文档库 最新最全的文档下载
当前位置:文档库 › RLC串联谐振电路及答案

RLC串联谐振电路及答案

RLC串联谐振电路及答案
RLC串联谐振电路及答案

RLC 串联谐振电路 一、知识要求:

理解RLC 串联电路谐振的含义;理解谐振的条件、谐振角频率、频率;理解谐振电路的特点,会画矢量图。 二、知识提要:

在RLC 串联电路中,当总电压与总电流同相位时,电路呈阻性的状态称为串联谐振。 (1)、串联谐振的条件:C L C L X X U U ==即

(2)、谐振角频率与频率:由LC

f LC

:C L πωωω21

1

10=

==

谐振频率得

(3)、谐振时的相量图:

(4)、串联谐振电路的特点: ①.电路阻抗最小:Z=R

②、电路中电流电大:I 0=U/R

③、总电压与总电流同相位,电路呈阻性

④、电阻两端电压等于总电压,电感与电容两端电压相等,相位相反,且为总电压的Q 倍,。即:U L =U C =I 0X L =I 0X C =

L X R U

=U R

X L =QU 式中:Q 叫做电路的品质因数,其值为:

CR

f R L f R X R X Q C L 0021

2ππ=

===

>>1(由于一般串联谐振电路中的R 很小,所以Q 值总大于1,其数值约为几十,有的可达几百。所以串联谐振时,电感和电容元件两端可能会产生比总电压高出Q 倍的高电压,又因为U L =U C ,所以串联谐振又叫电压谐振。) (5)、串联谐振电路的应用:

适用于信号源内阻较低的交流电路。常被用来做选频电路。 三、例题解析:

1、在RLC 串联回路中,电源电压为5mV ,试求回路谐振时的频率、谐振时元件L 和C 上的电压以及回路的品质因数。

解:RLC 串联回路的谐振频率为

Uc

?

LC

f π210=

谐振回路的品质因数为 R

L

f Q 02π=

谐振时元件L 和C 上的电压为 mV 5mV 5C L C

L

R Q U U =

== 2、 在RLC 串联电路中,已知L =100mH ,R =3.4Ω,电路在输入信号频率为400Hz 时发生谐振,求电容C 的电容量和回路的品质因数。

解:电容C 的电容量为 F 58.14

.6310141

)2(12

0μπ≈==

L f C 回路的品质因数为 744

.31

.040028.620≈??==

R L f Q π

3、已知某收音机输入回路的电感L=260μH,当电容调到100PF 时发生串联谐振,求电路的谐振频率,若要收听频率为640KHz 的电台广播,电容C 应为多大。(设L 不变) 解:LC

f π210=

=

12

6

10

101026014.321

--X X X X X ≈KHZ

6

23210260)1064014.32(1

)2(1-=

=

X X X X X L f C π≈238PF

四、练习题: (一)、填空题 1、串联正弦交流电路发生谐振的条件是 ,谐振时的谐振频率品质因数Q= ,串联谐振又称为 。

2、在发生串联谐振时,电路中的感抗与容抗 ;此时电路中的阻抗最 ,电流最 ,总阻抗Z= 。

3、在一RLC 串联正弦交流电路中,用电压表测得电阻、电感、电容上电压均为10V ,用电流表测得电流为10A ,此电路中R= ,P= ,Q= ,S= 。

4、在含有L 、C 的电路中,出现总电压、电流同相位,这种现象称为 。这种现象若发生在串联电路中,则电路中阻抗 ,电压一定时电流 ,且在电感和电容两端将出现 。

5、谐振发生时,电路中的角频率=0ω ,=0f 。 (二)、判断题

1、串联谐振电路不仅广泛应用于电子技术中,也广泛应用于电力系统中。 ( )

2、串联谐振在L 和C 两端将出现过电压现象,因此也把串谐称为电压谐振。 ( ) (三)、选择题 1、RLC 并联电路在f 0时发生谐振,当频率增加到2f 0时,电路性质呈( ) A 、电阻性 B 、电感性 C 、电容性

2、处于谐振状态的RLC 串联电路,当电源频率升高时,电路将呈现出( ) A 、电阻性 B 、电感性 C 、电容性

3、下列说法中,( )是正确的。

A 、串谐时阻抗最小

B 、并谐时阻抗最小

C 、电路谐振时阻抗最小 4、发生串联谐振的电路条件是( ) A 、

R

L

0ω B 、LC

f 10= C 、LC

10=

ω

5、在RLC 串联正弦交流电路,已知XL=XC=20欧,R=20欧,总电压有效值为220V ,电感上的电压为( )V 。 A 、0 B 、220 C 、73.3

6、正弦交流电路如图所示,已知电源电压为220V ,频率f=50HZ 时,电路发生谐振。现将电源的频率增加,电压有效值不变,这时灯泡的亮度( )。 A 、比原来亮 B 、比原来暗 C 、和原来一样亮

7、正弦交流电路如图所示,已知开关S 打开时,电路发生谐振。当把开关合上时,电路呈现( )。

A 、阻性

B 、感性

C 、容性

(三)、计算题

1、在RLC 串联电路中,已知L=100mH,R=3.4Ω,电路在输入信号频率为400Hz 时发生谐振,求电容C 的电容量和回路的品质因数.

2、 一个串联谐振电路的特性阻抗为100Ω,品质因数为100,谐振时的角频率为1000rad/s,试求R,L 和C 的值.

3、一个线圈与电容串联后加1V 的正弦交流电压,当电容为100pF 时,电容两端的电压为100V 且最大,此时信号源的频率为100kHz,求线圈的品质因数和电感量.

4、已知一串联谐振电路的参数Ω=10R ,mH 13.0=L ,pF 558=C ,外加电压5=U mV 。 试求电路在谐振时的电流、品质因数及电感和电容上的电压。

5、已知串谐电路的线圈参数为“mH 21=Ω=L R ,”,接在角频率rad/s 2500=ω的10V 电压源上,求电容C 为何值时电路发生谐振?求谐振电流I 0、电容两端电压U C 、线圈两端电压U RL 及品质因数Q 。

6、如右图所示电路,其中t u 314cos 2100=V ,调节电容C 使电流i 与电压u 同相,此时测得电感两端电压为200V ,电流I =2A 。求电路中参数R 、L 、C ,当频率下调为f 0/2时,电路呈何种性质? 答案:一、填空

1、C L C L X X U U ==即,X L /R ,电压谐振

2、相等,最小,最大,R 。

3、1欧,100W ,Q=0var ,S=100V A

4、串联谐振,最小,最大,过电压;

5、

LC

f LC πω2110=

=

二、判断 1、对,2错 三、选择题:

1、B

2、B

3、A

4、C

5、B

6、B

7、B 四、计算题: 1、解:F 58.110100)40014.32(1

)2(121213

22000μπππ≈====

-X X X X L f X f X f C L C

744

.31

.040014.3220≈===

X X X R L f R X Q L π 2、R=100欧,L=10H ,C=0.1μF

3、C 两端产生过电压,说明发生了串联谐振,C L C L X X U U ==即

m H

f X

L R X

Q I U

R m A CU f X U I L C c c

c

2502100

16028.620

0≈=≈=Ω≈=

≈==ππ

4、

KHZ

LC

f :

600210≈=

π解

R

L

f Q 02π=

=49 I=U/R=0.5mA Uc=QU=245mV 5、V

U U U V QU U U R L R X Q A R

U

L

L f C L R RL L C L

51505

//10I F

801

)2(12

2

0220=+=========

===ωμωπ

6、R=50欧,L=0.42H ,C=0.0076F

串联谐振实验报告

实验报告 一、实验名称 串联谐振电路 二、实验原理 1、电路图如图所示,改变电路参数L,C或电源频率时,都可能使电路发生谐振。 该电路的阻抗是电源角频率的函数: 2、谐振曲线 电路中的电压与电流随频率变化的特性为频率特性,随频率变化的曲线就是频率曲线。如下图:

图中可以看出:Q值愈大,曲线尖峰值愈陡,其选择性越好,但通频带越窄。 只有当Q>时,Uc和Ul曲线才出现最大值,否则Uc将单调下降趋于0,Ul将单调上升趋于Us。 三、实验方法 测量电路谐振频率 1、将电路连接如实验原理中的电路图,将电源由函数信号发生器产生,将电阻两端接入示波器中,调节信号源的频率由大到小,观察示波器上的电阻电压的大小,当电阻电压值变为最大值时所对应的频率值则为电路的谐振频率。 2、用Multism仿真连接串联谐振电路,连接在电阻两端的XBP所显示的波特图,观察电阻两端电压增益最大时所对应的频率,则所对应的频率为电路发生谐振是的谐振频率。四、实验步骤 电路板上: 连接原理图的电路,给电源接上函数发生器,调节为五伏的方波,频率从调到,间隔,设置29个点,将电阻两端连入示波器,观察示波器上电阻的阻值并记录数据 接着将同样电容与电感的两端接入示波器,观察同样频率下对应的电容与电感的电压值,同样记录实验数据 将实验数据整理并绘制折线图,观察不同电源角频率电路响应的谐振曲线,对比实验原理中的图并作分析

Multism仿真: 电路仿真连接如下的图 将XFG调节为,占空比为30%,脉冲幅度为5V的方波电压信号 观察XBP输出的波特图: 可知:该电路图的谐振频率约为 将仿真图中的电阻与电容互换位置,显示电容的波特图: 可知:在频率小于谐振频率时Uc出现最大

rlc串联电路频率特性实验报告

竭诚为您提供优质文档/双击可除rlc串联电路频率特性实验报告 篇一:RLc串联电路的幅频特性与谐振现象实验报告 _-_4(1) 《电路原理》 实验报告 实验时间:20XX/5/17 一、实验名称RLc串联电路的幅频特性与谐振现象二、实验目的 1.测定R、L、c串联谐振电路的频率特性曲线。 2.观察串联谐振现象,了解电路参数对谐振特性的影响。1.R、L、c串联电路(图4-1)的阻抗是电源频率的函数,即: Z?R?j(?L? 1 )?Zej??c 三、实验原理 当?L?

1 时,电路呈现电阻性,us一定时,电流达最大,这种现象称为串?c 联谐振,谐振时的频率称为谐振频率,也称电路的固有频率。 即 ?0? 1Lc 或f0? 12?Lc R无关。 图4-1 2.电路处于谐振状态时的特征: ①复阻抗Z达最小,电路呈现电阻性,电流与输入电压同相。 ②电感电压与电容电压数值相等,相位相反。此时电感电压(或电容电压)为电源电压的Q倍,Q称为品质因数,即Q? uLuc?0L11 ????ususR?0cRR L c

在L和c为定值时,Q值仅由回路电阻R的大小来决定。 ③在激励电压有效值不变时,回路中的电流达最大值,即: I?I0? us R 3.串联谐振电路的频率特性: ①回路的电流与电源角频率的关系称为电流的幅频特性,表明其关系的图 形称为串联谐振曲线。电流与角频率的关系为: I(?)? us 1?? R2??L?? ?c?? 2 ? us ???0? ?R?Q2?????? ?0? 2 ?

I0 ???0? ?1?Q2?????? ?0? 2 当L、c一定时,改变回路的电阻R值,即可得到不同Q 值下的电流的幅频 特性曲线(图4-2) 图4-2 有时为了方便,常以 ?I 为横坐标,为纵坐标画电流的幅频特性曲线(这称?0I0 I 下降越厉害,电路的选择性就越好。I0 为通用幅频特性),图4-3画出了不同Q值下的通用幅频特性曲线。回路的品质因数Q越大,在一定的频率偏移下,为了衡量谐振电路对不同频率的选择能力引进通频带概念,把通用幅频特性的幅值从峰值1下降到0.707时所对应的上、下频率之间的宽度称为通频带(以bw表示)即:bw? ?2?1 ??0?0

(串联谐振电路分析)

《电子设计与制作》 课 程 设 计 报 告

目录 一:题目………………………………………………………..二:原理………………………………………………………….三:电路图……………………………………………………….四:实验内容…………………………………………………….五:实验分析……………………………………………………六:心得体会…………………………………………………….

一、题目:串联谐振电路分析 二、原理 1.串联谐振的定义和条件 在电阻、电感、电容串联电路中,当电路端电 压和电流同相时,电路呈电阻性,电路的这种状态叫做串联谐振。 可以先做一个简单的实验,如图所示,将:三个元件R 、L 和C 与一个小灯泡串联,接在频率可调的正弦交流电源上,并保持电源电压不变。 实验时,将电源频率逐渐由小调大,发现小灯泡也慢慢由 暗变亮。当达到某一频率时,小灯泡最亮,当频率继续增加时, 又会发现小灯泡又慢慢由亮变暗。小灯泡亮度随频率改变而变 化,意味着电路中的电流随频率而变化。怎么解释这个现象呢? 在电路两端加上正弦电压U ,根据欧姆定律有 || U I Z = 式中 2 2 2 2 1 ||()()L C Z R X X R L C ωω= +-= +- L ω和 1 C ω部是频率的函数。但当频率较低时,容抗大而感抗小, 阻抗|Z|较大,电流较小;当频率较高时,感抗大而容抗小,阻抗|Z|也较大,电流也较小。在这两个频率之间,总会有某一频率,在这个

频率时,容抗与感抗恰好相等。这时阻抗最小且为纯电阻,所以,电流最大,且与端电压同相,这就发生了串联谐振。 根据上述分析,串联谐振的条件为 L C X X = 即 001 L C ωω= 或 01LC ω= 01 2f LC π= 0f 称为谐振频率。可见,当电路的参数 L 和C 一定时,谐振频率 也就确定了。如果电源的频率一定,可以通过调节L 或C 的参数大小来实现谐振。 2、串联谐振的特点 (1)因为串联谐振时,L C X X =,故谐振时电路阻抗为 0||Z R = (2)串联谐振时,阻抗最小,在电压U 一定时,电流最大,其值 为 00|| U U I Z R = = 由于电路呈纯电阻,故电流与电源电压同相,0? = (3)电阻两端电压等于总电压。电感和电容的电压相等,其大小

串联谐振电路实验报告

实验名称:串联谐振电路 一、实验目的 1、加深对串联谐振电路条件及特性的理解。 2、掌握谐振频率的测量方法。 3、理解电路品质因数Q和通频带的物理意义及其测量方法。 4、测定RLC串联谐振电路的频率特性曲线。 5、深刻理解和掌握串联谐振的意义及作用。 6、掌握电路板的焊接技术及信号发生器、交流毫伏表等仪表的使用方法。 7、掌握Multisim软件中的Function Generator、Voltmeter、Bode Plotter等仪表的使用 方法以及AC Analysis等SPICE的仿真分析方法。 8、掌握Origin软件的使用方法。 二、实验设备及器材 1、计算机一台。 2、通用电路板一块。 3、低频信号发生器一台。 4、双踪示波器一台。 5、交流毫伏表一只。 6、万用表一只。 7、可变电阻一只。 8、电阻、电感、电容若干(电阻100Ω,电感10mH、4.7mH,电容100nF)。 三、实验内容 1、Multisim仿真 1)、创建图示电路图 2)、分别用Multisim软件(AC仿真、波特表、交流电压表均可)测量串联谐振

电路的谐振曲线、谐振频率、-3dB带宽。 UR谐振曲线 谐振频率7.3kHz -3dB带宽32.318kHz 3)、电阻R1=1K时,用Multisim软件仿真串联谐振电路的谐振曲线,观测R对Q R增大导致Q减小。 4)、利用谐振特点设计选频网络,在串联谐振电路上输入频率为3.5kHz、占空比为30%、脉冲幅度为5V的方波电压信号,测试输入输出(电阻上电压)的频谱。 输入信号

输出信号 2、 测量元件值,计算电路谐振频率和品质因数Q 的理论值。 R1=98Ω RL=34.2Ω L1=4.2mH C1=95.1nF C L R R L U U U U Q S C S L 1 )()(000==== ωωω=1.59 3、 在电路板上焊接基本串联谐振电路,信号电压有效值设置为1V 。 4、 用两种不同的方法测量电路的f0值。 UR 读数最大法:f0=7.7kHz 时,UR 有最大值 X-Y 模式下测量:f0=7.55kHz. 5、 测试电路板上串联谐振电路的谐振曲线、谐振频率、-3dB 。 7、

实验一 RLC串联谐振电路的研究

2 1实验一 RLC 串联谐振电路的研究 一、实验目的 1、学习用实验方法绘制R 、L 、C 串联电路的幅频特性曲线; 2、加深理解电路发生谐振的条件、特点、掌握电路品质因数(电路Q 值)的物理意义及 其测定方法。 二、实验设备和器材 函数信号发生器1只 交流毫伏表1只(0~600V) 电路原理实验箱1只 三、实验原理与说明 1.在图1.1所示的R 、L 、C 串联电路中,当正弦交流信号源的频率f 改变时,电路中的 感抗、容抗随之而变,电路中的电流也随f 而变。取电阻电路电流I 作为响应,当输入电压U i 维持不变时,在不同信号频率的激励下,测出电阻R 两端的电压U 0之值,则I=U 0/R 。然后以f 为横坐标,以I 为纵坐标,绘出光滑的曲线,此即为幅频特性,亦称电流谐振曲线,如图1.2所示。 2. 在 处(X L =X C )即幅频特性曲线尖峰所在的频率点,该频率称为 谐振频率,此时电路呈纯阻性,电路阻抗的模为最小,在输入电压U i 为定值时,电路中的电流达I 达到最大值,且与输入电压U i 同相位,从理论上讲,此时,U i =U R =U 0, U L =U C =QU i ,式中的Q 称为电路的品质因数。 3. 电路品质因数Q 值的两种测量方法 一是根据公式 测定,U C 与U L 分别为谐振时电容器C 和电感线圈L 上的电压;另一方法是通过测量谐 振曲线的通频带宽度 再根据 求出Q 值,式中f 0为谐振频率,f 1和f 2是失谐时,幅度下降到最大值的 倍时的上、 下频率点。 Q 值越大,曲线越尖锐,通频带越窄,电路的选择性越好,在恒压源供电时,电路的品 质因数、选择性与通频带只决定于电路本身的参数,而与信号源无关。 四、实验内容 1.按图1.3接线,取C=0.1μF ,R=200Ω,调节信号源输出电压为V P-P = 2.83V ,有效值约 U i =1V 正弦信号,并在整个实验过程中保持不变。(本实验的电感L 约30mH) 2.找出电路的谐振频率f 0,其方法是,将交流毫伏表接在R (200Ω)两端,令信号源的 频率由小逐渐变大(注意要维持信号源的输出幅度不变),当U 0的读数为最大时,读得频率表上的频率值即为电路的谐振频率f 0,并测量U 0、U C 、U L 之值(注意及时更换毫伏表的量限),记入表格中。 3. 在谐振点两侧,先测出下限频率f 1和上限频率f 2及相对应的U R 值,然后按频率递增 或递减500H Z 或1KH Z ,依次各取8个测量点,逐点测出U R ,U L ,U C 之值,记入数据表格。 LC f f π21 0==O C O L U U U U Q ==1 2f f f -=?1 2f f f Q o -=

大学物理实验报告系列之RLC电路的谐振

【实验名称】 RLC 电路的谐振 【实验目的】 1、研究和测量RLC 串、并联电路的幅频特性; 2、掌握幅频特性的测量方法; 3、进一步理解回路Q 值的物理意义。 【实验仪器】 音频信号发生器、交流毫伏表、标准电阻箱、标准电感、标准电容箱。 【实验原理】 一、RLC 串联电路 1.回路中的电流与频率的关系(幅频特性) RLC 交流回路中阻抗Z 的大小为: () 2 2 '1??? ? ? -++= ωωC L R R Z (32-1) ???? ? ??????? +-=R R C L arctg '1ωω? (32-3) 回路中电流I 为: )1()'(2ω ωC L R R U Z U I - ++== (32-4) 当01 =- ω ωC L 时, = 0,电流I 最大。 令即振频率并称为谐振角频率与谐的角频率与频率分别表示与,,000=?ωf : LC f LC πω21100= = (32-5) 如果取横坐标为ω,纵坐标为I ,可得图32-2所示电流频率特性曲线。 2.串联谐振电路的品质因数Q C R R L Q 2)'(+= (32-7) QU U U C L == (32-8) Q 称为串联谐振电路的品质因数。当Q >>1时,U L 和U C 都远大于信号源输出电 压,这种现象称为LRC 串联电路的电压谐振。 Q 的第一个意义是:电压谐振时,纯电感和理想电容器两端电压均为信号源电 压的Q 倍。 1 20 1 20f f f Q -= -= ωωω (32-12) 显然(f 2-f 1)越小,曲线就越尖锐。 Q 的第二个意义是:它标志曲线尖锐程度,即电路对频率的选择性,称 f (= f 0 / Q )为通频带宽度。 3.Q 值的测量法

串联谐振:如何谐振及其原理解析

串联谐振:如何谐振及其原理解析 谐振电路是在具有电阻R、电感L、电容C的交流电路中;一般电路的电压与电流电路中的相位是不同的。如果我们调整电路元件(L或C)或电源频率的参数,它们可以具有相同的相位,整个电路呈现纯电阻。当电路达到这种状态时,称为共振。研究共振现象的目的是了解这一客观现象,充分利用科学技术中共振的特点,同时预防产生的危害。根据电路连接的不同,可分为串联谐振和并联谐振。 在HTXZ串联谐振情况下,电感电压和电容电压是等价的,即电感电容吸收不同数目的等效无功率,使电路吸收的无功率为0;电场能量和磁场能量不断变化,但这部分能量在电场和磁场之间振荡,整个电路的电磁场能量之和保持不变;励磁电源电路的能量转化为电阻加热。为了维持振荡,励磁必须不断地提供能量来补偿电阻的热消耗。与电路中的电磁场总能量相比,每个振荡电路消耗的能量越少,电路的质量越好。 首先,谐振是在一定条件下由R、L和C元件组成的电路的特殊现象。首先,当C系列电路发生谐振时,首先要分析电路的特性,如图1、C系列电路的复阻抗如下:在正弦电压作用下:电路的复阻抗如下:

公式中,电抗x=x1 xc是角频率w的函数,x随w的变化如图2所示。当w从0变为如图2所示时,x从-变为+如W所示,当w 0,当x是电容性的,当w 0,当x是电感性的,当w=w0,当阻抗z(w0)=r是纯电阻、电压和无穷大时。电流同相,我们称之为此时电路谐振的工作状态。由于这种共振发生在RLC串联电路中,我们也可以称之为串联谐振、串联谐振电路等。式1是串联电路的谐振条件,从中可以得到谐振角频率w。如图:

谐振频率为 由此可见,串联电路的谐振频率是由其自身的参数L和C决定的,这与外界条件无关。当电源固定时,可以调节L和C,使电路的固有频率与电源频率产生共振。 4.变频串联谐振的计算方法 变频串联谐振主要是指所研究的串联电路的电压和电流达到同一相位,即电路中电感的电感电抗和电容电抗的值和时间相等,使所研究的电路呈现出纯的电阻特性。在给定的端电压下,所研究的电路中会出现最大电流。电路中消耗的是最大的有功功率。 变频串联谐振计算方法 z=r+jx,x=0,z=r,i=u/z=u/r。 (1)谐振定义:在电路中,当两个元件的能量由电路中的一个电抗模块释放,而另一个电抗模块必须吸收相同的能量时,两个元件的能量相等,即两个电抗元件之间会有能量脉动。 (2)为了产生共振,电路必须有电感L和电容C。 (3)相应的共振频率是以fr表示的共振频率或共振频率。 串联谐振电路之条件如下: 当q=qi2xl=i2xc或xl=xc时,得到了r-l-c串联电路的谐振条件。

谐振电路实验报告

rlc串联谐振电路的实验研究 一、摘要: 从rlc 串联谐振电路的方程分析出发,推导了电路在谐振状态下的谐振频率、品质因 数和输入阻抗,并且基于multisim仿真软件创建rlc 串联谐振电路,利用其虚拟仪表和 仿真分析,分别用测量及仿真分析的方法验证它的理论根据。其结果表明了仿真与理论分析 的一致性,为仿真分析在电子电路设计中的运用提供了一种可行的研究方法。 二、关键词:rlc;串联;谐振电路;三、引言 谐振现象是正弦稳态电路的一种特定的工作状态。通常,谐振电路由电容、电感和电阻 组成,按照其原件的连接形式可分为串联谐振电路、并联谐振电路和耦合谐振电路等。 由于谐振电路具有良好的选择性,在通信与电子技术中得到了广泛的应用。比如,串联 谐振时电感电压或电容电压大于激励电压的现象,在无线电通信技术领域获得了有效的应用, 例如当无线电广播或电视接收机调谐在某个频率或频带上时,就可使该频率或频带内的信号 特别增强,而把其他频率或频带内的信号滤去,这种性能即称为谐振电路的选择性。所以研 究串联谐振有重要的意义。 在含有电感l 、电容c 和电阻r 的串联谐振电路中,需要研究在不同频率正弦激励下 响应随频率变化的情况,即频率特性。multisim 仿真软件可以实现原理图的捕获、电路分 析、电路仿真、仿真仪器测试等方面的应用,其数量众多的元件数据库、标准化仿真仪器、 直观界面、简洁明了的操作、强大的分析测试、可信的测试结果都为众多的电子工程设计人 员提供了一种可靠的分析方法,同时也缩短了产品的研发时间。 四、正文 (1)实验目的: 1.加深对串联谐振电路条件及特性的理解。 2.掌握谐振频率的测量方法。 3.理解电路品质因数的物理意义和其测定方法。 4.测定rlc串联谐振电路的频率特性曲线。 (2)实验原理: rlc串联电路如图所示,改变电路参数l、c或电源频率时,都可能使电路发生谐振。 该电路的阻抗是电源角频率ω的函数:z=r+j(ωl-1/ωc) 当ωl-1/ωc=0时,电路中的电流与激励电压同相,电路处于谐振状态。谐振角频率ω 0 =1/lc ,谐振频率f0=1/2π lc 。 谐振频率仅与原件l、c的数值有关,而与电阻r和激励电源的角频率ω无关,当ω< ω0时,电路呈容性,阻抗角φ<0;当ω>ω0时,电路呈感性,阻抗角φ>0。 1、电路处于谐振状态时的特性。 (1)、回路阻抗z0=r,| z0|为最小值,整个回路相当于一个纯电阻电路。(2)、回路 电流i0的数值最大,i0=us/r。(3)、电阻上的电压ur的数值最大,ur =us。 (4)、电感上的电压ul与电容上的电压uc数值相等,相位相差180°,ul=uc=qus。 2、电路的品质因数q 电路发生谐振时,电感上的电压(或电容上的电压)与激励电压之比称为电路的品质因 数q,即: q=ul(ω0)/ us= uc(ω0)/ us=ω0l/r=1/r*l/c (3)谐振曲线。 电路中电压与电流随频率变化的特性称频率特性,它们随频率变化的曲线称频率特性曲 线,也称谐振曲线。 在us、r、l、c固定的条件下,有

RLC串联谐振电路(Multisim仿真实训)

新疆大学 实习(实训)报告 实习(实训)名称: __________ 电工电子实习(EDA __________ 学院: __________________ 专业班级_________________________________ 指导教师______________________ 报告人____________________________ 学号 ______ 时间: 实习主要内容: 1. 运用Multisim仿真软件自行设计一个RLC串联电路,并自选合适的参数。 2. 用调节频率法测量RLC串联谐振电路的谐振频率f 0 ,观测谐振现象。 3. 用波特图示仪观察幅频特性。 4?得出结论并思考本次实验的收获与体会。 主要收获体会与存在的问题: 本次实验用Multisim 仿真软件对RLC串联谐振电路进行分析,设计出了准确的电路模型,也仿真出了正确的结果。通过本次实验加深了自己对RLC振荡电路的理解与应用,更学习熟悉了Multisim 仿真软件,达到了实验的目

的。存在的问题主要表现在一些测量仪器不熟悉,连接时会出现一些错误,但最终都实验成功了。 指导教师意见: 指导教师签字: 年月日 备注: 绪论 Multisim仿真软件的简要介绍 Multisim是In terctive Image Tech no logies公司推出的一个专门用于电子电 路仿真和设计的软件,目前在电路分析、仿真与设计等应用中较为广泛。该软件以图形界面为主,采用菜单栏、工具栏和热键相结合的方式,具有一般Windows 应用软件的界面风格,用户可以根据自己的习惯和熟练程度自如使用。尤其是多种可放置到设计电路中的虚拟仪表,使电路的仿真分析操作更符合工程技术人员的工作习惯。下面主要针对Multisim11.0软件中基本的仿真与分析方法做简单介绍。 EDA就是“ Electronic Design Automation ”的缩写技术已经在电子设计领 域得到广泛应用。发达国家目前已经基本上不存在电子产品的手工设计。一台电子产品的设计过程,从概念的确立,到包括电路原理、PCB版图、单片 机程序、机内结构、FPGA的构建及仿真、外观界面、热稳定分析、电磁兼容分析在内的物理级设计再到PCB钻孔图、自动贴片、焊膏漏印、元器件清 单、总装配图等生产所需资料等等全部在计算机上完成。EDA已经成为集成 电路、印制电路板、电子整机系统设计的主要技术手段。 功能: 1. 直观的图形界面 整个操作界面就像一个电子实验工作台,绘制电路所需的元器件和仿真所需的测试仪器均可直接拖放到屏幕上,轻点鼠标可用导线将它们连接起来,软件仪器的控制面板和操作方式都与实物相似,测量数据、波形和特性曲线如同在真实仪器上看到的;

RLC串联谐振电路的实验报告

RLC串联谐振电路的实验报告 (1)实验目的: 1.加深对串联谐振电路条件及特性的理解。 2.掌握谐振频率的测量方法。 3.测定RLC串联谐振电路的频率特性曲线。 (2)实验原理: RLC串联电路如图所示,改变电路参数L、C或电源频率时,都可能使电路发生谐振。该电路的阻抗是电源角频率ω的函数:Z=R+j(ωL-1/ωC)当ωL-1/ωC=0时,电路中的电流与激励电压同相,电路处于谐振状态。谐振角频率ω0 =1/LC,谐振频率f =1/2πLC。谐振频率仅与原件L、C的数值有关,而与电阻R 和激励电源的角频率ω无关,当ω<ω 0时,电路呈容性,阻抗角φ<0;当ω>ω 时,电路呈感性,阻抗角φ>0。 1、电路处于谐振状态时的特性。 (1)、回路阻抗Z 0=R,| Z |为最小值,整个回路相当于一个纯电阻电路。 (2)、回路电流I 0的数值最大,I =U S /R。 (3)、电阻上的电压U R 的数值最大,U R =U S 。 (4)、电感上的电压U L 与电容上的电压U C 数值相等,相位相差180°,U L =U C =QU S 。 2、电路的品质因数Q 电路发生谐振时,电感上的电压(或电容上的电压)与激励电压之比称为电路的品质因数Q,即: Q=U L (ω )/ U S = U C (ω )/ U S =ω L/R=1/R* (3)谐振曲线。 电路中电压与电流随频率变化的特性称频率特性,它们随频率变化的曲线称频率特性曲线,也称谐振曲线。 在U S 、R、L、C固定的条件下,有

I=U S / U R =RI=RU S / U C =I/ωC=U S /ωC U L =ωLI=ωLU S / 改变电源角频率ω,可得到响应电压随电源角频率ω变化的谐振曲线,回路 电流与电阻电压成正比。从图中可以看到,U R 的最大值在谐振角频率ω 处,此 时,U L =U C =QU S 。U C 的最大值在ω<ω 处,U L 的最大值在ω>ω 处。 图表示经过归一化处理后不同Q值时的电流频率特性曲线。从图中(Q 11/2时,U C 和U L 曲线才出现最大值,否则U C 将单调下降趋于0,U L 将单调上升趋于U S 。 仿真RLC电路响应的谐振曲线的测量 五、结论

串联谐振电路分析

外施耐压串联谐振电路分析 已知:串联谐振装置电抗器组合方式为两串三并(即三条并联支路上各有两个电抗器串联起来),单个电抗器电感值为L ,单个电抗器电阻值为r ,所有电抗器的铭牌参数均一致。被试品电容值为C ,试验中被试品加压到U ,励磁变选用的高低压抽头电压变比为K ,励磁变视在功率S ,励磁变额定电压U o ,励磁变额定电流为I o ,被试品加压到U 时励磁变的损耗为P 损耗。 一.需计算量如下: 1.画出串联谐振时整个电路的基本电路图。 2.画出谐振时高压侧的向量图。 3.串联谐振频率f 的计算公式。 f= LC 21 π(本题装置串联谐振频率f=LC 832 π) 4.串谐高压侧电路电流I 高压侧的计算公式,并且算出分配到单个电抗器的电 流,电压时多少? I 高压侧=U jC f 2 π;谐振时:分配到单个电抗器电流L I = LC UC 6;

分配到单个电抗器电压L U =2 U -。 5.串谐低压侧电路电流I 低压侧的计算公式。 I 低压侧=U jC f 2 **πK 6.电路品质因数Q (放大倍数)的计算公式。 Q= wCR 1或R wL (本题装置串联谐振品质因数Q=C 232 r L ) 7.被试品或电抗器组合的无功功率Q 无功计算公式。 Q 无功=2U jC f 2 *π 或L 2233U C f j8- *π (=L 32L,本题Q 无功= 3 L U C f j16-2233 *π ) 8.串联谐振高压侧有功功率P 计算公式。 P=R 2222U C f 4 - *π (=R 32r 本题P=3 r U C f 8-2222 *π) 9.串联谐振高压侧电路总功率P 总计算公式。 P 总=2U jC f 2 *πL 2233U C f j8- *πR 2222U C f 4- *π 化简 P 总 = ()jCR f 2-CL f 4-1U jC f 22***πππ (= L 32L ;=R 32r 本题P 总=?? ? ??***3jCr f 4-3CL f 8-1U jC f 22πππ ; 谐振时P 总=R 2 2 2 2U C f 4- *π=3 r U C f 8-2 222 *π) 10.励磁变输出高压U 输出,I 输出,P 输出计算公式。 I 输出=U jC f 2 *π U 输出=U jC f 2 *π(C L R j f 21 j f 2*+*+ππ) (= L 32L ;=R 32r 本题U 输出=U jC f 2 *π(C j f 213jL f 43r 2*+*+ππ))

串联谐振电路实验报告

串联谐振电路 学号: 1028401083 姓名:赵静怡 一、实验目的 1、加深对串联谐振电路条件及特性的理解 2、掌握谐振频率的测量方法 3、理解电路品质因数Q和通频带的物理意义及其测量方法 4、测量RLC串联谐振电路的频率特性曲线 5、深刻理解和掌握串联谐振的意义及作用 6、掌握电路板的焊接技术以及信号发生器、交流毫伏表等仪表 的使用 7、掌握Multisim软件中的Functionn Generator 、 Voltmeter 、Bode Plotter等仪表的使用以AC Analysis 等SPICE仿真分析方法 8、用Origin绘图软件绘图 二、实验原理 RLC串联电路如图2.6.1所示,改变电路参数L、C或电源频率时,都可以是电路发生谐振。 2.6.1 RLC谐振串联电路

1、谐振频率:f 0=LC π21 ,谐振频率仅与元件L 、C 的数值有关,而与电阻R 和激励电源的角频率w 无关 2、电路的品质因素Q 和通频带B 电路发生谐振是,电感上的电压(或电容上的电压)与激励电压之比称为电路的品质因素Q ,即C L R Q 1 = 定义回路电流下降到峰值在0.707时所对应的频率为截止频率,介于两截止频率间的频率范围为通带,即Q fo B = 3、谐振曲线 电路中电压与电流随频率变化的特性称频率特性,他们随频率变化的曲线称频率特性曲线,也称谐振曲线 4、实验仪器: (1) 计算机 (2) 通路电路板一块 (3) 低频信号发生器一台 (4) 交流毫伏表一台 (5) 双踪示波器一台 (6) 万用表一只 (7) 可变电阻 (8) 电阻、电感、电容若干(电阻100Ω,电感10mH 、4.7 mH ,电容100nF )

串联谐振电路实验报告

实验三 串联谐振电路 学号: 1117426021 姓名: 黄跃 一、 实验目的 1、 加深对串联谐振电路条件及特性的理解 2、 掌握谐振频率的测量方法 3、 理解电路品质因数Q 和通频带的物理意义及其测量方法 4、 测量RLC 串联谐振电路的频率特性曲线 5、 深刻理解和掌握串联谐振的意义及作用 6、 掌握电路板的焊接技术以及信号发生器、交流毫伏表等仪表的使用 7、 掌握Multisim 软件中的Functionn Generator 、Voltmeter 、Bode Plotter 等仪表的使用以AC Analysis 等SPICE 仿真分析方法 8、 用Origin 绘图软件绘图 二、 实验原理 RLC 串联电路如图2.6.1所示,改变电路参数L 、C 或电源频率时,都可以是电路发生谐振。 2.6.1 RLC 谐振串联电路 1、谐振频率:f 0=LC π21 ,谐振频率仅与元件L 、C 的数值有关,而与电阻R 和激励电源的角频率w 无关 2、电路的品质因素Q 和通频带B 电路发生谐振是,电感上的电压(或电容上的电压)与激励电压之比称为电路的品质因素Q ,即C L R Q 1 = 定义回路电流下降到峰值在0.707时所对应的频率为截止频率,介于两截止频率间的频率范围为通带,即Q fo B = 3、谐振曲线 电路中电压与电流随频率变化的特性称频率特性,他们随频率变化的曲线称频率特性曲线,也称谐振曲线 4、实验仪器: (1) 计算机 (2) 通路电路板一块

(3)低频信号发生器一台 (4)交流毫伏表一台 (5)双踪示波器一台 (6)万用表一只 (7)可变电阻 (8)电阻、电感、电容若干(电阻100Ω,电感10mH、4.7 mH,电容100nF) 三、实验内容 1.Multisim仿真 (1)创建电路:从元器件库中选择可变电阻、电容、电感创建如图2.6.2电路. 2.6.2Multisim串联谐振 (2)当电阻R= 100,200,300欧时,用Multisim软件仿真串联谐振电路的谐振曲线,在同一张图中画出谐振曲线,说明R对Q值、带宽的影响。 2.6.3不同Q值值电流的频率特性曲线 (蓝线为300Ω,红线为200Ω,绿线为100Ω)

串联谐振电路

串联谐振电路 学号: 姓名: 成绩: 1、实验目的 1. 加深对串联谐振电路条件及特性的理解。 2. 掌握谐振频率的测量方法。 3. 理解电路品质因数Q和通频带的物理意义及测量方 法。 4. 测定RLC串联谐振电路的频率特性曲线。 5. 深刻理解和掌握串联谐振的意义及作用。 6. 掌握电路板的焊接技术以及信号发生器、交流毫伏 表等仪器的使用。 7. 掌握Multisim软件中的Function Generator、 Voltmeter、Bode Plotter等仪表的使用,以AC Analysis 等SPICE仿真分析方法。 8. 用Origin绘图软件绘图。 2、实验原理 RLC串联电路如图7.1所示,改变电路参数L、C或电源频率时,都可能使电路发生谐振。 该电路的阻抗是电源角频率的函数 (7-1) 当时,电路中的电流与激励电压同相,电路处于谐振状态。谐振角频率,谐振频率。 谐振频率仅与元件的数值有关,而与电阻和激励电源的角频率无关, 当时,电路呈容性,阻抗角<0;当时,电路呈感性,阻抗角>0。

1.电路处于谐振状态时的特性: (1) 回路阻抗,为最小值,整个回路相当于一个纯电阻电 路。 (2) 回路电路I0的数值最大, (3) 电阻的电压U R的数值最大, (4) 电感上的电压U L与电容上的电压U C数值相等,相位相 差。 2.电路的品质因数Q和通频带B 电路发生谐振时,电感上的电压(或电容上的电压)与激励电压之比称为电路的品质因数Q,即 (7-2) 定义回路电流下降到峰值的0.707时所对应的频率为截止频率,介于两截止频率间的频率范围为通频带。 (7-3) 3.谐振曲线 电路中电压与电流随频率变化的特性称频率特性,它们随频率变化的曲线称频率特性曲线,也称谐振曲线。 在固定的条件下: 改变电源角频率,可得到图7.2响应电压随电源角频率变化的谐振曲线,回路电流与电阻电压成正比。从图中可以看到,U R的最大值在谐振角频率ω0处,此时U C=U L=Q U。U C的最大值在ω<ω0处, U L的最大值在ω>ω0处。 图7.3则表示经过归一化处理后不同值时的电流频率特性曲线。从图中可以看:值愈大,曲线尖峰值愈峻端,其选择性就愈好,但电路的通过的信号频带越窄,即通频带越窄。 3、实验内容 1. Multisim仿真 (1) 创建电路:从元器件库中选择可变电阻、电容、电感创建如图电路。

串联谐振电路实验的心得体会

串联谐振电路实验的心得体会 篇一:实验九串联谐振电路实验 实验九 串联谐振电路实验 一、实验目的 1.测量RLC串联电路的谐振曲线,通过实验进一步掌握串联谐振的条件和特点。 2.研究电路参数对谐振特性的影响。 二、原理 1.RLC串联电路在图9-1所示的,RLC串联电路中,若取电阻R两端的电压为输出电压,则该电路输出电压与输入电压之比为: U2R ??U1R?j(?L?1) ?C ?L tg?1 R 1 图9-1 图9-2

2.幅频特性 电路网络输出电压与输入电压的振幅比随ω变化的性质,称为该网络的幅频特性,如图9-2所示。 3.谐振条件二阶带通网络的幅频特性出现尖峰的频率f0称为中心频率或谐振频率。此时,电路的电抗为零,阻抗值最小,等于电路中的电阻,电路成为纯电阻性电路,串联电路中的电流达到最大值。 电流与输入电压同相位。我们把电路的这种工作状态称为串联谐振状态。电路达到谐振状态的条件是: 1 ?0L=或 ?0 ?0C4.通频带宽 改变角频率ω时,振幅比随之变化,当振幅比下降到最大值的1/角频率ω1、ω2叫做3分贝角频率,相应的频率两个f1和f2称为3分贝频率。两个角频率之 差称为该网络的通频带宽: R BW??2-?1= L RLC串联电路幅频特性可以用品质因数Q来描述: ??L1Q?0?0 BWR?0CR

三、实验仪器和器材 1.函数信号发生器 2.示波器 3.电阻 4.电感5.电容 6.实验电路板 7.短接线 8.导线 四、实验内容及步骤 1.连接实验电路 按图9-3所示连接电路。其中,电感L= 33mH,电容C=μF,电阻R分别取620Ω和Ω,图中r为电感线圈本身的电阻。 图9-3 2.测绘谐振曲线 测量结果填入表9-1中。 表9-1 R=620Ω的谐振特性 3.研究电路参数对谐振曲线的影响 将图9-3中电阻改为Ω,重复2中步骤,结果填入表9-2中。 表9-2 R=Ω的谐振特性 4.计算通频带宽BW和品质因数Q 将计算结果填入表9-3中。 表9-3 通频带宽BW和品质因数Q 五、思考题 1. 实验中怎么样判断电路已经处于谐振状态?

谐振电路实验报告

竭诚为您提供优质文档/双击可除 谐振电路实验报告 篇一:RLc串联谐振电路的实验报告 RLc串联谐振电路的实验研究 一、摘要: 从RLc串联谐振电路的方程分析出发,推导了电路在谐振状态下的谐振频率、品质因数和输入阻抗,并且基于multisim仿真软件创建RLc串联谐振电路,利用其虚拟仪表和仿真分析,分别用测量及仿真分析的方法验证它的理论根据。其结果表明了仿真与理论分析的一致性,为仿真分析在电子电路设计中的运用提供了一种可行的研究方法。 二、关键词:RLc;串联;谐振电路;三、引言 谐振现象是正弦稳态电路的一种特定的工作状态。通常,谐振电路由电容、电感和电阻组成,按照其原件的连接形式可分为串联谐振电路、并联谐振电路和耦合谐振电路等。 由于谐振电路具有良好的选择性,在通信与电子技术中得到了广泛的应用。比如,串联谐振时电感电压或电容电压大于激励电压的现象,在无线电通信技术领域获得了有效的

应用,例如当无线电广播或电视接收机调谐在某个频率或频带上时,就可使该频率或频带内的信号特别增强,而把其他频率或频带内的信号滤去,这种性能即称为谐振电路的选择性。所以研究串联谐振有重要的意义。 在含有电感L、电容c和电阻R的串联谐振电路中,需要研究在不同频率正弦激励(:谐振电路实验报告)下响应随频率变化的情况,即频率特性。multisim仿真软件可以实现原理图的捕获、电路分析、电路仿真、仿真仪器测试等方面的应用,其数量众多的元件数据库、标准化仿真仪器、直观界面、简洁明了的操作、强大的分析测试、可信的测试结果都为众多的电子工程设计人员提供了一种可靠的分析方法,同时也缩短了产品的研发时间。 四、正文 (1)实验目的: 1.加深对串联谐振电路条件及特性的理解。 2.掌握谐振频率的测量方法。 3.理解电路品质因数的物理意义和其测定方法。 4.测定RLc串联谐振电路的频率特性曲线。 (2)实验原理: RLc串联电路如图所示,改变电路参数L、c或电源频率时,都可能使电路发生谐振。 该电路的阻抗是电源角频率ω的函数:Z=R+j(ωL-1/ω

串联谐振电路实验报告

实验三:串联谐振电路 一、实验目的: 1.加深对串联谐振电路条件及特性的理解。 2.掌握谐振频率的测量方法。 3.理解电路品质因数及通频带的物理意义和其测定方法。 4.测定RLC 串联谐振电路的频率特性曲线。 二、实验原理: RLC 串联电路如图所示,改变电路参数L 、C 或电源频率时,都可能使电路发生谐振。 该电路的阻抗是电源角频率ω的函数: Z=R+j(ωL-1/ωC) 当ωL-1/ωC=0时,电路中的电流与激励电压同相,电路处于谐振状态。 谐振角频率ω0 =1/LC ,谐振频率f 0=1/2π LC 。 谐振频率仅与原件L 、C 的数值有关,而与电阻R 和激励电源的角频率ω无关,当ω<ω0时,电路呈容性,阻抗角φ<0;当ω>ω0时,电路呈感性,阻抗角φ>0。 1、电路处于谐振状态时的特性。 (1)、回路阻抗Z 0=R,| Z 0|为最小值,整个回路相当于一个纯电阻电路。 (2)、回路电流I 0的数值最大,I 0=U S /R 。 (3)、电阻上的电压U R 的数值最大,U R =U S 。 (4)、电感上的电压U L 与电容上的电压U C 数值相等,相位相差180°,U L =U C =QU S 。 2、电路的品质因数Q 和通频带B 。 电路发生谐振时,电感上的电压(或电容上的电压)与激励电压之比称为电路的品质因数Q ,即: Q=U L (ω0)/ U S = U C (ω0)/ U S =ω0L/R=1/R*C L / 回路电流下降到峰值的0.707时所对应的频率为截止频率,介于两截止频率间的频率范围为通频带,即: B=f 0 /Q 2、谐振曲线。 电路中电压与电流随频率变化的特性称频率特性,它们随频率变化的曲线称频率特性曲线,也称谐振曲线。 在U S 、R 、L 、C 固定的条件下,有 I=U S /22)C 1/-L (ωω+R U R =RI=RU S /22)C 1/-L (ωω+R U C =I/ωC=U S /ωC 22)C 1/-L (ωω+R

串联谐振电路实验报告

实验三:串联谐振电路 学号: 姓名: 成绩: 一、实验原理及思路 RLC 串联电路如图所示,改变电路参数L 、C 或电源频率时,都可能使电路发生谐振。 u s 图7.1 RLC 谐振串联电路 该电路的阻抗是电源角频率ω的函数 )1 (C L j R Z ωω-+= (7-1) 当1 0L C ωω- =时,电路中的电流与激励电压同相,电路处于谐振状态。 谐振角频率LC 10= ω ,谐振频率0f =。 谐振频率仅与元件L C 、的数值有关,而与电阻R 和激励电源的角频率ω无关, 当0ωω<时,电路呈容性,阻抗角?<0;当0ωω>时,电路呈感性,阻抗角 ?>0。 1.电路处于谐振状态时的特性: (1) 回路阻抗R Z =0,0Z 为最小值,整个回路相当于一个纯电阻电路。 (2)回路电路I 0的数值最大,R U I s 0=

(3)电阻的电压U R 的数值最大,S R U U = (4)电感上的电压U L 与电容上的电压U C 数值相等,相位相差180o 。 S C L QU U U == 2.电路的品质因数Q 和通频带B 电路发生谐振时,电感上的电压(或电容上的电压)与激励电压之比称为电路的品质因数Q ,即 C L R R L U U U U Q S C S L 1)()(000==== ωωω (7-2) 定义回路电流下降到峰值的时所对应的频率为截止频率,介于两截止频率间的频率范围为通频带。 Q f B 0 = (7-3) 3.谐振曲线 电路中电压与电流随频率变化的特性称频率特性,它们随频率变化的曲线称频率特性曲线,也称谐振曲线。 在U R L C 、、、固定的条件下: 2 2)1(C L R U I ωω- += U C L R R RI U R 2 2)1(ωω- += = U C L R C I C U C 2 2)1(1 1ωωωω- +== U C L R L LI U L 2 2)1(ωωωω- += = 改变电源角频率ω,可得到图响应电压随电源角频率ω变化的谐振曲线,回路电流与电阻电压成正比。从图中可以看 图7.3 不同Q 值时电流的频率特性曲线 I /I

RLC 串联谐振电路实验误差的分析及改进

RLC 串联谐振电路实验误差的分析及改进 一、摘要: 从RLC 串联谐振电路的方程分析出发,推导了电路在谐振状态下的谐振频率、品质因数和输入阻抗,并且基于Multisim仿真软件创建RLC 串联谐振电路,利用其虚拟仪表和仿真分析,分别用测量及仿真分析的方法验证它的理论根据。其结果表明了仿真与理论分析的一致性,为仿真分析在电子电路设计中的运用提供了一种可行的研究方法。 二、关键词:RLC;串联;谐振电路; 三、引言 谐振现象是正弦稳态电路的一种特定的工作状态。通常,谐振电路由电容、电感和电阻组成,按照其原件的连接形式可分为串联谐振电路、并联谐振电路和耦合谐振电路等。 由于谐振电路具有良好的选择性,在通信与电子技术中得到了广泛的应用。比如,串联谐振时电感电压或电容电压大于激励电压的现象,在无线电通信技术领域获得了有效的应用,例如当无线电广播或电视接收机调谐在某个频率或频带上时,就可使该频率或频带内的信号特别增强,而把其他频率或频带内的信号滤去,这种性能即称为谐振电路的选择性。所以研究串联谐振有重要的意义。 在含有电感L 、电容C 和电阻R 的串联谐振电路中,需要研究在不同频率正弦激励下响应随频率变化的情况,即频率特性。Multisim 仿真软件可以实现原理图的捕获、电路分析、电路仿真、仿真仪器测试等方面的应用,其数量众多的元件数据库、标准化仿真仪器、直观界面、简洁明了的操作、强大的分析测试、可信的测试结果都为众多的电子工程设计人员提供了一种可靠的分析方法,同时也缩短了产品的研发时间。 四、正文 (1)实验目的: 1.加深对串联谐振电路条件及特性的理解。 2.掌握谐振频率的测量方法。 3.理解电路品质因数的物理意义和其测定方法。 4.测定RLC串联谐振电路的频率特性曲线。

相关文档
相关文档 最新文档