文档库 最新最全的文档下载
当前位置:文档库 › 第三章.基于PMU的开短路测试

第三章.基于PMU的开短路测试

第三章.基于PMU的开短路测试
第三章.基于PMU的开短路测试

第三章.基于PMU的开短路测试

本章节我们来说说最基本的测试——开短路测试(Open-Short Test),说说测试的目的和方法。

一.测试目的

Open-Short Test也称为ContinuityTest或Contact Test,用以确认在器件测试时所有的信号引脚都与测试系统相应的通道在电性能上完成了连接,并且没有信号引脚与其他信号引脚、电源或地发生短路。

测试时间的长短直接影响测试成本的高低,而减少平均测试时间的一个最好方法就是尽可能早地发现并剔除坏的芯片。Open-Short测试能快速检测出DUT是否存在电性物理缺陷,如引脚短路、bond wire缺失、引脚的静电损坏、以及制造缺陷等。

另外,在测试开始阶段,Open-Short测试能及时告知测试机一些与测试配件有关的问题,如ProbeCard或器件的Socket没有正确的连接。

二.测试方法

Open-Short测试的条件在器件的规格数或测试计划书里通常不会提及,但是对大多数器件而言,它的测试方法及参数都是标准的,这些标准值会在稍后给出。

基于PMU的Open-Short测试是一种串行(Serial)静态的DC测试。首先将器件包括电源和地的所有管脚拉低至“地”(即我们常说的清0),接着连接PMU到单个的DUT管脚,并驱动电流顺着偏置方向经过管脚的保护二极管——一个负向的电流会流经连接到地的二极管(图3-1),一个正向的电流会流经连接到电源的二极管(图3-2),电流的大小在100uA到500uA之间就足够了。大家知道,当电流流经二极管时,会在其P-N结上引起大约0.65V的压降,我们接下来去检测连接点的电压就可以知道结果了。

既然程序控制PMU去驱动电流,那么我们必须设置电压钳制,去限制Open管脚引起的电压。Open-Short测试的钳制电压一般设置为3V——当一个Open的管脚被测试到,它的测试结果将会是3V。

串行静态Open-Short测试的优点在于它使用的是DC测试,当一个失效(failure)发生时,其准确的电压测量值会被数据记录(datalog)真实地检测并显示出来,不管它是Open 引起还是Short导致。缺点在于,从测试时间上考虑,会要求测试系统对DUT的每个管脚都有相应的独立的DC测试单元。对于拥有PPPMU结构的测试系统来说,这个缺点就不存在了。

当然,Open-Short也可以使用功能测试(Functional Test)来进行,我会在后面相应的章节提及。

图3-1.对地二极管的测试

测试下方连接到地的二极管,用PMU抽取大约-100uA的反向电流;设置电压下限为-1.5V,低于-1.5V(如-3V)为开路;设置电压上限为-0.2V,高于-0.2V (如-0.1V)为短路。此方法仅限于测试信号管脚(输入、输出及IO口),不能应用于电源管脚如VDD和VSS.

图3-2.对电源二极管的测试

测试上方连接到电源的二极管,用PMU驱动大约100uA的正向电流;设置电压上限为1.5V,高于1.5V(如3V)为开路;设置电压下限为0.2V,低于0.2V (如0.1V)为短路。此方法仅限于测试信号管脚(输入、输出及IO口),不能应用于电源管脚如VDD和VSS.

电源类管脚结构和信号类管脚不一样,无法照搬上述测试方法。不过也可以测试其开路情形,如遵循已知的良品的测量值,直接去设置上下限。

图3-3是一个Open-Short对地二极管测试的datalog,从中大家可以看到各种测试结果。

图3-3.Open-Short Test datalog

集成电路的检测方法

集成电路的检测方法 现在的电子产品往往由于一块集成电路损坏,导致一部分或几个部分不能常工作,影响设备的正常使用。那么如何检测集成电路的好坏呢?通常一台设备里面有许多个集成电路,当拿到一部有故障的集成电路的设备时,首先要根据故障现象,判断出故障的大体部位,然后通过测量,把故障的可能部位逐步缩小,最后找到故障所在。 要找到故障所在必须通过检测,通常修理人员都采用测引脚电压方法来判断,但这只能判断出故障的大致部位,而且有的引脚反应不灵敏,甚至有的没有什么反应。就是在电压偏离的情况下,也包含外围元件损坏的因素,还必须将集成块内部故障与外围故障严格区别开来,因此单靠某一种方法对集成电路是很难检测的,必须依赖综合的检测手段。现以万用表检测为例,介绍其具体方法。 我们知道,集成块使用时,总有一个引脚与印制电路板上的“地”线是焊通的,在电路中称之为接地脚。由于集成电路内部都采用直接耦合,因此,集成块的其它引脚与接地脚之间都存在着确定的直流电阻,这种确定的直流电阻称为该脚内部等效直流电阻,简称R内。当我们拿到一块新的集成块时,可通过用万用表测量各引脚的内部等效直流电阻来判断其好坏,若各引脚的内部等效电阻R内与标准值相符,说明这块集成块是好的,反之若与标准值相差过大,说明集成块内部损坏。测量时有一点必须注意,由于集成块内部有大量的三极管,二极管等非线性元件,在测量中单测得一个阻值还不能判断其好坏,必须互换表笔再测一次,获得正反向两个阻值。只有当R内正反向阻值都符合标准,才能断定该集成块完好。 在实际修理中,通常采用在路测量。先测量其引脚电压,如果电压异常,可断开引脚连线测接线端电压,以判断电压变化是外围元件引起,还是集成块内部引起。也可以采用测外部电路到地之间的直流等效电阻(称R外)来判断,通常在电路中测得的集成块某引脚与接地脚之间的直流电阻(在路电阻),实际是R内与R外并联的总直流等效电阻。在修理中常将在路电压与在路电阻的测量方法结合使用。有时在路电压和在路电阻偏离标准值,并不一定是集成块损坏,而是有关外围元件损坏,使R外不正常,从而造成在路电压和在路电阻的异常。这时便只能测量集成块内部直流等效电阻,才能判定集成块是否损坏。根据实际检修经验,在路检测集成电路内部直流等效电阻时可不必把集成块从电路上焊下来,只需将电压或在路电阻异常的脚与电路断开,同时将接地脚也与电路板断开,其它脚维持原状,测量出测试脚与接地脚之间的R内正反向电阻值便可判断其好坏。 例如,电视机内集成块TA7609P瑢脚在路电压或电阻异常,可切断瑢脚和⑤脚(接地脚)然后用万用表内电阻挡测瑢脚与⑤脚之间电阻,测得一个数值后,互换表笔再测一次。若集成块正常应测得红表笔接地时为8.2kΩ,黑表笔接地时为272kΩ的R内直流等效电阻,否则集成块已损坏。在测量中多数引脚,万用表用R×1k挡,当个别引脚R内很大时,换用R ×10k挡,这是因为R×1k挡其表内电池电压只有1.5V,当集成块内部晶体管串联较多时,电表内电压太低,不能供集成块内晶体管进入正常工作状态,数值无法显现或不准确。 总之,在检测时要认真分析,灵活运用各种方法,摸索规律,做到快速、准确找出故障 摘要:判断常用集成电路的质量及好坏 一看: 封装考究,型号标记清晰,字迹,商标及出厂编号,产地俱全且印刷质量较好,(有的 为烤漆,激光蚀刻等) 这样的厂家在生产加工过程中,质量控制的比较严格。 二检: 引脚光滑亮泽,无腐蚀插拔痕迹, 生产日期较短,正规商店经营。 三测: 对常用数字集成电路, 为保护输入端及工厂生产需要,每一个输入端分别对VDD

IC 开关电源元件开路与短路检测作业指导书A版

题元件开路与短路检测作业指导书版本 A 页序 1 of 4 版本变更说明制定核准日期A 首版发行刘海王奇飞2011.2.7 文件分发分发部门测试 中心 文 件 批 准 部门品管部 签署 份数1份 日期

题元件开路与短路检测作业指导书版本 A 页序 2 of 4 1. 0目的 建立作业规范、制定标准、确保正确地完成保证产品的安全性能的测试。 2.0适用范围 使用于本厂开关电源、PCBA、洗尘器、手电钻等产品 3.0相应设备及工具 变频电源、调压器、功率表、聂子、防护镜、烙铁等 4.0定义 无 5.0试验操作步骤 5.1检验前,设备、制具准备是否妥善、性能是否良好并给予记录。 5.2短路测试: 5..2.1、输入与输出:额定输入、输出 5.2.2、短路:优先短路二次电路,最后短路一次电路。 输入的L、N端除外,其他所有的元件都得做短路测试。 短路只针对开发的新产品(首次生产产品),普通已经生产过的不做此测试 5.2.3、短路时,防意外发生必须带上眼睛,安全操作。 5.2.4、短路过成中:有以下结果给予判定是否合格 5.2.4.1、冒烟的浓度不能超过一支点燃的香烟 5.2.4.2、如果有火产生﹐火不能蔓延至机外。 5.2.4.3、如果有火或爆炸产生﹐不能射出熔金属﹐外壳亦不能变型。 5.2.4.4、不能有电解电容的爆炸或电解液的泄漏。 5.2.4.5、记录短路状态(包括电流、电压及其他状况) 5.3.0、开路测试: 5.3.1、输入与输出:额定 5.3.2、开路:优先开路二次电路、普通元件,最后开路一次电路及晶体管 5.3.3、同样开路测试时:也是要带眼睛防护操作。 5.3.4、焊接时注意不可带电操作 5.3.5、开路过程中有以下情况,给予判定是否合格 5.3.5.1、冒烟的浓度不能超过一支点燃的香烟 5.3.5.2、如果有火产生﹐火不能蔓延至机外 5.3.5.3、如果有火或爆炸产生﹐不能射出熔金属﹐外壳亦不能变型。 5.3.5.4、不能有电解电容的爆炸或电解液的泄漏 5.3.5.5、记录各元件开路时的状态(包括:电压、电流及其它状态) 备注:1、一次电路,短路与开路时必须用1617#22电线,用烙铁焊接短路(焊接时拔掉插头、关掉电源,连接好后再通电测试,千万注意不可带电操作.

第三章.基于PMU的开短路测试

本章节我们来说说最基本的测试——开短路测试(Open-Short Test),说说测试的目的和方法。 一.测试目的 Open-Short Test也称为ContinuityTest或Contact Test,用以确认在器件测试时所有的信号引脚都与测试系统相应的通道在电性能上完成了连接,并且没有信号引脚与其他信号引脚、电源或地发生短路。 测试时间的长短直接影响测试成本的高低,而减少平均测试时间的一个最好方法就是尽可能早地发现并剔除坏的芯片。Open-Short测试能快速检测出DUT是否存在电性物理缺陷,如引脚短路、bond wire缺失、引脚的静电损坏、以及制造缺陷等。 另外,在测试开始阶段,Open-Short测试能及时告知测试机一些与测试配件有关的问题,如ProbeCard或器件的Socket 没有正确的连接。 二.测试方法 Open-Short测试的条件在器件的规格数或测试计划书里通常不会提及,但是对大多数器件而言,它的测试方法及参数都是标准的,这些标准值会在稍后给出。 基于PMU的Open-Short测试是一种串行(Serial)静态的DC测试。首先将器件包括电源和地的所有管脚拉低至“地”(即我们常说的清0),接着连接PMU到单个的DUT管脚,并驱动电流顺着偏置方向经过管脚的保护二极管——一个负向的电流会流经连接到地的二极管(图3-1),一个正向的电流会流经连接到电源的二极管(图3-2),电流的大小在100uA到500uA之间就足够了。大家知道,当电流流经二极管时,会在其P-N结上引起大约0.65V的压降,我们接下来去检测连接点的电压就可以知道结果了。 既然程序控制PMU去驱动电流,那么我们必须设置电压钳制,去限制Open管脚引起的电压。Open-Short测试的钳制电压一般设置为3V——当一个Open的管脚被测试到,它的测试结果将会是3V。 串行静态Open-Short测试的优点在于它使用的是DC测试,当一个失效(failure)发生时,其准确的电压测量值会被数据记录(datalog)真实地检测并显示出来,不管它是Open引起还是Short导致。缺点在于,从测试时间上考虑,会要求测试系统对DUT的每个管脚都有相应的独立的DC测试单元。对于拥有PPPMU结构的测试系统来说,这个缺点就不存在了。

集成电路测试

第一章 集成电路的测试 1.集成电路测试的定义 集成电路测试是对集成电路或模块进行检测,通过测量对于集成电路的输出回应和预期输出比较,以确定或评估集成电路元器件功能和性能的过程,是验证设计、监控生产、保证质量、分析失效以及指导应用的重要手段。 .2.集成电路测试的基本原理 输入Y 被测电路DUT(Device Under Test)可作为一个已知功能的实体,测试依据原始输入x 和网络功能集F(x),确定原始输出回应y,并分析y是否表达了电路网络的实际输出。因此,测试的基本任务是生成测试输入,而测试系统的基本任务则是将测试输人应用于被测器件,并分析其输出的正确性。测试过程中,测试系统首先生成输入定时波形信号施加到被测器件的原始输入管脚,第二步是从被测器件的原始输出管脚采样输出回应,最后经过分析处理得到测试结果。 3.集成电路故障与测试 集成电路的不正常状态有缺陷(defect)、故障(fault)和失效(failure)等。由于设计考虑不周全或制造过程中的一些物理、化学因素,使集成电路不符合技术条件而不能正常工作,称为集成电路存在缺陷。集成电路的缺陷导致它的功能发生变化,称为故障。故障可能使集成电路失效,也可能不失效,集成电路丧失了实施其特定规范要求的功能,称为集成电路失效。故障和缺陷等效,但两者有一定区别,缺陷会引发故障,故障是表象,相对稳定,并且易于测试;缺陷相对隐蔽和微观,缺陷的查找与定位较难。 4.集成电路测试的过程 1.测试设备 测试仪:通常被叫做自动测试设备,是用来向被测试器件施加输入,并观察输出。测试是要考虑DUT的技术指标和规范,包括:器件最高时钟频率、定时精度要求、输入\输出引脚的数目等。要考虑的因素:费用、可靠性、服务能力、软件编程难易程度等。 1.测试界面 测试界面主要根据DUT的封装形式、最高时钟频率、ATE的资源配置和界面板卡形等合理地选择测试插座和设计制作测试负载板。

开短路原因分析及改善措施

线路开/短路问题分析—工艺 一、前言 长期一来,线路开路/短路,一直是本公司客户投诉的主要问题点,故此针对此品质问题,就线路工序,展开分析,较为系统地提出问题的原因,及改善对策。供大家参考。 二、短路 短路问题从现象来看,线路工序表现有以下几种: 1.定位短路 2.垃圾短路 3.擦花短路 4.微短 (电镀工序会引起蚀刻不净短路,夹膜短路,跑锡短路等在此不作论叙) 定位短路 主要形成原因是黑片/黄片有划伤,沙眼或红点引起内,外层短路 2.1.1改善对策: 1.线路检片人员,对工程发放黑片签收后,用10X镜对黑片进行检查,有品质 问题,2H内,将黑片退回工程修理. 2.每次复片时,同样须对黑片进行检查,确保黑片无品质问题后,方可复片. 复制黄片前,对曝光机台用酒精进行全面清洁,确保台面干净.检片时,用直尺放在菲林面上,看完一个区域后,移动直尺,按区域检片,防止漏检. 3.对位人员,双手撕片.放置菲林时,药膜面朝上,每对位10PNL,自检菲林一 次,每对位20PNL,交检片人员检查. 4.操作人员不得佩戴手饰,指甲经修理且保持圆滑。对位/检片台不得放置杂物,台面平滑干净。 垃圾短路

此短路常表现不定位,短路处图形无明显规则,主要起因有:环境垃圾,板面垃圾,及干膜碎(内层) 2.2.1改善对策 1.磨板机水缸每班换水一次,吸水棉每4H清洗衣一次,每周对磨板机进行周保养。 2.无尘室按5S要求,对车间严格管理,每班每2H对地面吸尘,拖地一次, 保持环境卫生。进出无室室必须风淋,穿戴无尘服,不允许头发,衣服外露。 3.压膜人员要求,清洁板面之粘尘纸每2H更换一次,清洁板边之粘尘纸每4H 更换一次,且每次换膜,用酒精对压辘进行清洁。割膜要求板不能有多余干膜。 4.曝光员每曝三盘,用粘尘辘对Mylar及玻璃台粘尘一次,每30min用酒精清洁Mylar及玻璃台。 5.显影机吸水棉每4H小时,清洗一次,显影段过滤棉芯每班清洗一次,每三 天更换一次,每班清洗过滤网,每周对显影机周保养一次。 2.3擦花短路 此短路多表现为多处线路或图形有明显擦花痕迹。引起原因为各工序操作不当,收起板与硬物相碰,引起擦花。 2.3.1改善对策 1.线路显影接放板人员,拿板/插架轻拿轻放,防止板与其他硬物碰撞。 2.检板人员检板时,要求按同一方向抽板检查,插架时一步到位,且注意轻拿轻放。 3.转工序时,按要求不允许堆放超过三层,运输时,用力均匀,防止倒架擦花。 2.4微短

IGBT短路测试方法详解

IGBT短路测试方法详解 在开发电力电子装置的过程中,我们需要做很多的测试,但是短路测试常常容易被忽略,或者虽然对装置实施了短路测试,但是实际上并不彻底和充分。下面2种情况比较常见: 1. 没有实施短路测试, a. 因为觉得这个实验风险太大,容易炸管子,损失太大; b. 觉得短路时电流极大,很恐怖; 2. 实施了短路测试,但测试标准比较简单,对短路行为的细节没有进行观察 本文将详细介绍正确的,完整的短路测试方法,及判断标准。 短路的定义(1): 桥内短路(直通) 命名为“一类”短路 硬件失效或软件失效 短路回路中的电感量很小(100nH级) VCE sat 检测 桥臂间短路(大电感短路) 命名为“二类”短路 相间短路或相对地短路 短路回路中的电感量稍大(uH级的) 可以使用Vcesat ,也可以使用霍尔,根据电流变化率来定这类短路的回路中的电感量是不确定的

一类短路测试的实施方法一: 下图为实施一类短路测试时的示意图。电网电压经过调压器,接触器,将母线电容电 压充到所需要的值,再断开接触器。上管IGBT的门极被关断,且上管用粗短的铜排进行短路。对下管IGBT释放一个单脉冲,直通就形成了。这就是一个典型的一类短路测试。 一类短路测试的实施方法一的注意事项: 该测试需要注意的事项: 1. 该测试的关注对象是电容组,母排,杂散电感,被测IGBT; 2 短路回路中的电感量很低,所以上管的短路排的电感量可以极大地影响测量的结果,因此绝不可忽视图中所示“粗短铜排”的长短和粗细; 3. 短路测试的能量全部来自母排电容组,通常来说,虽然短路电流很大,但是因为时 间极短,所以这个测试所消耗的能量很小,实验前后电容上的电压不会有明显变化;

强制内短路测试.

锂离子单电池强制内部短路试验 日期:2010-12-17 点击( 1222 ) Forced internal short circuit test of lithium ion cells 彭琦,刘群兴,叶耀良(中国赛宝实验室,广东广州 510610) PENG Qi, LIU Qun-xing, YE Yao-liang (China CEPREI Laboratory, Guangdong Guangzhou 510610) 摘要:本文阐述了JIS C 8714:2007标准中单电池强制内部短路试验条件和方法,说明了各个试验步骤的要求和意图,总结了内部短路试验的注意事项,介绍了试验设备,并对强制内部短路试验的有效性进行了探讨。 Abstract: This paper introduces the test requirement and procedure for forced internal short circuit test of lithium ion cells in standard JIS C 8714:2007. It introduces test equipment, the requirement and purpose for each test step, summarized the notes for the forced internal short circuit test, and also studies the efficiency for this test. 关键词:锂离子;单电池;JIS C 8714;强制内部短路;上限试验温度;下限试验温度 Key words: lithium ion; cell; JIS C 8714; forced internal short circuit test; highest test temperature; lowest test temperature 1.引言 2004年,日本某公司生产的笔记本电池发生起火事件,在详细研究分析了 电池起火的原因后,认为是由于锂离子电池内部混入了金属小微粒造成的内部短 路引起的电池起火。日本有关方面据此提出了“单电池强制内部短路试验”(单 电池即电芯),并写入JIS C 8714:2007标准。2008年11月,日本政府正式推 出锂离子蓄电池PSE认证要求,对2008年11月20号以后出口到日本的锂离子 电池,凡是符合日本《电器用品安全法》中规定对象的都必须经过PSE认证,而 “单电池强制内部短路试验”作为锂离子电池PSE认证的一个重要试验项目,成 为进入日本的锂离子电池的一个重要技术壁垒。“单电池强制内部短路试验”是 一个全新的试验项目,之前各种标准中并没有类似的试验内容。本文将向读者介 绍“单电池强制内部短路试验”的试验条件和设备方法,并对其有效性进行探讨。

集成电路测试原理及方法

H a r b i n I n s t i t u t e o f T e c h n o l o g y 集成电路测试原理及方法简介 院系:电气工程及自动化学院 姓名: XXXXXX 学号: XXXXXXXXX 指导教师: XXXXXX 设计时间: XXXXXXXXXX

摘要 随着经济发展和技术的进步,集成电路产业取得了突飞猛进的发展。集成电路测试是集成电路产业链中的一个重要环节,是保证集成电路性能、质量的关键环节之一。集成电路基础设计是集成电路产业的一门支撑技术,而集成电路是实现集成电路测试必不可少的工具。 本文首先介绍了集成电路自动测试系统的国内外研究现状,接着介绍了数字集成电路的测试技术,包括逻辑功能测试技术和直流参数测试技术。逻辑功能测试技术介绍了测试向量的格式化作为输入激励和对输出结果的采样,最后讨论了集成电路测试面临的技术难题。 关键词:集成电路;研究现状;测试原理;测试方法

目录 一、引言 (4) 二、集成电路测试重要性 (4) 三、集成电路测试分类 (5) 四、集成电路测试原理和方法 (6) 4.1.数字器件的逻辑功能测试 (6) 4.1.1测试周期及输入数据 (8) 4.1.2输出数据 (10) 4.2 集成电路生产测试的流程 (12) 五、集成电路自动测试面临的挑战 (13) 参考文献 (14)

一、引言 随着经济的发展,人们生活质量的提高,生活中遍布着各类电子消费产品。电脑﹑手机和mp3播放器等电子产品和人们的生活息息相关,这些都为集成电路产业的发展带来了巨大的市场空间。2007年世界半导体营业额高达2.740亿美元,2008世界半导体产业营业额增至2.850亿美元,专家预测今后的几年随着消费的增长,对集成电路的需求必然强劲。因此,世界集成电路产业正在处于高速发展的阶段。 集成电路产业是衡量一个国家综合实力的重要重要指标。而这个庞大的产业主要由集成电路的设计、芯片、封装和测试构成。在这个集成电路生产的整个过程中,集成电路测试是惟一一个贯穿集成电路生产和应用全过程的产业。如:集成电路设计原型的验证测试、晶圆片测试、封装成品测试,只有通过了全部测试合格的集成电路才可能作为合格产品出厂,测试是保证产品质量的重要环节。 集成电路测试是伴随着集成电路的发展而发展的,它为集成电路的进步做出了巨大贡献。我国的集成电路自动测试系统起步较晚,虽有一定的发展,但与国外的同类产品相比技术水平上还有很大的差距,特别是在一些关键技术上难以实现突破。国内使用的高端大型自动测试系统,几乎是被国外产品垄断。市场上各种型号国产集成电路测试,中小规模占到80%。大规模集成电路测试系统由于稳定性、实用性、价格等因素导致没有实用化。大规模/超大规模集成电路测试系统主要依靠进口满足国内的科研、生产与应用测试,我国急需自主创新的大规模集成电路测试技术,因此,本文对集成电路测试技术进行了总结和分析。 二、集成电路测试重要性 随着集成电路应用领域扩大,大量用于各种整机系统中。在系统中集成电路往往作为关键器件使用,其质量和性能的好坏直接影响到了系统稳定性和可靠性。 如何检测故障剔除次品是芯片生产厂商不得不面对的一个问题,良好的测试流程,可以使不良品在投放市场之前就已经被淘汰,这对于提高产品质量,建立生产销售的良性循环,树立企业的良好形象都是至关重要的。次品的损失成本可以在合格产品的售价里得到相应的补偿,所以应寻求的是质量和经济的相互制衡,以最小的成本满足用户的需要。 作为一种电子产品,所有的芯片不可避免的出现各类故障,可能包括:1.固定型故障;2.跳变故障;3.时延故障;4.开路短路故障;5桥接故障,等等。测试的作用是检验芯片是否存在问题,测试工程师进行失效分析,提出修改建议,从工程角度来讲,测试包括了验证测试和生产测试两个主要的阶段。

永磁同步电机匝间短路故障在线检测方法

第37卷第3期2018年3月 电工电能新技术 AdvancedTechnologyofElectricalEngineeringandEnergy Vol.37,No.3Mar.2018 收稿日期:2017?03?29 作者简介:彭一伟(1991?),男,重庆籍,硕士研究生,研究方向为电动汽车用交流电机的控制; 赵一峰(1979?),男,陕西籍,研究员,研究方向为电动汽车用交流电机的控制三 永磁同步电机匝间短路故障在线检测方法 彭一伟1,2,赵一峰1,3,4,王永兴1,3,4,关天一1,2 (1.中国科学院电工研究所,北京100190;2.中国科学院大学,北京100049; 3.中国科学院电力电子与电气驱动重点实验室,北京100190; 4.电驱动系统大功率电力电子器件封装技术北京市工程实验室,北京100190) 摘要:本文提出了简单的永磁同步电机(PMSM)匝间短路故障在线检测方法三首先对不同状态PMSM定子电流谐波成分展开分析,提出一个融合了-fe及?3fe谐波成分的故障特征量Ft三针对采用快速傅立叶变换方法计算特征量实时性差的问题,在连续细化傅立叶变换方法基础上引入布莱克曼窗,从而改善了连续细化傅立叶变换方法的幅值辨识精度,实现了故障特征量快速且准确的求取三仿真及实验结果表明,特征量Ft能够正确反映PMSM匝间短路故障是否发生,本文提出的在线检测方法在不增加任何硬件设备的基础上实现了PMSM匝间短路故障的检测三关键词:永磁同步电机;匝间短路故障;故障特征量;在线检测;连续细化傅立叶变换 DOI:10 12067/ATEEE1703103一一一文章编号:1003?3076(2018)03?0041?08一一一中图分类号:TM351 1一引言 永磁同步电机(PMSM)具有高转矩/惯量比二高功率密度二高效率二响应快等优点三近年来,随着永磁性能不断提高,PMSM在电动汽车中的应用越来越广泛[1]三永磁同步电机在长期运行的过程中不可避免会出现各种故障,严重影响其在电动汽车应用中的可靠性和安全性三永磁同步电机驱动系统中,由匝间短路引起的定子绕组故障是最为常见的故障之一[2]三在早期的匝间短路故障阶段,电机仍然可以正常运行,然而由于大的短路电流的存在,短路回路会产生大量热量,从而引起更多的绝缘失效三因此,早期匝间短路故障的检测对于避免驱动系统失效二避免危害人身安全具有十分重要的作用三目前,已有许多学者展开了永磁同步电机定子 故障检测方面的工作[3?11]三这些研究主要包括基于磁通密度传感器的方法[3]二基于测得的定子电压和电流构建状态观测器的方法[4]二基于频域及时频分析工具的定子电流特征分析的方法[5?10]二智能控制(如人工神经网络)方法[11]等故障检测方案三其中,定子电流特征分析方法因其低成本而受到国内 外学者最广泛的关注三文献[5]提出将负序电流幅值作为反映匝间短路故障严重程度的特征量,并采用负序dq轴结合低通滤波器的方案成功提取出负序电流幅值三文献[6]利用傅立叶变换的方法对定子电流信号进行分析,通过对比正常电机和故障电机定子电流频谱,指出故障电机定子电流3次谐波含量增加,故以此作为故障的判定依据三文献[7]在文献[6]的基础上提出以q轴2次谐波幅值为特征量代替定子电流3次谐波电流的提取,简化了故障检测算法三傅立叶变换将原有电流信号从时域变换到频域进行分析,难以应对系统非线性工况下的特征量提取三针对这一问题,文献[8,9]分别采用离散小波变换(DWT)和小波包变换对动态情况下匝间短路故障的定子电流进行分析三仿真和实验结果表明,该方法在电机变速二中速二低速二高速情况下,根据3次谐波所在频段能量进行分析均可判定短路故障是否发生三文献[10]采用经验模态分解(EMD)方法对定子电流进行分析,得到一个本征模态函数IMF的集合,然后用时频分析方法对包含故障谐波的模态进行分析得到故障对应的瞬时频率,仿真和实验表明了该诊断方法的有效性三时频分析

ictesting开短路测试(openshort)

ictesting开短路测试(openshort) 开短路测试(openshort) 开短路测试(open_short_test)又叫continuity test 或contact test,它是一种非常快速发现芯片的各个引脚间的是否有短路,及在芯片封装时是否missing bond wires.通常都会被放测试程序的最前面.它还能发现测试时接触是否良好,探针卡或测试座是否有问题. x-D t b%}:j- 开短路测试的测试原理比较简单,分open_short_to_VDD 测试和open_short_to_VSS测试.一般来说芯片的每个引角都有泄放或说保护电路,是两个首尾相接的二极管,一端接VDD, 一端接VSS。信号是从两个二极管的接点进来.测试时,先把芯片的VDD引脚接0伏(或接地),再给每个芯片引脚供给一个100uA到500uA从测试机到芯片的电流,电流会经上端二极管流向VDD(0伏),然后测引脚的电压,正常的值应该是一个二极管的偏差电压0.7伏左右,我们一般设上限为1.5伏,下限为0.2伏,大于1.5伏判断为openfail,小于0.2伏判断为shortfail.这就是open_short_to_VDD测试. M c9g2s x }#e K F v:B,v P4W/o.J

open_short_to_VSS测试的原理基本相同.同样把先VDD接0伏,然后再给一个芯片到测试的电流,电流由VSS经下端二级管流向测试机.然后测引脚的电压,同样正常的值应该是一个二极管的偏差电压0.7伏左右,只是电压方向相反,上限还是为1.5伏,下限为0.2伏,大于1.5伏判断为openfail,小于0.2伏判断为shortfail.这就是open_short_to_VSS测试. G+{ zS Z g 5u w s V r)^ y数字,集成电路,IC,FAQ,Design compiler,数字信号处理,滤波器,DSP,VCS,NC,coverage,覆盖 率,modelsim,unix,c,verilog,hdl,VHDL,IP,STA,vera,验 证,primetime,FIFO,SDRAM,SRAM,IIR,FIR,DPLL所以对测试机里的测试器件来说,只要能给电流测电压的器件都能做开短路测试.只是精度有差异,效率有高低.

集成电路故障诊断

本文的主要工作是基于集成电路的电流信息和模式识别理论对电路进行静态 电流检测、动态电流检测、以及故障定位等方面的基础性研究。具体包括静态电 流的检测方法及仿真实验,动态电流的检测方法及仿真实验,基于近邻法和连接 的模式识别法的故障定位法,基于神经网络的故障诊断方法四个方面: 在静态电流检测方面:通过查阅和学习大量的国内外文献和资料,分析了静 态电流检测的基本原理,分析了COMS 电路的特点,并用PSPICE 对CMOS 或非 门和与门电路做了故障注入的仿真实验,给出了仿真试验结果,由于采用静态电 流测试产生了测试逃逸,故引入了动态电流测试方法增加故障覆盖率。 在动态电流检测方面:通过分析IDDT 的波形,用动态电流尖锋值的方法对 CMOS 电路作了故障注入和故障诊断。通过对CMOS 电路的桥接故障、参数改变、 短路故障等的检测,说明了采用动态电流对故障检测的可行性。 在故障定位方面:由于静态电流检测方法对CMOS 电路的桥接故障不能准确 定位,我们利用小波分析对故障电路的IDDT 电流信息进行特征提取,然后分别采 用基于近邻法和连接的模式识别法对电路进行了故障定位实验,实验结果证实了 两种算法在故障定位应用上的可行性。最后通过比较两种算法的仿真结果,说明 了用连接的模式识别方法的定位更加可靠。 在神经网络的故障诊断方面:通过采用小波变换,对电路正常模式和故障模式 的IDDT 采样信号进行故障特征提取,建立样本集;然后利用神经网络对各种状态 下的特征向量进行分类决策,实现电路的故障诊断。 论文的具体安排如下: 第一章介绍本课题的研究意义以及集成电路故障诊断的发展概述。 第二章集成电路故障诊断的基础理论介绍 第三章利用静态电流方法对CMOS 电路的故障进行仿真实验 第四章利用动态电流方法对CMOS 电路的故障进行仿真实验 第五章分别利用基于近邻法和连接的模式识别法进行故障定位仿真实验及 利用基于神经网络的故障诊断算法进行仿真实验 第六章给出全文工作的总结和今后的展望 本章主要介绍了集成电路故障诊断的基础理论和方法。首先我们介绍了传统 电路的检测方法,然后详细介绍了软故障及硬故障模型,并讨论了本文将用到的 近邻法,小波分解,神经网络等模式识别相关理论知识,最后针对后续故障诊断 实验中将使用的PSPICE 和MA TLAB 仿真工具进行了相关介绍。 静态电流(IDDQ)检测与电压检测不一样, 本章首先对IDDQ 的基本原理和检测方法进行了简单介绍,然后为了验证 IDDQ 检测方法的可行性,我们在已有研究成果的基础上,针对集成电路常见的桥 接故障、漏电流故障模型,进行了仿真实验。实验结果表明本文方法能充分利用静态电流中的故障信息对故障进行检测。但该方法的有效性受测试向量诊断能力 的影响,今后研究的重点应是如何为这种故障诊断算法提供有效的测试生成向量。 并且从本实验可以看出,IDDQ 的测试覆盖率有限,所以在故障检测中,需要采用 的动态电流检测法(IDDT)对IDDQ 法进行补充。

ICT测试不良及常见故障的分析方法

ICT测试不良及常见故障的分析方法 本文主要介绍ICT测试的不良品之常见故障的分析方法,旨在帮助检修人员能够对常见的不良现象进行快速而准确的判断与分析,同时本说明书也可以作为学习的参考数据。 1.开路不良 所谓开路不良就是指在某一个短路群中,各个测试点之间本来应该是短路,但却出现了某个测试点对其所在短路群的其它测试点是开路的。 出现开路不良的可能原因有如下几个方面: (1)PCB Open; (2)零件造成的;它又包括如下几个方面: A.立件与漏件; B.空焊; C.零件不良 (3)测试点有问题 A.探针未接触到; B.测试点氧化; C.测试点有东西挡住; D.测试点在防焊区 【说明】在平常出现比较多的情况是立件于漏件,空焊,PCB Open和零件不良。对于立件和漏件可以通过目检查出;PCB Open只要细心查看两测试点之间的线路,看在测试点之间是否有断线的情况发生,零件不良造成的开路不良通常是由于电阻,电感等零件损坏而造成的其本体开路。如果将一块好的PCB板与之比较发现没有差异(通常比较的是电阻),则表明测试点有问题,需检查PCB板上的测试点是否有问题或检查治具上的测试针是否有问题。 2.短路不良 所谓短路不良是指存在于不同的短路群中的测试点在正常情况下应该是开路的,但却出现了短路的情况。出现短路的原因有以下几个方面: (1)零件短路(由于在零件两端存在有锡丝而造成短路) (2)零件不良,本体短路(通常是由于零件损坏了的缘故): (3)PCB短路(存在比较多的情况是:出现短路不良的两个测试点的步线十分靠近,由于印刷的原因在某处出现了短路,尤其是在印有字迹的地方要特 别注意,绝大部分多数的PCB短路都发生在这里。 (4)BGA短路(可能是BGA下方的锡球短路,也有可能是BGA本体短路),这比较麻烦,必须有90%以上的把握时才能拆BGA。 【说明】对于零件短路可以通过重新焊过该零件当可解决短路不良的情况,对于

强制内部短路测试时方法

8.3.9 设计评估- 内部强制短路(电芯) a)要求:对于圆柱电池和方形电池内部强制短路测试不应该起火。厂家应该给出满足这个要求的报告。电池厂家或者第三方测试实验室对电池测试结束后电池厂家应该有一个设计评估。 这是国家特定的测试仅仅使用于法国、日本、韩国和瑞士,并且聚合物电池不要求此测试。b) 测试:内部强制短路测试在10℃和45℃(烤箱内部的环境温度)的环境温度下进行,测试按照下 面的方法: 1)样品的数量:5个二次电池 2)充电过程 i) 充放电条件:电池按照厂家的要求在20±5℃的条件下充电,然后在20±5℃的条件下,以 0.2It的电流恒流放电到厂家规定的截止电流。 ii) 储存过程:测试电池要在表5中的环境温度条件下储存1- 4h iii) 环境温度: 表5 –测试电池环境温度a iv) 强制内部短路的充电过程 电池应该在表5中的环境温度下,用规定的上限充电电压进行恒流恒压充电,电流降至 0.05It 时充电结束。 3)用一个镍粒子挤压卷心 测试需要温控烤箱和特殊冲压设备,匀速移动冲压设备的可移动部件,一旦检测到短路就立即停止。 i) 测试准备 A 如表5所述调节好烤箱的温度。样品准备指导如附录A中的部分A.5和图A.5与图A.8。把带 有卷芯的铝膜袋和镍粒子放在烤箱内保持45±15min。 B 从密封包装中移出卷芯,用一个电压测量仪连接电池两端,将热电偶黏贴在卷芯的表面。 将卷芯放在冲压设备下,使镍粒子位于冲压夹具下面。 注意:为了避免电解液蒸发,在10min内完成从烤箱内移出卷芯到设备安放好并关上烤箱门的动作。 C 移除绝缘片关闭烤箱门。 ii) 内部短路 A 确保卷芯的温度显示符合表5并开始测试 B 设备的可移动部分的底面是由丁腈橡胶或者亚克力板做成,该可移动部分置于10 mm x 10 mm的不锈钢传动轴上。按压夹具的细节在图2中体现。丁腈橡胶底面是为圆柱电池 而制。对于方形电池测试,用5 mm x 5 mm(2mm厚)的亚克力板放在丁腈橡胶上面。 装置以0.1/s的速度下移来检测电池的电压。当检测到由于内部短路引起电压下降时,立 刻停止下降并保持挤压夹具原位不动30s,然后释放压力。电压在每秒终内要监测超过100 次并且如果电压下降50mV,就认为有内部短路发生。如果压力达到800N对于圆柱电池和 400N方形电池,立刻停止设备下降并保持原位置。

开短路测试程序

#include //51单片机定义寄存器的头文件 #include //51单片机的申明库函数,软件自带 #include //包含循环左移,右移,一个机器周期延时的头文件,软件自带 #define uchar unsigned char #define uint unsigned int uchar n; //总共的不良点数 uint i; //已经测到的点 #define delayNOP(); {_nop_();_nop_();_nop_();_nop_();}; void delay_ms(int ms); //延时1ms sbit P_HC595_SER = P3^5; //pin 14 SER data input sbit P_HC595_SRCLK = P3^6; //pin 11 SRCLK Shift data clock sbit P_HC595_RCLK = P2^4; //pin 12 RCLk store (latch) clock sbit P_HC595B_SER = P3^2; //pin 14 sbit P_HC595B_SRCLK = P3^3; //pin 11 sbit P_HC595B_RCLK = P3^4; //pin 12 sbit BEEP = P3^7;

sbit pass = P3^0; sbit fall = P2^1; sbit SW2 = P2^2; sbit SW1 = P2^3; sbit SW3 = P2^0; sbit LCD_RS = P2^5; //显示屏4脚指令类型sbit LCD_RW = P2^6; //显示屏5脚读写sbit LCD_EN = P2^7; //显示屏6脚使能 #define cs_data P1 #define LCD_DATA P0 // 定义数据 uchar cdis_11 [ ] = {" PCB:-- "}; uchar cdis_12 [ ] = {" Pin:-- "}; uchar cdis_13 [ ]; uchar cdis_14 [ ]; uchar sd_tata_l[16]; uchar sd_tata_h[16]; uchar sd_tata_1[116];

开短路测试原理及苦于问题的探讨

开短路测试原理及若干问题的探讨 赵鹏飞 2011年10月 目录 1开短路测试的原理 (2) 1.1数字电路单个引脚的抽象模型 (2) 1.2电源及输入引脚开短路测试 (3) 1.2.1正常情况 (3) 1.2.2开路情况 (4) 1.2.3短路情况 (5) 1.3GND及输出引脚开短路测试 (5) 1.3.1正常情况 (5) 1.3.2开路情况 (6) 1.3.3短路情况 (6) 1.4本节小结 (7) 2多引脚内联条件下的开短路测试 (7) 2.1多引脚内联条件下开短路测试的传统方法 (7) 2.1.1测试原理 (7) 2.1.2系统漏洞 (9) 2.2多引脚内联条件下开短路测试方法的进一步探讨 (10) 2.2.1延长线断路情况下的开短路测试 (10) 2.2.2公共线断路情况下的开短路测试 (11) 2.2.3分支线断路情况下的开短路测试 (11) 2.3多引脚内联条件下开短路测试方案完善 (12) 2.3.1开路状态的矩阵分析 (12) 2.3.2开路状态下的I-U曲线 (15) 2.3.3关于激励电流取值范围的探讨 (17) 2.4本节小结 (18) 3测试板继电器烧死问题解决新方案 (18) 3.1测试板继电器烧死导致的后果 (18) 3.2导致继电器烧死的主要原因 (18) 3.3用晶体管替换继电器的理论依据 (18) 3.4实现晶体管替换继电器的若干条件 (18) 3.5本节小结 (18)

开短路测试原理及若干问题的探讨 1 开短路测试的原理 1.1数字电路单个引脚的抽象模型 不论是简单的逻辑门电路,还是结构复杂的运算控制单元甚至单片机,其内部除了极少数的特殊器件之外,有90%以上的结构全是P/N结。 而对于任何一个集成电路的任何一个功能引脚来说,其功能无非就是能够输入人们所期望的电信号或者输出人们所期望的电信号。不论是输入还是输出,电路内部必会形成一个电流通路。 基于以上两个原因,我们就有理由提出一个能够应用于绝大多数集成电路的引脚内部结构抽象模型如图-1。 1N1204C 1N1204C A B 图-1 图-1中的图A为电源及输入引脚的抽象模型,图B为输出及GND的抽象模型,就是将电路的一个引脚抽象为一个P/N结与一个电阻的串联的综合体。 接着,我们搭建如图-2所示电路:

集成电路开短路测试

摘要 本次设计针对测试集成电路的开短路。作品设计以AT89S52,两个CD4051,一个待测芯片MC34063为主,用AT89S52来控制CD4051输入引脚从而使得输出其中一个引脚,此引脚用来连接被侧的其中一个引脚。34063芯片测试仪基本功能是集成电路的开短路测试、基准电压测试、集成电路等级评定;自动分装时能够与机械手系统通信;用数码显示基准电压和集成电路等级评定结果。在评定集成电路等级时,第一种测试仪只需分辨合格与不合格。 芯片的测试分两次。在芯片制造完成后必须对圆片上的芯片(小片)进行测试。测试后进行切割。测试合格的芯片才能进行封装。封装完成后的芯片还要进行第二次测试。当已经封装的芯片被测出故障,厂商应当拆掉封装进行测试,找出故障原因。这时候的故障可能是由于焊接等过程中的静电等原因造成的。 关键词:一片AT89S52;两片CD4051;一片MC34063

目录 一、选题意义 (2) 二、原理分析 (2) 三、总体设计 (3) 四、详细设计 (3) 1、硬件设计 (3) (1)恒电流电路设计 (2)判决电路设计 (3)控制电路设计 (4)选通电路设计 2、软件设计 (5) 五、系统实现 (8) 1、硬件原理图 六、测试 (9) 七、总结 (9) 八、参考文献 (10)

集成电路开短路测试 一.选题的意义 对集成电路厂家来说,开短路测试(open short test)是集成电路生产商必须具备的一项关键技术,关系到企业的生存;对消费者使用者来说,开短路测试关系到一个项目的生产效率,在很大程度上决定着工作的质量。 二.原理分析 集成电路开短路测试分为开路测试(open short to VDD)和短路测试(open short to VSS)。 一般来说,芯片的每个引脚都有泄放或保护电路是两个首尾相连的二极管,一端接VDD ,一端接VSS ,信号是从两个二极管的接点进来测试时测试时,先把芯片的VDD 引脚接0伏(或接地),再给每个芯片引脚供给一个100uA 到500uA 从测试机到芯片的电流,电流会经上端二极管流向VDD (0伏),然后测引脚的电压,正常的值应该是一个二极管的偏差电压0.7伏左右,我们一般设上限为1.5伏,下限为0.2伏,大于 1.5伏判断为openfail,小于0.2伏判断为shortfail.这就是open_short_to_VDD 测试. open_short_to_VSS 测试的原理基本相同.同样把先VDD 接0伏,然后再给一个芯片到测试的电流,电流由VSS 经下端二级管流向测试机.然后测引脚的电压,同样正常的值应该是一个二极管的偏差电压0.7伏左右,只是电压方向相反,上限还是为1.5伏,下限为0.2伏,大于1.5伏判断为openfail,小于0.2伏判断为shortfail.这就是open_short_to_VSS 测试. 三.总体设计 四.详细设计 (一)硬件设计 1. 恒电流电路设计 恒流源电路 判决电路 选通电路 控制电路

集成电路(IC)EMC测试

集成电路的EMC测试北京世纪汇泽科技有限公司

前言 世界范围内电子产品正在以无线、便携、多功能与专业化得趋势快速发展,纯粹的模拟电子系统越来越难以进入人们的视线,取而代之的集成电路在数字电子产品与电子系统中扮演了“超级明星”的角色,而这个主角被接纳的程度也在随着集成电路产业的发展不断加深,从1965年Gordon Moore提出摩尔定律至今,集成电 路一直保持着每18-24个月集成度翻番、价格减半的发展趋势,这为集成电路的大范围、多层次应用奠定了基础。尤其在消费类产品领域,这种发展趋势尤为明显,各种数码类产品的普及就是很好的说明。 同时,这种快速发展也造成了电子系统电磁兼容性问题的日益突出,更高的集成度和使用密度,是片内和片外耦合的发生几率大大提高。在电子产品和电子系统中,通常集成电路是最根本的骚扰信号源,它把直流供电转换成高频的电流、电压,造成了无意发射和耦合。而当其输入或供电受到干扰时,误动作的可能性将大大增加,甚至造成硬件损坏。 这种情况下,如何衡量集成电路电磁兼容性的问题日渐凸显起来。这种衡量方法,或者称作新的测试标准和测试方法,将作用于集成电路的设计、生产、质量控制、采购乃至应用调试等诸多方面,成为整个集成电路相关产业的关注焦点。

标准产生的背景 早在1965年美国军方已就核爆电磁场对导弹发射中心设备的影响做出了分析研究,并开发了专门的SPECTRE软件,用于模拟核辐射对电气电子元件的作用。在随后的二十多年中,各种仿真模型、测试方法和统计结果不断涌现,在集成电路电磁兼容领域积累了大量的理论基础和可供分析比较的实测数据。 其中主要测试方法包括: ?北美的汽车工程协会(SAE)建议的使用TEM小室测量集成电路的辐射发射 ?SAE提出的磁场探头和电场探头表面扫描测量集成电路的辐射发射 ?荷兰某公司建议的使用工作台法拉第笼(WBFC)进行集成电路传导发射测量 ?德国标准化组织VDE建议的使用1?电阻进行地回路传导电流测量 ?日本的研究人员建议的使用磁场探头进行传导发射测量 ?Lubineau和Fiori等人对抗扰度测试方法和试验结果的研究等等 1997年10月,国际电工委员会(IEC)第47A技术分委会下属第九工作组(WG9)成立,专门负责对各种已建议的测试方法进行分析,最终出版了针对EMI 和EMS的工具箱式的测试方法集合——IEC61967系列和IEC62132系列标准,标准IEC62215也已出版,与IEC62132互补,更加全面地考虑到了集成电路遭受电磁干扰时的情形。

相关文档