压比热容由下式确定: () () 2 1 w w 21w 21()()p p t pm t Q Q Q c m m t t m m t t '-= = ---- (7)

冷却法测金属的比热容(实验报告)

冷却法测量金属的比热容 【实验目的】 (1) 测量固体的比热容。 (2)了解固体的冷却速率与环境之间的温差关系,以及进行测量的实验条件。 【实验仪器】 本实验装置是金属比热容测量仪;实验样品是直径5mm 、长30mm 的小圆柱,其底部深孔中安放铜—康同热电偶。 【实验原理】 单位质量的物质,其温度升高1K (或1℃)所需的热量叫该物质的比热容,其值随温度而变化, 将质量为1M 的金属样品加热后,放到较低温度的介质(例如室温的空气)中,样品将会逐渐冷却,其单位时间的热量损失(Q t ??)应与温度下降速率成正比,由此到下述关系式: 111 Q C M t t θ???? = ????? ① 式中1C 为该金属样品在温度1θ时的比热容,1 t θ??? ????为金属样品在温度1θ时的 温度下降速率,根据冷却定律有: 1110()m Q a S t θθ?=-? ② 式中,1a 为热交换系数,1S 为该样品外表面的面积,m 为常数,1θ为为金属样品的温度,0θ为周围介质的温度。由式①和②,可得:

1 11 1110()m C M a S t θθθ?=-? ③ 同理,对质量为2M ,比热容为2C 的另一种金属样品,有: 2 22 2220()m C M S t θαθθ?=-? ④ 由式③和式④,可得: m m s a s a t M C t M C )()(0111022211 12 22θθθθθθ--=???? m m s a t M s a t M C C ) ()(01112202221112θθθθθθ -??-??= 如果两样品的形状尺寸都相同,即12S S =;两样品的表面状况也相同(如涂层、色泽等),而周围介质(空气)的性质当然也不变,则有12a a =。于是当周围介质温度不变(即室温0θ恒定,而样品又处于相同温度1θ=θθ=2)时,上式可以简化为: 2 21 11 2)()( t M t M C C ????=θθ 如果已知标准金属样品的比热容1C ,质量1M ,待测样品的质量2M 及两样品 在温度θ时冷却速率之比1??? ????t θ和2??? ????t θ,就可求得待测金属的比热容2 C 。 已知铜在100℃时的比热容为:1393().Cu C J kg C -=? 【实验内容】 1.测量铁和铝在100℃时的比热容。 步骤: (1)选取长度、直径、表面光洁度尽可能相同的三种金属样品(铜、铁、铝)用物理天平或电子天平秤出它们的质量0M 。再根据Cu M >Fe M >Al M 这一

实验报告空气比热容比的测定

? = dE (2) C v = dT ? dT C p = ? dQ ? dT ? ? = ? + p 1. 实验名称 空气比热容比的测定 2. 实验目的 (1)了解绝热、等容的热力学过程及有关状态方程。 (2)测定空气的比热容比。 3. 实验原理:主要原理公式及简要说明、原理图 (1)热力学第一定律及定容比热容和定压比热容 热力学第一定律:系统从外界吸收的热量等于系统内能的增加和系统对外做功之和。 考虑在准静态情况下气体由于膨胀对外做功为 dA = PdV ,所以热力学第一定律的微分形 式为 dQ = dE + dA = dE + PdV (1) 定容比热容 C v 是指 1mol 的理想气体在保持体积不变的情况下,温度升高 1K 所吸收 的热量。由于体积不变,那么由(1)式可知,这吸收的热量也就是内能的增加(d Q =d E ),所 以 ? dQ ? ? ?v 由于理想气体的内能只是温度的函数,所以上述定义虽然是在等容过程中给出,实际 上任何过程中内能的变化都可以写成 d E =C v dT 定压比热容是指 1mol 的理想气体在保持压强不变的情况下,温度升高 1K 所吸收的热 量。即 ? (3) ? ? p 由热力学第一定律(3)式,考虑在定压过,就有 ? dQ ? ? dE ? ? dT ? p ? dT ? p dV dT (4) 由理想气体的状态方程 PV =RT 可知,在定压过程中 dV dT = R P ,又利用 dE dT = C v 代 入(4)式,就得到定压比热容与定容比热容的关系 C p = C v + R (5) R 是气体普适常数,为 8.31 J / mol· K ,引入比热容比 γ 为 γ = C p / C v (6) 在热力学中,比热容比是一个重要的物理量,它与温度无关。气体运动理论告诉我们, γ 与气体分子的自由度 f 有关

冷却法测金属的比热容(实验报告)

冷却法测量金属的比热容 【实验目的】 (1) 测量固体的比热容。 (2)了解固体的冷却速率与环境之间的温差关系,以及进行测量的实验条件。 【实验仪器】 本实验装置是金属比热容测量仪;实验样品是直径5mm 、长30mm 的小圆柱,其底部深孔中安放铜—康同热电偶。 【实验原理】 单位质量的物质,其温度升高1K (或1℃)所需的热量叫该物质的比热容,其值随温度而变化, 将质量为1M 的金属样品加热后,放到较低温度的介质(例如室温的空气)中,样品将会逐渐冷却,其单位时间的热量损失(Q t ??)应与温度下降速率成正比,由此到下述关系式: 111 Q C M t t θ???? = ????? ① ? 式中1C 为该金属样品在温度1θ时的比热容,1 t θ??? ????为金属样品在温度1θ时的 温度下降速率,根据冷却定律有: 1110()m Q a S t θθ?=-? ② 式中,1a 为热交换系数,1S 为该样品外表面的面积,m 为常数,1θ为为金属样品的温度,0θ为周围介质的温度。由式①和②,可得:

1 11 1110()m C M a S t θθθ?=-? ③ 同理,对质量为2M ,比热容为2C 的另一种金属样品,有: 2 22 2220()m C M S t θαθθ?=-? ④ 由式③和式④,可得: m m s a s a t M C t M C )()(0111022211 12 22θθθθθθ--=???? m m s a t M s a t M C C ) ()(01112202221112θθθθθθ -??-??= 如果两样品的形状尺寸都相同,即12S S =;两样品的表面状况也相同(如涂 层、色泽等),而周围介质(空气)的性质当然也不变,则有12a a =。于是当周围介质温度不变(即室温0θ恒定,而样品又处于相同温度1θ=θθ=2)时,上式可以简化为: $ 2 21 11 2)()( t M t M C C ????=θθ 如果已知标准金属样品的比热容1C ,质量1M ,待测样品的质量2M 及两样品 在温度θ时冷却速率之比1??? ????t θ和2??? ????t θ,就可求得待测金属的比热容2 C 。 已知铜在100℃时的比热容为:1393().Cu C J kg C -=? 【实验内容】 1.测量铁和铝在100℃时的比热容。 步骤: (1)选取长度、直径、表面光洁度尽可能相同的三种金属样品(铜、铁、铝)用物理天平或电子天平秤出它们的质量0M 。再根据Cu M >Fe M >Al M 这一

空气比热容比测定实验介绍

空气比热容比测定实验介绍 目的: 1.用绝热膨胀法测定空气的比热容比。 2.观测热力学过程中状态变化及基本物理规律。 3.学习气体压力传感器和电流型集成温度传感器的原理及使用方法。 原理: 对理想气体的定压比热容C p 和定容比热容C v 之关系由下式表示: C p —C v =R (1) (1) 式中,R 为气体普适常数。气体的比热容比r 值为: r= C p /C v (2) 气体的比热容比现称为气体的绝热系数,它是一个重要的物理量,r 值经常出现在热力 学方程中。 测量r 值的仪器如图〈一〉所示。实验时先关闭活塞C 2,将原处于环境大气压强P 0、室温θ0的空气从活塞C 1,处把空气送入贮气瓶B 内,这时瓶内空气压强增大。温度升高。关闭活塞C 1,待稳定后瓶内空气达到状态I (P 0,θ0,V 1),V 1为贮气瓶容积。 然后突然打开阀门C 2,使瓶内空气与大气相通,到达状态II (P 1,θ0,V 1)后,迅速关闭活塞C 2,由于放气过程很短,可认为是一个绝热膨胀过程,瓶内气体压强减小,温度降低,绝热膨胀过程应满足方程: 2'0' 11V P V P = (3) 在关闭活塞C 2之后,贮气瓶内气体温度将升高,当升到温度θ0时,原状态为I (P 1,θ0,V 1)体系改变为状态III (P 2,θ0,V 2),应满足: 2011V P V P = (4) 由(3)式和(4)式可得到: )l o g /(l o g )l o g (l o g 1210P P P P r --= (5) 利用(5)式可以通过测量P 0、P 1和P 2值,求得空气的比热容比r 值。 实验装置: 图〈一〉实验装置中1为进气活塞塞C 1,2为放气活塞C 2,3为电流型集成温度传感器AD590,它是新型半导体温度传感器,温度测量灵敏度高,线性好,测温范围为-50℃至150℃。AD590接6V 直流电源后组成一个稳流源,见图〈二〉,它的测温灵敏度为1μA/℃,若串接5K Ω电阻后,可

相关文档
相关文档 最新文档