文档库 最新最全的文档下载
当前位置:文档库 › 基于现场热响应测试方法的地下岩土热物性分析_刘春雷

基于现场热响应测试方法的地下岩土热物性分析_刘春雷

基于现场热响应测试方法的地下岩土热物性分析_刘春雷
基于现场热响应测试方法的地下岩土热物性分析_刘春雷

热响应测试报告

石家庄地源测试项目岩土热响应研究测试报告 天津大学环境学院 2010年11月21日

石家庄地源测试项目 岩土热响应研究测试报告 测试人员: 编制人: 审核人: 测试单位:天津大学环境学院 报告时间: 2010年11月21日 目录 一、项目概况......................................................... 二、地埋管换热器钻孔记录............................................. 钻孔设备.............................................. 钻孔记录.............................................. 三、测试目的与设备................................................... 四、测试原理与方法................................................... 岩土初始温度测试...................................... 地埋管换热器换热能力测试.............................. 五、测试结果与分析................................................... 测试现场布置......................................... 测试时间............................................. 夏季工况测试......................................... 冬季工况测试......................................... 稳定热流测试.........................................

热工测试--简答题总结说课讲解

热工测试--简答题总 结

#1.检测仪表的组成及其作用? 答:(1)传感器:感受被检测的变化并产生一个与被检测量成某种函数关系的输出信号;(2)变送器:将敏感元件输出信号变换成既保存原始信号全部信息又更易于处理、传输及测量的变量;(3)显示仪表:将测量信息转变成人感官所能接受的形式,是实现人机对话的主要环节;(4)传输通道:为各个环节的输入、输出信号提供通路。 #1-1. 检测及仪表在控制系统中起什么作用?两者的关系如何? 答:任何一个工业控制系统都必然要应用一定的检测技术和相应的仪表单元,检测仪表控制系统结构如图所示。其中,检测指完成对各种被控参数测量 型的单元式组合仪表就是输出/ 的统一制式仪表。 #1-2.偏差式、零位式与微差式测量的工作原理和特点? 答:偏差式测量:指在测量过程中,利用仪表指针相对于刻度线的位移来直接指示被测量的大小的方法,该类仪表测量方式直观,测量过程简单、迅速,但是测量精度较低;零位式测量:在测量过程中,用指零机构的零位指示,检测测量系统的平衡状态,通过比较被测量与已知标准量差值或相位,调节已知标准量大小,是两者达到完全平衡或全部抵消,从而得出测量值的大小;微差

式测量:综合了以上两种测量的优点,通过将被测量与已知标准量取得差值,再用偏差法测得此差值。 #2.热电偶测温原理(热电效应)? 答:两种不同的导体或半导体材料A和B所构成的回路,两个结点处的温度不同,则回路就会产生电流,也就是回路中存在电动势,这种现象叫做热电效应,也是热电偶测温的原理。 #3.热电极材料的要求? 答:(1)两种材料所组成的热电偶应输出较大的热电势,热电势和温度之间尽可能地呈线性函数关系;(2)能应用于较宽的温度范围,物化性能、热电特性都较稳定;(3)有较高的导电率和较低的电阻温度系数;(4)具有较好的工艺性能,便于成批生产;(5)具有满意的复现性,便于采用统一的分度表。#4.热电偶冷端补偿的原因和方法? 答:(1)热电偶的测温原理:E(T, T0) = E(T) - E(T0) ,只有T0稳定不变,才能测得T;(2)用热电偶的分度表查毫伏数-温度时,必须满足t0 = 0;(3)在实际测温中,冷端温度常随环境温度而变化,这样t0不但不是0?C,而且也不恒定,因此将产生误差;(4)一般情况下,冷端温度均高于0?C,热电势偏小,应想办法消除或补偿热电偶的冷端损失。 方法:冰点法、热电势修正法、冷端补偿器法、补偿导线法。 #5.非标准型热电偶(特殊热电偶) 答:(1)铠装式热电偶(又称套管式热电偶)它是由热电偶丝、绝缘材料,金属套管三者拉细组合而成一体;特点:热响应时间少,减小动态误差;可弯曲安装使用;测量范围大;机械强度高,耐压性能好; (2) 钨铼热电偶一种较

试验方案样本

目录 1、编制依据............................................... 错误!未定义书签。 2、工程概况............................................... 错误!未定义书签。 3、现场试验设备配置....................................... 错误!未定义书签。 4、试验计划编制说明....................................... 错误!未定义书签。 5、原材试验、检验取样计划................................ 错误!未定义书签。 6、施工试验计划........................................... 错误!未定义书签。 7、外墙保温检测........................................... 错误!未定义书签。 8、室内环境污染检测....................................... 错误!未定义书签。

试验方案 1、编制依据: 1.1北京市建筑设计研究院提供的《************施工图》; 1.2《*****************施工组织设计》; 1.3《混凝土结构工程施工质量验收规范》( GB50204- ) ; 1.4《建筑工程施工质量验收统一标准》( GB50300- ) ; 1.5《建筑工程冬期施工规程》( JGJ104-97) ; 1.6《北京市建设工程施工试验实行有见证取样和送检制度的暂行规定》; 1.7《地下工程防水技术规范》( GB50108- ) ; 1.8《地下防水工程质量验收规范》( GB50208- ) ; 1.9《建筑安装工程资料管理规程》( DBJ01-51- ) ; 1.10集团公司编制的相关管理条文。 2、工程概况: 本工程名为《***************工程》, 位于***************************************************************************** **********************。 3、现场试验设备配置: 3.1现场将设置混凝土试件标准养护室及养护箱, 便于养护不能及时委外的混凝土标养试件; 设立百叶箱, 测量施工期间工地的大气温度; 制作小铁笼, 放置混凝土同条件试件到各自对应的施工部位同条件养护; 建立混凝土配合比标识牌, 让工人明白每次浇筑的混凝

地源热泵系统岩土热响应试验

地源热泵系统岩土热响应试验 地源热泵技术是绿色环保、节能高效的能源利用技术。地源热泵系统是一种利用地下浅层地热资源,既能供热又能制冷的环保型空调系统,通过输入少量的电能,即可实现能量从低温热源向高温热源的转移。结合相关规范,指出岩土热响应试验在地源热泵项目中应用的问题、岩土热响应试验方法及关键参数、钻孔内热阻和热扩散率的计算方法以及《规范》中地埋管换热器设计计算与热响应试验间的关系进行探讨。 标签:地源热泵;岩土;热响应试验 岩土热响应试验是地埋管地源热泵系统实施的前提,通过该试验可获得现场地质情况和岩土体热物性参数,用于指导地埋管换热系统的设计,目前该观点正逐步被业主和设计人员接受[1]。通过热响应试验,了解项目所在区域岩土的基本物理性质,在此基础上,掌握岩土体的换热能力,为地源热泵系统设计人员结合建筑结构、负荷特点等设计系统优化方案提供基础数据,以保障系统长期运行的高效与节能。 一、岩土热响应试验在地源热泵项目中应用的问题 近年来岩土热响应试验在实际地源热泵项目应用中仍存在一些问题,主要表现在以下几个方面。 (一)有些热响应测试单位技术力量不足,对热响应测试理论和《规范》的理解不充分,测试报告中仅给出导热系数和单位井深取放热量,忽略了热响应测试应得到的其他关键参数。甚至有设计者将恒热流测试时施加于地埋管换热器的电加热量直接作为地埋管换热器的设计放热量值[2]。 (二)为获得项目的设计地埋管换热器数量或地埋管换热器总长度,设计师常用单位井深取放热量作为设计依据[3],未正确使用岩土热响应试验结果,使热响应试验仅成为界定设计责任的依据。 (三)不同项目中,地下岩土体热物性参数、地埋管换热器的设计进出口温度、系统运行时间等参数可能不同,设计人员普遍反映仅依靠单一的单位井深取放热量值无法找到合理的设计依据,无法根据不同的项目情况选择合理的设计参数,并计算合理的地埋管换热器数量[4]。 (四)地源热泵动态耦合计算理论体系不完善,仅依靠现有的一些地源热泵动态耦合设计软件,这类软件的使用对设计人员的要求很高,需要同时考虑建筑的动态负荷、地源热泵主机的动态性能、输配系统的动态性能、地埋管换热的动态变化。设计人员若能正确使用以上软件进行动态耦合设计,仅应用软件所花费的时间就会远长于地源热泵图纸的设计时间。

热电偶插入深度和响应时间

热电偶测温元件要与被测对象达到热平衡,因此,在测温时需要保持一定时间,才能使两者达到热平衡。而保持时间的长短,同测温元件的热响应时间有关。为了提高测量精度,减少测量误差,延长热电偶使用寿命,要求使用者不仅应具备仪表方面的操作技能,而且还应具有物理、化学及材料等多方面知识。 热电偶插入深度的影响:热电偶插入被测场所时,沿着传感器的长度方向将产生热流。当环境温度低时就会有热损失。致使热电偶与被测对象的温度不一致而产生测温误差。总之,由热传导而引起的误差,与插入深度有关。而插入深度又与保护管材质有关。金属保护管因其导热性能好,其插入深度应该深一些(约为直径的15—20倍),陶瓷材料绝热性能好,可插入浅一些(约为直径的10-15倍)。对于工程测温,其插入深度还与测量对象是静止或流动等状态有关,如流动的液体或高速气流温度的测量,将不受上述限制,插入深度可以浅一些,具体数值应由实验确定。 热电偶响应时间的影响:而热响应时间主要取决于传感器的结构及测量条件,差别极大。对于气体介质,尤其是静止气体,至少应保持30min以上才能达到平衡;对于液体而言,最快也要在5min以上。对于温度不断变化的被测场所,尤其是瞬间变化过程,全过程仅1秒钟,则要求传感器的响应时间在毫秒级。因此,普通的温度传感器不仅跟不上被测对象的温度变化速度出现滞后,而且也会因达不到热平衡而产生测量误差。最好选择响应快的传感器。对热电偶而言除保护管影响外,热电偶的测量端直径也是其主要因素,即偶丝越细,测量端直径越小,其热响应时间越短。测温元件热响应误差可通过下式确定[1]。Δθ=Δθ0exp(-t/τ) (2—1) 式中t—测量时间S,Δθ—在t 时

抽水试验方案

一任务来源 大连地铁三十里堡隧道区间结构施工受到本线第四系孔隙潜水影响,需求取该层地下水水文地质参数。 二试验目的 通过现场试验获取试验特性曲线,选择适合水文地质条件的计算公式求取水文地质参数,为确定基坑降排水设计方案提供可靠依据,合理优化施工降水方案,保护水资源。 三试验任务 al+pl)粉质粘土层进行带拟针对第四系全新统冲洪积层(Q由于试验场地条件限制,4观测孔的单井抽水试验。试验场区位置及试验井孔平面布置见附图一。 四试验工作布置 (一)水文地质钻探工作 共布置抽水试验孔1眼,井深暂定33m,实际中钻至震旦系石灰岩终孔,井径Φ600mm,管径Φ219mm(井结构见附图二);抽水专门观测孔2眼,井深暂定33m,实际中钻至震旦系石灰岩终孔,井径Φ600mm,管径Φ400mm(井结构见附图二),6m间距布设1眼,20m间距布设1眼。 (二)抽水试验 利用单孔抽水带多个观测孔进行的抽水试验,可精确求取水文地质参数。本次试验在钻孔成井后,利用单孔抽水,同时观测2眼观测井,稳定时间分别为8、16小时,小落程出水量为大落程出水量的1/2—2/3。 (三)抽水试验观测频率、精度要求及全部试验工作时间 1.抽水试验技术要求 抽水试验的布置应满足国家现行规范的规定,同时应观测水位和水量;抽水稳定延续时间不小于8H。抽水结束后应进行恢复水位观测直至稳定。 2.静水位观测 每小时观测一次,三次所测水位相同或4小时内水位相差不超过2厘米,即为静止水位。. 3.抽水试验稳定标准 动水位无持续上升或下降趋势,若有观测孔则以距抽水主孔最远端的观测孔判定;同时考虑区域该时段的自然水位变化情况,若与区域自然水位变化一致,同样判定稳定。 4.水跃值的确定

土壤热响应测试

土壤热响应测试 土壤热响应测试的主要目的是了解岩土体的基本物理性质,在此基础上,掌握岩土体的换热能力,为地源热泵系统设计人员结合建筑结构、负荷特点等设计系统优化方案提供基础数据,以保障系统长期运行的高效与节能。 如果物性参数不准确,则设计的系统可能不能满足负荷需要,也可能规模过大,从而大大增加初投资。国外学者Kavanaugh的研究结果表明,当地下岩土的导热系数或导温系数发生10%的偏差,则设计的地下埋管长度偏差为4.5%~5.8%。 目前土壤的导热特性主要有三种获得方式:利用简化模型数值计算、利用经验估算、做土壤热特性测试。单纯的按照简化模型计算往往误差过大;经验的估计值在方案分析阶段有一定的参考价值,但一直以来设计人员只能在某种土壤或岩石导热系数范围内保守取用较低值,导致设计钻孔的数量比实际需要的多,从而增加了项目投资成本;只有在地源热泵规划施工场所现场进行土壤热特性测试才能够获得完整和准确的土壤数据。 土壤热响应测试装备包括构件: 1. 试压、保压后的成井 2. 岩土热物性测试仪及其配套软件,由IGSHPA (国际地源热泵协会)推荐,美国原装进口 3. 数据采集仪:土壤导热能力测试数据采集记录仪HOBO FlexSmart Logger;目前采用HOBOware Pro version2.3.1,由美国Onset Computer Corporation 开发提供 4. 模拟量输入输出模块 5. 进出水温度、流量、电流、电压传感器 6. 电脑及其显示设备 7. 信号、电源连接线 8. 稳定的单相交流电源 现场测试装备总图

土壤热响应测试原理 如图所示,由于泵的作用,流体由A口进入,传感器采集信号。流体通过泵后,由电加热器加热,加热的流体温度信号由传感器采集,然后流体从B口流出,输入到埋置于深层岩土中的PE管内,导管内加热的流体与深层岩上进行热交换后,又从A口返回到仪器内,形成封闭的循环。将在一定时间内连续采集到的功率、温度等参数作为测量数据,再由线热源理论公式求出岩土的平均导热系数,继而对地埋管进行换热计算,达到检测目的。 数据输出通过专用程序软件来实现,将采集到的数据以特殊的格式存储在控制柜中的电脑里,也可转移到其他计算机中;根据所收集数据通过专业数据分析软件进行数据分析。 测试具体步骤 第一步,保证在整个试验过程中都必须有足够的电来供应,将实验平台与控制柜通电; 第二步,将适配器(测试设备的一种部件)安装在地下换热器上; 第三步,将准备好的绝缘软管与试验设备连接起来,将软管保温,避免受外界环境影响(如太阳下直射等因素),有必要用帐篷进行遮盖,以免影响试验效果。 第四步,通过注水管向试验系统中注水,保证系统运行的注水压力。 第五步,在将试验系统中的空气排尽后启动循环泵,当流速稳定趋于恒定后,开启电加热器,正式开始测试实验,进行数据采集。在数据采集过程中,必须保证电源的稳定,使数据能够连续不间断采集。采集数据包括:孔径、孔深、大地初始温度、连续测试时间的地下温度等。 第六步,数据采集时间:分别于08-3-3下午16时至08-3-4下午15时,共计23小时的时间连续对试验孔进行现场数据采集,在测试过程中每隔1.5分钟进行一次数据采集。开启电加热前后分别记录地下环路中水与土壤换热的数据情况。 如下图所示,为地下换热器内进出水温度随加热时间变化全过程曲线:曲线最后慢慢趋于稳定,可作为分析计算依据。

温度传感器热响应时间测试方法

泰索温度测控工程技术中心 文件名称温度传感器热响应测试方法文件编号TS-QMSS-TW-026 制定部门中心实验室 生效日 期 2012.11.15 版本号A/0 工位或工序名称测试室 使用的工具、仪器、 设备或材料试验装置、干式炉、精密温度仪表、计时器、传感器 作 业 方 法 试验装置 示图注释: 2-固定托架;3-摆动气缸;4-旋转臂;5-直行气缸; 6-传感器夹持器;7-干式炉;11-导向堵头; 12-计时启动(位置)开关;26-被测传感器;27-温度显示仪表。1.温度传感器时间常数定义 温度传感器的时间常数是指被测介质温度从某一温度t0跃变到另一温度t x时,传感器测量端温度由起始温度t0上升到阶跃温度幅度值t n的63.2%所需的时间。热响应时间用τ表示。 2.测试和试验步骤 2.1将自控温管式电炉温度事先恒定在(建议:热电阻推荐300℃;热电偶推荐600℃)预定温度,待测样品安装在检定炉夹具上置于室温下等温30分钟以上(若传感器提前两小时放置在实验室,便不需要等温过程)。 2.2连接传感器与精密温度仪表测量线路,在将传感器置于温场前,接通电源,观察精密温度仪表显示的室温t s(t s=t0)并记录。 2.3提前计算以下有关数据 2.3.1阶跃温度(幅度)值:对于热电阻t n=300-t s;对于热电偶t n=600-t s。 2.3.2记时掐表温度值t'=63.2%t n+ t s,对应时间为热响应时间τ。 2.4试验操作 2.4.1以上准备就绪,将温度显示仪表上限报警值设为:6 3.2%t n+ t s作为计时终止信号,以便自动的控制计时器工作。 2.4.2接通气源,按动摆动气缸电磁阀按钮,旋转臂摆动旋转至干式炉炉口上方(保持同一轴线),大约5秒后直行气缸电磁阀动作,将温度传感器垂直插入干式炉(深度大约180mm)。此时,计时开关已经打开并开始计时。 2.4.3注意观察精密温度仪表显示温度值迅速变化,待温度显示值达到报警值6 3.2%t n+ t s瞬间,报警常闭接点断开,此刻计时器当前示值即为实际时间常数τ。 2.4.4重复以上步骤,对逐个不同规格型号及编号的温度传感器进行试验,准确记录下对应数据,填写试验报告。 作业标准1.按不同类型传感器设置和恒定炉子试验温度。 2.按规定对被测样品在实验室进行等温和正确连接测量电路。 3.正确记录精密温度仪表显示的室温和计算试验所需数据。 4.严格按操作步骤进行试验作业,保持装炉和记时操作动作协调一致。 5.准确记录数据和填写试验报告。 备注温度传感器热响应测试驱动装置请参见该实验装置的详细说明书。

典型试验检测项目实施方案

典型试验检测项目实施 方案 标准化管理部编码-[99968T-6889628-J68568-1689N]

典型试验检测项目实施方案 一、交工验收前工程质量检测实施方案 1 项目概况 (1)、主要技术指标 (2)、主要工程量 (3)、参建单位 2 项目委托及检测依据 2.1项目委托 委托单位: 委托文件: 2.2检测依据 (1)、交通运输部:《公路工程竣(交)工验收办法》(交通部【2004】第3号令),2004;以下简称:“《验收办法》”; (2)、交通运输部:《公路工程竣(交)工验收办法实施细则》,(交公路发【2010】65号),2010,以下简称“《实施细则》”; (3)、住建部《城镇道路工程施工与质量验收规范》(CJJ 1-2008),2008;以下简称“《城镇验收规范》”; (4)、住建部《城市桥梁工程施工与质量验收规范》(CJJ 2-2008),2008,;以下简称“《城市桥梁验收规范》”; (5)、交通运输部:《公路工程质量检验评定标准第一册土建工程》(JTG F80/1-2004),2004,以下简称“《验评标准》”; (6)、交通运输部:《公路路基路面现场测试规程》(JTG E60-2008),2008; (7)、住建部:《城市桥梁设计荷载准则》(CJJ 77-98),1998; (8)、住建部:《城市桥梁设计通用规范》(征求意见稿),2007; (9)、交通部:《公路工程技术标准》(JTG B01-2003),2003; (10)、交工验收检测合同书;

(11)、批准的施工图设计及施工中有关设计变更的来往文件; (12)、相关设计、施工规范和试验规程。 3 主要检测内容 交工验收工程质量检测主要包括工程实体质量检测、工程外观质量检查、质量保证资料审查等。 3.1工程实体质量检测 依据《实施细则》的规定,项目交工验收工程质量检测主要抽查项目及抽检频率如表1所示。

×××××××××公司地埋管地源热泵系统岩土热响应试验及评价报告2

xxxxxxX公司地埋管地源热泵岩土热响应试验及评价报告 XXXXXXXXXXX XXX X年X月X X日

目录 1. 工程概况....................................................... 2 . 2. 试验测试目的 .................................................. 2... 3. 场地气象条件、测试孔及地层条件简介 ............................. 3.. 4. 现场使用的岩土热物性测试仪器及测试方法简介 ..................... 4. 4.1 岩土热物性测试仪简介................................................................... 4.. . 4.2 测试过程简介................................................................... 6.. . 4.3 测试理论 .................................................... 7 . 5. 土壤的初始平均温度T 的测定..................................... 9.. 6.岩土比热容计算................................................................... 1.. 0. 7. 测试孔测试结果分析................................................................... 1.. 0 7.1 供电电压、循环液流流量、压力损失与加热时间的关系曲线 (10) 7.2 载热流体温度与加热时间的关系曲线 ............................ 1. 1 7.3 测试孔土壤平均热传导系数的确定 .............................. 1.2 7.4 测试孔钻孔热阻的计算................................................................... 1.. 3. 8. 场地浅层地热能换热量预测................................................................... 1..

光电探测器光谱响应度和响应时间的测量(刘1)

光电探测器光谱响应度的测量 光谱响应度是光电探测器的基本性能之一,它表征了光电探测器对不同波长入射辐射的响应。通常热探测器的光谱响应比较平坦,而光子探测器的光谱响应却具有明显的选择性。一般情况下,以波长为横坐标,以探测器接受到的等能量单色辐射所产生的电信号的相对大小为纵坐标,绘出光电探测器的相对光谱响应曲线。典型的光子探测器和热探测器的光谱响应曲线如图1-1所示。 一、实验目的 (1)加深对光谱响应概念的理解; (2)掌握光谱响应的测试方法; (3)熟悉热释电探测器和硅光电二极管的使用。 二、实验内容 (1)用热释电探测器测量钨丝灯的光谱辐射特性曲线; (2)用比较法测量硅光电二极管的光谱响应曲线。 三、基本原理 光谱响应度是光电探测器对单色入射辐射的响应能力。电压光谱响应度()λV ?定义为在波长为λ的单位入射辐射功率的照射下,光电探测器输出的信号电压,用公式表示,则为 ()()() λλλP V V = ? (1-1) 而光电探测器在波长为λ的单位入射辐射功率的作用下,其所输出的光电流叫做探测器的电流光谱响应度,用下式表示 ()()() λλλP I i = ? (1-2) 式中, P (λ)为波长为λ时的入射光功率;V (λ)为光电探测器在入射光功率P (λ)作用下的输出信号电压;I (λ)则为输出用电流表示的输出信号电流。为简写起见,()λV ?和()λi ?均可以用()λ?表示。但在具体计算时应区分()λV ?和()λi ?,显然,二者具有不同的单位。 通常,测量光电探测器的光谱响应多用单色仪对辐射源的辐射功率进行分光来得到不同波长的单色辐射,然后测量在各种波长辐射照射下光电探测器输出的电信号V (λ)。然而由于实际光源的辐射功率是波长的函数,因此在相对测量中要确定单色辐射功率P (λ)需要利用参考探测器(基准探测器)。即使用一个光谱响应度为()λf ? 的探测器为基准,用同一波长的单色辐射分别照射待测探测器和基准探测器。由参考探 测器的电信号输出(例如为电压信号)()λf V 可得单色辐射功率()()()λλλ?=f V P ,再通过(1-1)式计算即可得到待测探测器的光谱响应度。 本实验采用图1-2所示的实验装置。用单色仪对钨丝灯辐射进行分光,得到单色光功率P (λ)。 图1-2 光谱响应测试装置图 这里用响应度和波长无关的热释电探测器作参考探测器,测得P (λ)入射时的输出电压为()λf V 。若用 f ?表示热释电探测器的响应度,则显然有

试验方案

施工试验方案

目录 一、编制依据 (2) 二、工程概况 (2) 三、施工部署 (3) 1组织管理 (3) 2管理职责 (3) 3材料检测机构 (4) 4现场试验室 (5) 5材料检验检测 (6) 6结构实体检验用同条件养护试块留置 (6) 7见证管理 (6) 8物资管理要求 (7) 四、送试品种及材料试验计划: (8) 4.1原材料试验的取样规定 (8) 4.2施工过程材料试验的取样规定: (8) 4.3装饰装修材料的取样规定: (10) 4.4墙体节能工程用保温材料: (11) 4.5水电暖专业材料: (11) 4.6施工检验(结构实体钢筋保护层厚度检验): (11) 4.7防水工程试水检查: (12) 五、管理程序 (12) 六、试验管理 (12) 七、管理制度 (13) 八、安全、消防、文明施工 (13)

一、编制依据 1.1、施工图纸 1.2、施工组织设计。 1 二、工程概况 本工程混凝土等级见下表:

3.施工现场主要材料用量 三、施工部署 1组织管理 本工程试验工作由技术负责人实行总负责,项目技术部门负责项目试验的指导与监督管理。现场设置专职试验员2人,负责进行各种试验的取样和送检。配合人员3人。专职试验工必须持证上岗,严禁无证操作。 2管理职责 2.1技术质量部: 每一项单位工程的原材料及施工过程应及时对试验人员进行试验交底,当图纸变化时应及时通知试验室,并提供洽商变更。 定期审察,整理各类试验报告单,并对报告中结果作及时处理。 协助试验工工作,并指导试验工填写试验委托单。

做好有序的试验,由技术质量部牵头,技术质量部、材料部、工程部、试验员共同根据施工组织设计制定好的流水段施工流程、实物工程量及材料进场计划,做好试验工作各环节的交圈接口工作,防止出现漏验少验的现象。 技术质量部领导现场试验室,现场试验室负责现场原材料取样、送试,混凝土及砂浆试块制作、养护、送试等试验工作。 2.2工程部: 负责提供各种材料的实际用量和进场计划,同时核对各工序施工前本工序所用材料的合格与否,严格控制材料的合理使用,保证不合格材料不用于工程施工。 2.3材料部 负责向工程部提供材料进场情况及时向技术部门上报整理合格证等材料并通知试验工、质量员,共同对材料进行取样复试,填写材料报验单等手续,实行动态管理。2.4 试验员职责: 现场试验人员应有岗位证书,无证者不得从事现场试验工作。 现场试验员在土建技术主管指导下进行工作,全面负责现场试验工作。 对现场试验和送试项目分别建立台帐,在项目技术负责人的指导下,认真填写试验委托单。对应送试的项目的原材料等应严格要求进行取样送试,对试样的真实性、代表性负责。 按要求作好混凝土相应工作:应做好各强度等级砼,砂浆的试配工作,检测坍落度,留置应留置的试块,并按要求进行养护,记录现场标养室温度、大气温度,冬季施工期间,负责冬施测温的日常管理工作。 试验员负责管理施工现场标养室,负责养护室的温度的测量记录及其他相关记录,其他无关人员不得随意入内。熟练掌握试验设备的使用方法,负责维修,保养和计量。 严格按有关规范整理资料,并交由资料员保管,确保各种资料填写齐全,字迹清晰,无涂改,对各种送试项目分别建立台帐,并作好记录。 负责试验室内试验器具、专用表格管理、填写,计量器具应定期检测,专用表格应认真填写、如实填写。 加强学习规范和技术标准,做到随时掌握现场施工情况、材料情况与国家规范技术标准要求的相符性。 3材料检测机构 工程施工前,经过考察对比,选定具有相应资质的检测试验单位承担本工程的所有

×××××××××公司地埋管地源热泵系统岩土热响应试验及评价报告 2解读

×××××××公司地埋管地源热泵岩土热响应试验及评价报告 ××××××××××× ××××年×月××日

目录 1.工程概况 (3) 2.试验测试目的 (3) 3.场地气象条件、测试孔及地层条件简介 (4) 4.现场使用的岩土热物性测试仪器及测试方法简介 (5) 4.1岩土热物性测试仪简介 (5) 4.2测试过程简介 (7) 4.3测试理论 (8) 的测定 (10) 5.土壤的初始平均温度T 6.岩土比热容计算 (11) 7.测试孔测试结果分析 (11) 7.1 供电电压、循环液流流量、压力损失与加热时间的关系曲线 (11) 7.2 载热流体温度与加热时间的关系曲线 (13) 7.3测试孔土壤平均热传导系数的确定 (13) 7.4测试孔钻孔热阻的计算 (14) 8.场地浅层地热能换热量预测 (15) 9.结论和建议 (17) 10.勘察资质证书和仪器校正证书 (18)

×××××××公司地埋管地源热泵 岩土热响应试验及评价报告 1. 工程概况 拟建项目位于××××××××××××××,主要由加工车间和办公楼组成,总建筑面积×××平方米,拟采用节能环保的地埋管地源热泵供热与制冷。 在进行地埋管地源热泵空调系统设计前在现场布设了一眼地埋管现场热响应试验钻孔,钻孔直径为150mm,深度为100m,埋设了Dn32单U形PE 管,×××××××××(勘测单位)对地埋管试验孔进行了现场热响应试验。 2. 试验测试目的 (1)通过试成孔和埋管,获得施工场地的地层分布知识,寻求合适的施工方法。 (2)通过现场测试及室内分析,提供满足设计施工所需的场地岩土热物性参数,确定岩土层换热能力,预测浅层地热能换热量。 (3)根据工程场区初始地温测试结果,综合考虑场区地形地貌、地层结构、地质构造等因素,给出建议地层平均初始温度。 (4)根据工程场区勘查测试成果,评价场区浅层地温资源状况。 (5)指出施工中和系统运行后应注意的事项。

中和反应反应热的测定实验报告

《中和反应反应热的测定》实验报告 班级姓名组别 [基础知识] 中和反应:酸和碱生成盐和水的反应。(放热反应)实质是酸电离产生的H + 和碱电离产生的 OH -结合生成难电离的H 2O 。强酸和强碱反应的离子方程式多数为H ++OH -=H 2O 中和热:在稀溶液中,强酸和强碱发生中和反应,生成1mol 液态水时的反应热,叫中和热。 任何中和反应的中和热都相同。但是不同的中和反应,其反应热可能不同。 有弱酸弱碱参加的中和反应,生成1mol 液态水时的放出的热量小于57.3kJ,因为弱酸弱碱电 离时吸收热量。 一、实验目的 测定强酸与强碱反应的反应热。(热效应) 二、实验用品 大烧杯(500mL)、小烧杯(100mL)、温度计、量筒(50mL)两个、泡沫塑料或纸条、泡沫塑料板或纸条、泡沫塑料板或硬纸板(中心有两个小孔)、环形玻璃搅拌棒。 0.50mol/L 盐酸、0.55mol/LNaOH 溶液。 三、实验原理 1、0.50mol ·L -1盐酸和0.55mol ·L -1NaOH 溶液的密度都约为1g ·cm -3,所以50mL0.50mol ·L -1 盐酸的质量m 1=50g ,50mL0.55mol ·L -1NaOH 溶液的质量m 2=50g 。 2、中和后生成的溶液的比热容c=4.18J ·(g ·℃)-1,由此可以计算出0.50mol ·L -1盐酸与0.55mol ·L -1NaOH 溶液发生中和反应时放出的热量为(m 1+m 2)·c ·(t 2-t 1)=0.418(t 2-t 1)kJ 又因50mL0.50mol ·L -1盐酸中含有0.025molHCl ,0.025molHCl 与0.025molNaOH 发生中和反应,生成0.025molH 2O ,放出的热量是0.418(t 2-t 1)kJ ,所以生成1molH 2O 时放出的热量即中和热为△H=-025 .0) (418.012t t kJ/mol

岩土热响应测试报告(DOC)

XX省XX市学院片区地源热泵工程岩土热响应测试报告 XX省XX大学地源热泵研究所 二〇一四年五月

岩土热响应测试报告 一、工程概况 该项目为XX省XX市学院片区(XX市学院、新华苑)地源热泵工程,位于XX省省XX市市。本工程拟采用节能环保的土壤源热泵系统,作为空调系统的冷、热源。我所对该工程地埋管场地进行了深层岩土层热物性测试。本次试验进行了1个孔的测试。报告时间:5月10日~5月11日。 二、测试概要 1、测试目的 地埋管换热系统设计是地埋管地源热泵空调系统设计的重点,设计出现偏差可能导致系统运行效率降低甚至无法正常运行。拟通过地下岩土热物性测试并利用专业软件分析,获得地埋管区域基本的地质资料、岩土的热物性参数及测算的每延米地埋管换热孔的换热量,为地热换热器设计、换热孔钻凿施工工艺等提供必要的基本依据。 2、测试设备 本工程采用XX省建筑大学地源热泵研究所自主研制开发的型号为FZL-C(Ⅲ)型岩土热物性测试仪,如图1所示。该仪器已获得国家发明

专利(ZL 2008 1 0238160.4)。并已广泛应用于北京奥林匹克公园、网球场馆、济南奥体中心等一大批地源热泵工程中的岩土层热物性测试。见附件3。 3、测试依据 《地源热泵系统工程技术规范》GB50366-2005 ( 2009年版)。 测试原理见附件2。 图1 FZL-C(Ⅲ)型岩土热物性测试仪 三、测试结果与分析 1、测试孔基本参数 表1 为测试孔的基本参数。 表1 测试孔基本参数 项目测试孔项目测试孔 钻孔深度(m)100 钻孔直径(mm)150

埋管形式双U型埋管材质PE管 埋管内径(mm)26 埋管外径(mm)32 钻孔回填材料细沙主要地质结构粘土与玄武岩 2、测试结果 测试结果见表2。循环水平均温度测试结果与计算结果对比见图2。测试数据见附件1。 初始温度:16.2℃; 导热系数:1.66W/m℃; 容积比热容:2.1×106J/m3℃。 3、结果分析 钻孔结果表明:该地埋管区域地质构造以粘土为主。具体地质构造见表2。测试结果表明:埋管区域的平均综合导热系数为1.66W/m℃,数值中等;平均容积比热为2.1×106J/m3℃,数值较大;岩土体平均初始温度16.2℃,数值偏低,有利于夏季向地下放热。

浅析热电偶的热响应时间

浅析热电偶的热响应时间 摘要:温度出现阶段变化时,热电偶的输出变化至相当于该阶段的某个规定百分数所需的时间称为热电偶的响应时间。测量热电偶的热响应时间比较复杂,不同的实验条件会有不同的测量结果,这是因为它受热电偶与周围介质的换热率影响,换热率高,则热响应时间就短。 关键词:热电偶的结构尺寸热惰性热响应时间 工业用热电偶在温度出现阶段变化时,热电偶的输出变化至相当于该阶段的某个规定百分数所需的时间称为热电偶的响应时间。 热电偶在测量温度时,其插入到被测介质部分包括:保护管、绝缘管、空气隙、热电板等。它们都具有一定的热容量和热传导的电阻,所以当热电偶插入阶段变化的温度场中,热电偶指示的温度不会产生突然的变化,而是按指数规律逐渐上升或下降。这是因为热电偶首先要吸收热量使其温度升高,同时还要通过热传导将热量传递到热电偶的测量端,测量端受热后温度升高,热电偶回路才有热点势产生,仪表才能指示出温度来,这个过程需要一段时间,这就是热电偶的热惰性。由于热惰性的存在,热电偶插入被测介质后,其稳定的温度指示值不能立即指示出来,而是逐渐上升,直到测量端吸热放热达到平衡后,才能具有稳定的温度指示值。在热电偶插入被测介质后到指示值稳定以前的整个不稳定过程中,热电偶的瞬时指示值与稳定后的指示值存在偏差,这个偏差称热电偶动态响应误差。 理论和实践证明,热电偶的热惰性愈小则动态响应速度愈快,动态误差就愈小。所以热响应时间是表示热电偶动态响应快慢的一个重要性指标。 一、影响热电偶响应时间的因素有 1.材料不同,导热性能也不同,如金属保护管比瓷保护导热好,热惰性小,热电偶达到的稳定时间就短、即响应时间短。 2.热电偶的结构、尺寸。热电极、保护管的直径电极、保护管的直径愈粗,惰性愈大;管壁愈厚,惰性也愈大,这样热电偶达到稳定的时间就愈长,即响应时间长。 3.响应时间还随着工作状况的变化而不同,就是说相同结构的热电偶,在不同的热交换条件下,其响应时间是不同的。 二、热电偶的热响应时间测量 测量热电偶的热响应时间比较复杂,不同的实验条件会有不同的测量结果,这是因为它受热电偶与周围介质的换热率影响,换热率高,则热响应时间就短。

××试验楼现场加载试验方案

××试验楼(预制装配钢筋混凝土结构) 现场加载试验方案 一、概述 ××试验楼是一栋5层混凝土预制装配结构的多层住宅,于2005年8月开工,2006年2月竣工。该试验楼是××工厂化研究的第一步。装配式混凝土结构体系的结构性能一直是其推广应用的瓶颈问题。其结构形式、施工工艺、构件的力学性能、构件连接节点的研究等都还不够成熟;国内还没有相关的设计、施工规范;没有系统的理论研究和充足的试验分析为工程设计提供依据。作为国内首栋完全装配式的混凝土结构,对其实体结构承载性能进行试验研究是十分必要的。受××企业股份有限公司的委托,××××结构工程研究所将对试验楼结构进行现场加载试验研究,以考察该结构使用极限状态的承载性能。 二、试验目的及要求 1.测定加载楼板使用极限状态的承载力; 2.单调荷载作用下,叠合楼板的内力变化及协同工作情况; 3.单调荷载作用下,叠合楼板变形、开裂情况荷载—变形关系; 4.荷载作用下,叠合连续板内力重分布情况; 5.单调荷载作用下,相关梁柱构件的受力、变形情况: 6.在使用极限荷载持续作用下楼板及相关构件的内力、变形的变化。 三、试验对象 试验楼楼板的设计均按单向受力板进行设计,试验不对整块楼板加载,而是选取 5-6轴二层楼板部分板块作为加载对象。主要考察对象为加载楼板及可能引起内力变化的相关梁柱构件。加载楼板区块及相关拟测试构件位置示意见图1,楼板配筋图见图2。

四、测试方法及加载方法(及加载制度) 本试验采用东华测试仪器公司研发的DH3815静动态应变测试系统进行各测点的应变数据采集及简单分析,构件的变形挠度采用机电位移百分表进行量测。 试验采用重物(沙包)直接堆放形成均布荷载对楼板进行加载模拟。沙包重量为50Kg/袋,装袋后沙包长度不大于1.2m,推荐沙袋规格50cm*100cm。加载时距板边缘0.4m开始堆放沙包,每列沙包净距8cm,加载图式见图3、4。

热工测试--简答题总结(NJ)

#1.检测仪表的组成及其作用? 答:(1)传感器:感受被检测的变化并产生一个与被检测量成某种函数关系的输出信号;(2)变送器:将敏感元件输出信号变换成既保存原始信号全部信息又更易于处理、传输及测量的变量;(3)显示仪表:将测量信息转变成人感官所能接受的形式,是实现人机对话的主要环节;(4)传输通道:为各个环节的输入、输出信号提供通路。 #1-1.检测及仪表在控制系统中起什么作用?两者的关系如何? 答:任何一个工业控制系统都必然要应用一定的检测技术和相应的仪表单元,检测仪表控制系统结构如图所示。其中,检测指完成对各种被控参数测量的单元,如温度、压力、流量的测量等,包括直接检测方法和通过数据运算处理的见解检测方法;仪表通常涉及测量、记录、显示以及调节和执行单元,典型的单元式组合仪表就是输出/输入信号统一规定为4~20mA DC #1-2.偏差式、零位式与微差式测量的工作原理和特点? 答:偏差式测量:指在测量过程中,利用仪表指针相对于刻度线的位移来直接指示被测量的大小的方法,该类仪表测量方式直观,测量过程简单、迅速,但是测量精度较低;零位式测量:在测量过程中,用指零机构的零位指示,检测测量系统的平衡状态,通过比较被测量与已知标准量差值或相位,调节已知标准量大小,是两者达到完全平衡或全部抵消,从而得出测量值的大小;微差式测量:综合了以上两种测量的优点,通过将被测量与已知标准量取得差值,再用偏差法测得此差值。 #2.热电偶测温原理(热电效应)? 答:两种不同的导体或半导体材料A和B所构成的回路,两个结点处的温度不同,则回路就会产生电流,也就是回路中存在电动势,这种现象叫做热电效应,也是热电偶测温的原理。 #3.热电极材料的要求? 答:(1)两种材料所组成的热电偶应输出较大的热电势,热电势和温度之间尽可能地呈线性函数关系;(2)能应用于较宽的温度范围,物化性能、热电特性都较稳定;(3)有较高的导电率和较低的电阻温度系数;(4)具有较好的工艺性能,便于成批生产;(5)具有满意的复现性,便于采用统一的分度表。 #4.热电偶冷端补偿的原因和方法? 答:(1)热电偶的测温原理:E(T,T0)=E(T)-E(T0),只有T0稳定不变,才能测得T;(2)用热电偶的分度表查毫伏数-温度时,必须满足t0=0;(3)在实际测温中,冷端温度常随环境温度而变化,这样t0不但不是0°C,而且也不恒定,因此将产生误差;(4)一般情况下,冷端温度均高于0°C,热电势偏小,应想办法消除或补偿热电偶的冷端损失。 方法:冰点法、热电势修正法、冷端补偿器法、补偿导线法。 #5.非标准型热电偶(特殊热电偶) 答:(1)铠装式热电偶(又称套管式热电偶)它是由热电偶丝、绝缘材料,金属套管三者拉细组合而成一体;特点:热响应时间少,减小动态误差;可弯曲安装使用;测量范围大;机械强度高,耐压性能好;(2)钨铼热电偶一种较好的高温热电偶,可使用在真空惰性气体介质或氢气介质中,但高温抗氧能力差。(3)快速反应薄膜热电偶(表面热电偶)特别适用于对壁面温度的快速测量。安装时,用粘结剂将它粘结在被测物体壁面上。测温范围在300℃以下;反应时间仅为几ms。(4)薄膜式热电偶适用于壁面温度的快速测量,基板由云母或浸渍酚醛塑料片等材料做成。 #6.补偿导线的作用? 答:①用廉价的补偿导线作为贵金属热电偶的延长导线,以节约贵金属热电偶;②将热

相关文档