文档库 最新最全的文档下载
当前位置:文档库 › 位错中几种关系

位错中几种关系

位错中几种关系
位错中几种关系

在位错理论中,有几组不同的方向之间的关系问题.一共涉及6个“方向”,它们之间相互制约,不可随意确定.对于非混合位错,可归纳为以下几种关系:

①切应力方向、位错运动方向及位错类型之间的关系

这里的切应力,是指外切应力在滑移系上的切应力分量(下同)。这里的位错类型,是指刃型位错的半原子面方向及螺型位错的左旋或右旋(下同),用D表示.由位错运动理论可知,切应力方向与刃型位错线垂直,位错运动方向与半原子面一边的切应力方向一致;切应力与螺型位错线平行,以切应力的力偶旋转方向为四指旋转方向,则左螺型位错的运动方向为左手拇指方向,右螺型位错的运动方向为右手拇指方向.以上三者,知其任意二者则必得其第三者。

②位错线方向、柏氏矢量方向及位错类型之间的关系

刃型位错的柏氏矢量与位错线方向的关系可用右手定则判定(食指朝位错线正向,拇指朝半原子面方向,中指则为柏氏矢量方向);左螺型位错的柏氏矢量与位错线方向平行且反向,右螺型位错的柏氏矢量与位错线方向平行且同向.以上三者,知其任意二者则必得其第三者.

③位错线方向、位错运动方向、顺着柏氏矢量运动的晶体之间的关系

“顺着柏氏矢量运动的晶体”,是指顺着柏氏矢量的方向切动的晶体在滑移面的哪一侧,用右手定则判定.食指朝的正向,中指朝位错运动方向,则拇指那一边就是顺着柏氏矢量运动的晶体.知其任意二者亦可得其第三者.

④切应力方向、柏氏矢量方向、顺着柏氏矢量运动的晶体之间的关系

显然,滑移面两侧晶体相对切动的方向与切应力方向是一致的,已知柏氏矢量的方向和切应力方向,则顺着柏氏矢量运动的晶体便可确定.此三者,知其任意二者亦可得其第三者.

《材料科学基础》教学教案

《材料科学基础》教学教案导论 一、材料科学的重要地位 生产力发展水平,时代发展的标志 二、各种材料概况 金属材料 陶瓷材料 高分子材料 电子材料、光电子材料和超导材料 三、材料性能与内部结构的关系 原子结构、结合键、原子的排列方式、显微组织 四、材料的制备与加工工艺对性能的影响 五、材料科学的意义

第一章材料结构的基本知识 §1-1 原子结构 一、原子的电子排列 泡利不相容原理 最低能量原理 二、元素周期表及性能的周期性变化§1-2 原子结合键 一、一次键 1.离子键 2.共价键 3.金属键 二、二次键 1.范德瓦尔斯键 2.氢键 三、混合键 四、结合键的本质及原子间距 双原子模型 五、结合键与性能 §1-3 原子排列方式 一、晶体与非晶体 二、原子排列的研究方法 §1-4 晶体材料的组织 一、组织的显示与观察

二、单相组织 等轴晶、柱状晶 三、多相组织 §1-5 材料的稳态结构与亚稳态结构 稳态结构 亚稳态结构阿累尼乌斯方程 第二章材料中的晶体结构§ 2-1 晶体学基础 一、空间点阵和晶胞 空间点阵,阵点(结点)晶格、晶胞 坐标系 二、晶系和布拉菲点阵 7 个晶系 14 个布拉菲点阵 表2-1 三、晶向指数和晶面指数 1.晶向指数 确定方法,指数含义,负方向,晶向族2.晶面指数 确定方法,指数含义,负方向,晶向族3.六方晶系的晶向指数和晶面指数 确定方法,换算 4.晶面间距

密排面间距大 5.晶带 相交和平行于某一晶向直线的所有晶面的组合晶带 定律:hu+kv+lw=0 ? 晶向指数和晶面指数确定练习,例题 §2-2 纯金属的晶体结构 一、典型金属晶体结构 体心立方bcc 面心立方fcc 密排六方hcp 1.原子的堆垛方式 面心立方:ABCABCAB—C— 密排六方:ABABA—B — 2.点阵常数 3.晶胞中的原子数 4.配位数和致密度 晶体结构中任一原子周围最邻近且等距离的原子数 晶体结构中原子体积占总体积的百分数 5.晶体结构中的间隙 四面体间隙,八面体间隙 二、多晶型性 :-Fe, :-Fe, :-Fe 例:

《材料科学基础》经典习题及答案全解

材料科学与基础习题集和答案 第七章回复再结晶,还有相图的内容。 第一章 1.作图表示立方晶体的()()()421,210,123晶面及[][][]346,112,021晶向。 2.在六方晶体中,绘出以下常见晶向[][][][][]0121,0211,0110,0112,0001 等。 3.写出立方晶体中晶面族{100},{110},{111},{112}等所包括的等价晶面。 4.镁的原子堆积密度和所有hcp 金属一样,为0.74。试求镁单位晶胞的体积。已知Mg 的密度3 Mg/m 74.1=m g ρ,相对原子质量为24.31,原子半径r=0.161nm 。 5.当CN=6时+Na 离子半径为0.097nm ,试问: 1) 当CN=4时,其半径为多少?2) 当CN=8时,其半径为多少? 6. 试问:在铜(fcc,a=0.361nm )的<100>方向及铁(bcc,a=0.286nm)的<100>方向,原子的线密度为多少? 7.镍为面心立方结构,其原子半径为nm 1246.0=Ni r 。试确定在镍的 (100),(110)及(111)平面上12mm 中各有多少个原子。 8. 石英()2SiO 的密度为2.653Mg/m 。试问: 1) 13 m 中有多少个硅原子(与氧原子)? 2) 当硅与氧的半径分别为0.038nm 与0.114nm 时,其堆积密度为多少(假设原子是球形的)? 9.在800℃时1010个原子中有一个原子具有足够能量可在固体内移 动,而在900℃时910个原子中则只有一个原子,试求其激活能(J/ 原子)。 10.若将一块铁加热至850℃,然后快速冷却到20℃。试计算处理前后空位数应增加多少倍(设铁中形成一摩尔空位所需要的能量为104600J )。

材料科学基础最全名词解释

1.固相烧结:固态粉末在适当的温度,压力,气氛和时间条件下,通过物质与气孔之间的传质,变为坚硬、致密烧结体的过程。 液相烧结:有液相参加的烧结过程。 2.金属键:自由电子与原子核之间静电作用产生的键合力。 3.离子键:金属原子自己最外层的价电子给予非金属原子,使自己成为带正电的正离子,而非金属得到价电子后使自己成为带负电的负离子,这样正负离子靠它们之间的静电引力结合在一起。 共价键:由两个或多个电负性相差不大的原子间通过共用电子对而形成的化学键。氢键:由氢原子同时与两个电负性相差很大而原子半径较小的原子(O,F,N等)相结合而产生的具有比一般次价键大的键力。 弗兰克缺陷:间隙空位对缺陷 肖脱基缺陷:正负离子空位对的 奥氏体:γ铁内固溶有碳和(或)其他元素的、晶体结构为面心立方的固溶体。 布拉菲点阵:除考虑晶胞外形外,还考虑阵点位置所构成的点阵。 不全位错:柏氏矢量不等于点阵矢量整数倍的位错称为不全位错。 玻璃化转变温度:过冷液体随着温度的继续下降,过冷液体的黏度迅速增大,原子间的相互运动变得更加困难,所以当温度降至某一临界温度以下时,即固化成玻璃。这个临界温度称为玻璃化温度Tg。 表面能:表面原子处于不均匀的力场之中,所以其能量大大升高,高出的能量称为表面自由能(或表面能)。 半共格相界:若两相邻晶体在相界面处的晶面间距相差较大,则在相界面上不可能做到完全的一一对应,于是在界面上将产生一些位错,以降低界面的弹性应变能,这时界面上两相原子部分地保持匹配,这样的界面称为半共格界面或部分共格界面。 柏氏矢量:描述位错特征的一个重要矢量,它集中反映了位错区域内畸变总量的大小和方向,也使位错扫过后晶体相对滑动的量。 柏氏矢量物理意义: ①从位错的存在使得晶体中局部区域产生点阵畸变来说:一个反映位错性质以及由位错引起的晶格畸变大小的物理量。 ②从位错运动引起晶体宏观变形来说:表示该位错运动后能够在晶体中引起的相对位移。 部分位错:柏氏矢量小于点阵矢量的位错 包晶转变:在二元相图中,包晶转变就是已结晶的固相与剩余液相反应形成另一固相的恒温转变。 包析反应:由两个固相反应得到一个固相的过程为包析反应。 包析转变:两个一定成分的固相在恒温(T)下转变为一个新的固相的恒温反应。包析转变与包晶转变的相图特征类似,只是包析转变中没有液相,只有固相。 粗糙界面:界面的平衡结构约有一半的原子被固相原子占据而另一半位置空着,这时界面称为微观粗糙界面。 重合位置点阵:当两个相邻晶粒的位相差为某一值时,若设想两晶粒的点阵彼此通过晶界向对方延伸,则其中一些原子将出现有规律的相互重合。由这些原子重合位置所组成的比原来晶体点阵大的新点阵,称为重合位置点阵。 成分过冷;界面前沿液体中的实际温度低于由溶质分布所决定的凝固温度时产生的过冷。

材料科学基础复习资料整理

一.名词解释 塑性韧性强度弹性比功分子键(空间)点阵固溶体间隙固溶体固溶强化位错多晶体单晶体反应扩散柯肯达尔效应二次结晶共晶转变包晶转变共析转变铁素体(非)均匀形核结构起伏成分过冷过冷度加工硬化再结晶淬透性(过)时效回火脆性调幅分解 二. 需掌握的知识点 1. 延性断裂和脆性断裂的区分标准—断裂前有无明显塑性变形。 2. 原子核外电子分布规律遵循的三个原则。 3. 金属键、离子键、共价键、分子键的特点。 4. 混合键比例计算与电负性差的关系。 5. fcc、bcc、hcp的常见金属、一个晶胞内原子数、配位数、致密度、常见滑移系等。 6. 固态合金相分为两大类:固溶体(间隙固溶体与置换固溶体)和中间相(区别点)。 7.影响固溶体溶解度的因素。 8.间隙相和间隙化合物的区别。 9. 晶体缺陷几何特征分类-点、线、面缺陷。 10. 点缺陷的种类及其区别(肖脱基缺陷和弗兰克尔缺陷)。 11.获得过饱和点缺陷的方法及原因。 12. 各类位错运动方向与柏氏矢量、切应力、位错线的位向关系。 13. 位错的主要运动方式;常温下金属塑性变形的方式。 14. 位错的增殖机制:F-R位错增殖机制、双交滑移增殖机制的主要内容。 15.说明柏氏矢量的确定方法。掌握利用柏氏矢量和位错线的位向关系来判断位错类型。 16.两根平行的螺型位错相遇时的相互作用情况。 17.刃型位错和螺型位错的不同点。 18. 大小角度晶界的位向差、常见类型、模型描述、能量等。 19. 扩散第一定律、第二定律的数学表达式及其字母的物理含义。 20. 体扩散的主要机制、适用对象、扩散激活能大小等;短路扩散等;反应扩散与原子扩散;多晶材料的三种扩散途径—晶内、晶界、表面扩散。 21.柯肯达尔效应的含义及说明的问题(重要意义)。 22. 上坡扩散:物质由低浓度→高浓度,说明扩散的真正原因是化学势梯度而非浓度梯度。 23. 反应扩散定义、特点、扩散层增厚速度的决定因素。 24. 影响扩散的主要因素简述及分别叙述。 25. 压力加工合金、铸造合金应选取何种成分的合金及原因。 26. 铁碳合金分类:三大类、七小类。 27.亚、共、过共析钢的室温平衡组织组成、相组成及运用杠杆定律求相对含量。 28.结晶相变的热力学、动力学、能量及结构条件。 29.纯金属凝固时,正、负温度梯度与晶体生长形态的关系;实际合金凝固过程中生长形态 与成分过冷的关系。 30. 结晶的两个过程—晶核形成、晶核长大;纯金属结晶的三个必要条件—过冷、能量起伏 (△G*=1/3Aσ的意义)、结构起伏。 31. 液固界面结构与晶体生长机制(微观生长方式)的对应关系。 32. 凝固速度对枝晶偏析的影响。

金属位错理论

金属位错理论 位错的概念最早是在研究晶体滑移过程时提出来的。当金属晶体受力发生塑性变形时,一般是通过滑移过程进行的,即晶体中相邻两部分在切应力作用下沿着一定的晶面晶向相对滑动,滑移的结果在晶体表面上出现明显的滑移痕迹——滑移线。为了解释此现象,根据刚性相对滑动模型,对晶体的理论抗剪强度进行了理论计算,所估算出的使完整晶体产生塑性变形所需的临界切应力约等于G/30,其中G为切变模量。但是,由实验测得的实际晶体的屈服强度要比这个理论值低3~4数量级。为解释这个差异,1934年,Taylor,Orowan和Polanyi 几乎同时提出了晶体中位错的概念,他们认为:晶体实际滑移过程并不是滑移面两边的所有原子都同时做刚性滑动,而是通过在晶体存在着的称为位错的线缺陷来进行的,位错再较低应力的作用下就能开始移动,使滑移区逐渐扩大,直至整个滑移面上的原子都先后发生相对滑移。按照这一模型进行理论计算,其理论屈服强度比较接近于实验值。在此基础上,位错理论也有了很大发展,直至20世纪50年代后,随着电子显微镜分析技术的发展,位错模型才为实验所证实,位错理论也有了进一步的发展。目前,位错理论不仅成为研究晶体力学性能的基础理论,而且还广泛地被用来研究固态相变,晶体的光、电、声、磁和热学性,以及催化和表面性质等。 一、位错的基本类型和特征 位错指晶体中某处一列或若干列原子有规律的错排,是晶体原子排列的一种特殊组态。从位错的几何结构来看,可将他们分为两种基本类型,即刃型位错和螺型位错。 1、刃型位错 刃型位错的结构如图1.1所示。设含位错的晶体为简单立方晶体,晶体在大于屈服值的切应力 作用下,以ABCD面为滑移面发生滑移。多余的半排原子面EFGH犹如一把刀的刀刃插入晶体中,使ABCD 面上下两部分晶体之间产生了原子错排,故称“刃型位错”。晶体已滑移部分和未滑移部分的交线EF就称作刃型位错线。

材料科学基础基本概念

晶体缺陷 单晶体:是指在整个晶体内部原子都按照周期性的规则排列。 多晶体:是指在晶体内每个局部区域里原子按周期性的规则排列,但不同局部区域之间原子的排列方向并不相同,因此多晶体也可看成由许多取向不同的小单晶体(晶粒)组成 点缺陷(Point defects):最简单的晶体缺陷,在结点上或邻近的微观区域内偏离晶体结构的正常排列。在空间三维方向上的尺寸都很小,约为一个、几个原子间距,又称零维缺陷。包括空位vacancies、间隙原子interstitial atoms、杂质impurities、溶质原子solutes等。 线缺陷(Linear defects):在一个方向上的缺陷扩展很大,其它两个方向上尺寸很小,也称为一维缺陷。主要为位错dislocations。 面缺陷(Planar defects):在两个方向上的缺陷扩展很大,其它一个方向上尺寸很小,也称为二维缺陷。包括晶界grain boundaries、相界phase boundaries、孪晶界twin boundaries、堆垛层错stacking faults等。 晶体中点阵结点上的原子以其平衡位置为中心作热振动,当振动能足够大时,将克服周围原子的制约,跳离原来的位置,使得点阵中形成空结点,称为空位vacancies 肖脱基(Schottky)空位:迁移到晶体表面或内表面的正常结点位置,使晶体内部留下空位。弗兰克尔(Frenkel)缺陷:挤入间隙位置,在晶体中形成数目相等的空位和间隙原子。 晶格畸变:点缺陷破坏了原子的平衡状态,使晶格发生扭曲,称晶格畸变。从而使强度、硬度提高,塑性、韧性下降;电阻升高,密度减小等。 热平衡缺陷:由于热起伏促使原子脱离点阵位置而形成的点缺陷称为热平衡缺陷(thermal equilibrium defects),这是晶体内原子的热运动的内部条件决定的。 过饱和的点缺陷:通过改变外部条件形成点缺陷,包括高温淬火、冷变形加工、高能粒子辐照等,这时的点缺陷浓度超过了平衡浓度,称为过饱和的点缺陷(supersaturated point defects) 。 位错:当晶格中一部分晶体相对于另一部分晶体发生局部滑移时,滑移面上滑移区与未滑移区的交界线称作位错 刃型位错:当一个完整晶体某晶面以上的某处多出半个原子面,该晶面象刀刃一样切入晶体,这个多余原子面的边缘就是刃型位错。 刃型位错线可以理解为已滑移区和未滑移区的分界线,它不一定是直线 螺型位错:位错附近的原子是按螺旋形排列的。螺型位错的位错线与滑移矢量平行,因此一定是直线 混合位错:一种更为普遍的位错形式,其滑移矢量既不平行也不垂直于位错线,而与位错线相交成任意角度。可看作是刃型位错和螺型位错的混合形式。 柏氏矢量b: 用于表征不同类型位错的特征的一个物理参量,是决定晶格偏离方向与大小的向量,可揭示位错的本质。 位错的滑移(守恒运动):在外加切应力作用下,位错中心附近的原子沿柏氏矢量b方向在滑移面上不断作少量位移(小于一个原子间距)而逐步实现。 交滑移:由于螺型位错可有多个滑移面,螺型位错在原滑移面上运动受阻时,可转移到与之相交的另一个滑移面上继续滑移。如果交滑移后的位错再转回到和原滑移面平行的滑移面上继续运动,则称为双交滑移。 位错滑移的特点 1) 刃型位错滑移的切应力方向与位错线垂直,而螺型位错滑移的切应力方向与位错线平行; 2) 无论刃型位错还是螺型位错,位错的运动方向总是与位错线垂直的;(伯氏矢量方向代表

11.线缺陷、刃型位错

二,线缺陷 线缺陷和位错的概念: 晶体中的线缺陷就是各种类型的位错,它是在晶体某处有一列或若千列原子发生了有规律的错排现象,使长度达几百至几万个原子问距、宽约几个原子间距范围内的原子离开其平衡位置,发生了有规律的错动。 虽然位错有多种类型但其中最简单最基本的类型有两种: 一种是刃型位错,另一种是螺型位错。 位错是一种极为重要的晶体缺陷 它对于金属的强度、断裂和塑性变形等起着决定性的作用 这里主要介绍位错的基本类型和一些基本概念,关于位错的运动、位错的增殖和交割等内容将在第六章中讲述 ()一刃型位错 刃型位错的模型如图1-3所示 1.设有一简单立方晶体,某一原子面在品体内部中断,这个原子平面中断处的边缘就 是一个刃型位错, 2.犹如用一把锋利的钢刀将晶体上半部分切开,沿切口硬插入一额外半原子面一样 3.将刃口处的原子列称之为刃型位错线 刃型位错有正负之分 若额外半原子面位于晶体的上半部,则此处的位错线称为正刃型位错,以符号"丄"表示。反之,若额外半原子面位于晶体的下半部,则称为负刃型位错,以符号"丁"表示。实际上,这种正负之分并无本质上的区别,只是为了表示两者的相对位,便于以后讨论而已。刃型位错的形成原因分析:

1.事实上,晶体中的位错并不是由于外加额外半原子而造成的,它的形成可能由于多 种原因。 2.例如晶体在塑性变形时,由于局部区域的晶体发生滑移即可形成位错,如图1-35所 示。 局部区域的品体发生滑移即可形成位错如图1.35所示 设想在晶体右上角施加一切应力,促使右上部晶体中的原子沿着滑移面ABCD自右至左移动一个原子间距,由于此吋晶体左上角的原子尚未滑移,于是在晶体内部就出现了已滑移区和未滑移区的边界,在边界附近,原子排列的规则性遭到了破坏,此边界线EF 就相当于图1.33中额外半原子面的边缘,其结构恰好是一个正刃型位错。 因此可以把位错理解为品体中已滑移区和未滑移区的边界 从图1.34b可以看出在位错线周围一个有限区域内 1.原子离开了原来的平衡位置即发生了晶格畸变 2.并且在额外半原子面左右两边的畸变是对称的 3.就好像通过额外半原子面对周围原子施加一弹性应力,这些原子就产生一定的弹性 应变一样 4.所以可以把位错线周围的晶格畸变区看成是存在着一个弹性应力场 5.就正刃型位错而言,滑移面上边的原子显得拥挤,原子间距变小,晶格受到压应力; 晶格下边的原子则显得稀疏,原子间距变大,晶格受到拉应力,而在滑移面上,晶格受到的是切应力。 刃型位错不同位置畸变程度: 在位错中心,即额外半原子面的边缘处,晶格畸变最大,随着距位错中心距离的增加,畸变程度逐渐减小。

材料科学基础名词解释

材料科学基础名词解释 第一章固体结构 1、晶体 :原子按一定方式在三维空间内周期性地规则重复排列,有固定熔点、各向异性。 非晶体 :原子没有长程的周期排列,无固定的熔点,各向同性等。 2、中间相 : 两组元 A 和 B 组成合金时,除了形成以 A 为基或以 B 为基的固溶体外,还可能形成晶体结构与 A,B 两组元均不相同的新相。由于它们在二元相图上的位置总是位于中间,故通常把这些相称为中间相。 3、晶体点阵:由实际原子、离子、分子或各种原子集团,按一定几何规律的具体排 列方式称为晶体结构或晶体点阵。 4、配位数 :晶体结构中任一原子周围最近邻且等距离的原子数。 5、晶格:描述晶体中原子排列规律的空间格架称之为晶格。 6、晶胞 :在点阵中取出一个具有代表性的基本单元(最小平行六面体)作为点阵的组成单元,称为晶胞。 7、空间点阵:由周围环境相同的阵点在空间排列的三维列阵成为空间点阵。 8、晶向:在晶格中,穿过两个以节点的任一直线,都代表晶体中一个原子列在空间的位 向,称为晶向。 9、晶面:由节点组成的任一平面都代表晶体的原子平面,称为晶面。 10、晶向指数(晶面指数):为了确定晶面、晶向在晶体中的相对取向、就需要一种 符号,这种符号称为晶面指数和晶向指数。国际上通用的是密勒指数。 一个晶向指数并不是代表一个晶向,二十代表一组互相平行、位向相同的晶向。 11、晶向族:原子排列相同但空间位向不同的所有晶向称为晶向族,以表示。 12、晶面间距:相邻两个平行晶面之间的垂直距离。低指数晶面的面间距较大,而高指数晶面的面间距较小。晶面间距越大,则该晶面上原子排列越紧密,该原子密度越大。 13、配位数:每个原子周围最近邻且等距离的原子数目,称为配位数。 14、多晶型性:有些金属固态在不同温度或不同压力范围内具有不同的晶体结 这种性质构, 称为晶体的多晶型性。 15、多晶型性转变:具有多晶型性的金属在温度或压力变化 由一种结构转变为另一种结时, 构的过程称为多晶型性转变,也称为同素异构转变。 16、晶体缺陷:通常把晶体中原子偏离其平衡位置而出现不完整性的区域称为晶体缺陷。 17、间隙原子:进入点阵间隙总的原子称为间隙原子。间隙原子由同类原子形成称为自间隙原子,由外来杂志原子形成称为异类间隙原子。 19、置换原子:异类原子占据原来基体原子的平衡位置,则称为置换原子。 20、线缺陷:晶体中线缺陷指各种类型的位错,它是晶体中某处一列或若干列原子发生 了有规律的错排现象,错排区是细长的管状畸变区域。 21、位错:位错是晶体中已滑移区与未滑移区的边界线。 22、位错环:在一个圆形区域内部发生滑移,外部不滑移,因而得到封闭的圆周边界。这种 封闭位错叫做位错环。 23、柏氏矢量:可以揭示位错本质并能描述位错行为的矢量,称为柏氏矢量。刃型位 错,柏氏矢量与位错线互相垂直,螺型位错的柏氏矢量与其位错线互相平行。 24、全位错:柏氏矢量的模等于该晶向上原子的间距则此位错称为全位错或者单位为错;如果小于,则称为不全位错。 25、柏氏矢量的特性:柏氏矢量是完整晶体中对应回路的不封闭段,所以 b 是位错周围晶 体弹性变形的叠加, b 越大,弹性性能越高。 26、位错密度:位错密度是单位体积晶体中所含的位错线的总长度或晶体中穿过单位截面面

位错理论

铝合金生产中的冷热变形微观组织 绪论:铝及铝合金在实际生产中,主要以挤压形式进行生产,随着加工工艺和生产技术得到飞速发展,人们对铝及铝合金轧板的要求日益增多。对于变形铝合金来说,由于所含的合金元素不同,需要不同的变形方式:冷变形和热变形。这里简单介绍在这两种变形的微观组织。 关键词:铝及铝合金,变形铝合金,冷变形和热变性。

目录 铝合金生产中的冷热变形微观组织 (1) 绪论 (1) 一、冷变形中铝合金微观组织 (3) 1.1亚结构 (3) 1 .2变形织构 (3) 二、热变形中的纤维组织 (5) 2.1铝合金热变形中的动态回复 (5) 2.2铝合金热变形中的再结晶 (6) 三、铝合金变形微结构的分类 (6) 参考文献 (8)

一、冷变形中铝合金微观组织 铝材冷加工后,随着外形的改变.晶粒皆沿最大主变形发展方向被拉长、拉细或压扁。冷变形程度越大,品粒形状变化也越大。在晶粒被拉长的同时,晶间的夹杂物也跟着拉长,使冷变形后的金属出现纤维组织。 1.1亚结构 亚结构包括两种类型:较低温度下产生的胞状结构以及变形后因回复形成的亚晶[1]。金属晶体经过较大的冷塑性变形后,由于位错密度增大和发生交互作用,大量的位错堆积在局部区域,并相互缠结形成不均匀的分布,在晶粒内部出现了许多取向不同、大小约为10-3~10-6cm 的小晶块,这些小晶块(或小晶粒间)的取向差不大(小于1°),所以它们仍然维持在同一个大晶粒范围内,这些小晶块称为亚晶[2],这种组织称为亚结构。在冷轧变形中,随着应变量的增加,晶粒发生分裂,内部就生成亚结构[3]。亚晶的大小、完整程度、取向差与材料的纯度及形量和变形温度有关。当材料中含有杂质和第二相时,在变形量大和变形温度低的情况下,所形成的亚晶小,亚晶间的取向差大,亚晶的完整性差(即亚晶内晶格的畸变大)。冷变形过程中,亚晶结构对金属的加工硬化起重要作用,由于各晶块的方位个同,其边界又为大量位错缠结,对晶内的进一步滑移起阻碍作用。因此,亚结构可提高铝及铝合金材料的强度。 1.2变形织构 铝及铝合金在冷变形过程中,内部各晶粒间的相互作用及变形发展方向因受外力作用的影响,晶粒要相对于外力轴产生转动,而使其动作的滑移系有朝着作用力轴的方向(或最大主变形方向作定向旋转的趋势。在较大冷变形程度下,晶粒位向由无序状态变成有序状态的情况,称为择优取向。由此所形成的纤维状组织,因其具有严格的位向关系,所以被称为变形织构。变形织构一般分为两种[2]:一是拉拔时形成的织构,称为丝织构,其主要特征是各个晶粒的某一晶向大致与拉拔方向平行,如图1(a)所示;二是轧制时形成的织构,称为板织构,其主要特

材料科学基础最全名词解释

固相烧结:固态粉末在适当的温度,压力,气氛和时间条件下,通过物质与气孔之间的传质,变为坚硬、致密烧结体的过程。 液相烧结:有液相参加的烧结过程。 金属键:自由电子与原子核之间静电作用产生的键合力。 离子键:金属原子自己最外层的价电子给予非金属原子,使自己成为带正电的正离子,而非金属得到价电子后使自己成为带负电的负离子,这样正负离子靠它们之间的静电引力结合在一起。 共价键:由两个或多个电负性相差不大的原子间通过共用电子对而形成的化学键。 氢键:由氢原子同时与两个电负性相差很大而原子半径较小的原子(O,F,N等)相结合而产生的具有比一般次价键大的键力。 弗兰克缺陷:间隙空位对缺陷 肖脱基缺陷:正负离子空位对的 奥氏体:γ铁固溶有碳和(或)其他元素的、晶体结构为面心立方的固溶体。 布拉菲点阵:除考虑晶胞外形外,还考虑阵点位置所构成的点阵。 不全位错:柏氏矢量不等于点阵矢量整数倍的位错称为不全位错。 玻璃化转变温度:过冷液体随着温度的继续下降,过冷液体的黏度迅速增大,原子间的相互运动变得更加困难,所以当温度降至某一临界温度以下时,即固化成玻璃。这个临界温度称为玻璃化温度Tg。 表面能:表面原子处于不均匀的力场之中,所以其能量大大升高,高出的能量称为表面自由能(或表面能)。 半共格相界:若两相邻晶体在相界面处的晶面间距相差较大,则在相界面上不可能做到完全的一一对应,于是在界面上将产生一些位错,以降低界面的弹性应变能,这时界面上两相原子部分地保持匹配,这样的界面称为半共格界面或部分共格界面。 柏氏矢量:描述位错特征的一个重要矢量,它集中反映了位错区域畸变总量的大小和方向,也使位错扫过后晶体相对滑动的量。 柏氏矢量物理意义: ①从位错的存在使得晶体中局部区域产生点阵畸变来说:一个反映位错性质以及由位错引起的晶格畸变大小的物理量。 ②从位错运动引起晶体宏观变形来说:表示该位错运动后能够在晶体中引起的相对位移。部分位错:柏氏矢量小于点阵矢量的位错 包晶转变:在二元相图中,包晶转变就是已结晶的固相与剩余液相反应形成另一固相的恒温转变。 包析反应:由两个固相反应得到一个固相的过程为包析反应。 包析转变:两个一定成分的固相在恒温(T)下转变为一个新的固相的恒温反应。包析转变与包晶转变的相图特征类似,只是包析转变中没有液相,只有固相。 粗糙界面:界面的平衡结构约有一半的原子被固相原子占据而另一半位置空着,这时界面称为微观粗糙界面。 重合位置点阵:当两个相邻晶粒的位相差为某一值时,若设想两晶粒的点阵彼此通过晶界向对方延伸,则其中一些原子将出现有规律的相互重合。由这些原子重合位置所组成的比原来晶体点阵大的新点阵,称为重合位置点阵。 成分过冷;界面前沿液体中的实际温度低于由溶质分布所决定的凝固温度时产生的过冷。超塑性:某些材料在特定变形条件下呈现的特别大的延伸率。 超结构(超点阵,有序固溶体):对某些成分接近于一定的原子比(如AB或AB3)的无序固溶体中,当它从高温缓冷到某一临界温度以下时,溶质原子会从统计随机分布状态过渡到占

材料科学基础经典习题及答案

第一章 材料科学基础 1.作图表示立方晶体的()()()421,210,123晶面及[][ ][]346,112,021晶向。 2.在六方晶体中,绘出以下常见晶向[][][][][]0121,0211,0110,0112,0001等。 3.写出立方晶体中晶面族{100},{110},{111},{112}等所包括的等价晶面。 4.镁的原子堆积密度和所有hcp 金属一样,为0.74。试求镁单位晶胞的体积。已知Mg 的密度3 Mg/m 74.1=mg ρ,相对原子质量为24.31,原子半径r=0.161nm 。 5.当CN=6时+Na 离子半径为0.097nm ,试问: 1) 当CN=4时,其半径为多少?2) 当CN=8时,其半径为多少? 6. 试问:在铜(fcc,a=0.361nm )的<100>方向及铁(bcc,a=0.286nm)的<100>方向,原子的线密度为多少? 7.镍为面心立方结构,其原子半径为nm 1246.0=Ni r 。试确定在镍的 (100),(110)及(111)平面上12mm 中各有多少个原子。 8. 石英()2SiO 的密度为2.653Mg/m 。试问: 1) 13 m 中有多少个硅原子(与氧原子)? 2) 当硅与氧的半径分别为0.038nm 与0.114nm 时,其堆积密度为多少(假设原子是球形的)? 9.在800℃时1010个原子中有一个原子具有足够能量可在固体内移动, 而在900℃时910个原子中则只有一个原子,试求其激活能(J/原子)。 10.若将一块铁加热至850℃,然后快速冷却到20℃。试计算处理前后空位数应增加多少倍(设铁中形成一摩尔空位所需要的能量为104600J )。 11.设图1-18所示的立方晶体的滑移面ABCD 平行于晶体的上、下底面。若该滑移面上有一正方形位错环,如果位错环的各段分别与滑移面各边平行,其柏氏矢量b ∥AB 。 1) 有人认为“此位错环运动移出晶体后,滑移面上产生的滑移台阶应为4个b ,试问这种看法是否正确?为什么? 2)指出位错环上各段位错线的类型,并画出位错运动出晶体后,滑移方向及滑移量。 12.设图1-19所示立方晶体中的滑移面ABCD 平行于晶体的上、下底面。晶体中有一条位错线de fed ,段在滑移面上并平行AB ,ef 段与滑移面垂直。位错的柏氏矢量b 与de 平行而与ef 垂直。试问:1) 欲使de 段位错在ABCD 滑移面上运动而ef 不动,应对晶体施加怎样的应

位错理论的提出

材料史话(2)-位错理论的提出精选 已有 3009 次阅读2013-6-13 23:58|个人分类:材料史话|系统分类:科普集锦|关键词:位错 如果金属晶体受外加载荷或力的作用,位错运动并穿过晶体,那么将引起一个永久性的形状变化,即:塑性变形。其结果是在晶体表面出现了明显的滑移痕迹-我们称之为滑移线。 图 1 金属拉伸变形后产生的滑移线(图片来自网络) 1907年,沃尔特拉(Volterra)解决了一类弹性体中的内应力不连续的弹性问题,把它称为位错。 1926年,弗兰克尔发现理论晶体模型刚性切变强度与与实测临界切应力的巨大差异。理论计算值为G/30;而实际屈服强度比理论值低3~4个数量级。 1934年,波朗依(Michael Polanyi, 1891-1976)、泰勒(Geoffrey Taylor, 1886-1975)、奥罗万(Egon Orowan, 1902-1989)几乎在同时获得了相同的结果,这

一年发表的论文提出位错了的模型。特别是泰勒明确地把沃尔特拉位错引入晶体。 图2 (a)Orowan描绘的刃位错(b)Taylor描绘的刃位错 位错理论认为,晶体实际滑移过程并不是滑移面两边的所有原子都同时做整体刚性滑动,而是通过在晶体存在的称为位错的线缺陷来进行,位错在较低应力作用下就开始移动,使滑移区逐渐扩大,直至整个滑移面上的原子都先后发生相对位移。 Taylor确定应变储存能储存于晶体缺陷处,以弹性畸变能的形式存在。 Orowan对他所观察到Zn晶体受到应力变形时,这种变形是不连续的,而是以不连续跳跃的方式进行。推定每一次形变“跳跃”必定来源于晶体缺陷的运动。 Polanyi的论文完成比Orowan 早几个月,但那时已与Orowan定期接触,了解他的想法,自愿等待一段时间,以便同时提交论文,并约定在同一期德文《物理杂志(Zeitschrift Fuer Physik)》并排发表。 Polanyi后来放弃了晶体塑性研究,成为哲学家; Taylor在单晶和多晶力学分析方面以及加工硬化方面做了大量工作。 Orowan坚持位错研究,在位错运动与其它位错的交互作用以及晶体内部粒子对运动位错阻碍的理论分析方面,提出了许多有重大影响的新思想。 1939年,柏格斯(J.M. Burgers)提出用伯氏矢量表征位错,同时引入了螺位错。 1940年,皮尔斯(Peierls)提出后来1947年由纳巴罗(Nabarro)修正的位错点阵模型,这个模型突破了一般弹性力学范围,提出了位错宽度的概念,估算了位错开动的应力。

材料科学基础复习要点

第一章工程材料中的原子排列 1、晶体中的原子键合方式?各种原子结合键的特点 2、原子核外电子的能级排列?遵循的规律 3、晶体和非晶体的区别?晶体的各向异性及各向同性 4、晶体结构和空间点阵的联系及区别 5、晶向指数和晶面指数的确定及表示方法,重点为面心立方晶体和体心立方晶体中密排面和密排方向的指数 及其表示 6、三种常见的晶体结构的特点,包括晶胞中的原子数、点阵常数与原子半径的关系、致密度、配位数、 晶体中的间隙、原子堆垛方式、密堆程度、晶体的多晶型性 7、铁的三种同素异构体的晶体结构类型 8、空位的类型:肖脱基空位、弗兰克尔空位,空位浓度对晶体物理性能的影响 9、位错的类型,刃位错、螺位错位错线与柏氏矢量间的关系,画图表示,位错密度对材料强度的影响 10、位错环中位错类型的确定(如课本27 页,图 1-38,33 页,图 1-47) 11、位错柏氏矢量的确定、柏氏回路与柏氏矢量的关系 12、柏氏矢量的表示方法、柏氏矢量的模的计算 13、柏氏矢量的守恒性及其推论 14、作用在位错上的力的大小及方向 15、位错的运动方式?刃、螺位错分别能如何运动,运动方向与位错线、柏氏矢量间的关系 16、刃、螺位错应力场的特点?应变能与柏氏矢量的关系,不同类型位错应变的大小比较 17、平行同号位错间的相互作用 18、常见金属晶体中的位错:全位错、不全位错,位错稳定性的判定 19、位错反应的判定 20、晶界的类型及其位错模型,界面能与晶界位向差间的关系 21、相界面的类型 、课后作业51 页习题 1、3、11,复习思考题 1、2、9、10、12第 二章固体中的相结构 1、相的定义 2、固溶体的晶体结构特点、分类及影响固溶体固溶度的因素 3、金属原子间形成无限固溶体的条件

材料科学基础复习资料

1..晶界偏聚:由于晶内与晶界上的畸变能差别或由于空位的存在使得溶质原子或杂质原子 在晶界上的富集现象 2.科垂尔气团:溶质原子在刃型位错周围的聚集的现象,这种气团可以阻碍位错运动,产 生固溶强化效应等结果 3.反应扩散:伴随有化学反应而形成新相的扩散称为反应扩散,如从金属表面向内部渗入 金属时,渗入元素浓度超过溶解度出现新相 4.变形织构:经过塑性变形后原来多晶体中位向不同的晶粒变成取向基本一致,形成晶粒 的择优取向,择优取向后的晶体结构为织构,若织构是在塑性变形中产生的,称为变形织构 5.割阶和扭折:位错运动过程中与其它位错交截后形成一定的位错交截折线,若交截后的 位错折线在原来位错的滑移面上,此位错折线称为扭折,若交截后的位错折线垂直于原来位错的滑移面,此位错折线称为割阶 6.冷加工与热加工:通常根据金属材料的再结晶温度来加以区分,在再结晶温度以上的加 工称为热加工,低于再结晶温度又是室温下的加工称为冷加工 7.面角位错:在位错反应中,fcc晶体中不同滑移面上的全位错分解为不全位错后,领先 不全位错反应生成新的不可动位错,导致出现的三个不全位错之间夹杂两个层错的不可动位错组态; 8.变形织构:多晶体中位向不同的晶粒经过塑性变形后晶粒取向变成大体一致,形成晶粒 的择优取向,择优取向后的晶体结构称为变形织构,织构在变形中产生,称为变形织构; 9.再结晶织构是具有变形织构的金属经过再结晶退火后出现的织构,位向于原变形织构可 能相同或不同,但常与原织构有一定位向关系。 10.再结晶全图:表示冷变形程度、退火温度与再结晶后晶粒大小的关系(保温时间一定) 的图。 11.带状组织:多相合金中的各个相在热加工中可能沿着变形方向形成的交替排列称为带状 组织; 12.加工流线:金属内部的少量夹杂物在热加工中顺着金属流动的方向伸长和分布,形成一 道一道的细线; 13.动态再结晶:低层错能金属由于开展位错宽,位错难于运动而通过动态回复软化,金属 在热加工中由温度和外力联合作用发生的再结晶称为动态再结晶。 14.临界变形度:再结晶后的晶粒大小与冷变形时的变形程度有一定关系,在某个变形程度 时再结晶后得到的晶粒特别粗大,对应的冷变形程度称为临界变形度。二次再结晶:某些金属材料经过严重变形后在较高温度下退火时少数几个晶粒优先长大成为特别粗大的晶粒,周围较细的晶粒逐渐被吞掉的反常长大情况。 15.退火孪晶:某些面心立方金属和合金经过加工和再结晶退火后出现的孪晶组织 16.堆垛层错:密排晶体结构中整层密排面上原子发生滑移错排而形成的一种晶体缺陷 17.弗兰克-瑞德位错源:两个结点被钉扎的位错线段在外力的作用下不断弯曲弓出后,互相 邻近的位错线抵消后产生新位错,原被钉扎错位线段恢复到原状,不断重复产生新位错的,这个不断产生新位错、被钉扎的位错线即为弗兰克-瑞德位错源 18.Orowan机制:合金相中与基体非共格的较硬第二相粒子与位错线作用时不变形,位错 绕过粒子,在粒子周围留下一个位错环使材料得到强化的机制 19.铃木气团:溶质原子在层错区偏聚,由于形成化学交互作用使金属强度升高 20.多边形化:连续弯曲的单晶体中由于在加热中通过位错的滑移和攀移运动,形成规律的 位错壁,成为小角度倾斜晶界,单晶体因而变成多边形的过程 21.空位平衡浓度:金属晶体中,空位是热力学稳定的晶体缺陷,在一定的空位下

材料科学基础 名词汇总

1、化学键 共价键 离子键 范德瓦尔键 金属键 2、晶体 单晶体 准晶 玻璃体 非晶态金属 微晶合金 纳晶合金 3、空间点阵(点阵) 阵点 晶格 晶胞 晶体结构 4、晶向 晶向指数 晶向族 晶面 晶面指数 晶面族 晶带 晶带轴 5、配位数 致密度 6、合金 相 组元 7、固溶体 置换固溶体 间隙固溶体 无限固溶体 有限固溶体 有序固溶体(超结构或超点阵) 缺位固溶体 固溶体的有序化 8、电子浓度 9、中间相 金属间化合物 正常价化合物 间隙相 间隙化合物 拓扑密堆相 稳定化合物 不稳定化合物 10、肖脱基空位 弗仑克尔空位 11、拉应力场 压应力场 拉应力区 压应力区 12、复合(湮灭) 13、位错 林位错 固定位错 面角位错 位错墙 刃型位错 螺型位错 混合位错 位错密度 正刃型位错 负刃型位错 单位位错(全位错或完整位错) 部分位错 不全位错 层错 层错能 弗兰克不全位错 正弗兰克不全位错 负弗兰克不全位错 内禀位错 外禀位错 扩展位错 扩展位错宽度 位错反应 14、伯氏矢量(位错强度) 15、保守运动 16、滑移 交滑移(交叉滑移) 滑移方向 滑移面 滑移带 滑移系 单滑移 多滑移

孪生 攀移 正攀移 负攀移 交割 割阶 扭折 取向因子(施密特因子) 软位向 硬位向 几何硬化 几何软化 滑移割阶 攀移割阶 17、比表面能 层错能 18、内吸附 19、失配度 错配度 20、重合位置密度 1/n重合位置点阵 21、晶界 亚晶界 相界 小角度晶界 大角度晶界 孪晶关系 共格孪晶界 共格界面 半共格界面 非共格界面 光滑界面(小平面界面) 粗糙界面(非小平面界面)22、晶界(晶粒界) 晶体 晶胚 晶核 晶粒 核胚 临界晶核 二次晶轴 23、凝固 结晶 24、近程有序25、线张力 派-纳力 26、能量起伏 27、过冷度 动态过冷度 28、形核率(N) 长大线速度(G) 形核功(ΔGC)(能量起伏) 临界晶核半径(rc)(结构起伏) 有效形核温度 平衡结晶温度 29、定向凝固技术 30、变质处理 变质剂 31、垂直长大 32、均匀形核(匀质形核) 非均匀形核(非匀质形核) 33、对称性 34、合金 相 组元 平衡相图 相律 相区接触法则 领先相 自由度数 35、组织 组织组成体 表象点 36、匀晶转变 匀晶相图 匀晶系 共晶体 共晶合金 共晶转变 第一类共晶 伪共晶 不平衡共晶组织 离异共晶 包晶转变 偏晶转变 熔晶转变 共析转变 包析转变

材料科学基础名词解释汇总

材料科学基础名词解释 晶体 原子按一定方式在三维空间内周期性地规则重复排列,有固定熔点、各向异性。 中间相 两组元A 和B 组成合金时,除了形成以A 为基或以B 为基的固溶体外,还可能形成晶体结构与A,B 两组元均不相同的新相。由于它们在二元相图上的位置总是位于中间,故通常把这些相称为中间相。 配位数 晶体结构中任一原子周围最近邻且等距离的原子数。 有序固溶体 当一种组元溶解在另一组元中时,各组元原子分别占据各自的布拉维点阵的一种固溶体,形成一种各组元原子有序排列的固溶体,溶质在晶格完全有序排列。 非晶体 原子没有长程的周期排列,无固定的熔点,各向同性等。 致密度 晶体结构中原子体积占总体积的百分数。 间隙相 当非金属(X)和金属(M)原子半径的比值rX/rM<0.59 时,形成的具有简单晶体结构的相,称为间隙相。 点阵畸变 在局部范围内,原子偏离其正常的点阵平衡位置,造成点阵畸变。 置换固溶体 当溶质原子溶入溶剂中形成固溶体时,溶质原子占据溶剂点阵的阵点,或者说溶质原子置换了溶剂点阵的部分溶剂原子,这种固溶体就称为置换固溶体。 间隙固溶体 溶质原子分布于溶剂晶格间隙而形成的固溶体称为间隙固溶体。 晶胞 在点阵中取出一个具有代表性的基本单元(最小平行六面体)作为点阵的组成单元,称为晶胞。

金属键 自由电子与原子核之间静电作用产生的键合力。 固溶体 是以某一组元为溶剂,在其晶体点阵中溶入其他组元原子(溶剂原子)所形成的均匀混合的固态溶体,它保持溶剂的晶体结构类型。 空间点阵 指几何点在三维空间作周期性的规则排列所形成的三维阵列,是人为的对晶体结构的抽象。 范德华键 由瞬间偶极矩和诱导偶极矩产生的分子间引力所构成的物理键。 同质异构体 化学组成相同由于热力学条件不同而形成的不同晶体结构。 布拉菲点阵 除考虑晶胞外形外,还考虑阵点位置所构成的点阵。 配位多面体 原子或离子周围与它直接相邻结合的原子或离子的中心连线所构成的多面体,称为原子或离子的配位多面体。 拓扑密堆相 由两种大小不同的金属原子所构成的一类中间相,其中大小原子通过适当的配合构成空间利用率和配位数都很高的复杂结构。由于这类结构具有拓扑特征,故称这些相为拓扑密堆相。 间隙化合物 当非金属(X)和金属(M)原子半径的比值rX/rM>0.59 时,形成具有复杂晶体结构的相。 大角度晶界 多晶材料中各晶粒之间的晶界称为大角度晶界,即相邻晶粒的位相差大于10o的晶界。 固溶强化 由于合金元素(杂质)的加入,导致的以金属为基体的合金的强度得到加强的现象。

第一章:位错理论

第一章 位错理论(补充和扩展) 刃位错应力场: 22222)() 3()1(2y x y x y Gb x ++-- =νπσ 2 2222)() ()1(2y x y x y Gb y +--= νπσ )(y x z σσνσ+= 22222)()()1(2y x y x x Gb yx xy +--= =νπττ 滑移面: x Gb yx xy 1 )1(2νπττ-= = 攀移面 y Gb x 1 )1(2νπσ--= 螺位错应力场: r Gb z z πττθ θ2= = 单位长度位错线能量及张力 2 2 1Gb T W == 单位长度位错线受力 滑移力: b f τ= 攀移力: b f x σ=

位错线的平衡曲率 θθd 2 d sin 2R f T = 当θd 较小时2d 2d sin θθ≈,故 τ 2Gb f T R = = R Gb 2/=τ 两个重要公式: Frank -Read 源开动应力 l Gb /=τ Orowan 应力 λτ/Gb =

位错与位错间的相互作用 1. 不在同一滑移面上平行位错间的相互作用 (1)平行刃型位错 .) ()()1(22 222 22y x y x x b Gb b f yx x +--'±='±=νπτ式中正号表示b 和b '同向;负号表示b 和b '反向。 沿y 轴的作用力y f 即攀移力 .) ()3()1(22 222 22y x y x y b Gb b f x y ++-'='=νπσ)-( b b ', 同号: 0>y f 正攀移 b b ', 反号: 0

相关文档