文档库 最新最全的文档下载
当前位置:文档库 › 初中数学分类讨论思想例题简析

初中数学分类讨论思想例题简析

初中数学分类讨论思想例题简析
初中数学分类讨论思想例题简析

初中数学分类讨论思想例题简析(一)

剑门中学------何俊平

分类讨论思想是数学中重要的思想和一种解题方法,旨在考查我们思考问题的逻辑性、周密性和全面性,分类讨论问题也属于创新性问题,此类题综合性强,难题较大,在历年中考试题中多以压轴题出现,对考生的能力要求较高,具有很强的选拔性。初中数学分类讨论的知识点有三大类:一是代数类:如绝对值、方程及根的定义,函数的定义以及点(坐标不确定)所在象限等.二是几何类:各种图形的位置关系,未明确对应关系的全等或相似的可能对应情况等.三是综合类:代数与几何类分类情况的综合运用.

分类是按照数学对象的相同点和不同点,将数学对象区分为不同种类的思想方法,掌握分类的方法,领会其实质,对于加深基础知识的理解,提高分析问题、解决问题的能力是十分重要的.正确的分类必须是周全的,既不重复,也不遗漏.

分类的原则:①分类中的每一部分是相互独立的;②一次分类按一个标准;③分类讨论应逐级有序进行.④以性质、公式、定理的使用条件为标准分类.

下面列举初中数学几何中常见的几种分类讨论思想的问题,供同学们借鉴。

一、与线段有关的分类讨思想的应用——线段及端点位置的不确定性需讨论。 例1、已知直线AB 上一点C ,且有CA=3AB ,则线段C A ︰CB= 3︰2 或3︰4 。 解析:分点C 在线段AB 的延长线上

和线段BA 的延长线上两种情况求解。

尝试1、已知A 、B 、C 三点在同一条直线上,且线段AB=7cm ,点M 为线段AB 的中点,线段BC=3cm ,点N 为线段BC 的中点,求线段MN 的长.

二、与角有关的分类讨论思想的应用——角的一边不确定性需讨论。

例2、在同一平面上,∠AOB=70°,∠BOC=30°,射线OM 平分∠AOB ,ON 平分∠BOC ,则 ∠MON=20°或50° 。

解析:分射线OC 在∠AOB 的内部和外部两种情况求解。

尝试2、 已知o AOB 60∠=,过O 作一条射线OC ,射线OE 平分AOC ∠,射线OD 平分BOC ∠,求DOE ∠的大小。

三、三角形中分类讨论思想的应用

常见的有以下四种类型:①因三角形的形状不确定而需分类讨论;②因等腰三角形的腰与底不确定而需分类讨论;③因直角三角形的斜边不确定而需分类讨论;④因相似三角形的对应角(或边)不确定而需分类讨论。

1、 三角形的形状不确定需分类讨论

例3、△ABC 的边AB 为15cm ,边AC 为13cm ,边BC 上的高AD

为12cm,求此三角形的面积。

解析:因未指明三角形的形状,故需分类讨论。如图1,

当△ABC 的高在形内时,由勾股定理易得BC=BD+CD=9+5=14,

所以84=ABC S 2cm 。

如图2,当高AD 在形外时,此时△ABC 为钝角三角形。由勾股定理

易得BC=BD-CD=9-5=4,所以24=ABC S 2cm 。 故△ABC 的面积为

842cm 或242cm .

尝试3、在△ABC 中,∠B=28°,AD 是BC 边上的高,且CD BD AD ?=2.求∠C 的度数。

2、等腰三角形的分类讨论:

①在等腰三角形中求边:等腰三角形中,对给出的边可能是腰,也可能是底边,所以需分类讨论。

例4、已知等腰三角形的两边长是方程030112=+-x x 的两根,则它的周长是_16或17_。若等腰三角形的一边为3,另一边为6,则它的周长等于_15_ 。

解析:方程的两根为5,和6,需分腰为5,底为6和腰为6,底为5两种情况讨论,并且还要考虑三边之长是否满足三角形的构成条件。

尝试4、若等腰三角形一腰上的中线分三角形的周长为15cm 和12cm 两部分,则这个等腰三角形的底长为 。

②在等腰三角形中求角:等腰三角形的一角可能是底角,也可能是顶角,所以需分类讨论。 例5、已知等腰三角形的一个内角为65°则其底角为65°或57.5° 。已知等腰三角形的一个内角为95°则其底角为95° 。

解析:当已知角为锐角时,它既可以是等腰三角形的顶角,也可以说等腰三角形的底角;当已知角为直角或钝角时,它只能是顶角。

尝试5、a 、等腰三角形一腰上的高与另一腰的夹角为45°,则它的顶角为 。 b 、在ΔABC 中,AB=AC ,AB 的中垂线与AC 所在直线相交成的锐角为50°,则∠B=_______ 。

3、直角三角形中,直角边和斜边不明确时需要分类讨论

例6、已知x ,y 为直角三角形两边之长,满足06522=+-+

-y y x ,求第三边的长。 解析:由题意可得02=-x 且0652=+-y y ,分别解这两个方程,可得满足条件

的解为x=2,y=2,或x=2,y=3.

由于x ,y 是直角边长还是斜边长没有明确,因此需要分类讨论。

当两直角边长分别为2,2时,斜边长为22; 当一直角边长为2,斜边长为3时,另一直角边的长为 5;当一直角边长为2,另一直角边长为3时,斜边长为13。 综上,第三边的长为22或5或13。

4、相似三角形的对应角(或边)不确定而需分类讨论。

例7、如图,在ABC △中,64AB AC P ==,,是AC 的中点,

过P 点的直线交AB 于点Q ,若△APQ 和△ABC 相似,求AQ 的长。 解析:因△APQ 和△ABC 有公共角A ∠,由相似三角形的判定方法,过点P 的直线PQ 应有两种作法:①作PQ ∥BC ,则△APQ ∽△ACB ,于是有AQ AP AB AC

=,即264AQ =,解得3AQ =;②作APQ ABC ∠=∠,交边AB 于点Q ,则△APQ ∽△ABC ,于是有 A C

B P

A B

C D

N

E M AQ AP AC AB =,即246AQ =,解得43AQ =. 则AQ =3或43。 尝试6、正方形ABCD 的边长是2,BE=CE ,MN=1,线段MN 的两端

在CD 、AD 上滑动.当DM= 时,△ABE 与△DMN 相似。

四、与圆有关的分类讨论思想的应用 1、圆周角的顶点位置不确定需分类讨论。

例8、在半径为5cm 的⊙O 中,弦AB=5cm ,点C 是⊙O 上任意一点(不与A 、B 重合)。则∠ACB=30°或150°。

解析:一般地,弦的两个端点分圆所成的两条弧一条为优弧,一条为劣弧。当点C 在优弧AB 上时,∠ACB=30°;当点C 在劣弧AB 上时,∠ACB=150°.

2、两平行弦相对于圆心的位置不确定需分类讨论。

例9、已知⊙O 的直径为10cm ,弦A B=8cm,弦CD=6cm,且AB ∥CD ,则AB 和CD 之间的距离为1cm 或7cm 。

解析:分弦AB 、CD 在圆心O 的同侧和异侧两种情况计算。

3、两圆相切,内切、外切不确定需分类讨论。

例10、若两圆相切,圆心距为7,其中一圆的半径为4,则另一圆的半径为3或11.

尝试7、已知⊙O 的半径为2,点P 是⊙O 外一点,OP 的长为3,那么以点P 为圆心,且与⊙O 相切的圆的半径是 。

4、相交两圆的圆心与公共弦的位置不确定需分类讨论。

例11、已知⊙1O 和⊙2O 相交于A 、B 两点,弦AB 为6,两圆的半径分别为32,5,则圆心距21O O = 1或7 .

解析:分两圆心在公共弦的同侧和异侧两种情况计算。

分类讨论思想在代数及代几综合中的运用将在后期举例分析。

2020-2021备战中考数学压轴题专题初中数学 旋转的经典综合题附详细答案

2020-2021备战中考数学压轴题专题初中数学旋转的经典综合题附详细答案 一、旋转 1.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN. (1)连接AE,求证:△AEF是等腰三角形; 猜想与发现: (2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论. 结论1:DM、MN的数量关系是; 结论2:DM、MN的位置关系是; 拓展与探究: (3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由. 【答案】(1)证明参见解析;(2)相等,垂直;(3)成立,理由参见解析. 【解析】 试题分析:(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE≌△ADF,得到AE=AF,从而证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,利用直角三角形斜边中线等于斜边一半和三角形中位线定理即可得出结论.位置关系是垂直,利用三角形外角性质和等腰三角形两个底角相等性质,及全等三角形对应角相等即可得出结论;(3)成立,连接AE,交MD于点G,标记出各个角,首先证明出 MN∥AE,MN=AE,利用三角形全等证出AE=AF,而DM=AF,从而得到DM,MN数量相等的结论,再利用三角形外角性质和三角形全等,等腰三角形性质以及角角之间的数量关系得到∠DMN=∠DGE=90°.从而得到DM、MN的位置关系是垂直. 试题解析:(1)∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠ADF=90°,∵△CEF 是等腰直角三角形,∠C=90°,∴CE=CF,∴BC﹣CE=CD﹣CF,即BE=DF, ∴△ABE≌△ADF,∴AE=AF,∴△AEF是等腰三角形;(2)DM、MN的数量关系是相等,DM、MN的位置关系是垂直;∵在Rt△ADF中DM是斜边AF的中线,∴AF=2DM,∵MN 是△AEF的中位线,∴AE=2MN,∵AE=AF,∴DM=MN;∵∠DMF=∠DAF+∠ADM, AM=MD,∵∠FMN=∠FAE,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE,

初中数学最值问题典型例题

初中数学《最值问题》典型例题 一、解决几何最值问题的通常思路 两点之间线段最短; 直线外一点与直线上所有点的连线段中,垂线段最短; 三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值) 是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段. 轴 对 称 最 值 图形 l P B A N M l B A A P B l 原理两点之间线段最短两点之间线段最短三角形三边关系 特征 A,B为定点,l为定直 线,P为直线l上的一 个动点,求AP+BP的 最小值 A,B为定点,l为定直线, MN为直线l上的一条动线 段,求AM+BN的最小值 A,B为定点,l为定直线, P为直线l上的一个动 点,求|AP-BP|的最大值转化 作其中一个定点关于定 直线l的对称点 先平移AM或BN使M,N 重合,然后作其中一个定 点关于定直线l的对称点 作其中一个定点关于定 直线l的对称点 折 叠 最 值 图形 B' N M C A B 原理两点之间线段最短 特征 在△ABC中,M,N两点分别是边AB,BC上的动点,将△BMN沿MN翻折, B点的对应点为B',连接AB',求AB'的最小值. 转化转化成求AB'+B'N+NC的最小值 1.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运动,若∠AOB=45°,OP=32,则△PMN 的周长的最小值为. 【分析】作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN 的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等腰直角三角形,据此即可求解.【解答】解:作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长. ∵PC关于OA对称, ∴∠COP=2∠AOP,OC=OP 同理,∠DOP=2∠BOP,OP=OD ∴∠COD=∠COP+∠DOP=2(∠AOP+∠BOP)=2∠AOB=90°,OC=OD.

初中数学10大解题方法及典型例题详解

初中数学10大解题方法及典型例题详解 1、配方法 所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。 例题: 用配方法解方程x2+4x+1=0,经过配方,得到( ) A.(x+2) 2=5 B.(x-2) 2=5 C.(x-2) 2=3 D.(x+2) 2=3 【分析】配方法:若二次项系数为1,则常数项是一次项系数的一半的平方,若二次项系数不为1,则可先提取二次项系数,将其化为1后再计算。【解】将方程x2+4x+1=0, 移向得:x2+4x=-1, 配方得:x2+4x+4=-1+4, 即(x+2) 2=3; 因此选D。 2、因式分解法 因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。 例题: 若多项式x2+mx-3因式分解的结果为(x-1)(x+3),则m的值为()A.-2 B.2 C.0 D.1 【分析】根据因式分解与整式乘法是相反方向的变形,先将(x-1)(x+3)乘法公式展开,再根据对应项系数相等求出m的值。

【解】∵x2+mx-3因式分解的结果为(x-1)(x+3), 即x2+mx-3=(x-1)(x+3), ∴x2+mx-3=(x-1)(x+3)=x2+2x-3, ∴m=2; 因此选B。 3、换元法 换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。 例题: 已知(x2+y2+1)(x2+y2+3)=8,则x2+y2的值为() A.-5或1 B.1 C.5 D.5或-1 【分析】解题时把x2+y2当成一个整体来考虑,再运用因式分解法就比较简单【解】设x2+y2=t,t≥0,则原方程变形得 (t+1)(t+3)=8,化简得: (t+5)(t-1)=0, 解得:t 1=-5,t 2 =1 又t≥0 ∴t=1 ∴x2+y2的值为只能是1. 因此选B. 4、判别式法与韦达定理 一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。 韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求

初中数学专题典型例题训练

第一讲:实数与代数专题典型例题讲解 一实数 1. 例:在14-和15 -之间,请写出两个有理数: . 2. 有理数2 2 3 1 2, (2), 2, 2 ---- 按从小到大的顺序排列是( ) A .322122< (2) 2-<--<-, B . 223 12< (2) 22 -<--<- C . 22312< (2) 22-<--<-, D . 232 12< 2(2)2 -<--<- 3. 将一刻度尺如图所示放在数轴上 (数轴的单位长度是1CM ),刻度尺上的“0cm ”和 “15cm ”分别对应数轴上的-3.6和x ,则( ) A .9<x <10; B .10<x <11; C .11<x <12; D .12<x <13; 4. 下列说法正确的是( ) A .互为相反数的两个数一定不相等; B .互为倒数的两个数一定不相等; C .互为相反数的两个数的绝对值相等; D .互为倒数的两个数的绝对值相等; 5. 若3x -和7x -是某个实数的平方根,则x = . 6. 若函数()f x 、()g x 满足()()0f x g x +=,当2()f x x x =-+,则函数()g x 的最小值为: 7. 有理数A 、B 、C 在数轴上的位置如图所示,则式子|A |+|B |+|A +B |+|B -C |化简结果为.[ ]. .A .2A +3B -C...B .3B -C..C .B +C....D .C -- 8. 若|A -2|=2-A ,求A 的取值范围。 9. 已知:|x -2|+x -2=0,.求:(1)x +2的最大值; 10. 单项式3x y π - 的系数是_______,次数是_____。 11. 如果21 13 m n a b +--与5 4a b 的同类项,则M =_____,N =_________。 12. 如图.在正方形ABCD 的边长为3,以A 为圆心,2为半径作圆弧.以D 为圆心, 3为半径作圆弧.若图中阴影部分的面积分为S 1、S 2.则S 1-S 2= . 13. 以Rt △ACB 两条直角边为直径向外作半圆,如图,其面积分别为1S 和2S ,若△ABC 的面积为S ,则12,S S 与S 的关系为 . 14. 若2 2(3)16x m x +-+是完全平方式,则m 的值为: . 15. 若m 2+m -1=0,求m 3+2m 2+2015的值. 16. 若0,0,x xy <<则15y x x y -+---=

备战中考数学初中数学 旋转-经典压轴题附详细答案

备战中考数学初中数学旋转-经典压轴题附详细答案 一、旋转 1.阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形.小胖把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小胖发现若∠BAC= ∠DAE,AB=AC,AD=AE,则BD=CE. (1)在图1中证明小胖的发现; 借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题: (2)如图2,AB=BC,∠ABC=∠BDC=60°,求证:AD+CD=BD; (3)如图3,在△ABC中,AB=AC,∠BAC=m°,点E为△ABC外一点,点D为BC中点,∠EBC=∠ACF,ED⊥FD,求∠EAF的度数(用含有m的式子表示). 【答案】(1)证明见解析;(2)证明见解析;(3)∠EAF =1 2 m°. 【解析】 分析:(1)如图1中,欲证明BD=EC,只要证明△DAB≌△EAC即可; (2)如图2中,延长DC到E,使得DB=DE.首先证明△BDE是等边三角形,再证明 △ABD≌△CBE即可解决问题; (3)如图3中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到 M,使得DM=DE,连接FM、CM.想办法证明△AFE≌△AFG,可得∠EAF=∠FAG=1 2 m°. 详(1)证明:如图1中, ∵∠BAC=∠DAE, ∴∠DAB=∠EAC, 在△DAB和△EAC中,

AD AE DAB EAC AB AC ?? ∠∠??? ===, ∴△DAB ≌△EAC , ∴BD=EC . (2)证明:如图2中,延长DC 到E ,使得DB=DE . ∵DB=DE ,∠BDC=60°, ∴△BDE 是等边三角形, ∴∠BD=BE ,∠DBE=∠ABC=60°, ∴∠ABD=∠CBE , ∵AB=BC , ∴△ABD ≌△CBE , ∴AD=EC , ∴BD=DE=DC+CE=DC+AD . ∴AD+CD=BD . (3)如图3中,将AE 绕点E 逆时针旋转m°得到AG ,连接CG 、EG 、EF 、FG ,延长ED 到M ,使得DM=DE ,连接FM 、CM . 由(1)可知△EAB ≌△GAC , ∴∠1=∠2,BE=CG , ∵BD=DC ,∠BDE=∠CDM ,DE=DM , ∴△EDB ≌△MDC , ∴EM=CM=CG ,∠EBC=∠MCD ,

(完整版)初一年级数学经典例题

数学天地: 初一年级数学核心题目赏析 有理数及其运算篇 【核心提示】 有理数部分概念较多,其中核心知识点是数轴、相反数、绝对值、乘方. 通过数轴要尝试使用“数形结合思想”解决问题,把抽象问题简单化.相反数看似简单,但互为相反数的两个数相加等于0这个性质有时总忘记用..绝对值是中学数学中的难点,它贯穿于初中三年,每年都有不同的难点,我们要从七年级把绝对值学好,理解它的几何意义.乘方的法则我们不仅要会正向用,也要会逆向用,难点往往出现在逆用法则方面. 【核心例题】 例1计算:2007 20061 ......431321211?+ +?+?+? 分析 此题共有2006项,通分是太麻烦.有这么多项,我们要有一种“抵消”思想,如能把一些项抵消了,不就变得简单了吗?由此想到拆项,如第一项可拆 成 2 1 11211-=?,可利用通项 ()11111+-=+?n n n n ,把每一项都做如此变形,问题会迎刃而解. 解 原式=)20071 20061(......413131212111-++-+-+-)()()( =20071 20061......41313121211- ++-+-+- =20071 1- =2007 2006 例2 已知有理数a 、b 、c 在数轴上的对应点 分别为A 、B 、C(如右图).化简b c b a a -+-+. 分析 从数轴上可直接得到a 、b 、c 的正负性,但本题关键是去绝对值,所以应判断绝对值符号内表达式的正负性.我们知道“在数轴上,右边的数总比左边的数大”,大数减小数是正数,小数减大数是负数,可得到a-b<0、c-b>0. 解 由数轴知,a<0,a-b<0,c-b>0 所以,b c b a a -+-+= -a-(a-b)+(c-b)= -a-a+b+c-b= -2a+c 例3 计算:?? ? ??-??? ??-????? ??-??? ??-??? ??-211311 (9811991110011)

中考数学初中数学 旋转-经典压轴题及详细答案

中考数学初中数学旋转-经典压轴题及详细答案 一、旋转 1.已知正方形ABCD的边长为4,一个以点A为顶点的45°角绕点A旋转,角的两边分别与BC、DC的延长线交于点E、F,连接EF,设CE=a,CF=b. (1)如图1,当a=42时,求b的值; (2)当a=4时,在图2中画出相应的图形并求出b的值; (3)如图3,请直接写出∠EAF绕点A旋转的过程中a、b满足的关系式. 【答案】(1)422)b=8;(3)ab=32. 【解析】 试题分析:(1)由正方形ABCD的边长为4,可得AC=2,∠ACB=45°. 再CE=a=2∠CAE=∠AEC,从而可得∠CAF的度数,既而可得 b=AC; (2)通过证明△ACF∽△ECA,即可得; (3)通过证明△ACF∽△ECA,即可得. 试题解析:(1)∵正方形ABCD的边长为4,∴AC=2,∠ACB=45°. ∵CE=a=2∴∠CAE=∠AEC=45 2? =22.5°,∴∠CAF=∠EAF-∠CAE=22.5°, ∴∠AFC=∠ACD-∠CAF=22.5°,∴∠CAF=∠AFC,∴b=AC=CF=42 (2)∵∠FAE=45°,∠ACB=45°,∴∠FAC+∠CAE=45°,∠CAE+∠AEC=45°,∴∠FAC =∠AEC. 又∵∠ACF=∠ECA=135°,∴△ACF∽△ECA,∴AC CF EC CA =,∴ 42 442 =∴CF= 8,即b=8.(3)ab=32. 提示:由(2)知可证△ACF∽△ECA,∴∴AC CF EC CA =,∴ 42 42 =,∴ab=32. 2.在Rt△ABC中,AB=BC=5,∠B=90°,将一块等腰直角三角板的直角顶点放在斜边AC的中点O处,将三角板绕点O旋转,三角板的两直角边分别交AB,BC或其延长线于E,F两点,如图①与②是旋转三角板所得图形的两种情况. (1)三角板绕点O旋转,△OFC是否能成为等腰直角三角形?若能,指出所有情况(即

第2讲-整体思想在初中数学中的应用

第二讲:整体思想在初中数学中的应用 【写在前面】 整体思想,就是在研究和解决有关数学问题时,通过研究问题的整体形式、整体结构、整体特征,从而对问题进行整体处理的解题方法.从整体上去认识问题、思考问题,常常能化繁为简、变难为易,同时又能培养学生思维的灵活性、敏捷性.整体思想的主要表现形式有:整体代入、整体加减、整体代换、整体联想、整体补形、整体改造等等.在初中数学中的数与式、方程与不等式、函数与图象、几何与图形等方面,整体思想都有很好的应用,因此,每年的中考中涌现了许多别具创意、独特新颖的涉及整体思想的问题,尤其在考查高层次思维能力和创新意识方面具有独特的作用. 【例题精讲】 一.数与式中的整体思想 例1.已知114a b -=,则2227a ab b a b ab ---+的值等于( ) A.6 B.6- C.125 D.27- 分析:根据条件显然无法计算出a ,b 的值,只能考虑在所求代数式中构造出11a b -的形式,再整体代入求解. 解:112242b 6112272(4)7 2()7a ab b a a b ab b a ------===-+?-+-+ 说明:本题也可以将条件变形为4b a ab -=,即4a b ab -=-,再整体代入求解. 例2.已知代数式25342 ()2x ax bx cx x dx ++++,当1x =时,值为3,则当1x =-时,代数式的值为 解:因为当1x =时,值为3,所以 231a b c d +++=+,即11a b c d ++=+,从而,当1x =-时,原式()21211a b c d -++=+=-+=+ 例3.已知2002007a x =+,2002008b x =+,2002009c x =+,求多项式222a b c ab bc ac ++---的值. 分析:要求多项式的值,直接代入计算肯定不是最佳方案,注意到222a b c ab bc ac ++---2221()()()2 a b b c c a ??=-+-+-??,只要求得a b -,b c -,c a -这三个整体的值,本题的计算就显得

初中数学知识要点及典型例题

初中数学知识要点及典型例题 第一章实数 第一讲实数的有关概念 【回顾与思考】 知识点:有理数、无理数、实数、非负数、相反数、倒数、数的绝对值 课标要求: 1.使学生复习巩固有理数、实数的有关概念. 2.了解有理数、无理数以及实数的有关概念;理解数轴、相反数、绝对值等概念,了解数的绝对值的几何意义。 3.会求一个数的相反数和绝对值,会比较实数的大小 4.画数轴,了解实数与数轴上的点一一对应,能用数轴上的点表示实数,会利用数轴比较大小。 考查重点: 1.有理数、无理数、实数、非负数概念; 2.相反数、倒数、数的绝对值概念; 3.在已知中,以非负数a2、|a|、 a (a≥0)之和为零作为条件,解决有关问题。 实数的有关概念

(1)实数的组成 {} ?????????????????????????????????正整数整数零负整数有理数有尽小数或无尽循环小数正分数实数分数负分数正无理数无理数无尽不循环小数 负无理数 (2)数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴 时,要注童上述规定的三要素缺一个不可),实数与数轴上的点是一 一对应的。数轴上任一点对应的数总大于这个点左边的点对应的数, (3)相反数 实数的相反数是一对数(只有符号不同的两个数,叫做互为相反 数,零的相反数是零). 从数轴上看,互为相反数的两个数所对应的点关于原点对称. (4)绝对值 ?? ???<-=>=)0()0(0)0(||a a a a a a 从数轴上看,一个数的绝对值就是表示这个数的点与原点的距离 (5)倒数 实数a(a ≠0)的倒数是a 1(乘积为1的两个数,叫做互为倒数); 零没有倒数. 【例题经典】 理解实数的有关概念

数学中考压轴题旋转问题(经典)

数学中考压轴题旋转问 题(经典) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

旋转 一、选择题 1. (广东)如图,把一个斜边长为2且含有300角的直角三角板ABC 绕直角顶点C 顺时针旋转900到△A 1B 1C ,则在旋转过程中这个三角板扫过的图形的面积是【 】 A .π B .3 C . 33+42π D .113 + 124 π 2. (湖北)如图,O 是正△ABC 内一点,OA=3,OB=4,OC=5,将线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A 可以由△BOC 绕点B 逆时针旋转60°得到;②点O 与O′的距离为4;③∠AOB=150°;④AOBO S =6+33四形边;⑤AOC AOB 93 S S 6+ 4 +=.其中正确的结论是【 】 A .①②③⑤ B .①②③④ C .①②③④⑤ D .①②③ 3. (四川)如图,P 是等腰直角△ABC 外一点,把BP 绕点B 顺时针旋转90°到BP′,已知∠AP′B=135°,P′A :P′C=1:3,则P′A :PB=【 】。 A .1:2 B .1:2 C .3:2 D .1:3 4. (贵州)点P 是正方形ABCD 边AB 上一点(不与A 、B 重合),连接PD 并将线段PD 绕点P 顺时针旋转90°,得线段PE ,连接BE ,则∠CBE 等于【 】 A .75° B .60° C .45° D .30° 5. (广西)如图,等边△ABC 的周长为6π,半径是1的⊙O 从与AB 相切 于 点D 的位置出发,在△ABC 外部按顺时针方向沿三角形滚动,又回 到与AB 相 切于点D 的位置,则⊙O 自转了:【 】 A .2周 B .3周 C .4周 D .5周 二、填空题 6. (四川)如图,四边形ABCD 中,∠BAD=∠BCD=900,AB=AD,若四边形ABCD 的面积是24cm 2.则AC 长是 ▲ cm.

中考数学思想方法专题之整体思想

初中数学思想之整体思想 整体思想,就是在研究和解决有关数学问题时,通过研究问题的整体形式、整体结构、整体特征,从而对问题进行整体处理的解题方法.从整体上去认识问题、思考问题,常常能化繁为简、变难为易,同时又能培养学生思维的灵活性、敏捷性.整体思想的主要表现形式有:整体代入、整体加减、整体代换、整体联想、整体补形、整体改造等等.在初中数学中的数与式、方程与不等式、函数与图象、几何与图形等方面,整体思想都有很好的应用,因此,每年的中考中涌现了许多别具创意、独特新颖的涉及整体思想的问题,尤其在考查高层次思维能力和创新意识方面具有独特的作用. 一.数与式中的整体思想 【例1】 已知代数式3x 2-4x+6的值为9,则2463x x -+的值为 ( ) A .18 B .12 C .9 D .7 【例2】.已知114a b -=,则2227a ab b a b ab ---+的值等于( ) A.6 B.6- C. 125 D.27- 【例3】已知2002007a x =+,2002008b x =+,2002009c x =+,求多项式222a b c ab bc ac ++---的值. 二.方程(组)与不等式(组)中的整体思想 【例4】已知24122x y k x y k +=+?? +=+? ,且03x y <+<,则k 的取值范围是 【例5】已知关于x ,y 的二元一次方程组3511x ay x by -=??+=?的解为56 x y =??=?,那么关于x , y 的二元一次方程组3()()5()11x y a x y x y b x y +--=??++-=? 的解为为 【例6】.解方程 22523423x x x x +-=+ 三.函数与图象中的整体思想 【例7】已知y m +和x n -成正比例(其中m 、n 是常数)(1)求证:y 是x 的一次函数;(2)如果y =-15时,x =-1;x =7时,y =1,求这个函数的解析式 四.几何与图形中的整体思想

初中数学几何证明经典题(含答案)

初中几何证明题 经典题(一) 1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO. 求证:CD=GF.(初二) .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150. 求证:△PBC是正三角形.(初二) .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 A P C D B A F G C E B O D

3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、 CC 1、DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 经典题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 B

中学数学中常见的数学思想有哪些

中学数学中常见的数学思想有 哪些(总4页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

中学数学中常见的数学思想有哪些? 答题内容: 1、化归的思想方法: 所谓化归思想方法又叫转换思想方法、也叫转换思想方法、也叫转化思想方法,是一种把未解决的问题或特解决的问题,通过某种方式的转化,归化到一类已经能解决或比较容易解决的问题,最终得原问题的解答的思想方法.化归思想方法的三要素:化归谁(化归对象)、化归到哪(化归目标)、怎样化归(化归方法).常见的化归方式有:已知与未知的化归、特殊与一般的化归、动与静的化归、抽象与具体的化归等. 化归思想方法的特点:是实际问题的规范化、简单化、熟悉化、模式化、直观化、正难侧反思化、以便应用已知的理论、方法和技巧到解决问题的目的.其形式如图所示: 例如方程问题转化为不等式问题:已知关于,的方程组,的解满足 ,求的取值范围. 解析:先解关于,的方程组,再把用表示的,的代数式代入不等式组中,解关于的不等式组. 2、数形结合的思想方法 所谓数形结合的思想方法是指把数学问题用数量关系与图形结合起来解答数学问题. 数形结合的思想方法的特点:数→形→问题的解答;形→数→问题的解答;数形,问题的解答. 例如:如图所示、在数轴上的位置,请化简 + 的结果是: 3、分类讨论的思想方法 所谓分类讨论的思想方法是指根据所研究的问题的某种相同性和差异性将它们分类来进行研究的思想方法. 分类讨论的思想方法的特点:分类不能重复也不能遗漏;同一次分类时,标准须相同;分类须有一定的范围,不能超范围. 例如:三角形按边分类方法:三角形可分为不等边三角形、等腰三角形,等腰三角形又可分为等边三角形、底边和腰不相等的等腰三

初中数学最值问题典型例题(含答案分析)

中考数学最值问题总结 考查知识点:1、“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。 (2、代数计算最值问题3、二次函数中最值问题) 问题原型:饮马问题造桥选址问题(完全平方公式配方求多项式取值二次函数顶点)出题背景变式:角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。 解题总思路:找点关于线的对称点实现“折”转“直” 几何基本模型: 条件:如下左图,A、B是直线l同旁的两个定点. 问题:在直线l上确定一点P,使PA PB +的值最小. 方法:作点A关于直线l的对称点A',连结A B'交l于 点P,则PA PB A B' +=的值最小 例1、如图,四边形ABCD是正方形,△ABE是等边三 角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM. (1)求证:△AMB≌△ENB; (2)①当M点在何处时,AM+CM的值最小; ②当M点在何处时,AM+BM+CM的值最小,并说明理由; (3)当AM+BM+CM的最小值为 时,求正方形的边长。 A B A' ′ P l

例2、如图13,抛物线y=ax2+bx+c(a≠0)的顶点为(1,4),交x轴于A、B,交y轴于D,其中B点的坐标为(3,0) (1)求抛物线的解析式 (2)如图14,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则x轴上是否存在一点H,使D、G、F、H四点围成的四边形周长最小.若存在,求出这个最小值及G、H的坐标;若不存在,请说明理由. (3)如图15,抛物线上是否存在一点T,过点T作x的垂线,垂足为M,过点M作直线M N∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD,若存在,求出点T的坐标;若不存在,说明理由.

初中数学典型例题100道

初中数学典型例题100道(二) 选择填空题150道 一.选择题: 7,如图,直线,点A1坐标为(1,0),过点A1作x的垂线交直线于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再过点A2x的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,…,按此做法进行下去,点A5的坐标为(,). 8,在Rt△ABC中,∠C=90°,∠A=30°,BC=2.若将此直角三角形的一条直角边BC或AC与x轴 重合,使点A或点B刚好在反比例函数(x>0)的图象上时,设△ABC在第一象限部分的面 积分别记做S1、S2(如图1、图2所示)D是斜边与y轴的交点,通过计算比较S1、S2的大小. 9,若不论k为何值,直线y=k(x﹣1)﹣与抛物线y=ax2+bx+c有且只有一个公共点,求a、b、c的值。 10,如图是二次函数y=ax2+bx+c的图象的一部分,对称轴是直线x=1. ①b2>4ac; ②4a﹣2b+c<0; ③不等式ax2+bx+c>0的解集是x≥3.5; ④若(﹣2,y1),(5,y2)是抛物线上的两点,则y1<y2. 上述4个判断中,正确的是()

A.①②B.①④C.①③④ D.②③④ 二,解答题 4,如图,在平面直角坐标系中,将直线y=kx沿y轴向下平移3个单位长度后恰好经过B(﹣3,0)及y轴上的C点.若抛物线y=﹣x2+bx+c与x轴交于A、B两点(点A在点B的右侧),且经过点C,其对称轴与直线BC交于点E,与x轴交于点F. (1)求直线BC及抛物线的解析式; (2)设抛物线的顶点为D,点P在抛物线的对称轴上,若∠APD=∠ACB,求点P的坐标; (3)在抛物线上是否存在点M,使得直线CM把四边形EFOC分成面积相等的两部分?若存在,请求出直线CM的解析式;若不存在,请说明理由. 5,如图,在平面直角坐标系中,抛物线y=ax2﹣3ax﹣4a的图象经过点C(0,2),交x轴于点A、B(A点在B点左侧),顶点为D. (1)求抛物线的解析式及点A、B的坐标; (2)将△ABC沿直线BC对折,点A的对称点为A′,试求A′的坐标; (3)抛物线的对称轴上是否存在点P,使∠BPC=∠BAC?若存在,求出点P的坐标;若不存在,请说明理由.

旋转相似经典例题知识讲解

旋转与全等、相似中的线段数量关系 基本例题:1、如图,△ABC中,∠C=90°.(1)将△ABC绕点B逆时针旋转90,画出旋转后的三角形;(2)若BC=3,AC=4,点A旋转后的对应点为A′,求A′A的长 变式1,如图Rt△AB'C'是由Rt△ABC,绕点A顺时针旋转得到的,连接C C'交AB于E, (1)证明:△CA C'∽△BA B' (2)延长C C'交B B'于F,证明:△CA E∽△FBE 变式2,△ABC绕点B逆时针旋转90°得到△DBE,若恰好得到C、E、D三点共线,则AC、BC、CD的数量关系是 变式3,△ABC绕点B逆时针旋转a°得到△DBE,若恰好得到C、E、D三点共线,则AC、

BC、CD的数量关系是 变式4、Rt△ABC中,AC=BC,∠ACB=∠ADB=90°,连接CD,求:AD、CD、BD的数量关系 变式5、Rt△ABC中,AC=kBC,∠ACB=∠ADB=90°,连接CD,探究:AD、CD、BD的数量关系 变式6、如图,在△OAB和△OCD中,∠A<90°,OB=KOD(K>1),∠AOB=∠COD,∠OAB与∠OCD互补,试探索线段AB与CD的数量关系,并证明你的结论。 变式7.如图AB∥CD,BC∥ED, ∠BCD+∠ACE=180°。 (1)当BC=CD 且∠ACE=90°时如图3探究线段AC和CE之间的数量关系 (2)当BC=CD 时如图2探究线段AC和CE之间的数量关系 (3)当BC=kCD时如图1探究线段AC和CE之间的数量关系(用含k的式子表示) E B C A D C A D B

80中田凌志老师提供 1如图R t △ABC ,∠ACB=90°,AC=3,BC=4,过点B 作直线MN ∥AC,点P 在直线BC 上,∠EPF=∠CAB ,且两边分别交直线AB 于E ,交直线MN 于F 。如图(1)(2)(3)探究PE 与PF 之间的数量关系,并证明 P N M F E C B A _ P _ N _ M _F _E _ C _ B _ A 图1 图2

初中数学经典几何题及答案

4e d c 经典难题(一) 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二) 3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、 CC 1、DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . A P C D B A F G C E B O D D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 N F E C D

P C G F B Q A D E 经典难题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) 2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题: 设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形 CBFG ,点P 是EF 的中点. 求证:点P 到边AB 的距离等于AB 的一半.(初二) 经典难题(三) 1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .(初二) · A D H E M C B O · G A O D B E C Q P N M · O Q P B D E C N M · A A F D E

初中数学九年级上册《图形的旋转》基础典型练习题(整理含答案)

《图形的旋转》基础典型练习题 一、选择题(每题3分,共18分) 1.下列物体的运动不是旋转的是() A.坐在摩天轮里的小朋友B.正在走动的时针 C.骑自行车的人D.正在转动的风车叶片 2.在10分钟的时间内,分针转过的角度是() A.15°B.30°C.15°D.30° 3.在10分钟的时间内,时钟的时针旋转过的角度是() A.5°B.10°C.15°D.30° 4.等边三角形绕着它的中心旋转一周,可与原图形重合的次数是() A.1 B.2 C.3 D.4 5.在图形的旋转中,下列说法错误的是() A.图形上的每一点到旋转中心的距离都相等 B.图形上的每一点转动的角度都相同 C.图形上可能存在不动的点 D.旋转前和旋转后的图形全等 6.有一种平面图形,它绕着中心旋转,不论旋转多少度,?所得到的图形都与原图形完全重合,你觉得它可能是() A.三角形B.等边三角形C.正方形D.圆 二、填空题(7题4分,11题5分,其余每题3分,共18分) 7.经过旋转后的图形与原图形的关系是________,它们的对应线段_______,?对应角________,对应点到旋转中心的距离________. 8.一架风车有分布均匀的四个叶片,旋转一周可与原来的位置重合______次. 9.如图所示,图①沿逆时针方向旋转90°可得到图_________. 10.如上图所示,图①按顺时针方向至少旋转_______度可得图③.

11.如图所示,在△ABC中,∠C=90°,AB=5cm,BC=3cm,?把这个三角形在平面内绕点C逆时针旋转60°至△A′B′C′,那么AA′的长度是______cm.(?不取近似值)三、作图题(每题6分,共18分) 12.如图所示,△ABC绕点A旋转后,点B与点D?重合,?作出旋转后的三角形ADE. 13.把边长为2cm的正方形ABCD,绕着点D逆时针旋转45°后,变为正方形A′B?′C′D′,作出上述图形. 14.如图所示是计算机操作人员用Flash设计出的美丽图案,?试把它按逆时针方向旋转180°,作出旋转后的图案. 四、解答题(6分) 15.如图所示,①图怎样变化可成②图呢?请你分析变化过程.

整体思想在初中数学中的应用-最新教育文档

整体思想在初中数学中的应用 整体思想是初中数学中的一种严重思想,贯穿于初中数学教学的各个阶段,是解决好数学问题的一种严重策略. 所谓整体思想,就是在研究和解决有关数学问题时,通过研究问题的整体形式、整体结构、整体特征,从而对问题进行整体处理的解题方法.整体思想涉及的形式较多,这里就通过整体思想在初中数学解题过程中的几种多见应用方法加以举例分析,让我们进一步感受、理解和掌握整体思想的解题技巧,以提高自己的解题能力. 一、整体思想在求代数式的值中的应用 例1:已知a-a-1=0,求a+2a+2012的值. 分析:此题若先从已知条件a-a-1=0中解出a的值,然后代入代数式求解,尽管理论上是正确的,但解答相当麻烦且很困难.若注意到所求代数式与方程的关系,将a-a-1=0转化为a-a=1,再把a-a看做一个整体,用整体思想进行分析求解,则解题会变得简单、简易. 解:∵a-a-1=0 ∴a-a=1 ∴a+2a+2012=a+a+(a+a)-a+2012 =a(a+a)+(a+a)-a+2012 =(a+a)(a+1)-a+2012 =1×(a+1)-a+2012 =2013 例2:已知x=2时,ax+bx+cx-8=10.求当x=-2时,代数式ax+bx+cx-8的值. 分析:由于ax+bx+cx中的x的指数均为奇数,故当x=2和x=-2时,它的值恰好互为相反数,从而可用整体代入的方法求得代数式的值.

解:当x=2时,∵ax+bx+cx-8=10,∴32a+8b+2c=18.①当x=-2时,ax+bx+cx-8=(-2)a+(-2)b+(-2)c-8=-(32a+8b+2c)-8. 将①式整体代入,得到-(32a+8b+2c)-8=-18-8=-26.故当x=2时,代数式ax+bx+cx-8的值为-26. 二、整体思想在因式分解中的应用 例3:因式分解:(a+2a+2)(a+2a+4)+1. 分析:对于这类题目,学生很简易先做整式乘法,把式子(a+2a+2) (a+2a+4)+1展开后得到a+4a+10a+12a+9,要把这个多项式进行因式分解,就必须恰当地运用拆项和乘法公式,这是何等的困难.仔细观察可以发现式子中前一项的两个因式中都含有式子a+2a,如果我们把a+2a看成一个整体,展开后就可以得到一个关于a+2a的二次三项式,问题就迎刃而解了.解:(a+2a+2) (a+2a+4)+1 =[(a+2a)+2][(a+2a)+4]+1 =(a+2a)+4(a+2a)+2(a+2a)+8+1 =(a+2a)+6(a+2a)+9 =(a+2a+3) 三、整体思想在解方程或方程组中的应用 例4:解方程:(x-1)-5(x-1)+4=0. 分析:如果我们去括号,整理后得到的将是关于x的高次方程x-7x+10=0,要直接解这个方程难度很大.这时我们可以将x-1视为一个整体,设x-1=y,运用整体思想来分析,就可以化难为易. 解:设x-1=y,则原方程可化为 y-5y+4=0 解得y=1,y=4.

初中数学基础知识及经典题型

综合知识讲解 目录 第一章绪论 (2) 1.1初中数学的特点 (2) 1.2怎么学习初中数学 (2) 1.3如何去听课 (5) 1.4几点建议 (6) 第二章应知应会知识点 (8) 2.1代数篇 (8) 2.2几何篇 (12) 第三章例题讲解 (19) 第四章兴趣练习 (38) 4.1代数部分 (38) 4.2几何部分 (60) 第五章复习提纲 (65)

第一章绪论 1.1初中数学的特点 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 1.2怎么学习初中数学 1,培养良好的学习兴趣。 两千多年前孔子说过:“知之者不如好之者,好之者不如乐之者。”意思说,干一件事,知道它,了解它不如爱好它,爱好它不如乐在其中。“好”和“乐”就是愿意学,喜欢学,这就是兴趣。兴趣是最好的老师,有兴趣才能产生爱好,爱好它就要去实践它,达到乐在其中,有兴趣才会形成学习的主动性和积极性。

在数学学习中,我们把这种从自发的感性的乐趣出发上升为自觉的理性的“认识”过程,这自然会变为立志学好数学,成为数学学习的成功者。那么如何才能建立好的学习数学兴趣呢? (1)课前预习,对所学知识产生疑问,产生好奇心。 (2)听课中要配合老师讲课,满足感官的兴奋性。听课中重点解决预习中疑问,把老师课堂的提问、停顿、教具和模型的演示都视为欣赏音乐,及时回答老师课堂提问,培养思考与老师同步性,提高精神,把老师对你的提问的评价,变为鞭策学习的动力。 (3)思考问题注意归纳,挖掘你学习的潜力。 (4)听课中注意老师讲解时的数学思想,多问为什么要这样思考,这样的方法怎样是产生的? (5)把概念回归自然。所有学科都是从实际问题中产生归纳的,数学概念也回归于现实生活,如角的概念、直角坐标系的产生都是从实际生活中抽象出来的。只有回归现实才能对概念的理解切实可*,在应用概念判断、推理时会准确。2,建立良好的学习数学习惯。 习惯是经过重复练习而巩固下来的稳重持久的条件反射和自然需要。建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。良好的学习数学习惯还包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。另外还要保证每天有一定的自学时间,以便加宽知识面和培养自己再学习能力。 3,有意识培养自己的各方面能力。 数学能力包括:逻辑推理能力、抽象思维能力、计算能力、空间想象能力和分析解决问题能力共五大能力。这些能力是在不同的数学学习环境中得到培养的。在平时学习中要注意开发不同的学习场所,参与一切有益的学习实践活动,如数学第二课堂、数学竞赛、智力竞赛等活动。平时注意观察,比如,空间想象能力是通过实例净化思维,把空间中的实体高度抽象在大脑中,并在大脑中进行分析推理。其它能力的培养都必须学习、理解、训练、应用中得到发展。特别

相关文档
相关文档 最新文档