文档库 最新最全的文档下载
当前位置:文档库 › 线性代数LA5-1B

线性代数LA5-1B

线性代数LA5-1B
线性代数LA5-1B

第五章 矩阵的相似变换

§5.1 矩阵的特征值与特征向量

定义: 对于n 阶方阵A , 若有数λ和向量0≠x 满足

x x A λ=, 称λ为A 的

特征值, 称x 为A 的属于特征值λ的特征向量. 特征方程:0)(=-?=x E A x x A λλ 或者

0)(=-x A E λ

)(=-x E A λ有

0)(d e t =-?E A λ

0)(d e t =-?A E λ 特征矩阵:E A λ- 或者 A E -λ 特

λλλλλ?---=

-=nn n n n n a a a a a a a a a E A

2

1

2222111211)(det )(

])1([011

10n

n n n n a a a a a -=++++=--λλ

λ

例1 求???

?

?

???

??=12

2

212

221

A 的特征值与特征向量. 解

2

)1)(5(12

2

212221)(+-=---=λλλ

λλλ?

0)(=λ??1,5321-===λλλ 求51=λ的特征向量:

?????

???

??---=-42

2

242

224

5E A ????

?

?????--→00

110101

,

????

??????=1111p

)0(11

1≠=k p k x

求132-==λλ的特征向量:

?????

???

??=--22

2222

222

)1(E A ????

?

?????→00

000111

,

??????????-=0112p , ????

?

?????-=1013p

3322p k p k x += (32,k k 不同时为0)

例2 求???

?

?

???

??--=20

1

034

011

A 的特征值与特征向量. 解

2

)1)(2(20

1

034011)(--=-----=λλλ

λλλ?

0)(=λ??1,2321===λλλ 求21=λ的特征向量:

?????

???

??--=-00

1014

013

2E A ????

?

?????→00

010001

,

????

?

?????=1001p

)0(11

1≠=k p k x

求132==λλ的特征向量: ?????

???

??--=-10

1024

0121E A ????

?

?????→00

210101

,

????

?

?????--=1212p

)0(222≠=k p k x

[注] 在例1中, 对应2重特征值1-=λ有两个线性无关的特征向量;

在例2中, 对应2重特征值1=λ只有一个线性无关的特征向量.

一般结论:对应r 重特征值λ的线性无关的特征向量的个数r ≤.

定理 1 设n n ij a A ?=)(的特征值n λλλ,,,21 ,

nn a a a A +++= 2211tr , 则

(1) n A λλλ+++= 21tr ; (2) n A λλλ 21det =. 证 由特征值的定义可得

λ

λλλλ?---=

-=nn n n n n a a a a a a a a a E A

2

1

2222111211)(det )(

)()())((22211λλλλ-+---=n nn f a a a

)

()()()

1()1(221

22111

λλλ

λ----+++++-+-=n n n nn n n n f g a a a 其中)(,)(22λλ--n n f g 都是次数不超过2-n 的多项

式.由题设, 又有

)

())(()(det )(21λλλλλλλλ?---=-=n E A

()()

1()1(211

211

n n n n n λλλ

λλλλ

+++++-+-=--

比较多项式同次幂的系数可得

n nn a a a λλλ+++=+++ 212211 n A λλλ? 21)0(d e t ==

推论 ?=0d e t

A 0是A 的特征值.

一元多项式:m

m t

c t

c t c c t f ++++= 2

210)(

矩阵多项式:m

m A

c A c A c E c A f ++++= 2

210)(

),(n n n E A ?

定理2 设)0(≠=x x

x A λ, 则

(1) x f x A f )()(λ=; (2) 0)()(=?=λf O A f . 证

(1)

x x A x x A k

k λλ=?=

( ,2,1=k ) 所

x A c x A c x A c x E c x A f m

m ++++= 2

210)(

x f x c x c x c x c m

m )(2210λλλλ=++++=

(2)

0)(0)()()(=?===?=λλf x O x A f x f O A f )0(≠x

[注] 一般结论:若A 的全体特征值为n λλλ,,,21 ,则)(A f 的全体特征值

为)(,),(),(21n f f f λλλ .

例 3 设33?A 的特征值为3,2,1321-===λλλ, 求

)3(det 3

E A A +-.

解 设13)(3

+-=t t t f , 则E

A A A f +-=3)(3

的特征值为

17)(,3)(,1)(321-==-=λλλf f f 故

51)17(3)1()3(det 3

=-??-=+-E A A

定理 3 设n n A ?的互异特征值为m λλλ,,,21 , 对应的特征向量依次为

m p p p ,,,21 , 则向量组m p p p ,,,21 线性无关.

证 采用数学归纳法.

1=m 时, 110p p ?≠线性无关.

设l m =时, l p p ,,1 线性无关, 下面证明

11,,,+l l p p p 线性无关.

设数组11,,,+l l k k k 使得

01111=+++++l l l l p k p k p k

)1(

左乘A , 利用i i i

p Ap λ=可得

0111111=++++++l l l l l l p k p k p k λλλ )2(

)1()2(1+-l λ:

0)()(11111=-++-++l l l l l p k p k λλλλ

因为l p p ,,1 线性无关(归纳法假设), 所以

0)(,,0)(1111=-=-++l l l l k k λλλλ 0,,01==?l k k

代入)1(可得 00111=?=+++l l l k p k .故

11,,,+l l p p p 线性无关.

根据归纳法原理, 对于任意正整数m , 结论成立.

定理 4 设n n A ?的互异特征值为m λλλ,,,21 , 重数依次为m r r r ,,,21 , 对应i

λ的线性无关的特征向量为

)

()

(2)

(1,,,i l i i i p p p ),,2,1(m i =,

则向量组)

()

(1

)1()1(1,,,,,,1

m l m l m p p p p 线性

无关.(自证)

§5.2 相似对角化

1.相似矩阵:对于n 阶方阵A 和B , 若有可逆矩阵P 使得

B AP P

=-1

,

称A 相似于B , 记作B A ~. (1) A A ~: A AE E

=-1

(2) A B B A ~~?: A P

B P =---)()

(1

1

1

(3) C A C B B A ~~,~? 性质1 B A B A det det ~=?. 性质2 A 可逆, ?B A ~B 可逆, 且1

1

~--B

A

性质 3 m

m

B

A

kB kA B A ~,~~? (m 为正

整数).

性质4 )(t f 为多项式, )(~)(~B f A f B A ?. 性质5 )(det )(det ~E B E A B A λλ-=-?

?A 与B 的特征值相同 证

B

AP P

=-1

可得

P E A P

E AP P

E B )(1

1

λλλ-=-=---

P E A P

E B d e t )d e t (d e t )(d e t 1

?-?=--λλ

)d e t (d e t )d e t ()

d e t (1

E A P E A P λλ-=?-?=- 2.相似对角化:若方阵A 能够与一个对角矩阵相似, 称A 可对角化.

定理 5 n 阶方阵A 可对角化A ?有n 个线性无关的特征向量.

证 必要性.设可逆矩阵P 使得

Λλλd e f 1

1

=???

?

?

????

?=

-n AP P

即ΛP AP =.划分[]n p p P

1

=, 则有 [][]Λn n p p p p A

1

1=

[][]n n n p p p A p A λλ

1

11

=?

),,2,1(n i p p A i

i i ==?λ

因为P 为可逆矩阵, 所以它的列向量组n p p ,,1 线性无关.

上式表明:n p p ,,1 是A 的n 个线性无关的特征向量.

充分性.设n p p ,,1 线性无关, 且满足),,2,1(n i p p A i

i i ==λ,

则[]n p p P

1

=为可逆矩阵, 且有

[][]n n n p p p A p A AP λλ

1

11

==

[]ΛΛP p p n ==

1

即Λ=-AP P 1

[注] ΛΛ?~A 的主对角元素为A 的特征值.

推论1 n n A ?有n 个互异特征值A ?可对角化.

推论 2 设n n A ?的全体互异特征值为m λλλ,,,21 , 重数依次为m r r r ,,,21 ,

则A 可对角化的充要条件是, 对应于每个特征值

i λ,A 有i r 个线性

无关的特征向量. 例4 判断下列矩阵可否对角化:

(1)????????

??---=6116100

010

A , (2)????

?

??

???=12

2

212221

A , (3)????

?

???

??--=20

1

034

011A 解 (1) )3)(2)(1()(+++-=λλλλ? A 有3个互异特征值 A ?可对角化

对应于3,2,1321-=-=-=λλλ的特征向量依次为

????????

??

-

=1111p , ??????????-=4212p , ??

??

?

?????-=9313p

构造矩阵

????

?

?????---=94

1

3

21

111P ,

????

?

????

?---=

32

1

Λ 则有 Λ=-AP P 1

(2) 2

)1)(5()(+--=λλλ?

例1求得A 有3个线性无关的特征向量 A ?可对角化 对应于1,5321-===λλλ的特征向量依次为

??

??

??????=1111p , ??????????-=0112p , ???

???????-=1013p

构造矩阵 ????

?

?????--=10

1

011

111

P ,

????

?

????

?--=

11

5

Λ 则有 Λ=-AP P 1

(3) 2

)1)(2()(---=λλλ?, 例2求得, 对应于2重特征值132==λλ,

A 只有1个线性无关的特征向量 A ?不可对角化.

例5 设????

?

???

??=12

2

212

221A , 求),3,2( =k A k

. 解 例4求得 ????

?

?????--=10

1

011

111

P ,

???

?

?

????

?--=

11

5

Λ, 使得 Λ=-AP P

1

:1

1,--==P P A P P A k k ΛΛ

????

?

?????----?????

?????

?--?????

?

?????--=21

112111131)1()

1(510

1

011111k

k

k

k

A

????

?

????

?+---+---+=δδ

δδδδδδδ

2555525555253

1k

k k k

k

k

k

k

k (k

)1(-=δ)

《线性代数》教学中若干难点的探讨.doc

《线性代数》教学中若干难点的探讨- 摘要:在《线性代数》的教学过程中,有很多抽象的概念学生很难理解,比如线性相关、线性无关,极大线性无关组、向量组的秩等等。本文从笔者个人的教学实际出发,浅谈教学过程中的若干个教学难点,化抽象为具体,帮助学生理解并掌握这些难点,以提高学生对《线性代数》的学习兴趣。 关键词:线性相关;线性无关;极大线性无关组;向量组的秩 《线性代数》是高等学校理、工、经、管类各专业的一门重要基础课程。通过对本课程的学习,学生可以获得线性代数的基本概念、基本理论和基本运算技能,为后继课程的学习和进一步知识的获得奠定必要的数学基础。通过各个教学环节的学习,可以逐步培养学生的抽象思维能力、逻辑推理能力、空间想象能力以及自学能力,并具有比较熟练的运算能力和综合运用所学知识分析和解决问题的能力。另外,通过《线性代数》的学习,还可以培养学生的综合素质和提高学生的创新意识。因此,只有熟练掌握这门课程,才能较好地运用到各个专业中。由于该课程内容抽象,教学课时短,这无疑对教师的教学和学生的学习造成了极大的困扰。本文从笔者个人的教学实际出发,浅谈教学过程中的若干个教学难点,帮助学生理解并掌握这些难点,以提高学生对《线性代数》的学习兴趣。 一、线性相关性与线性无关性 线性方程组理论是线性代数的基本内容之一,而向量组的线性相关性和线性无关性又是解线性方程组的基础。教材第三章线性方程组开门见山,直接给出了线性相关及线性无关的定义。

线性相关是指一个向量组α1,α2,…,αs,如果存在一组不全为零的数λ1,λ2,…,λs,使得λ1α1+λ2α2+…+λsαs=0,则称该向量组α1,α2,…,αs线性相关。如果不存在这样一组不全为零的数,则称该向量组α1,α2,…,αs线性无关。单纯地称某向量组线性相关或线性无关,对于学生来说是比较抽象的,他们对这一定义总是感觉很模糊,很难理解,如何才能更好地更形象地理解这一定义呢?如果在教学中,把这块知识与解析几何联系起来,用几何知来解释什么是线性相关或线性无关,那么学生肯定更容易接受。例如,对于定义中λ1α1+λ2α2+…+λsαs=0,可以理解为b=(λ1,λ2,…,λs)这样的一个行向量。如果向量组有两个列向量构成,即α1,α2,则b=(λ1,λ2),λ1α1+λ2α2=0。若λ1≠0,则经过变换可以得到α1=■,这说明α1和α2共线。对于有三个向量构成的向量组,λ1α1+λ2α2+λ3α3=0,b=(λ1,λ2,λ3),若λ1≠0,经变换得到α1=■+■,这说明α1,α2,α3三个向量共面。 对于两个向量,线性相关指两向量平行(或者说是共线),此时只是在线上的关系,仅仅是一维,线性无关指两向量相交,确定了一个二维平面。线性无关提供了另一种维度,使得向量所在空间增加了一维。对于三个向量,线性相关指三向量共面,研究的是二维平面,而线性无关指三向量不共面,使得向量所在空间增加了一维,即三个向量若线性无关,那么它们不共面,存在于三维立体空间中。四个向量,五个向量,…,研究方法类似。结合几何知识,通过几何图像可以更直观地呈现出新的概念,学生更易于接受,而且还有助于提高学生对《线性代数》的学习兴趣。 二、极大线性无关组及向量组的秩

(完整版)线性代数期末测试题及其答案.doc

线性代数期末考试题一、填空题(将正确答案填在题中横线上。每小题 5 分,共 25 分) 1 3 1 1.若0 5 x 0 ,则__________。 1 2 2 x1 x2 x3 0 2.若齐次线性方程组x1 x2 x3 0 只有零解,则应满足。 x1x2x30 3.已知矩阵 A,B,C (c ij )s n,满足 AC CB ,则 A 与 B 分别是阶矩阵。 4.已知矩阵A 为 3 3的矩阵,且| A| 3,则| 2A|。 5.n阶方阵A满足A23A E 0 ,则A1。 二、选择题(每小题 5 分,共 25 分) 6.已知二次型 f x12 x22 5x32 2tx1x2 2x1 x3 4x2 x3,当t取何值时,该二次型为正定?() A. 4 0 B. 4 4 C. 0 t 4 4 1 t 5 t D. t 2 5 5 5 5 1 4 2 1 2 3 7.已知矩阵A 0 3 4 , B 0 x 6 ,且 A ~ B ,求x的值() 0 4 3 0 0 5 A.3 B.-2 C.5 D.-5 8 .设 A 为 n 阶可逆矩阵,则下述说法不正确的是() A. A0 B. A 1 0 C.r (A) n D.A 的行向量组线性相关 9 .过点( 0, 2, 4)且与两平面x 2z 1和 y 3z 2 的交线平行的直线方程为() 1

x y 2 z 4 A. 3 1 2 x y 2 z 4 C. 3 1 2 x y 2 z 4 B. 3 2 2 x y 2 z 4 D. 3 2 2 10 3 1 .已知矩阵 A , 其特征值为( ) 5 1 A. 1 2, 2 4 B. C. 1 2, 2 4 D. 三、解答题 (每小题 10 分,共 50 分) 1 1 2, 2, 2 2 4 4 1 1 0 0 2 1 3 4 0 2 1 3 0 1 1 0 11.设B , C 0 2 1 且 矩 阵 满足关系式 0 0 1 1 0 0 1 0 0 0 2 T X (C B) E ,求 。 a 1 1 2 2 12. 问 a 取何值时,下列向量组线性相关? 1 1 1 , 2 a , 3 。 2 1 2 1 a 2 2 x 1 x 2 x 3 3 13. 为何值时,线性方程组 x 1 x 2 x 3 2 有唯一解,无解和有无穷多解?当方 x 1 x 2 x 3 2 程组有无穷多解时求其通解。 1 2 1 3 14.设 1 4 , 2 9 , 3 0 , 4 10 . 求此向量组的秩和一个极大无关 1 1 3 7 0 3 1 7 组,并将其余向量用该极大无关组线性表示。 15. 证明:若 A 是 n 阶方阵,且 AA A1, 证明 A I 0 。其中 I 为单位矩阵 I , 2

考研提高-2020考研数学一试卷分析

2020考研数学一试卷分析 随着考研数学考试的结束,2020考研也慢慢地落下了它的帷幕。从整体上来看,今年的考研数学试卷依旧延续了以往的特点:覆盖广泛、重点突出,着重考查了“三基与五能力”。即对基本概念、基本原理、基本方法、数学计算能力、逻辑推理能力、空间想象能力、利用数学知识分析并解决实际问题的能力、概括能力的考查。从难度上看,2020年数学一与2019年稍难,特色特别鲜明。下面我们来具体分析: 选择题,高等数学考查了无穷小的比较、导数定义、多元函数可微定义、阿贝尔定理等知识点难度适中,但灵活性较强,对学生的基本功要求较高。 线性代数涉及了线性表出、初等变换两个考查对象,其中线性表示与空间直线进行关联,有一定的难度。 概率与统计考查了中心极限定理,这个考点有点意料之外,但如果知道中心极限定理的意义还是比较简单的。 填空题,高等数学涉及了∞-∞极限计算、参数方程求导、反常积分计算、偏导计算都属于常规考点,比较简单。 线性代数考查了四阶行列式的计算,难度不大。 概率考到了协方差的计算,属于概念题,容易上手。总的来说,填空题没有难度。 解答题部分主要考查综合考查了计算能力、分析和解决问题的能力,突出了综合性和计算量大的特点,其中高等数学有二元函数极值的计算、第二类曲线积分的计算、第二类曲面积分的计算、无穷级数的求和问题和中值定理的相关证明。中值定理的证明一直都是考生的弱项,得分率会比较低;第二类曲面积分的计算难度较大,考生们的计算方法主要来自高斯公式,但今年的题目却要求利用原始定义、即化为二重积分计算,许多考生没想到,得分率

会低一些;其他的题目都在可控范围内,由此可发现2020考研数学一较2019难一点。 线性代数比较简单,第20考查了矩阵的可逆性判定及相似对角化的判定问题,属于常规考点,难度不大。第21题考查了二次型的标准型问题,属于常规题型,较易完成。 概率论与数理统计第22题考查了分布函数的求解,主要是利用全概率公式,这在以往的真题中比较常见;第23依旧考查最大似然估计,极为常见,难度不大。 综上,2020年数学一,高等数学难度稍大于2019,出高分比较难。 结合2020年考研数学特点,我们建议备考2021年考研的考生注意以下几个问题:(1)重视基础。研究生入学考试是个选拔性考试但同时也是一个面向大众化的考试,不是竞赛,所以普通题目肯定占了绝大多数,考生们只要抓住“三基”就可做到以不变应万变。建议考生从当年1至6月认真读书,整理笔记、打牢基础。 (2)重视计算,眼界放宽,突出特色。数学一难的就是综合性强,覆盖面广,考生摸不清考试方向。建议考生可在7-10月强化学习中,认真总结和归纳重点题型和方法,通过练习和常见结论迅速提高运算能力,同时能明确考纲中数学一的特色知识,例如空间解析几何与向量代数、曲线曲面积分、空间曲线的切法与法平面、空间曲面的切平面与法线、傅里叶级数等。 (3)重视真题。考研数学已经历30多年,其中产生的规律、套路不容抹杀,考生应有效利用。建议考生在11月至考前认真对待真题,反复研究,搞清楚是什么,用什么,为什么方能真正笑傲考场。 最后,祝愿2020考生都能如愿进入理想学府!

线性代数重点难点

自考《线性代数》重难点解析 2011-02-17 11:09:49 | 作者: min | 来源: 考试大 | 查看: 第一章行列式 一、重点 1、理解:行列式的定义,余子式,代数余子式。 2、掌握:行列式的基本性质及推论。 3、运用:运用行列式的性质及计算方法计算行列式,用克莱姆法则求解方程组。 二、难点 行列式在解线性方程组、矩阵求逆、向量组的线性相关性、求矩阵的特征值等方面的应用。 三、重要公式 1、若A为n阶方阵,则│kA│= kn│A│ 2、若A、B均为n阶方阵,则│AB│=│A│。│B│ 3、若A为n阶方阵,则│A*│=│A│n-1 若A为n阶可逆阵,则│A-1│=│A│-1 4、若A为n阶方阵,λi(i=1,2,…,n)是A的特征值,│A│=∏λi 四、题型及解题思路 1、有关行列式概念与性质的命题 2、行列式的计算(方法)

1)利用定义 2)按某行(列)展开使行列式降阶 3)利用行列式的性质 ①各行(列)加到同一行(列)上去,适用于各列(行)诸元素之和相等的情况。 ②各行(列)加或减同一行(列)的倍数,化简行列式或化为上(下)三角行列式。 ③逐次行(列)相加减,化简行列式。 ④把行列式拆成几个行列式的和差。 4)递推法,适用于规律性强且零元素较多的行列式 5)数学归纳法,多用于证明 3、运用克莱姆法则求解线性方程组 若D =│A│≠0,则Ax=b有唯一解,即 x1=D1/D,x2= D2/D,…,xn= Dn/D 其中Dj是把D中xj的系数换成常数项。 注意:克莱姆法则仅适用于方程个数与未知数个数相等的方程组。 4、运用系数行列式│A│判别方程组解的问题 1)当│A│=0时,齐次方程组Ax=0有非零解;非齐次方程组Ax=b不是唯一解(可能无解,也可能有无穷多解) 2)当│A│≠0时,齐次方程组Ax=0仅有零解;非齐次方程组Ax=b有唯一解,此解可由克莱姆法

线性代数期末考试试卷答案合集

×××大学线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=32312221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032 =--E A A ,则=-1A 。 二、判断正误(正确的在括号填“√”,错误的在括号填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, , 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1 -A 的特征值为λ。 ( ) 三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号。每小题2分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 1 2 -n ③ 1 2 +n ④ 4 2. n 维向量组 s ααα,,, 21(3 £ s £ n )线性无关的充要条件是( )。 ① s ααα,, , 21中任意两个向量都线性无关 ② s ααα,, , 21中存在一个向量不能用其余向量线性表示

考研数学试卷分析

考研数学试卷分析 第一,总体难度不大,但覆盖面广。 试卷中高等数学占78%,分数值约为116分,线性代数占22%,分数值约为 34分。试卷结构为单选题8个,填空题6个,解答题9个(包括证明题)。选择 题1至6题考查高等数学知识点,7至8题考查线性代数知识点,填空题9至 13题考查高等数学知识点,14题考查线性代数知识点,解答题15至21题考查高等数学知识点,22至23题考查线性代数知识点。 如高等数学部分,试题中微积分部分涉及到的知识点有:求极限(数列极限、函数极限);无穷小的比较,连续与间断的判定,零点定理的应用;极限与导数的关系;根据导数的定义以及几何意义证明结论,求法线方程;隐函数求导; 导数的应用如微分中值定理,函数的极值,最值求法,拐点坐标;不定积分, 反常积分的求法;定积分的应用;二元函数的连续性,偏导数的求法;二重积 分的计算、线性微分方程的求解。 线性代数涉及知识点有:伴随矩阵与矩阵的关系;向量组的线性相关性, 非齐次方程组解的判定条件、特征值特征向量的计算、矩阵相似对角化的充分 条件。 第二,考研数学仍然侧重对基础知识运用的考查。 考研数学题目还是强调了“三基本”,即数学考试的目的就是对基本概念、 基本性质、基本原理的考察,这类考试性质没有变。考查学生的数学掌握水平,是否具有抽象思维能力、逻辑推理能力、空间想象能力和运算能力等。具体来说,从整体试卷来看,题目对知识点的综合性要求还是较高、题目具有一定的 灵活性。试卷中仍然还是微积分部分的难度高于线性代数的难度。今年的考题 包括一些选择题,如果平常复习仅仅是死记硬背,对于知识点不能灵活掌握运用,这种题做起来会有困难。

线性代数期末考试试题

《线性代数》重点题 一. 单项选择题 1.设A 为3阶方阵,数 = 3,|A | =2,则 | A | =( ). A .54; B .-54; C .6; D .-6. 解. .54227)3(33-=?-=-==A A A λλ 所以填: B. 2、设A 为n 阶方阵,λ为实数,则|λA |=( ) A 、λ|A |; B 、|λ||A |; C 、λn |A |; D 、|λ|n |A |. 解. |λA |=λn |A |.所以填: C. 3.设矩阵()1,2,12A B ?? ==- ??? 则AB =( ). 解. ().24121,221???? ??--=-???? ??=AB 所以填: D. A. 0; B. ()2,2-; C. 22?? ?-??; D. 2142-?? ?-?? . 4、123,,a a a 是3维列向量,矩阵123(,,)A a a a =.若|A |=4,则|-2A |=( ). A 、-32; B 、-4; C 、4; D 、32. 解. |-2A |=(-2)3A =-8?4=-32. 所以填: D. 5.以下结论正确的是( ). A .一个零向量一定线性无关; B .一个非零向量一定线性相关; C .含有零向量的向量组一定线性相关; D .不含零向量的向量组一定线性无关. 解. A .一个零向量一定线性无关;不对,应该是线性相关. B .一个非零向量一定线性相关;不对,应该是线性无关. C .含有零向量的向量组一定线性相关;对. D .不含零向量的向量组一定线性无关. 不对, 应该是:不能判断. 所以填: C. 6、 1234(1,1,0,0),(0,0,1,1),(1,0,1,0),(1,1,1,1),αααα====设则它的极 大无关组为( ) A 、 12,; αα B 、 123,, ;ααα C 、 124,, ;ααα D 、1234,, ,αααα

线性代数易错点及重点知识点

线性代数易错及重点知识点 翔翔总结,不晓得大家看得懂不 3 24712432的余子式是327134722412,而不是23271 上三角和下三角行列式都是a1a2a3.....an=A 反三角行列式为A*(-1)^n(n-1)/2 行列式的一行的代数余子式分别乘以另一行元素,值为零。 正反三角行列式如果不记得公式了,可以通过上下换行的形式变成正三角行列式。 克莱姆法则D=222112 11a a a a ,D1=22 2121a b a b D2=22211211a a a a x1=D1/D 同理x2=D2/D 范德蒙法则:行列式的值=(x n -x n-1)(x n -x n-2)……(x n -x 1)(x n-1-x n-2……)(x 2-x 1) 若一个线性方程组有非零解,则它的行列式式值等于零。 行列式中行叫c ,列叫r 写行列式变换过程中要在等号上写变换方法,如c2-c3.不然老师看不懂步骤,无法给分 化三角行列式先化第一列,在化第二列,按顺序来化,这样才不会出现问题。 n 维向量分横向量和列向量。 写向量时一定要记得在上面加箭头 任意一个n 维向量都能由n 个n 维单位向量线性表示 如果b1=k1a1+k2a2+k3a3,线性表示不一定要求k1,k2,k3不全为零。 如果一个向量a 线性相关,则a=0 由一个非零向量构成的向量组一定线性无关。即a ≠0则a 这个向量组线性无关。 含有零向量的向量组一定线性相关 例a1=(1,1)a2=(2,3)求这两个向量组是否线性相关 解:k1a1+k2a2=0 k1(1,1)+k2(2,3)=0 K1+2k2=0 k1+3k2=0 3 121≠0所以k 全是零解,所以线性无关 a3=a1+a2,则a1,a2,a3线性相关 一个向量组中的一个向量可由其他向量线性表示,那么这个向量组线性相关,能线性表示不一定要k 不全为零,但是线性相关一定要不全为零 两个向量线性相关除非他们对应分量成比例。 如果一个向量组一部分向量线性相关,则,整个向量组线性相关。 一个向量组线性无关,那么它的一部分也线性无关 向量组线性相关,减少其中几维一样线性相关,向量组线性无关,增加几维向量一样无关。 应用:要证线性相关,则增加维,如果增加后相关,则原向量组相关。 要证线性无关,则减少维,如果减少后无关,则原向量组无关。 要证线性相关,则增加向量个数,如果增加后相关,则原向量组相关。 要证线性无关,则减少向量个数,如果减少后无关,则原向量组无关。 向量个数大于维数一定线性相关 一个向量组的每个最大线性无关组中的向量个数一定相等 向量空间:线性无关组ab ……n 若a+b ……n 属于v Ramada a 属于v 则v 为向量空间v 的维数就是向量组的秩,a b ……n 称为空间的基

线性代数期末考试试卷答案合集

线性代数期末考试试卷 答案合集 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

×××大学线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=3231 2221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032=--E A A ,则=-1A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, , 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1-A 的特征值为λ。 ( )

三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2 分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 12-n ③ 12+n ④ 4 2. n 维向量组 s ααα,, , 21(3 s n )线性无关的充要条件是( )。 ① s ααα,, , 21中任意两个向量都线性无关 ② s ααα,, , 21中存在一个向量不能用其余向量线性表示 ③ s ααα,, , 21中任一个向量都不能用其余向量线性表示 ④ s ααα,, , 21中不含零向量 3. 下列命题中正确的是( )。 ① 任意n 个1+n 维向量线性相关 ② 任意n 个1+n 维向量线性无关 ③ 任意1+n 个n 维向量线性相关 ④ 任意1+n 个n 维向量线性无关 4. 设A ,B 均为n 阶方阵,下面结论正确的是( )。 ① 若A ,B 均可逆,则B A +可逆 ② 若A ,B 均可逆,则 A B 可逆 ③ 若B A +可逆,则 B A -可逆 ④ 若B A +可逆, 则 A ,B 均可逆 5. 若4321νννν,,,是线性方程组0=X A 的基础解系,则4321νννν+++是0=X A 的( ) ① 解向量 ② 基础解系 ③ 通解 ④ A 的行向量 四、计算题 ( 每小题9分,共63分) 1. 计算行列式 x a b c d a x b c d a b x c d a b c x d ++++。

自考《线性代数》重难点解析与全真练习

自考《线性代数》重难点解析与全真练习 第一章行列式 一、重点 1、理解:行列式的定义,余子式,代数余子式。 2、掌握:行列式的基本性质及推论。 3、运用:运用行列式的性质及计算方法计算行列式,用克莱姆法则求解方程组。 二、难点行列式在解线性方程组、矩阵求逆、向量组的线性相关性、求矩阵的特征值等方面的应用。 三、重要公式 1若A为n阶方阵,则|kA| = kn | A I 2、若A、B均为n阶方阵,AB丨=| A |。丨B丨 3、若A为n阶方阵,则|A* | = | A | n-1 若A为n阶可逆阵,则|A-1 | = | A | -1 4、若A为n阶方阵,入i (i=1 , 2,…,n)是A的特征值,| A | =口入i 四、题型及解题思路 1 、有关行列式概念与性质的命题 2、行列式的计算(方法) 1 )利用定义 2)按某行(列)展开使行列式降阶 3)利用行列式的性质 ①各行(列)加到同一行(列)上去,适用于各列(行)诸元素之和相等的情况。 ②各行(列)加或减同一行(列)的倍数,化简行列式或化为上(下)三角行列式。 ③逐次行(列)相加减,化简行列式。 ④把行列式拆成几个行列式的和差。 4)递推法,适用于规律性强且零元素较多的行列式 5)数学归纳法,多用于证明 3、运用克莱姆法则求解线性方程组 若D = | A |丰0,则Ax=b有解,即 x1=D1/D, x2= D2/D ,…, xn= Dn/D 其中Dj是把D中xj的系数换成常数项。 注意:克莱姆法则仅适用于方程个数与未知数个数相等的方程组。 4、运用系数行列式A 判别方程组解的问题 1)当| A | = 0时,齐次方程组Ax= 0有非零解;非齐次方程组解,也可 能有无穷多解) 2)当| A |丰0时,齐次方程组Ax= 0仅有零解;非齐次方程组克莱姆法则求出。 、重点 1 、理解:矩阵的定义、性质, 几种特殊的矩阵(零矩阵,上(下)对角矩阵,逆矩阵,正交矩阵,伴随矩阵,分块矩阵) 2、掌握: 1)矩阵的各种运算及运算规律 2)矩阵可逆的判定及求逆矩阵的各种方法Ax= b 不是解(可能无Ax= b 有解,此解可由三角矩阵,对称矩阵,

高等数学教研活动计划

高等数学教研室 2008-2009年度第二学期活动计划 根据惠州学院及数学系本学期的工作重心和工作安排,高等数学教研室将加强教研室《高等数学》、《线性代数》、《概率统计》等课程建设,调动各位同仁的工作积极性,改进教学方法,大力提高教学质量. 更新教育观念,加大教研力度,完成系里安排的其他工作,在开展常规的教研活动的同时,注重培养教师自身的综合素质,具体活动计划如下: 第一周:1.学期初就教学计划进度进行讨论和安排。通过集体备课,合理安排各门课程的教学进度,切实解决对同一课程教学内容、方法以及重 点难点的妥当处理,教研室每位老师都能较好的完成教学任务。 2. 制定教研活动计划. 3. 进行期初教学检查. 4. 各位老师完成上学期的试卷分析. 5. 明确工作职责,进一步规范本教研室的教学管理行为,加强对新教 师的培训工作,实行新老教师结对,通过互相听评课、课下指导等 方面提高新教师的业务水平,尤其是课堂教学水平,使新教师尽快 成长起来,精心备课、写好教案. 本学期对教研室老师要不定时地 听课,每位教师本学期须完成至少四节课听课任务,记录听课笔记, 及时相互交流,大家互相帮助、互相学习,共同提高教学水平,改 进教学方法。完善评课制度.写出并打印一份完整的本学期所教课 程的WORD文档的电子教案. 6.第一周上交教学计划。 7.毕业生论文按进度交任务书和开题报告。 第二周:1.教研活动. 主题:就上期末考试情况作一汇总;每位教师谈一学期

来的教学工作总结,包括教材的优缺点,教学方法,教学过程中所 遇到的问题及其解决办法等。 2.科研论文报告会。 第三周:1.教研活动. 主题:学习讨论整理教学管理文件。 2.准备申报《高等数学》、《线性代数》为惠州学院重点课程。 3.认真修改《高等数学》、《线性代数》、《概率统计》教学大纲和考试 大纲。 第六周:1.教研活动.主题:组织修改教学大纲和考试大纲的讨论,进一步探讨适合我院学生特点的教学内容和教学大纲;在教学方法上,努力探索 合适的教学有效途径,探讨如何把教与学有机的结合起来,如何有效 的把板书与多媒体有机的结合起来;考试方式上,实行教考分离. 第八周:1.召开教学研讨会, 探讨关于“地方院校《高等数学》教学改革的探索与实践的研究”教研课题。 2.加强毕业生论文指导。 第十周:1.期中检查(教学进度、备课笔记,学生作业批改);交换教学意见。 2. 精心组织一次公开课观摩课。主讲人:张未未老师.组织教研室 老师积极参加公开课观摩。 3. 张未未老师的公开课评课,认真细致地组织评课,对上课各个环 节的得与失都要分析、反馈,一起反复讨论,相互促进。 第十一周1.开展教学态度大检查活动(重点检查教案、出勤、调课,迟到、早退),发现问题及时解决和处理。 第十三周:1.精心组织一次公开课观摩课。主讲人:邓得炮老师.组织教研室老师积极参加公开课观摩。 2. 邓得炮老师的公开课评课,认真细致地组织评课,对上课各个环

线性代数知识点归纳,超详细

线性代数复习要点 第一部分行列式 1. 排列的逆序数 2. 行列式按行(列)展开法则 3. 行列式的性质及行列式的计算 行列式的定义 1.行列式的计算: ①(定义法) ②(降阶法)行列式按行(列)展开定理: 行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和. 推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零.

③(化为三角型行列式)上三角、下三角、主对角行列式等于主对角线上元素的乘积. ④若都是方阵(不必同阶),则 ⑤关于副对角线: ⑥范德蒙德行列式: 证明用从第n行开始,自下而上依次的由下一行减去它上一行的倍,按第一列展开,重复上述操作即可。 ⑦型公式: ⑧(升阶法)在原行列式中增加一行一列,保持原行列式不变的方法. ⑨(递推公式法) 对阶行列式找出与或,之间的一种关系——称为递推公式,其中 ,,等结构相同,再由递推公式求出的方法称为递推公式法. (拆分法) 把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和,使问题简化以例计算. ⑩(数学归纳法) 2. 对于阶行列式,恒有:,其中为阶主子式;

3. 证明的方法: ①、; ②、反证法; ③、构造齐次方程组,证明其有非零解; ④、利用秩,证明; ⑤、证明0是其特征值. 4. 代数余子式和余子式的关系: 第二部分矩阵 1.矩阵的运算性质 2.矩阵求逆 3.矩阵的秩的性质 4.矩阵方程的求解 1.矩阵的定义由个数排成的行列的表称为矩阵. 记作:或 ①同型矩阵:两个矩阵的行数相等、列数也相等. ②矩阵相等: 两个矩阵同型,且对应元素相等. ③矩阵运算 a. 矩阵加(减)法:两个同型矩阵,对应元素相加(减). b. 数与矩阵相乘:数与矩阵的乘积记作或,规定为. c. 矩阵与矩阵相乘:设, ,则, 其中 注:矩阵乘法不满足:交换律、消去律, 即公式不成立.

线性代数矩阵性及应用举例

线性代数矩阵性及应用举例

————————————————————————————————作者:————————————————————————————————日期:

华北水利水电学院线性代数解决生活中实际问题 课程名称:线性代数 专业班级: 成员组成: 联系方式: 2012年11月7日

关于矩阵逆的判定及求逆矩阵方法的探讨 摘 要:矩阵的可逆性判定及逆矩阵的求解是高等代数的主要内容之一。本文给出 判定矩阵是否可逆及求逆矩阵的几种方法。 关键词:逆矩阵 伴随矩阵 初等矩阵 分块矩阵 矩阵理论是线性代数的一个主要内容,也是处理实际问题的重要工具,而逆矩阵在矩阵的理论和应用中占有相当重要的地位。下面通过引入逆矩阵的定义,就矩阵可逆性判定及求逆矩阵的方法进行探讨。 定义1 n 级方阵A 称为可逆的,如果n 级方阵B ,使得 AB=BA=E (1) 这里E 是n 级单位矩阵。 定义2 如果B 适合(1),那么B 就称为A 的逆矩阵,记作1 -A 。 定理1 如果A 有逆矩阵,则逆矩阵是唯一的。 逆矩阵的基本性质: 性质1 当A 为可逆阵,则A A 1 1 = -. 性质 2 若A 为可逆阵,则k kA A (,1 -为任意一个非零的数)都是可逆阵,且A A =--1 1)( )0(1)(1 1≠= --k A k kA . 性质3 111 ) (---=A B AB ,其中A ,B 均为n 阶可逆阵. 性质4 A ()()'11 '=--A . 由性质3有 定理2 若)2(,21≥n A A A n Λ是同阶可逆阵,则n A A A Λ21,是可逆阵,且21(A A 下面给出几种判定方阵的可逆性及求逆矩阵的方法: 方法一 定义法 利用定义1,即找一个矩阵B ,使AB=E ,则A 可逆,并且B A =-1 。 方法二 伴随矩阵法 定义3 设)(ij a A =是n 级方阵,用ij A 表示A 的),(j i 元的代数余子式)1,(n j i Λ=,

2011年北京市中考数学试卷分析与点评

2011年北京市中考数学试卷分析及学法指导 智康1对1 谌良 一、试卷总体分析 2011年北京市中考数学试卷,延续了去年的平稳趋势,较2010年北京市中考数学试卷相比,题型结构稳定,总体难度略难,灵活性提高。本套试卷在保持对基本知识的考察力度上,重视数学思想方法和学科综合能力的考察。在题型的设计上,注重与现实生活的联系,同时也体现了“实践与操作、综合与探究、创新与应用”的命题特点。(如第2题,第12题,第18题,第21题,第22题,第24题,第25题)。试题基本上无“偏、难、繁、旧”的题目。 在简单题和中档题方面,题型变化不大,都是学生比较熟悉的题型,体现了中考试卷重视“双基”特点。在难度比较大的压轴题方面,如第22题,第24题,第25题,强化了对数学思想方法和数学综合能力的考察,试题比较人性化,无繁琐的计算,但具有很高的灵活性,体现了“入口宽、出口窄”的特点,具有很好的区分度。总体来说,2011年的中考试卷体现了“稳重有变,变中有新”的特点。 本次试卷的试题结构、题型题量分布、以及考点内容分布等基本符合今年的考试说明,这里不详述。今年中考试卷的部分考察内容及难度和去年中考略有变化,在第二部分的典型试题点评部分会有介绍。 二、典型试题点评 在选填压轴题等稍难的题目方面,第8题(选择题的最后一道),考察的是动点与函数图象的题目,第12题(填空题的最后一道),考察的是新概念和新定义的题目,背景是高等数学中的线性代数,比较新颖,体现了知识的衔接。这两道题都属于近年来比较热门的题型,特别是第12题,要求学生能够“活学活用”,能很好地考察学生接收新知识的能力。

这两道题的难度和2010年的难度相当,不是很难。 在图形操作与探究题(第22题)方面,考察了平移变换和面积问题,较2010年考察的轴对称变换要难一些。这类题目,大都与图形变换有着密切的关系,能很好地体现了近年来中考试卷“实践与操作”的特点。本题第一问比较简单,属于梯形中比较常见的辅助线,即平移腰,后两问有一定的难度(带有三角形重心的背景),需要学生能灵活运用平移的思想去分析问题、解决问题,部分学生可能会感觉第一问和后两问有一定的跨度,不够连贯。因此学生在平时的学习中要重视三大几何变换的学习,达到“灵活运用”的程度,同时也要加强“三角形的三线四心”的学习。值得说明的是,本题来源于一道类似的竞赛题,原题是已知三角形三条中线的长度,求三角形的面积。从中考到竞赛,也是近年来部分中考压轴题的特色,不少经典的竞赛题能够很好地体现数学中的思想方法,因此对于一些想突破高分的学生来说,可以关注部分经典性的竞赛题目。 在代数综合压轴题方面(第23题),主要考察了二次函数、一次函数以及不等式的相关知识。这类题型大都与函数、方程不等式以及代数式的恒等变形等有关,通常考察数形结合思想以及相关的画图识图能力。本题难度不大,第3问需要学生在平时养成良好的审题读题习惯,培养将文字语言转化成数学语言能力,进而在解题时能抓住出题意图,提高分析问题、解决问题的能力。 在几何综合题方面(第24题),主要考察了旋转思想,等腰三角形的性质及判定等相关知识。相对于2010年的几何综合题(第25题),2011年的几何综合题要简单一些。本题属于探究题,第1问比较简单,第2问略难,考察的是一个比较隐蔽的旋转类全等模型,需要学生在平时的学习中积累一些经典几何辅助线的做法经验,同时注意培养观察、猜想、分析、论证的能力。需要提醒的是,在积累经验的同时,一定要重视能力的培养,这样才能提高解题的灵活性,进而从容应对一些比较新颖的题目。事实上,如果前2问都做出来的

(完整版)线性代数应用实例

线性代数应用实例 ● 求插值多项式 右表给出函数()f t 上4个点的值,试求三次插值多项式23 0123()p t a a t a t a t =+++, 并求(1.5)f 的近似值。 解:令三次多项式函数23 0123()p t a a t a t a t =+++过 表中已知的4点,可以得到四元线性方程组: ?????? ?=+++-=+++=+++=6 279318420 33 210321032100 a a a a a a a a a a a a a 对于四元方程组,笔算就很费事了。应该用计算机求解了,键入: >>A=[1,0,0,0;1,1,1,1;1,2,4,8;1,3,9,27], b=[3;0;-1;6], s=rref([A,b]) 得到x = 1 0 0 0 3 0 1 0 0 -2 0 0 1 0 -2 0 0 0 1 1 得到01233,2,2,1a a a a ==-=-=,三次多项函数为23 ()322p t t t t =--+,故(1.5)f 近似等于23 (1.5)32(1.5)2(1.5)(1.5) 1.125p =--+=-。 在一般情况下,当给出函数()f t 在n+1个点(1,2,,1)i t i n =+L 上的值()i f t 时,就可 以用n 次多项式2012()n n p t a a t a t a t =++++L 对()f t 进行插值。 ● 在数字信号处理中的应用----- 数字滤波器系统函数 数字滤波器的网络结构图实际上也是一种信号流图。它的特点在于所有的相加节点都限定为双输入相加器;另外,数字滤波器器件有一个迟延一个节拍的运算,它也是一个线性算子,它的标注符号为z -1。根据这样的结构图,也可以用类似于例7.4的方法,求它 的输入输出之间的传递函数,在数字信号处理中称为系统函数。 图1表示了某个数字滤波器的结构图,现在要求出它的系统函数,即输出y 与输入u 之比。先在它的三个中间节点上标注信号的名称x1,x2,x3,以便对每个节点列写方程。

线性代数考试成绩统计表与成绩分析

湖北工业大学2005--2006学年第一学期 《线性代数》考试成绩统计表与成绩分析 我校04级上学期《线性代数》期末考试于2005年12月30号上午10:00~11:00进行,考试时间为120分钟,卷面满分为100分。本次考题由理学院数学课部主任李逢高副教授按高等院校A类水平命题(教考分离)。考生在考前自由选择传统型考试或试点型考试两种考试形式,选择传统型考试以卷面分(满分100分)为笔试成绩与平时成绩按7:3得总评成绩,选试点型考试的考生必须先选修线性代数应用与线性代数实验两部分,并参加该部分的考查获得成绩,此部分满分为30分,加上传统型考试以卷面分(满分100分)得70%为笔试成绩,然后与平时成绩按7:3得总评成绩。这次我校参加统考的班级64个,人数2180人。此次考试阅卷时间为2006年1月3日,数学教研室全体教师按流水作业集体阅卷,整个阅卷过程标准统一、要求严格,耗费老师们不少心血。现将这次考试按学生的卷面成绩情况统计分析如下: 一、考试笔试成绩统计表: 以上分数段试按学生的卷面成绩情况统计分析,其中60分以上的分数断分布都很合理,60分以下的分数段所占比例较大,但大多数学生参加试点型考试,总评后的成绩60分以下的分数段所占比例也较为合理。(各班分数断的详情见附表) 二、试题内容在《线性代数》各章节分布表: 试题分布和难度系数在各章节所占比例比较合理,基本上能客观地全面检测学生对《线性代数》的知识掌握情况,突出我校对《线性代数》的基本要求和掌握重点。由上表可作试题内容统计直观图如下:

此外,由表也可作试题题型统计图:

三、考卷卷面得分情况及分析 以下是抽样所得的各个小题的平均分,所抽班级为:04包装(朱莹老师),04财管1(胡汉儒老师),04测控,04工业(方瑛老师),04自动2(蔡振锋老师),04机自6(费锡 从得分情况表可知,我院04级学生对《线性代数》掌握情况可以作统计直观图如下: 从各章得分情况来看,第四章向量与矩阵的秩得分率最高;第二章矩阵得分率最低。其它各个章节得分较为适中。因此,在今后的教学过程中,要加强矩阵计算方面的训练,增强学生的计算能力,从而进一步培养学生分析问题和解决问题的能力。另一方面,根据这次考试答卷,分析学生对《线性代数》的基本概念和方法(选择题和填空题)、基本计算及综合应用能力(证明题)情况,可作如下直观图:

线性代数期末考试试卷答案

枣庄学院线性代数期末考试题样卷 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=32312221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032 =--E A A ,则=-1 A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,,, 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ????? ???? ???=01 00 10000001 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1 -A 的特征值为λ。 ( ) 三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 1 2 -n ③ 1 2 +n ④ 4 2. n 维向量组 s ααα,,, 21(3 ≤ s ≤ n )线性无关的充要条件是( ) 。 ① s ααα,,, 21中任意两个向量都线性无关 ② s ααα,,, 21中存在一个向量不能用其余向量线性表示 ③ s ααα,,, 21中任一个向量都不能用其余向量线性表示

线性代数经管类——重点难点总结

4184线性代数(经管类)——重点难点总结 1、设n 阶矩阵A 的各行元素之和均为0,且A 的秩为n -1,则齐次线性方程组Ax =0的通解为_K(1,1,1….1)T 2、设A 是n m ?矩阵,已知0=Ax 只有零解,则以下结论正确的是(A ) A .n m ≥ B .b Ax =(其中b 是m 维实向量)必有唯一解 C .m A r =)( D .0=Ax 存在基础解系 解:αααααααααααααααα 100 101 101)())(()())(()(T T T T T T T T ==, 由于)13(23)2,3(=??? ? ??=T αα, 所以10010010113)13()(==ααααT T ??? ? ??=???? ??=466913)2,3(2313100 100ααT (标准答案). 6、已知4321,,,αααα线性无关,证明:21αα+,32αα+,43αα+,14αα-线性无关. 证:设0)()()()(144433322211=-++++++ααααααααk k k k , 即0)()()()(443332221141=++++++-ααααk k k k k k k k ,

因为4321,,,αααα线性无关,必有??? ?? ??=+=+=+=-000043322141 k k k k k k k k , 只有04321====k k k k ,所以21αα+,32αα+,43αα+,14αα-线性无关. 7、设A 是n 阶方阵,若对任意的n 维向量x 均满足Ax =0,则() A.A =0/A/=0? B.A =E C.r (A )=n D.0

相关文档
相关文档 最新文档