文档库 最新最全的文档下载
当前位置:文档库 › 动能定理练习题(附答案)

动能定理练习题(附答案)

动能定理练习题(附答案)
动能定理练习题(附答案)

动能定理练习题(附答案)

2012年3月

1、一质量为1kg 的物体被人用手由静止向上提高1m ,这时物体的速度是2m/s ,求: (1)物体克服重力做功. (2)合外力对物体做功. (3)手对物体做功. 解:

(1) m 由A 到B :

G 10J W mgh =-=-

克服重力做功1G G 10J W W ==克

(2) m 由A 到B ,根据动能定理2

21

02J 2W mv ∑=-=

(3) m 由A 到B : G F W W W ∑=+

F 12J W ∴=

2、一个人站在距地面高h = 15m 处,将一个质量为m = 100g 的石块以v 0 = 10m/s 的速度斜向上抛出.

(1)若不计空气阻力,求石块落地时的速度v .

(2)若石块落地时速度的大小为v t = 19m/s ,求石块克服空气阻力做的功W . 解:

(1) m 由A 到B :根据动能定理: 22

1122mgh mv mv =-

20m/s v ∴=

(2) m 由A 到B ,根据动能定理3: 22

t 0

1122

mgh W mv mv -=-

1.95J W ∴=

1

不能写成:G 10J W mgh ==. 在没有特别说明的情况下,G W 默认解释为重力所做的功,而在这个过程中重

力所做的功为负.

2 也可以简写成:“m :A B →:k W E ∑=? ”,其中k W E ∑=?表示动能定理.

3

此处写W -的原因是题目已明确说明W 是克服空气阻力所做的功.

A

3a 、运动员踢球的平均作用力为200N ,把一个静止的质量为1kg 的球以10m/s 的速度踢出,在水平面上运动60m 后停下. 求运动员对球做的功?

3b 、如果运动员踢球时球以10m/s 迎面飞来,踢出速度仍为10m/s ,则运动员对球做功为多少? 解:

(3a)球由O 到A ,根据动能定理4

2

01050J 2

W mv =-=

(3b)球在运动员踢球的过程中,根据动能定理5

2211

022

W mv mv =-=

4、在距离地面高为H 处,将质量为m 的小钢球以初速度v 0竖直下抛,落地后,小钢球陷入泥

土中的深度为h 求:

(1)求钢球落地时的速度大小v .

(2)泥土对小钢球的阻力是恒力还是变力? (3)求泥土阻力对小钢球所做的功. (4)求泥土对小钢球的平均阻力大小. 解:

(1) m 由A 到B :根据动能定理: 22

1122

mgH mv mv =-

v ∴(2)变力6.

(3) m 由B 到C ,根据动能定理: 2f 1

02

mgh W mv +=-

()2

f 012W mv m

g H

h ∴=--+

(3) m 由B 到C : f cos180W f h =??

()

2022mv mg H h f h

++∴=

4 踢球过程很短,位移也很小,运动员踢球的力又远大于各种阻力,因此忽略阻力功.

5

结果为0,并不是说小球整个过程中动能保持不变,而是动能先转化为了其他形式的能(主要是弹性势能,然后其他形式的能又转化为动能,而前后动能相等. 6

此处无法证明,但可以从以下角度理解:小球刚接触泥土时,泥土对小球的力为0,当小球在泥土中减速时,泥土对小球的力必大于重力mg ,而当小球在泥土中静止时,泥土对小球的力又恰等于重力mg . 因此可以推知,泥土对小球的力为变力.

v m

0v 'O A

A B

v t v

5、在水平的冰面上,以大小为F =20N 的水平推力,推着质量m =60kg 的冰车,由静止开始运动. 冰车受到的摩擦力是它对冰面压力的0. 01倍,当冰车前进了s 1=30m 后,撤去推力F ,冰车又前进了一段距离后停止. 取g = 10m/s 2. 求: (1)撤去推力F 时的速度大小. (2)冰车运动的总路程s . 解:

(1) m 由1状态到2状态:根据动能定理7

: 2111

cos0cos18002Fs mgs mv μ+=-

3.74m/s v ∴=

(2) m 由1状态到3状态8:根据动能定理:

1cos0cos18000Fs mgs μ+=-

100m s ∴=

6、如图所示,光滑1/4圆弧半径为0.8m ,有一质量为1.0kg 的物体自A 点从静止开始下滑到B 点,然后沿水平面前进4m ,到达C 点停止. 求: (1)在物体沿水平运动中摩擦力做的功. (2)物体与水平面间的动摩擦因数. 解:

(1) m 由A 到C 9

:根据动能定理: f 00mgR W +=- f 8J W mgR ∴=-=-

(2) m 由B 到C :

f cos180W m

g x μ=??

0.2μ∴=

7、粗糙的1/4圆弧的半径为0.45m ,有一质量为0.2kg 的物体自最高点A 从静止开始下滑到圆弧最低点B 时,然后沿水平面前进0.4m 到达C 点停止. 设物体与轨道间的动摩擦因数为0.5 (g = 10m/s 2),求:

7

8

也可以用第二段来算2s ,然后将两段位移加起来. 计算过程如下:

m 由2状态到3状态:根据动能定理: 221cos18002

mgs mv μ=-

270m s ∴=

则总位移12100m s s s =+=. 9

也可以分段计算,计算过程略.

f

A

(1)物体到达B 点时的速度大小.

(2)物体在圆弧轨道上克服摩擦力所做的功. 解:

(1) m 由B 到C :根据动能定理: 2

B

1cos18002

mg l mv μ??=-

B 2m/s v ∴=

(2) m 由A 到B :根据动能定理: 2

f B 102mgR W mv +=-

f 0.5J W ∴=-

克服摩擦力做功f 0.5J W W ==克f

8、质量为m 的物体从高为h 的斜面上由静止开始下滑,经过一段水平距离后停止,测得始点与终点的水平距离为s ,物体跟斜面和水平面间的动摩擦因数相同,求证:h

s

μ=. 证:

设斜面长为l ,斜面倾角为θ,物体在斜面上运动的水平位移为1s ,在水平面上运动的位移为2s ,如图所示10.

m 由A 到B :根据动能定理:

2cos cos180cos18000mgh mg l mgs μθμ+??+?=-

又1cos l s θ= 、12s s s =+ 则11

0h s μ-=

即:

h s

μ=

证毕.

10 题目里没有提到或给出,而在计算过程中需要用到的物理量,应在解题之前给出解释。 11

具体计算过程如下:

由1cos l s θ=,得:

12cos180cos18000mgh mg s mgs μμ+??+?=-

()120mgh mg s s μ-?+=

由12s s s =+,得:

0mgh mgs μ-=

即:

0h s

μ-=

A

9、质量为m 的物体从高为h 的斜面顶端自静止开始滑下,最后停在平面上的B 点. 若该物体从斜面的顶端以初速度v 0沿斜面滑下,则停在平面上的C 点. 已知AB = BC ,求物体在斜面上克服摩擦力做的功. 解:

设斜面长为l ,AB 和BC 之间的距离均为s ,物体在斜面上摩擦力做功为f W . m 由O 到B :根据动能定理:

f 2cos18000mgh W f s ++??=-

m 由O 到C :根据动能定理:

2

f 20

12cos18002mgh W f s mv ++??=- 2

f 012

W mv mgh ∴=-

克服摩擦力做功2

f 0

12

W W mgh mv ==-克f

10、汽车质量为m = 2×103kg ,沿平直的路面以恒定功率20kW 由静止出发,经过60s ,汽车达到最大速度20m/s. 设汽车受到的阻力恒定. 求: (1)阻力的大小.

(2)这一过程牵引力所做的功. (3)这一过程汽车行驶的距离. 解12

(1)汽车速度v 达最大m v 时,有F f =,故: m m P F v f v =?=? 1000N f ∴=

(2)汽车由静止到达最大速度的过程中:

6F 1.210J W P t =?=?

(2)汽车由静止到达最大速度的过程中,由动能定理:

2

F m 1cos18002

W f l mv +??=-

800m l ∴=

11.AB 是竖直平面内的四分之一圆弧轨道,在下端B 与水平直轨道相切,如图所示。一小球自A 点起由静止开始沿轨道下滑。已知圆轨道半径为R ,小球的质量为m ,不计各处摩擦。求 (1)小球运动到B 点时的动能;

(2)小球经过圆弧轨道的B 点和水平轨道的C 点时,所受轨道支持力N B

、N C 各是多大? (3)小球下滑到距水平轨道的高度为R 2

1

时速度的大小和方向;

12

由于种种原因,此题给出的数据并不合适,但并不妨碍使用动能定理对其进行求解. f

解:

(1)m :A →B 过程:∵动能定理

2

B 102

mgR mv =-

2

KB B 12

E mv mgR ∴=

= ① (2) m :在圆弧B 点:∵牛二律

2B

B v N mg m R -= ②

将①代入,解得 N B =3mg 在C 点:N C =mg

(3) m :A →D :∵动能定理 211022

D mgR mv =-

D v ∴30 .

12.固定的轨道ABC 如图所示,其中水平轨道AB 与半径为R /4的光滑圆弧轨道BC 相连接,AB 与圆弧相切于B 点。质量为m 的小物块静止在水一平轨道上的P 点,它与水平轨道间的动摩擦因数为μ=0.25,PB =2R 。用大小等于2mg 的水平恒力推动小物块,当小物块运动到B 点时,立即撤去推力(小物块可视为质点)

(1)求小物块沿圆弧轨道上升后,可能达到的最大高度H ; (2)如果水平轨道AB 足够长,试确定小物块最终停在何处? 解:

(1)13 m :P →B ,根据动能定理:

()211

202

F f R mv -=-

其中:F =2mg ,f =μmg

∴ v 2

1=7Rg

m :B →C ,根据动能定理:

22

211122

mgR mv mv -=-

∴ v 22=5Rg

m :C 点竖直上抛,根据动能定理:

2

2

102

mgh mv -=- ∴ h =2.5R

∴ H=h +R =3.5R

13

也可以整体求解,解法如下:

m :B →C ,根据动能定理: 2200F R f R mgH ?-?-=- 其中:F =2mg ,f =μmg

∴ 3.5

H R =

B

C

B

R/ C

D

(2)物块从H 返回A 点,根据动能定理:

mgH -μmgs =0-0 ∴ s =14R

小物块最终停在B 右侧14R 处

13.如图所示,位于竖直平面内的光滑轨道,由一段斜的直轨道与之相切的圆形轨道连接而成,圆形轨道的半径为R 。一质量为m 的小物块(视为质点)从斜轨道上某处由静止开始下滑,然后沿圆形轨道运动。(g 为重力加速度)

(1)要使物块能恰好通过圆轨道最高点,求物块初始位置相对于圆形轨道底部的高度h 多大; (2)要求物块能通过圆轨道最高点,且在最高点与轨道间的压力不能超过5mg 。求物块初始位置相对于圆形轨道底部的高度h 的取值范围。 解:

(1) m :A →B →C 过程:根据动能定理: 21

(2)02

mg h R mv -=- ① 物块能通过最高点,轨道压力N =0

∵牛顿第二定律 2

v mg m R

= ②

∴ h =2.5R

(2)若在C 点对轨道压力达最大值,则 m :A’→B →C 过程:根据动能定理:

2max 2mgh mgR mv '-= ③

物块在最高点C ,轨道压力N =5mg ,∵牛顿第二定律

2

v mg N m R

'+= ④

∴ h =5R

∴ h 的取值范围是:2.55R h R ≤≤

14.倾角为θ=45°的斜面固定于地面,斜面顶端离地面的高度h 0=1m ,斜面底端有一垂直于斜而的固定挡板。在斜面顶端自由释放一质量m =0.09kg 的小物块(视为质点)。小物块与斜面之间的动摩擦因数μ=0.2。当小物块与挡板碰撞后,将以原速返回。重力加速度g =10m/s 2。试求: (1)小物块与挡板发生第一次碰撞后弹起的高度;

(2)小物块从开始下落到最终停在挡板处的过程中,小物块的总路程。 解: (1) 设弹起至B 点,则m :A →C →B 过程:根据动能定理:

01

01()cos45()00sin 45sin 45h h mg h h mg μ--+=-

∴ 100122

m 133

h h h μμ-=

==+ (2) m :从A 到最终停在C 的全过程:根据动能定理:

0cos4500o mgh mg s μ-?=-

∴ s =

μ

2h

15.下图是一种过山车的简易模型,它由水平轨道和在竖直平面内的两个圆形轨道组成,B 、C 分别是两个圆形轨道的最低点,半径R 1=2.0m 、R 2=1.4m 。一个质量为m =1.0kg 的质点小球,从轨道的左侧A 点以v 0=12.0m/s 的初速度沿轨道向右运动,A 、B 间距L 1=6.0m 。小球与水平轨道间的动摩擦因数μ=0.2。两个圆形轨道是光滑的,重力加速度g =10m/s 2。(计算结果小数点后保留一位数字)试求:

(1)小球在经过第一个圆形轨道的最高点时,轨道对小球作用力的大小; (2)如果小球恰能通过第二个圆形轨道,B 、C 间距L 2是多少; 解:

(1)设m 经圆R 1最高点D 速度v 1,m :A →D 过程:根据动能定理:

22

1110

122

mgL mgR mv mv μ--=- ① m 在R 1最高点D 时,∵牛二律: F +mg =m 1

21

R v ②

由①②得: F =10.0N ③

(2)设m 在R 2最高点E 速度v 2,∵牛二律:

mg =m 2

22

R v ④

m :A →D 过程:根据动能定理:

-μmg (L 1+ L 2)-2mgR 2=21mv 22

-2

1mv 2

0 ⑤ 由④⑤得: L 2=12.5m

16.如图所示,半径R =0.4m 的光滑半圆环轨道处于竖直平面内,半圆环与粗糙的水平地面相切于圆环的低点A ,一质量m =0.10kg 的小球,以初速度v 0=7.0m/s 在水平地面上自O 点向左做

加速度a =3.0m/s 2

的匀减速直线运动,运动4.0m 后,冲上竖直半圆环,最后小球落在C 点。求A 、C 间的距离(取重力加速度g =10m/s 2)。 解:

m :O →A 过程:根据动能定理:

∵ v 2A =v 2

B -2as AB ∴ v A =5m/s

m :A →B 过程:根据动能定理:

∵ -mg 2R =21mv 2B -21

mv 2A ∴ v B =3m/s

m :B →C 过程:根据动能定理:

∵02

122

x v t R gt =???=?? ∴ x =v 0g

R

4=1.2m

17.如图所示,某滑板爱好者在离地h =1.8m 高的平台上滑行,水平离开A 点后落在水平地面的B 点,其水平位移s 1=3m ,着地时由于存在能量损失,着地后速度变为v =4m/s ,并以此为初

速沿水平地面滑行s 2=8m 后停止,已知人与滑板的总质量m =60kg 。求:(空气阻力忽略不计,g =10m/s 2)

(1)人与滑板在水平地面滑行时受到的平均阻力大小; (2)人与滑板离开平台时的水平初速度; (3)着地过程损失的机械能。 解:

(1) 人:B →C 过程:根据动能定理:

∵ 22

1c o s 18002

f s m v =-

∴ f =22

2s mv =60N

(2) 人:B →C 过程做平抛运动:

∵02

12

x v t h gt =???=?? ∴ v 0=h

g

s 21

=5m/s (3) 人:B →C 过程:设PGB 0E =:

∵ 22011(0)()1350J

22E mv mv mgh ?=+-+=-

∴ 1350J

E E =?=损

最新高考物理动能与动能定理练习题及答案

最新高考物理动能与动能定理练习题及答案 一、高中物理精讲专题测试动能与动能定理 1.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。圆弧轨道的半径为R = 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心D 的连线与竖直方向成37?角,MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。最右侧是一个半径为r =0.4m 的半圆弧轨道,C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在D 点平滑连接。已知重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。 (1)求小物块经过B 点时对轨道的压力大小; (2)若MN 的长度为L 0=6m ,求小物块通过C 点时对轨道的压力大小; (3)若小物块恰好能通过C 点,求MN 的长度L 。 【答案】(1)62N (2)60N (3)10m 【解析】 【详解】 (1)物块做平抛运动到A 点时,根据平抛运动的规律有:0cos37A v v ==? 解得:04 m /5m /cos370.8 A v v s s = ==? 小物块经过A 点运动到B 点,根据机械能守恒定律有: ()2211cos3722 A B mv mg R R mv +-?= 小物块经过B 点时,有:2 B NB v F mg m R -= 解得:()232cos3762N B NB v F mg m R =-?+= 根据牛顿第三定律,小物块对轨道的压力大小是62N (2)小物块由B 点运动到C 点,根据动能定理有: 22011222 C B mgL mg r mv mv μ--?= - 在C 点,由牛顿第二定律得:2 C NC v F mg m r += 代入数据解得:60N NC F = 根据牛顿第三定律,小物块通过C 点时对轨道的压力大小是60N

最新高考物理动能定理的综合应用常见题型及答题技巧及练习题(含答案)

最新高考物理动能定理的综合应用常见题型及答题技巧及练习题(含答案) 一、高中物理精讲专题测试动能定理的综合应用 1.如图所示,半径为R =1 m ,内径很小的粗糙半圆管竖直放置,一直径略小于半圆管内径、质量为m =1 kg 的小球,在水平恒力F =250 17 N 的作用下由静止沿光滑水平面从A 点运动到B 点,A 、B 间的距离x = 17 5 m ,当小球运动到B 点时撤去外力F ,小球经半圆管道运动到最高点C ,此时球对外轨的压力F N =2.6mg ,然后垂直打在倾角为θ=45°的斜面上(g =10 m/s 2).求: (1)小球在B 点时的速度的大小; (2)小球在C 点时的速度的大小; (3)小球由B 到C 的过程中克服摩擦力做的功; (4)D 点距地面的高度. 【答案】(1)10 m/s (2)6 m/s (3)12 J (4)0.2 m 【解析】 【分析】 对AB 段,运用动能定理求小球在B 点的速度的大小;小球在C 点时,由重力和轨道对球的压力的合力提供向心力,由牛顿第二定律求小球在C 点的速度的大小;小球由B 到C 的过程,运用动能定理求克服摩擦力做的功;小球离开C 点后做平抛运动,由平抛运动的规律和几何知识结合求D 点距地面的高度. 【详解】 (1)小球从A 到B 过程,由动能定理得:212 B Fx mv = 解得:v B =10 m/s (2)在C 点,由牛顿第二定律得mg +F N =2 c v m R 又据题有:F N =2.6mg 解得:v C =6 m/s. (3)由B 到C 的过程,由动能定理得:-mg ·2R -W f =22 1122 c B mv mv - 解得克服摩擦力做的功:W f =12 J (4)设小球从C 点到打在斜面上经历的时间为t ,D 点距地面的高度为h , 则在竖直方向上有:2R -h = 12 gt 2

【物理】物理动能定理的综合应用练习题及答案

【物理】物理动能定理的综合应用练习题及答案 一、高中物理精讲专题测试动能定理的综合应用 1.如图所示,半径2R m =的四分之一粗糙圆弧轨道AB 置于竖直平面内,轨道的B 端切线水平,且距水平地面高度为h =1.25m ,现将一质量m =0.2kg 的小滑块从A 点由静止释 放,滑块沿圆弧轨道运动至B 点以5/v m s =的速度水平飞出(g 取210/m s ).求: (1)小滑块沿圆弧轨道运动过程中所受摩擦力做的功; (2)小滑块经过B 点时对圆轨道的压力大小; (3)小滑块着地时的速度大小. 【答案】(1) 1.5f W J = (2) 4.5N F N = (3)152/v m s = 【解析】 【分析】 【详解】 (1)滑块在圆弧轨道受重力、支持力和摩擦力作用,由动能定理 mgR -W f = 12mv 2 W f =1.5J (2)由牛顿第二定律可知: 2 N v F mg m R -= 解得: 4.5N F N = (3)小球离开圆弧后做平抛运动根据动能定理可知: 22111 m m 22 mgh v v =- 解得: 152m/s v = 2.某物理小组为了研究过山车的原理提出了下列的设想:取一个与水平方向夹角为θ=53°,长为L 1=7.5m 的倾斜轨道AB ,通过微小圆弧与足够长的光滑水平轨道BC 相连,然后在C 处连接一个竖直的光滑圆轨道.如图所示.高为h =0.8m 光滑的平台上有一根轻质弹簧,一端被固定在左面的墙上,另一端通过一个可视为质点的质量m =1kg 的小球压紧弹

簧,现由静止释放小球,小球离开台面时已离开弹簧,到达A 点时速度方向恰沿AB 方向,并沿倾斜轨道滑下.已知小物块与AB 间的动摩擦因数为μ=0.5,g 取10m/s 2,sin53°=0.8.求: (1)弹簧被压缩时的弹性势能; (2)小球到达C 点时速度v C 的大小; (3)小球进入圆轨道后,要使其不脱离轨道,则竖直圆弧轨道的半径R 应该满足什么条件. 【答案】(1)4.5J ;(2)10m/s ;(3)R ≥5m 或0<R ≤2m 。 【解析】 【分析】 【详解】 (1)小球离开台面到达A 点的过程做平抛运动,故有 02 3m/s tan y v gh v θ = = = 小球在平台上运动,只有弹簧弹力做功,故由动能定理可得:弹簧被压缩时的弹性势能为 2 01 4.5J 2 p E mv = =; (2)小球在A 处的速度为 5m/s cos A v v θ = = 小球从A 到C 的运动过程只有重力、摩擦力做功,故由动能定理可得 221111sin cos 22 C A mgL mgL mv mv θμθ-= - 解得 ()212sin cos 10m/s C A v v gL θμθ=+-=; (3)小球进入圆轨道后,要使小球不脱离轨道,即小球能通过圆轨道最高点,或小球能在圆轨道上到达的最大高度小于半径; 那么对小球能通过最高点时,在最高点应用牛顿第二定律可得 2 1v mg m R ≤; 对小球从C 到最高点应用机械能守恒可得 221115 2222 C mv mgR mv mgR =+≥ 解得

动能定理典型例题附答案

1、如图所示,质量m=0.5kg的小球从距地面高H=5m处自由下落,到达地面恰能沿凹陷于地面的半圆形槽壁运动,半圆槽半径R=0.4m.小球到达槽最低点时的速率为10m/s,并继续滑槽壁运动直至槽左端边缘飞出,竖直上升,落下后恰好又沿槽壁运动直至从槽右端边缘飞出,竖直上升、落下,如此反复几次.设摩擦力大小恒定不变:(1)求小球第一次离槽上升的高度h.(2)小球最多能飞出槽外几次 (g取10m/s2) 2、如图所示,斜面倾角为θ,滑块质量为m,滑块与斜 面的动摩擦因数为μ,从距挡板为s0的位置以v0的速度 沿斜面向上滑行.设重力沿斜面的分力大于滑动摩擦 力,且每次与P碰撞前后的速度大小保持不变,斜面足 够长.求滑块从开始运动到最后停止滑行的总路程s. 3、有一个竖直放置的圆形轨道,半径为R,由左右两部分组成。如图所示,右半部分AEB是光滑的,左半部分BFA 是粗糙的.现在最低点A给一个质量为m的小球一个水平向右的初速度,使小球沿轨道恰好运动到最高点B,小球在B 点又能沿BFA轨道回到点A,到达A点时对轨道的压力为4mg 1、求小球在A点的速度v0 2、求小球由BFA回到A点克服阻力做的功 * 4、如图所示,质量为m的小球用长为L的轻质细线悬于O点,与O 点处于同一水平线上的P点处有一根光滑的细钉,已知OP = L/2,在A点给小球一个水平向左的初速度v ,发现小球恰能到达跟P点在同一竖直线上的最高点B.则:(1)小球到达B点时的速率(2)若不计空气阻力,则初速度v0为多少 (3)若初速度v0=3gL,则在小球从A到B的过程中克服空气阻力做了多少功v0 E F… R

5、如图所示,倾角θ=37°的斜面底端B 平滑连接着半径r =0.40m 的竖直光滑圆轨道。质量m =0.50kg 的小物块,从距地面h =2.7m 处沿斜面由静止开始下滑,小物块与斜面间的动摩擦因数μ=,求:(sin37°=,cos37°=,g =10m/s 2 ) (1)物块滑到斜面底端B 时的速度大小。 (2)物块运动到圆轨道的最高点A 时,对圆轨道的压力大小。 { 6、质量为m 的小球被系在轻绳一端,在竖直平面内做半径为R 的圆周运动,运动过程中小球受到空气阻力的作用.设某一时刻小球通过轨道的最低点,此时绳子的张力为7mg,此后小球继续做圆周运动,经过半个圆周恰能通过最高点,则在此过程中小球克服空气阻力所做的功为( ) , 7\如图所示,AB 与CD 为两个对称斜面,其上部都足够长,下部 分分别与一个光滑的圆弧面的两端相切,圆弧圆心角为1200 ,半径R=2.0m,一个物体在离弧底E 高度为h=3.0m 处,以初速度V 0=4m/s 沿斜面运动,若物体与两斜面的动摩擦因数均为μ=,则物体在两斜面上(不包括圆弧部分)一共能走多少路程 (g=10m/s 2 ). / 8、如图所示,在光滑四分之一圆弧轨道的顶端a 点,质量为m 的物块(可视为质点)由静止开始下滑,经圆弧最低点b 滑上粗糙水平面,圆弧轨道在b 点与水平轨道平滑相接,物块最终滑至c 点停止.若圆弧轨道半径为R ,物块与水平面间的动摩擦因数为μ, 则:1、物块滑到b 点时的速度为 2、物块滑到b 点时对b 点的压力是 3、c 点与b 点的距离为 θ A B O h A B C D O > E h

动能定理练习题附答案

A 国光中学物理基础练习系列(五) 动能定理 1、一质量为1kg 的物体被人用手由静止向上提高1m ,这时物体的速度是2m/s ,求: (1)物体克服重力做功. (2)合外力对物体做功. (3)手对物体做功. 解:(1) m 由A 到B : G 10J W mgh =-=- 克服重力做功1G G 10J W W ==克 (2) m 由A 到B ,根据动能定理2: 21 02J 2 W mv ∑=-= (3) m 由A 到B :G F W W W ∑=+ F 12J W ∴= 2、一个人站在距地面高h = 15m 处,将一个质量为m = 100g 的石块以v 0 = 10m/s 的速度斜向上抛出. (1)若不计空气阻力,求石块落地时的速度v . (2)若石块落地时速度的大小为v t = 19m/s ,求石块克服空气阻力做的功W . 解:(1) m 由A 到B :根据动能定理:22 01122 mgh mv mv =-20m/s v ∴= (2) m 由A 到B ,根据动能定理3: 22 t 0 1122 mgh W mv mv -=- 1.95J W ∴= 3a 、运动员踢球的平均作用力为200N ,把一个静止的质量为1kg 的球以10m/s 的速度踢出,在水平面上运动60m 后停下. 求运动员对球做的功? 3b 、如果运动员踢球时球以10m/s 迎面飞来,踢出速度仍为10m/s ,则运动员对球做功为多少? 解: (3a)球由O 到A ,根据动能定理4: 2 01050J 2 W mv =-= (3b)球在运动员踢球的过程中,根据动能定理5: 2211 022 W mv mv =-= 1 不能写成:G 10J W mgh ==. 在没有特别说明的情况下,G W 默认解释为重力所做的功,而在这个过程中重 力所做的功为负. 2 也可以简写成:“m :A B →: k W E ∑=?”,其中k W E ∑=?表示动能定理. 3 此处写W -的原因是题目已明确说明W 是克服空气阻力所做的功. 4 踢球过程很短,位移也很小,运动员踢球的力又远大于各种阻力,因此忽略阻力功. 5 结果为0,并不是说小球整个过程中动能保持不变,而是动能先转化为了其他形式的能(主要是弹性势能,然后其他形式的能又转化为动能,而前后动能相等. v m v 'O A → A B →

动能定理典型基础例题

动能定理典型基础例题 应用动能定理解题的基本思路如下: ①确定研究对象及要研究的过程 ②分析物体的受力情况,明确各个力是做正功还是做负功,进而明确合外力的功 ③明确物体在始末状态的动能 ④根据动能定理列方程求解。 例1.质量M=×103 kg 的客机,从静止开始沿平直的跑道滑行,当滑行距离S=×lO 2 m 时,达到起飞速度ν=60m/s 。求: (1)起飞时飞机的动能多大 (2)若不计滑行过程中所受的阻力,则飞机受到的牵引力为多大 (3)若滑行过程中受到的平均阻力大小为F=×103 N ,牵引力与第(2)问中求得的值相等,则要达到上述起飞速度,飞机的滑行距离应多大 ~ 例2.一人坐在雪橇上,从静止开始沿着高度为 15m 的斜坡滑下,到达底部时速度为10m/s 。人和雪橇的总质量为60kg ,下滑过程中克服阻力做的功。 例3.在离地面高为h 处竖直上抛一质量为m 的物块,抛出时的速度为v 0,当它落到地面时速度为v ,用g 表示重力加速度,则在此过程中物块克服空气阻力所做的功等于:( ) 例4.质量为m 的小球被系在轻绳一端,在竖直平面内做半径为R 的圆周运动,运动过程中小球受到空气阻力的作用。设某一时刻小球通过轨道的最低点,此时绳子的张力为7mg ,此后小球继续做圆周运动,经过半个圆周恰能通过最高点,则在此过程中小球克服空气阻力所做的功为:( ) A . 4mgR B .3mgR C .2 mgR D .mgR 例5.如图所示,质量为m 的木块从高为h 、倾角为α的斜面顶端由静止滑下。到达斜面底端时与固定不动的、与斜面垂直的挡板相撞,撞后木块以与撞前相同大小的速度反向弹回,木块运动到 高 2 h 处速度变为零。求: (1)木块与斜面间的动摩擦因数 (2)木块第二次与挡板相撞时的速度 (3)木块从开始运动到最后静止,在斜面上运动的总路程 , 例6.质量m=的物块(可视为质点)在水平恒力F 作用下,从水平面上A 点由静止开始运动,运动一段距离撤去该力,物块继续滑行t=停在B 点,已知A 、B 两点间的距离s=,物块与水平面间的动摩擦因数μ=,求恒力F 多大。(g=10m/s 2 ) 1、在光滑水平地面上有一质量为20kg 的小车处于静止状态。用30牛水平方向的力推小车,经过多大距离小车才能达到3m/s 的速度。 2、汽车以15m/s 的速度在水平公路上行驶,刹车后经过20m 速度减小到5m/s ,已知汽车质量是,求刹车动力。(设汽车受到的其他阻力不计) 3、一个质量是的小球在离地5m 高处从静止开始下落,如果小球下落过程中所受的空气阻力是,求它落地时的速度。 4、一辆汽车沿着平直的道路行驶,遇有紧急情况而刹车,刹车后轮子只滑动不滚动,从刹车开始 到汽车停下来,汽车前进12m 。已知轮胎与路面之间的滑动摩擦系数为,求刹车前汽车的行驶速度。 5、一辆5吨的载重汽车开上一段坡路,坡路上S=100m ,坡顶和坡底的高度差h=10m ,汽车山坡前的速度是10m/s ,上到坡顶时速度减为s 。汽车受到的摩擦阻力时车重的倍。求汽车的牵引力。 6、质量为2kg 的物体,静止在倾角为30o 的斜面的底端,物体与斜面间的摩擦系数为,斜面长1m ,用30N 平行于斜面的力把物体推上斜面的顶端,求物体到达斜面顶端时的动能。 7、质量为的铅球从离沙坑面高处自由落下,落入沙坑后在沙中运动了后停止,求沙坑对铅球的平均阻力。 ^ h m

高中物理动能与动能定理解题技巧及经典题型及练习题(含答案)

高中物理动能与动能定理解题技巧及经典题型及练习题(含答案) 一、高中物理精讲专题测试动能与动能定理 1.如图所示,半径R =0.5 m 的光滑圆弧轨道的左端A 与圆心O 等高,B 为圆弧轨道的最低点,圆弧轨道的右端C 与一倾角θ=37°的粗糙斜面相切。一质量m =1kg 的小滑块从A 点正上方h =1 m 处的P 点由静止自由下落。已知滑块与粗糙斜面间的动摩擦因数μ=0.5,sin37°=0.6,cos37°=0.8,重力加速度g =10 m/s 2。 (1)求滑块第一次运动到B 点时对轨道的压力。 (2)求滑块在粗糙斜面上向上滑行的最大距离。 (3)通过计算判断滑块从斜面上返回后能否滑出A 点。 【答案】(1)70N ; (2)1.2m ; (3)能滑出A 【解析】 【分析】 【详解】 (1)滑块从P 到B 的运动过程只有重力做功,故机械能守恒,则有 ()21 2 B mg h R mv += 那么,对滑块在B 点应用牛顿第二定律可得,轨道对滑块的支持力竖直向上,且 ()2 N 270N B mg h R mv F mg mg R R +=+=+= 故由牛顿第三定律可得:滑块第一次运动到B 点时对轨道的压力为70N ,方向竖直向下。 (2)设滑块在粗糙斜面上向上滑行的最大距离为L ,滑块运动过程只有重力、摩擦力做功,故由动能定理可得 cos37sin37cos370mg h R R L mgL μ+-?-?-?=() 所以 1.2m L = (3)对滑块从P 到第二次经过B 点的运动过程应用动能定理可得 ()21 2cos370.542 B mv mg h R mgL mg mgR μ'=+-?=> 所以,由滑块在光滑圆弧上运动机械能守恒可知:滑块从斜面上返回后能滑出A 点。 【点睛】 经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解。

动能定理典型例题

动能定理典型例题

————————————————————————————————作者: ————————————————————————————————日期: ?

动能定理典型例题 【例题】 1、一架喷气式飞机,质量m=5.0×103kg,起飞过程中从静止开始滑跑的路程为s=5.3×102m,达到起飞速度v=60m/s,在此过程中飞机受到的平均阻力是飞机重量的0.02倍(k=0.02)。求飞机受到的牵引力。 2、在动摩擦因数为μ的粗糙水平面上,有一个物体的质量为m,初速度为V1,在与 运动方向相同的恒力F的作用下发生一段位移S,如图所示,试求物体的末速度V2。 拓展:若施加的力F变成斜向右下方且与水平方向成θ角,求物体的末速度V2 V滑上动摩擦因数为μ的粗糙水平面上,最后3、一个质量为m的物体以初速度 静止在水平面上,求物体在水平面上滑动的位移。

4、一质量为m的物体从距地面高h的光滑斜面上滑下,试求物体滑到斜面底端 的速度。 拓展1:若斜面变为光滑曲面,其它条件不变,则物体滑到斜面底端的速度是多少? 拓展2:若曲面是粗糙的,物体到达底端时的速度恰好为零,求这一过程中摩擦力做的功。 类型题 题型一:应用动能定理求解变力做功 1、一质量为m的小球,用长为L的轻绳悬挂于O点,小球在水平力F作用下,从平衡位置缓慢地移Q点如图所示,则此过程中力F所做的功为() A.mgLcos0 B.FLsinθ C.FLθ?D.(1cos). - mgLθ

2、如图所示,质量为m的物体静放在光滑的平台上,系在物体上的绳子跨过光 V向右匀速运动的人拉着,设人从地面上由平台的滑的定滑轮由地面上以速度 边缘向右行至绳与水平方向成30角处,在此过程中人所做的功为多少? 3、一个质量为m的小球拴在钢绳的一端,另一端用大小为F1的拉力作用,在水平面上做半径为R1的匀速圆周运动(如图所示),今将力的大小改为F2,使小球仍在水平面上做匀速圆周运动,但半径变为R2,小球运动的半径由R1变为R2过程中拉力对小球做的功多大? 4、如图所示,AB为1/4圆弧轨道,半径为R=0.8m,BC是水平轨道,长S =3m,BC处的摩擦系数为μ=1/15,今有质量m=1kg的物体,自A点从静止起下滑到C点刚好停止。求物体在轨道AB段所受的阻力对物体做的功。

动能定理习题(附答案)

A 1、一质量为1kg 的物体被人用手由静止向上提高1m ,这时物体的速度是2m/s ,求: (1)物体克服重力做功. (2)合外力对物体做功. (3)手对物体做功. 解:(1) m 由A 到B : G 10J W m g h =-=- 克服重力做功1G G 10J W W ==克 (2) m 由A 到B ,根据动能定理2: 21 02J 2 W mv ∑=-= (3) m 由A 到B :G F W W W ∑=+ F 12J W ∴= 2、一个人站在距地面高h = 15m 处,将一个质量为m = 100g 的石块以v 0 = 10m/s 的速度斜向 上抛出. (1)若不计空气阻力,求石块落地时的速度v . (2)若石块落地时速度的大小为v t = 19m/s ,求石块克服空气阻力做的功W . 解:(1) m 由A 到B :根据动能定理:22 1122mgh mv mv =-20m/s v ∴= (2) m 由A 到B ,根据动能定理3: 22 t 0 1122 mgh W mv mv -=- 1.95J W ∴= 3a 、运动员踢球的平均作用力为200N ,把一个静止的质量为1kg 在水平面上运动60m 后停下. 求运动员对球做的功? 3b 、如果运动员踢球时球以10m/s 迎面飞来,踢出速度仍为10m/s ,则运动员对球做功为多少? 解: (3a)球由O 到A ,根据动能定理4: 2 01050J 2W mv =-= (3b)球在运动员踢球的过程中,根据动能定理5 : 2211 022 W mv mv =-= 4、在距离地面高为H 处,将质量为m 的小钢球以初速度v 0竖直下抛,落地后,小钢球陷入泥土中的深度为h 求: (1)求钢球落地时的速度大小v . (2)泥土对小钢球的阻力是恒力还是变力? 1 不能写成:G 10J W mgh ==. 在没有特别说明的情况下,G W 默认解释为重力所做的功,而在这个过程中重 力所做的功为负. 2 也可以简写成:“m :A B →:k W E ∑=? ”,其中k W E ∑=?表示动能定理. 3 此处写W -的原因是题目已明确说明W 是克服空气阻力所做的功. 4 踢球过程很短,位移也很小,运动员踢球的力又远大于各种阻力,因此忽略阻力功. 5 结果为0,并不是说小球整个过程中动能保持不变,而是动能先转化为了其他形式的能(主要是弹性势能,然后其他形式的能又转化为动能,而前后动能相等. v m v 'O A → A B →

高考物理动能与动能定理常见题型及答题技巧及练习题(含答案)

高考物理动能与动能定理常见题型及答题技巧及练习题(含答案) 一、高中物理精讲专题测试动能与动能定理 1.某小型设备工厂采用如图所示的传送带传送工件。传送带由电动机带动,以2m/s v =的速度顺时针匀速转动,倾角37θ=?。工人将工件轻放至传送带最低点A ,由传送带传送至最高点B 后再由另一工人运走,工件与传送带间的动摩擦因数为7 8 μ= ,所运送的每个工件完全相同且质量2kg m =。传送带长度为6m =L ,不计空气阻力。(工件可视为质点, sin370.6?=,cos370.8?=,210m /s g =)求: (1)若工人某次只把一个工件轻放至A 点,则传送带将其由最低点A 传至B 点电动机需额外多输出多少电能? (2)若工人每隔1秒将一个工件轻放至A 点,在传送带长时间连续工作的过程中,电动机额外做功的平均功率是多少? 【答案】(1)104J ;(2)104W 【解析】 【详解】 (1)对工件 cos sin mg mg ma μθθ-= 22v ax = 1v at = 12s t = 得 2m x = 12x vt x ==带 2m x x x =-=相带 由能量守恒定律 p k E Q E E =+?+?电 即 21 cos sin 2 E mg x mgL mv μθθ=?++电相 代入数据得

104J E =电 (2)由题意判断,每1s 放一个工件,传送带上共两个工件匀加速,每个工件先匀加速后匀速运动,与带共速后工件可与传送带相对静止一起匀速运动。匀速运动的相邻的两个工件间距为 2m x v t ?=?= L x n x -=? 得 2n = 所以,传送带上总有两个工件匀加速,两个工件匀速 则传送带所受摩擦力为 2cos 2sin f mg mg μθθ=+ 电动机因传送工件额外做功功率为 104W P fv == 2.滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来.如图所示是滑板运动的轨道,BC 和DE 是两段光滑圆弧形轨道,BC 段的圆心为O 点、圆心角 θ=60°,半径OC 与水平轨道CD 垂直,滑板与水平轨道CD 间的动摩擦因数μ=0.2.某运动员从轨道上的A 点以v 0=3m/s 的速度水平滑出,在B 点刚好沿轨道的切线方向滑入圆弧轨道BC ,经CD 轨道后冲上DE 轨道,到达E 点时速度减为零,然后返回.已知运动员和滑板的总质量为m =60kg ,B 、E 两点与水平轨道CD 的竖直高度分别为h =2m 和H =2.5m.求: (1)运动员从A 点运动到B 点过程中,到达B 点时的速度大小v B ; (2)水平轨道CD 段的长度L ; (3)通过计算说明,第一次返回时,运动员能否回到B 点?如能,请求出回到B 点时速度的大小;如不能,请求出最后停止的位置距C 点的距离. 【答案】(1)v B =6m/s (2) L =6.5m (3)停在C 点右侧6m 处 【解析】 【分析】 【详解】 (1)在B 点时有v B = cos60? v ,得v B =6m/s (2)从B 点到E 点有2 102 B mgh mgL mgH mv μ--=- ,得L =6.5m

【物理】物理动能定理的综合应用题20套(带答案)

【物理】物理动能定理的综合应用题20套(带答案) 一、高中物理精讲专题测试动能定理的综合应用 1.北京老山自行车赛场采用的是250m 椭圆赛道,赛道宽度为7.6m 。赛道形如马鞍形,由直线段、过渡曲线段以及圆弧段组成,圆弧段倾角为45°(可以认为赛道直线段是水平的,圆弧段中线与直线段处于同一高度)。比赛用车采用最新材料制成,质量为9kg 。已知直线段赛道每条长80m ,圆弧段内侧半径为14.4m ,运动员质量为61kg 。求: (1)运动员在圆弧段内侧以12m/s 的速度骑行时,运动员和自行车整体的向心力为多大; (2)运动员在圆弧段内侧骑行时,若自行车所受的侧向摩擦力恰为零,则自行车对赛道的压力多大; (3)若运动员从直线段的中点出发,以恒定的动力92N 向前骑行,并恰好以12m/s 的速度进入圆弧段内侧赛道,求此过程中运动员和自行车克服阻力做的功。(只在赛道直线段给自行车施加动力)。 【答案】(1)700N;(2)2;(3)521J 【解析】 【分析】 【详解】 (1)运动员和自行车整体的向心力 F n =2(m)M v R + 解得 F n =700N (2)自行车所受支持力为 ()cos45N M m g F += ? 解得 F N 2N 根据牛顿第三定律可知 F 压=F N 2N (3)从出发点到进入内侧赛道运用动能定理可得

W F -W f 克+mgh = 212 mv W F =2 FL h = 1 cos 452 d o =1.9m W f 克=521J 2.在某电视台举办的冲关游戏中,AB 是处于竖直平面内的光滑圆弧轨道,半径 R=1.6m ,BC 是长度为L 1=3m 的水平传送带,CD 是长度为L 2=3.6m 水平粗糙轨道,AB 、CD 轨道与传送带平滑连接,参赛者抱紧滑板从A 处由静止下滑,参赛者和滑板可视为质点,参赛者质量m=60kg ,滑板质量可忽略.已知滑板与传送带、水平轨道的动摩擦因数分别为μ1=0.4、μ2=0.5,g 取10m/s 2.求: (1)参赛者运动到圆弧轨道B 处对轨道的压力; (2)若参赛者恰好能运动至D 点,求传送带运转速率及方向; (3)在第(2)问中,传送带由于传送参赛者多消耗的电能. 【答案】(1)1200N ,方向竖直向下(2)顺时针运转,v=6m/s (3)720J 【解析】 (1) 对参赛者:A 到B 过程,由动能定理 mgR(1-cos 60°)=12 m 2B v 解得v B =4m /s 在B 处,由牛顿第二定律 N B -mg =m 2B v R 解得N B =2mg =1 200N 根据牛顿第三定律:参赛者对轨道的压力 N′B =N B =1 200N ,方向竖直向下. (2) C 到D 过程,由动能定理 -μ2mgL 2=0- 12 m 2C v 解得v C =6m /s B 到 C 过程,由牛顿第二定律μ1mg =ma

高中物理动能与动能定理练习题及答案

高中物理动能与动能定理练习题及答案一、高中物理精讲专题测试动能与动能定理 1.如图所示,圆弧轨道AB是在竖直平面内的1 4 圆周,B点离地面的高度h=0.8m,该处切 线是水平的,一质量为m=200g的小球(可视为质点)自A点由静止开始沿轨道下滑(不计小球与轨道间的摩擦及空气阻力),小球从B点水平飞出,最后落到水平地面上的D 点.已知小物块落地点D到C点的距离为x=4m,重力加速度为g=10m/s2.求: (1)圆弧轨道的半径 (2)小球滑到B点时对轨道的压力. 【答案】(1)圆弧轨道的半径是5m. (2)小球滑到B点时对轨道的压力为6N,方向竖直向下. 【解析】 (1)小球由B到D做平抛运动,有:h=1 2 gt2 x=v B t 解得: 10 410/ 220.8 B g v x m s h ==?= ? A到B过程,由动能定理得:mgR=1 2 mv B2-0 解得轨道半径R=5m (2)在B点,由向心力公式得: 2 B v N mg m R -= 解得:N=6N 根据牛顿第三定律,小球对轨道的压力N=N=6N,方向竖直向下 点睛:解决本题的关键要分析小球的运动过程,把握每个过程和状态的物理规律,掌握圆周运动靠径向的合力提供向心力,运用运动的分解法进行研究平抛运动. 2.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道

后压缩弹簧,并被弹簧以原速率弹回,取,求: (1)弹簧获得的最大弹性势能; (2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能; (3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。 【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m 【解析】 【详解】 (1)当弹簧被压缩到最短时,其弹性势能最大。从A到压缩弹簧至最短的过程中,由动 能定理得:?μmgl+W弹=0?m v02 由功能关系:W弹=-△E p=-E p 解得 E p=10.5J; (2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得 ?2μmgl=E k?m v02 解得 E k=3J; (3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况: ①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得 ?2mgR=m v22?E k 小物块能够经过最高点的条件m≥mg,解得R≤0.12m ②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心 等高的位置,即m v12≤mgR,解得R≥0.3m; 设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得: ?2mgR=m v12-m v02 且需要满足m≥mg,解得R≤0.72m, 综合以上考虑,R需要满足的条件为:0.3m≤R≤0.42m或0≤R≤0.12m。 【点睛】 解决本题的关键是分析清楚小物块的运动情况,把握隐含的临界条件,运用动能定理时要注意灵活选择研究的过程。

高中物理动能定理的综合应用常见题型及答题技巧及练习题(含答案)

高中物理动能定理的综合应用常见题型及答题技巧及练习题(含答案) 一、高中物理精讲专题测试动能定理的综合应用 1.为了研究过山车的原理,某物理小组提出了下列设想:取一个与水平方向夹角为θ=60°、长为L 1=23m 的倾斜轨道AB ,通过微小圆弧与长为L 2= 3 2 m 的水平轨道BC 相连,然后在C 处设计一个竖直完整的光滑圆轨道,出口为水平轨道上D 处,如图所示.现将一个小球从距A 点高为h =0.9m 的水平台面上以一定的初速度v 0水平弹出,到A 点时小球的速度方向恰沿AB 方向,并沿倾斜轨道滑下.已知小球与AB 和BC 间的动摩擦因数均为μ= 3 ,g 取10m/s 2. (1)求小球初速度v 0的大小; (2)求小球滑过C 点时的速率v C ; (3)要使小球不离开轨道,则竖直圆弧轨道的半径R 应该满足什么条件? 【答案】(16m/s (2)6m/s (3)0

动能定理练习题(附答案)解析

动能定理练习题(附答案) 1、一质量为1kg 的物体被人用手由静止向上提高1m ,这时物体的速度是2m/s ,求: (1)物体克服重力做功. (2)合外力对物体做功. (3)手对物体做功. 解: (1) m 由A 到B : G 10J W mgh =-=- 克服重力做功1G G 10J W W ==克 (2) m 由A 到B ,根据动能定理2: 21 02J 2 W mv ∑=-= (3) m 由A 到B : G F W W W ∑=+ F 12J W ∴= 2、一个人站在距地面高h = 15m 处,将一个质量为m = 100g 的石块以v 0 = 10m/s 的速度斜向上抛出. (1)若不计空气阻力,求石块落地时的速度v . (2)若石块落地时速度的大小为v t = 19m/s ,求石块克服空气阻力做的功W . 解: (1) m 由A 到B :根据动能定理: 22 1122mgh mv mv =- 20m/s v ∴= (2) m 由A 到B ,根据动能定理3: 22 t 0 1122 mgh W mv mv -=- 1.95J W ∴= 1 不能写成:G 10J W mgh ==. 在没有特别说明的情况下,G W 默认解释为重力所做的功,而在这个过程中重 力所做的功为负. 2 也可以简写成:“m :A B →: k W E ∑=?”,其中k W E ∑=?表示动能定理. 3 此处写W -的原因是题目已明确说明W 是克服空气阻力所做的功. A

3a 、运动员踢球的平均作用力为200N ,把一个静止的质量为1kg 的球以10m/s 的速度踢出,在水平面上运动60m 后停下. 求运动员对球做的功? 3b 、如果运动员踢球时球以10m/s 迎面飞来,踢出速度仍为10m/s ,则运动员对球做功为多少? 解: (3a)球由O 到A ,根据动能定理4: 2 01050J 2W mv =-= (3b)球在运动员踢球的过程中,根据动能定理5: 2211 022 W mv mv =-= 4、在距离地面高为H 处,将质量为m 的小钢球以初速度v 0竖直下抛,落地后,小钢球陷入泥土中的深度为h 求: (1)求钢球落地时的速度大小v . (2)泥土对小钢球的阻力是恒力还是变力? (3)求泥土阻力对小钢球所做的功. (4)求泥土对小钢球的平均阻力大小. 解: (1) m 由A 到B :根据动能定理: 22 1122 mgH mv mv =- v ∴(2)变力6. (3) m 由B 到C ,根据动能定理: 2f 1 02mgh W mv +=- ()2 f 012W mv m g H h ∴=--+ (3) m 由B 到C : f cos180W f h =?? 4 踢球过程很短,位移也很小,运动员踢球的力又远大于各种阻力,因此忽略阻力功. 5 结果为0,并不是说小球整个过程中动能保持不变,而是动能先转化为了其他形式的能(主要是弹性势能,然后其他形式的能又转化为动能,而前后动能相等. 6 此处无法证明,但可以从以下角度理解:小球刚接触泥土时,泥土对小球的力为0,当小球在泥土中减速时,泥土对小球的力必大于重力mg ,而当小球在泥土中静止时,泥土对小球的力又恰等于重力mg . 因此可以推知,泥土对小球的力为变力. v m v 'O A → A B → v t v v

高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)含解析

高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)含解析 一、高中物理精讲专题测试动能与动能定理 1.如图所示,水平地面上一木板质量M =1 kg ,长度L =3.5 m ,木板右侧有一竖直固定的四分之一光滑圆弧轨道,轨道半径R =1 m ,最低点P 的切线与木板上表面相平.质量m =2 kg 的小滑块位于木板的左端,与木板一起向右滑动,并以0v 39m /s 的速度与圆弧轨道相碰,木板碰到轨道后立即停止,滑块沿木板冲上圆弧轨道,后又返回到木板上,最终滑离木板.已知滑块与木板上表面间的动摩擦因数μ1=0.2,木板与地面间的动摩擦因数μ2=0.1,g 取10 m/s 2.求: (1)滑块对P 点压力的大小; (2)滑块返回木板上时,木板的加速度大小; (3)滑块从返回木板到滑离木板所用的时间. 【答案】(1)70 N (2)1 m/s 2 (3)1 s 【解析】 【分析】 【详解】 (1)滑块在木板上滑动过程由动能定理得: -μ1mgL = 12mv 2-12 20mv 解得:v =5 m/s 在P 点由牛顿第二定律得: F -mg =m 2 v r 解得:F =70 N 由牛顿第三定律,滑块对P 点的压力大小是70 N (2)滑块对木板的摩擦力F f 1=μ1mg =4 N 地面对木板的摩擦力 F f 2=μ2(M +m )g =3 N 对木板由牛顿第二定律得:F f 1-F f 2=Ma a = 12 f f F F M -=1 m/s 2 (3)滑块滑上圆弧轨道运动的过程机械能守恒,故滑块再次滑上木板的速度等于v =5 m/s 对滑块有:(x +L )=vt -1 2 μ1gt 2 对木板有:x = 12 at 2

动能定理基础练习题汇编

1.下面各个实例中,机械能守恒的是( ) A 、物体沿斜面匀速下滑 B 、物体从高处以0.9g 的加速度竖直下落 C 、物体沿光滑曲面滑下 D 、拉着一个物体沿光滑的斜面匀速上升 3.某人用手将1Kg 物体由静止向上提起1m ,这时物体的速度为2m/s (g 取10m/s 2 ),则下列说法不正确的是( ) A .手对物体做功12J B .合外力做功2J C .合外力做功12J D .物体克服重力做功10J 4.如图所示,某段滑雪雪道倾角为30°,总质量为m(包括雪具在内)的滑雪运动员从距底端高为h 处的雪道上由静止开始匀加速下滑,加速度为 13 g.在他从上向下滑到底端的过程中,下列说法正确的是( ) A .运动员减少的重力势能全部转化为动能 B .运动员获得的动能为13 mgh C .运动员克服摩擦力做功为23 mgh D .下滑过程中系统减少的机械能为 13mgh 5.如图所示,在地面上以速度o v 抛出质量为m 的物体,抛出后物体落在比地面低h 的海平面上,若以地面为零势能参考面,且不计空气阻力。则: A .物体在海平面的重力势能为mgh B .重力对物体做的功为mgh C .物体在海平面上的动能为mgh m +202 1υ

D .物体在海平面上的机械能为 mgh m +202 1υ 7.某游乐场中一种玩具车的运动情况可以简化为如下模型:竖直平面内有一水平轨道AB 与1/4圆弧轨道BC 相切于B 点,如图所示。质量m=100kg 的滑块(可视为质点)从水平轨道上的 P 点在水平向右的恒力F 的作用下由静止出发沿轨道AC 运动,恰好能到达轨道的末端C 点。已知P 点与B 点相距L=6m ,圆轨道BC 的半径R=3m ,滑块与水平轨道AB 间的动摩擦因数μ=0.25,其它摩擦与空气阻力均忽略不计。(g 取10m/s 2)求: (1)恒力F 的大小. (2)滑块第一次滑回水平轨道时离B 点的最大距离 (3)滑块在水平轨道AB 上运动经过的总路程S 参考答案 1.C 【解析】物体在只有重力做功的情况下,机械能守恒,选项A 中,物体受到斜面的阻力作用,阻力做负功,物体机械能减小,A 错;B 选项中有mg-f=ma ,f=0.1mg ,阻力做负功,机械能减小,B 错;D 选项中物体机械能增大,D 错; 3.C 【解析】由动能定理221mv mgh W =-,J mv mgh W 122 12=+=,合外力做功等于动能增量为2J ,B 对;克服重力做功mgh=10J ,C 错

高中物理动能定理的综合应用练习题及答案

高中物理动能定理的综合应用练习题及答案 一、高中物理精讲专题测试动能定理的综合应用 1.如图所示,一条带有竖直圆轨道的长轨道水平固定,底端分别与两侧的直轨道相切,半径R =0.5m 。物块A 以v 0=10m/s 的速度滑入圆轨道,滑过最高点N ,再沿圆轨道滑出,P 点左侧轨道光滑,右侧轨道与物块间的动摩擦因数都为μ=0.4,A 的质量为m =1kg (A 可视为质点) ,求: (1)物块经过N 点时的速度大小; (2)物块经过N 点时对竖直轨道的作用力; (3)物块最终停止的位置。 【答案】(1)5m/s v =;(2)150N ,作用力方向竖直向上;(3)12.5m x = 【解析】 【分析】 【详解】 (1)物块A 从出发至N 点过程,机械能守恒,有 22011 222 mv mg R mv =?+ 得 20445m /s v v gR =-= (2)假设物块在N 点受到的弹力方向竖直向下为F N ,由牛顿第二定律有 2 N v mg F m R += 得物块A 受到的弹力为 2 N 150N v F m mg R =-= 由牛顿第三定律可得,物块对轨道的作用力为 N N 150N F F '== 作用力方向竖直向上 (3)物块A 经竖直圆轨道后滑上水平轨道,在粗糙路段有摩擦力做负功,动能损失,由动能定理,有 2 0102 mgx mv μ-=- 得

12.5m x = 2.如图所示,半径为R =1 m ,内径很小的粗糙半圆管竖直放置,一直径略小于半圆管内径、质量为m =1 kg 的小球,在水平恒力F =250 17 N 的作用下由静止沿光滑水平面从A 点运动到B 点,A 、B 间的距离x = 17 5 m ,当小球运动到B 点时撤去外力F ,小球经半圆管道运动到最高点C ,此时球对外轨的压力F N =2.6mg ,然后垂直打在倾角为θ=45°的斜面上(g =10 m/s 2).求: (1)小球在B 点时的速度的大小; (2)小球在C 点时的速度的大小; (3)小球由B 到C 的过程中克服摩擦力做的功; (4)D 点距地面的高度. 【答案】(1)10 m/s (2)6 m/s (3)12 J (4)0.2 m 【解析】 【分析】 对AB 段,运用动能定理求小球在B 点的速度的大小;小球在C 点时,由重力和轨道对球的压力的合力提供向心力,由牛顿第二定律求小球在C 点的速度的大小;小球由B 到C 的过程,运用动能定理求克服摩擦力做的功;小球离开C 点后做平抛运动,由平抛运动的规律和几何知识结合求D 点距地面的高度. 【详解】 (1)小球从A 到B 过程,由动能定理得:212 B Fx mv = 解得:v B =10 m/s (2)在C 点,由牛顿第二定律得mg +F N =2 c v m R 又据题有:F N =2.6mg 解得:v C =6 m/s. (3)由B 到C 的过程,由动能定理得:-mg ·2R -W f =22 1122 c B mv mv - 解得克服摩擦力做的功:W f =12 J (4)设小球从C 点到打在斜面上经历的时间为t ,D 点距地面的高度为h , 则在竖直方向上有:2R -h = 12 gt 2

相关文档
相关文档 最新文档