文档库 最新最全的文档下载
当前位置:文档库 › 温度采集电路课设

温度采集电路课设

温度采集电路课设
温度采集电路课设

目录

1 设计任务及要求 (1)

2 设计方案论证 (1)

3 单元电路设计 (2)

3.1 工作原理 (2)

3.2 时钟振荡电路 (2)

3.3 温度采集电路 (2)

3.3.1 LM35简要说明 (2)

3.3.2 TL082双运算放大器 (3)

3.3.3 温度采集电路 (3)

3.4 A/D转换电路 (4)

3.5 存储电路 (4)

3.6 数码显示电路 (5)

3.6.1 CD4511简要说明 (5)

3.6.2 共阴极数码管 (5)

3.6.3 数码显示电路 (6)

4 原理总图 (7)

5 元器件清单 (7)

6 调试过程及其测试 (8)

6.1 通电前检查 (8)

6.2 通电检查 (8)

6.2.1 555电路脉冲输出波形 (8)

6.2.2 放大器模块的调试 (8)

6.2.3 ADC0804输出调试 (8)

6.2.4 AT28C16的调试 (8)

6.2.5 数码管显示的调试 (8)

6.3 结果分析 (9)

7 总结与体会 (9)

7.1 体会 (9)

7.2 本方案特点及存在的问题 (9)

7.3 改进意见 (9)

参考文献 (10)

1 设计任务及要求

设计并制作一个温度测量与显示系统,基本原理如图8所示。具体要求如下:

图1-1 温度采集系统框图

(1)被测温度范围0 99°C;

(2)显示测量的温度值,精度不低于1°C。

参考元器件:LM35/45,OP07/NE5532/TL082,AT28C16,CD4511。

说明:测试时验证环境温度和90°C热水的测量值。

2 设计方案论证

方案一:采用51子系列单片机为核心,通过将温度采集电路输出的电压在单片机转换输出,送入数码管显示。设计框图如图2-1所示。

图2-1 方案一设计框图

方案二:将温度采集电路输出电压送入数模转换电路,转换成二进制形式后送入EEPROM存储,最后送入数码管显示。设计框图如图2-2所示。

图2-2 方案二设计框图

虽然单片机连接设计简单,但却需要具备一定的汇编语言基础,所以选用方案二。

3 单元电路设计

3.1 工作原理

用温度传感器采集温度输出电压,送入模数转换器,通过555单稳态触发器输入脉冲信号,使其工作,将输出信号存入EPROM中,在送入CD4511将其转换成十进制数在数码管上显示。

3.2 时钟振荡电路

图3-1 NE555单稳态触发电路

单稳态触发器只有一个稳态状态。在未加触发信号之前,触发器处于稳定状态,经触发后,触发器由稳定状态翻转为暂稳状态,暂稳状态保持一段时间后,又会自动翻转回原来的稳定状态。单稳态触发器一般用于延时和脉冲整形电路。

3.3 温度采集电路

3.3.1 LM35简要说明

图3-2 LM35元件图

规格参数

(1)工作电压:直流4~30V;

(2)工作电流:小于133μA

(3)输出电压:+6V~-1.0V

(4)输出阻抗:1mA负载时0.1Ω;

(5)精度:0.5℃精度(在+25℃时);

(6)漏泄电流:小于60μA;

(7)比例因数:线性+10.0mV/℃;

(8)非线性值:±1/4℃;

(9)校准方式:直接用摄氏温度校准;

(10)额定使用温度范围:-55~+150℃。

(11)引脚说明:①电源负GND;②电源正VCC;③信号输出S;

转换公式如式(1),0°C时输出为0V,每升高1°C,输出电压增加10mV。

3.3.2 TL082双运算放大器

图3-3 双运算放大器

TLO82是通用的J-FET双运算放大器。其特点是:较低的输入偏置电压和偏移电流;输出设有短路保护;输入级具有较高的输入阻抗;内建频率补偿电路;较高的压摆率。最大工作电压:VCCmax=+-18V。

3.3.3 温度采集电路

温度采集电路整体连接图如图3-4所示。

图3-4 温度采集电路

3.4 A/D转换电路

图3-5 ADC0804元件图

ADC0804是一款8位、单通道、低价格A/D转换器,主要特点是:模数转换时间大约100us;方便TTL或CMOS标准接口;可以满足差分电压输入;具有参考电压输入端;内含时钟发生器;单电源工作时(0~5)V输入电压范围是0~5V;不需要调零等等。

各个引脚名称及作用:

Vin(+)、Vin(-):两个模拟信号输入端,可以接收单极性、双极性和差模输入信号。

DB0-DB7:具有三态特性数字信号输出端,输出结果为八位二进制结果。

CLKIN:时钟信号输入端。

CLKR:内部时钟发生器的外接电阻端,与CLK端配合可由芯片自身产生时钟脉冲,其频率计算方式是:f ck=1/(1.1RC)。

CS:片选信号输入端,低电平有效。

WR:写信号输入端,低电平启动AD转换。

RD:读信号输入端,低电平输出端有效。

INTR:转换完毕中断提供端,AD转换结束后,低电平表示本次转换已完成。

V REF/2:参考电平输入,决定量化单位。

VCC:芯片电源5V输入。

AGND:模拟电源地线。

DGND:数字电源地线。

3.5 存储电路

图3-6 AT28C16元件图

2KB的EEPROM,存储器,主要用于存储程序和表格数据

需要烧写的程序

:1000000000000100020000030004000005000600DB

:100010000007000800000900001000110000120095

:10002000130000140015000016001700001800004F

:1000300019002000002100220000230024000025D8

:1000400000260000270000280029000030003100B1

:100050000032003300003400350000360000370065

:1000600038000039004000004100420000430044D5

:1000700000004500004600470000480049000050CD

:10008000005100005200530000540000550056007B

:100090000057005800005900600000610062000035

:1000A0006300006400650000660067000068006986

:1000B0000000700071000072000073007400007591

:1000C0000076000077007800007900800000810051

:1000D0000082008300008400850000860087000005

:1000E0008800890000900000910092000093009425

:1000F000000095009600009700980000990000000D

:00000001FF

3.6 数码显示电路

3.6.1 CD4511简要说明

图3-7 CD4511元件图

CD4511 是一片CMOS BCD—锁存/7 段译码/驱动器,用于驱动共阴极LED (数码管)显示器的BCD 码—七段码译码器。

3.6.2 共阴极数码管

图3-8 共阴极数码管

(1)数码管使用条件:

(a)段及小数点上加限流电阻

(b)使用电压:段:根据发光颜色决定;小数点:根据发光颜色决定

(c)使用电流:静态:总电流 80mA(每段 10mA);动态:平均电流 4-5mA 峰值电流 100mA

(2)数码管使用注意事项说明:

(a)数码管表面不要用手触摸,不要用手去弄引角;

(b)焊接温度:260度;焊接时间:5S

(c)表面有保护膜的产品,可以在使用前撕下来。

3.6.3 数码显示电路

数码采集电路整体连接图如图3-9所示。

图3-9 温度采集电路

4 原理总图

5 元器件清单

表5-1 元件清单

6 调试过程及其测试

6.1 通电前检查

电路安装完毕后,经检查电路各部分接线正确,电源、元器件之间无短路,器件无接错现象。

6.2 通电检查

6.2.1 555电路脉冲输出波形

首先将示波器接入555电路三脚,调出方波

6.2.2 放大器模块的调试

将温度传感器与放大器相连,由于放大器放大倍数为3倍,所以测量出放大器1脚电压是温度传感器2脚的电压的3倍。

6.2.3 ADC0804输出调试

与前几个单元模块相连,用万用表测量11-18脚电压,高电平在4V左右,低电平为0V左右。产生的二进制数化成十进制数,所得为测出的温度传感器输出电压的100倍。

6.2.4 AT28C16的调试

给EEPROM导入程序,与前几个模块相连,产生输出,输出应于ADC0804输出电平相等。

6.2.5 数码管显示的调试

将CD4511,数码管与前面模块相连,显示温度,显示数字应是温度传感器输出电压的100倍。

6.3 结果分析

将电烙铁靠近温度传感器,传感器上的示数迅速上升。

7 总结与体会

7.1 体会

通过这次自己动手做温控采集系统,我学到了很多东西. 我学到了不少课本上没有的知识,也锻炼了自己的动手能力,将以前学过的零散的知识串到一起。我学会了如何使用proteus软件,在使用proteus制作电路图时,我发现我有好多元器件都不知道在这个软件中如何表示,通过向别人请教以及上网查才知道。整个图画完了我知道了不少元器件的表示符号。在实际焊电路板时,我懂得了如何解决电路中出现的问题,对各种元器件有了进一步的了解,对于有些元器件要小心分清正负极,在实际焊的过程中,由于疏忽我们就有焊错的,还好及时发现了并加以补救。并且我学会了分析问题解决问题的能力,加深了对所学理论知识的理解和运用。我的动手能力得到了很大的提高,创新意识得到了锻炼。真心感谢这门课让我学到了很多。在以后的学习中我也会深入学习的,为以后毕业设计打好基础。

7.2 本方案特点及存在的问题

本方案连接电路便于思考,连接和检查。但是相较于方案一,电路稳定性较差,元件较多。测温范围小。

7.3 改进意见

学习单片机汇编语言,运用单片机编程控制输出。或者采用更精密芯片。连接电路时,尽可能减少导线连接。

参考文献

[1] 胡向东.传感器与检测技术.机械工业出版社.2013.

[2] 童诗白.模拟电子技术基础.清华大学.高等教育出版社.2013.

[3] 闫石.数字电子技术基础.清华大学.高等教育出版社.2013.

[4]查丽斌.电路与模拟电子技术基础.电子工业出版社.2011.

[5] 张艳花.数字电子技术基础学习指导及习题详解.电子工业出版社.2011.

单片机温度采集显示系统

考试序列号____ 单片机课程设计论文 论文题目:温度采集显示系统 课程名称:单片机课程设计 学院物理与光电工程学院 专业班级 08电子3班 学号 3108009223 姓名梁辉浩 联系方式 任课教师 20 年月日

温度采集显示系统 一、功能和要求: (1)温度测量范围 0 - 99℃。 (2)温度分辨率±1℃。 (3)选择合适的温度传感器。 (4)使用键盘输入温度的最高点和最低点,温度超出范围时候报警。(报警温度不需要保存) 二、系统方案: 方案一:由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D转换电路,感温电路比较麻烦。 方案二:进而考虑到用温度传感器,在单片机电路设计中,大多都是使用传感器,所以这是非常容易想到的,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,就可以满足设计要求。 从以上两种方案,很容易看出,采用方案二,电路比较简单,软件设计也比较简单,故采用了方案二。 三、核心元件的功能 1、AT89C51 AT89S51美国ATMEL公司生产的低功耗,高性能CMOS 8位单片机,片内含4K BytesISP(In-system programmable)的可反 复擦写1000次的Flash只读程序存储器,器 件采用ATMEL公司的高密度、非易失性存储技 术制造,兼容标准MCS-51指令系统及AT89C51 引脚结构,芯片内集成了通用8位中央处理器 和ISP Flash存储单元。单片机AT89S51强大 的功能可为许多嵌入式控制应用系统提供高 性价比的解决方案。 AT89C51芯片的引脚结构如图1所示: 1.1功能特性概括: AT89S51提供以下标准功能:40个引脚、 4K Bytes Flash片内程序存储器、128 Bytes 的随机存取数据存储器(RAM)、32个外部双

PT100温度采集

原理图设计 AD采集 转换显示

其他电路 程序设计 #include #include #define uint unsigned int #define uchar unsigned char sbit led1=P1^0; //数码管位控制 sbit led2=P1^1; sbit led3=P1^2; sbit led4=P1^3; sbit sda=P3^4; //24C02数据端口 sbit scl=P3^3; //24C02时钟线 sbit beef=P3^5;//蜂鸣器驱动控制 sbit rd=P3^7; //A/D转换读信号 sbit wr=P3^6; //A/D转换写信号 sbit s1=P1^4; //按键 sbit s2=P1^5; sbit s3=P1^6; sbit s4=P1^7; uint num,temp,wendu,tiaojie,m; uchar qian,bai,shi,ge,moshi=0,moshi1=0,shangxian=70,xiaxian=20; uchar code table[]={0xA0,0xBB,0x62,0x2A,0x39,0x2C,0x24,0xBA, 0x20,0x28,0x30,0x25,0xE4,0x23,0x64,0x74};//数码管段码

void delay(uint xms) { uint i,j; for(i=xms;i>0;i--) for(j=110;j>0;j--); } /******************************************************** ====================24c02函数========================= *******************************************************/ void delay1(){;;} void start() //开始 { sda=1; delay1(); scl=1; delay1(); sda=0; delay1(); } void stop()//停止 { sda=0; delay1(); scl=1; delay1(); sda=1; delay1(); } void respons()//应答 { uchar i; scl=1; delay1(); while((sda==1)&(i<250))i++; scl=0; delay1(); } void init() //初始化 { sda=1; delay1();

电流采样电路的设计

电流采样电路的设计 文中研制了一套模拟并网发电系统,实现了频率跟踪、最大功率跟踪、相位跟踪、输入欠压保护、输出过流保护、反孤岛效应等功能;采用Atmega16高速单片机,实现了内部集成定时、计数器功能;利用定时器T/C2的快速PWM功能,实现SPWM信号的产生;采用T/C1的输入捕获功能,实现了频率相位监测和跟踪以及对失真度、输入电压、输出电流等物理量的检测与控制。 1 整体方案设计 设计采用Atmega16单片机为主体控制电路,工作过程为:与基准信号同频率、同相位正弦波经过SPWM调制后,输出正弦波脉宽调制信号,经驱动电胳放大,驱动H桥功率管工作,经过滤波器和工频变压器产生于基准信号通频率、同相位的正弦波电流。其中,过流、欠压保护由硬件实现,同步信号采集、频率的采集、控制信号的输出等功能,均由Atmega16完成。系统总体设计框图如图1所示。 2 硬件电路设计 分为DC/AC驱动电路、DC/AC电路和滤波电路3部分和平滑电容C1,电路原理如图2所示。 2.1 DC—AC驱动电路 是由R1、R2、R3、R4、R5、R6、Q3、Q4、P3和P4组成,其中P3和P4是控制信号输入

端,R3和R4为限流电阻。集电极的电流直接影响波形上升沿的陡峭度,集电极电流越大输出的波形越陡峭。因为R2和R1与集电极pn节的寄生电容形成了一个RC充放电的时间常数,集电极pn结的寄生电容无法改变,只有通过改变R1和R2的值来改变时间常数,所以R1和R2值越小,Q3和Q4的集电极电流就越大;RC的充电时间常数越小,波形的上升沿越陡峭,而增加集电极电流,会增加系统的功耗,权衡利弊选择一个合适的值。其次,射级pn 结的寄生电容也会影响Q3和Q4的关断时间和波形上升沿的陡峭度。所以在驱动电路中各加了一个放电回路,即拉地电阻R5和R6,R5和R6的引入,加快了Q3和Q4的关闭速度,这样就使集电极的波形更陡峭。同样在保证基极射极pn不损坏的条件下,基极的电流也是越大越好,但也会带来损耗问题,权衡利弊选择一个合适的值。关于两个电阻的取值,这里假设三极管的放大倍数为β,基极电流Ib,集电极电流Ic,流过R5的电流为I5,流过R3的电流为I3,R3的压降为V3,驱动信号为V,R5的压降为V5,有 实际中R3和R5应该比计算值小,这样是为了让三极管工作在饱和状态,提高系统稳定 性。 2.2 DC-AC电路 是由两只p沟道MOSFET。Q1、Q2和两只n沟道MOSFET Q5、Q6组成。在这里没有采用4只n沟道MOSFET,原因是驱动电路复杂,如果采用上面的驱动电路接近电源的两个导体管不能完全导通,发热量为接近地一侧导体管4倍以上,功耗增加,所以采用对管逆变即减小了功耗,而且驱动电路简单。通过控制4个导体管的开关速度再通过低通滤波器即可实 现DC/AC功能。 2.3 滤波电路 两个肖特基整流二极管1N5822为续流二极管,这里为防止产生负电压,C2、C3、C4、C5、L1、L2组成低通滤波器,其中C5、C6为瓷片电容,C2、C3用电解电容,充放电电流可以流进地,L1、L2为带铁芯的电感,带铁芯的电感对高频的抑制比空心电感更好,电感值 更高。关于参数的选取和截止频率的计算如下 3 采样电路 3.1 电流采样电路的设计 由于终端负载一定,所以电流采样实际等同于一个峰值检测的过程,此电路实际是一个峰值检测电路,P3为信号的2个输入端,调整R10,R11和R17、R18取值来实现峰值测功能,电路中的阻值并不准确,需要实际中根据信号的幅值来调整R10、R11和R17、R18阻值

基于DS18B20的温度采集显示系统的设计

《单片机技术》课程设计任务书(三) 题目:基于DS18B20的温度采集显示系统的设计 一、课程设计任务 传统的温度传感器,如热电偶温度传感器,具有精度高,测量范围大,响应快等优点。但由于其输出的是模拟量,而现在的智能仪表需要使用数字量,有些时候还要将测量结果以数字量输入计算机,由于要将模拟量转换为数字量,其实现环节就变得非常复杂。硬件上需要模拟开关、恒流源、D/A转换器,放大器等,结构庞大,安装困难,造价昂贵。新兴的IC温度传感器如DS18B20,由于可以直接输出温度转换后的数字量,可以在保证测量精度的情况下,大大简化系统软硬件设计。这种传感器的测温范围有一定限制(大多在-50℃~120℃),多适用于环境温度的测量。DS18B20可以在一根数据线上挂接多个传感器,只需要三根线就可以实现远距离多点温度测量。 本课题要求设计一基于DS18B20的温度采集显示系统,该系统要求包含温度采集模块、温度显示模块(可用数码管或液晶显示)和键盘输入模块及报警模块。所设计的系统可以从键盘输入设定温度值,当所采集的温度高于设定温度时,进行报警,同时能实时显示温度值。 二、课程设计目的 通过本次课程设计使学生掌握:1)单总线温度传感器DS18B20与单片机的接口及DS18B20的编程;2)矩阵式键盘的设计与编程;3)经单片机为核心的系统的实际调试技巧。从而提高学生对微机实时控制系统的设计和调试能力。 三、课程设计要求 1、要求可以从键盘上接收温度设定值,当所采集的温度高于设定值时,进行报警(可以是声音报警,也可是光报警) 2、能实时显示温度值,若用Proteus做要求保留一位小数; 四、课程设计内容 1、人机“界面”设计; 2、单片机端口及外设的设计; 3、硬件电路原理图、软件清单。 五、课程设计报告要求 报告中提供如下内容:

多路温度采集系统设计与实现

学校代码:11517 学号:201150712117 HENAN INSTITUTE OF ENGINEERING 毕业设计(论文) 题目多路温度采集系统设计与实现 学生姓名高宇照 专业班级电气工程及其自动化1121 学号201150712117 系(部)电气信息工程学院 指导教师(职称) 张秋慧(讲师) 完成时间2012 年 5 月13日

目录 摘要................................................................................................... I ABSTRACT ........................................................................................... II 1 前言 . (1) 1.1 背景介绍 (1) 1.2 研究设计意义及目的 (1) 1.3 发展情况 (2) 1.4 本设计主要内容 (3) 2 设计任务及方案论证 (4) 2.1 设计任务 (4) 2.2 设计方案的论证 (4) 2.3系统框图设计 (6) 3 多路温度采集系统硬件电路设计 (7) 3.1系统模块及模块介绍 (7) 3.1.1 系统整体模块控制 (7) 3.1.2 模块介绍及原理 (7) 3.2 系统基本硬件组成设计 (14) 3.2.1微机芯片工作电路设计 (14) 3.2.2 温度采集电路设计 (15) 3.2.3LCD1602的显示设计 (17) 3.2.4 报警电路的设计 (18) 3.2.5 电源部分的设计 (19) 3.3 系统设计的电路结构图 (21) 4 系统的软件设计 (22) 4.1 主程序设计 (22) 4.2 子程序设计 (23) 5 系统调试与性能分析 (27) 5.1 系统调试 (27) 5.2 性能分析 (29) 结论 (31) 致谢 (32)

单片机课程设计——温度采集电路

单片机课程设计报告 ————温度采集电路设计与仿真 一、设计目的 1、通过单片机课程设计,熟练掌握C语言与汇编语言的编程方法,将理论联系到实践中去,提高我们的动脑和动手的能力。 2、通过数字采集与控制系统的设计,掌握如何采集数据并在LCD上显示采集的数据合如何控制电机的使用方法,和简单程序的编写,最终提高我们的逻辑抽象能力。 二、设计任务和要求 任务:设计一个能够采集数据和控制电机的系统. 具体要求: (1)通过I/O口扩展5个按键 (2)单片机的P口外接8个拨码开关,作为8位数据输入 (3)通过I/O口外接DS18B20温度传感器,进行温度采集 (4)外接一步进电机,作为控制部分 (5)外接一LCM1602液晶屏,进行数据显示 (6)在PROTEUS软件中设计实现上述功能的电路,然后编写源程序实现如下功能: 按下按键“1”时在液晶屏上显示“DAN PIAN JI KE CHENG SHE JI”。 按下按键“2”时在液晶屏上显示自己的学号和姓名(拼音)。 按下按键“3”时进行温度采集并显示在液晶屏上。 按下按键“4”时通过拨码开关采集8位数据并显示在液晶屏上,数据大于200控制步进电机反转,小于50步进电机正转。 按下按键“5”时步进电机停止转动。 三、设计原理分析 1、显示“DAN PIAN JI KE CHENG SHE JI”与自己的学号和姓名(拼音)直接定义字符串然后送入1602LCD显示。 2、采集温度通过DS18B20温度传感器将采集的温度通过硬件电路转送入单片机内部,单片机内部将采集的温度转换成字符串然后送入1602LCD显示。 3、通过控制ULN2003来控制电机的正反转。(ULN2003是另一款电机脉冲分配芯片,由于其结构简单,价格低廉,而且无需外接功率放大电路,因此也常用来作为步进电机的驱动芯片)。 4、该电路系统采用“一线总线”数字传感器DS18B20实现温度的采集,采用液晶显示器进行数据显示。首先启动Proteus并从Proteus元件库中选择需要的元件绘制电路图并设置相应元件的参数值。 5、电路绘制完成以后,打开KeilμVision 2新建一个项目,命名为cewen.uv2。选择Project 菜单下的Select Device forTarget选择A T89C51。然后单击Project菜单下的Optionfor Target ‘Target1’项,选择Debug,使用Proteus VSM Em-ulator仿真。然后新建一个源文件cewen.c,

电压采集电路设计.(DOC)

目录 一、设计目的 ................................................................................................................... - 2 - 二、设计内容 ................................................................................................................... - 2 - 三、整体设计方案设计..................................................................................................... - 2 - 四、设计任务 ................................................................................................................... - 3 - 五、硬件设计及器件的工作方式选择............................................................................... - 3 - 1、硬件系统设计方框图:.................................................................................................- 3 - 2、中断实现:8259A工作方式选择及初始化..................................................................- 4 - 3、定时功能实现:8253的工作方式及初始化................................................................- 4 - 4、数码管显示及ADC的数据传输:8255的工作方式及初始化 ...................................- 5 - 5、模拟电压转换为数字量:ADC0809的初始化.............................................................- 5 - 6、地址编码实现:74LS138及逻辑器件 ..........................................................................- 6 - 7、显示功能:数码管显示.................................................................................................- 6 - 六、软件设计 ..............................................................................................................................- 7 - 1、主程序流程图.................................................................................................................- 7 - 2、中断子程序.....................................................................................................................- 7 - 3、显示子程序.....................................................................................................................- 8 - 4、初始化.............................................................................................................................- 9 - 8295A初始化流程图 ...................................................................................................- 9 - 8253初始化流程图......................................................................................................- 9 - 8255初始化流程图......................................................................................................- 9 - 5、程序清单及说明.......................................................................................................... - 10 - 七、本设计实现功能 ...................................................................................................... - 13 - 八、元件清单 ................................................................................................................. - 14 - 九、所遇问题与小结 ...................................................................................................... - 14 - 1、问题与解决.................................................................................................................. - 14 - 2、小结体会...................................................................................................................... - 15 - 附:系统硬件连线图 ............................................................................................................... - 16 -

二极管传感器的温度测控电路设计报告要求

扬州大学能源与动力工程学院 课程设计报告 题目:基于测温二极管传感器的温度测控电路设计课程:传感器与测控电路课程实习 专业:测控技术与仪器 班级:测控07 姓名: 学号:

总目录第一部分:任务书 第二部分:课程设计报告 第三部分:设计电路图

第一部分 任 务 书

《传感器与测控电路课程实习》课程设计任务书 课题:基于测温二极管传感器的温度测控电路设计 温度是一个与人们的生活环境、生产活动密切相关,也是仪器科学和各类工程设计中必须精确测定的重要物理量。随着科学技术的发展,使得测温技术迅速发展,测温范围不断拓宽,测温精度不断提高,新的温度传感器不断出现,如光纤温度传感器、微波温度传感器、超声波温度传感器等。由于检测温度的传感器种类不同,采用的测量电路和要求不同,执行器、开关等的控制方式不同,所以相应的硬件和软件也就不同。 但对于初次涉足电子产品的设计、制作来说,了解并实践一下传感器选择与测控电路的设计、制作的基本过程是很有必要的。由于所涉及的知识面很广,相应的具体内容请参考本文中提示的《传感器原理及应用》,《测控电路》,《模拟电子技术基础实验与课程设计》,《电子技术实验》等书的有关章节。 一、基于测温二极管传感器的温度测量控制电路设计简介 应用1N4148二极管的温度传感器与集成运放设计温度测量与控制控电路,测量温度的范围为-65℃~200℃,工作电路输出二值输出;电路输出控制继电器工作,实现加热与制冷的转换控制,把控制对象温度控制在要求的范围之内(40℃~60℃)。要求测控电路具有加热和制冷的指示功能。 二、基于测温二极管传感器的温度测控电路设计的工作原理 本课题中测量控制电路组成框图如下所示: 电路工作过程为:由二极管IN4148作为温度传感器采集温度信号,经差动放大后,送到预先调试好的相关温度控制比较电路进行比较,当温度低于控制温度下限值时,红色发光二极管

单片机实验温度采集系统

单片机原理与运用 课 程 设 计 课题名称:专业班级:学生姓名:指导老师:完成时间:温度采集与显示系统2012年7月4号

摘要 随着信息技术的飞速发展,嵌入式智能电子技术已渗透到社会生产、工业 控制以及人们日常生活的各个方面。单片机又称为嵌入式微型控制器,在智能 仪表、工业控制、智能终端、通信设备、医疗器械、汽车电器、导航系统和家 用电器等很多领域都有着广泛的应用,已成为当今电子信息领域应用最广泛的 技术之一。 本文主要介绍了一个基于STC89C52单片机的温度采集与显示系统,详细 描述了利用液晶显示器件温度传感器DS18B20开发测温系统的原理,重点对传感器与单片机的硬件连接和软件编程进行了详细分析。主要地介绍了数字温度 传感器DS18B20的数据采集过程,进而对各部分硬件电路的工作原理进行了介绍。温度传感器DS18B20与STC89C52结合构成了最简温度检测系统,该系统可以方便的实现温度采集和显示,它使用起来相当方便,具有精度高、量程宽、灵敏度高、体积小、功耗低等优点,适合我们日常生活和工、农业生产中的温 度测量,也可以当作温度处理模块嵌入其它系统中,作为其他主系统的辅助扩展。 单片机综合实验的目的是训练单片机应用系统的编程及调试能力,通过对 一个单片机应用系统进行系统的编程和调试,掌握单片机应用系统开发环境和 仿真调试工具及仪器仪表的实用,掌握单片机应用程序代码的编写和编译,掌 握利用单片机硬件仿真调试工具进行单片机程序的跟踪调试和排错方法,掌握 示波器和万用表等杆塔工具在单片机系统调试中应用。 关键词:单片机STC89C52、DS18B20温度传感器、液晶显示器LCD1602、AT24C02数据存储芯片

开关量采集电路设计

开关量采集电路设计 开关量采集电路适用于对开关量信号进行采集,如循环泵的状态信号、进出仓阀门的开关状态等开关量。污染源在线监控仪可采集16路开关信号,输入24V 直流电压;设定当输入范围为18~24VDC 时,认为是高电平,被监视的设备处于工作状态;当输入低于18VDC 时,认为是低电平,被监视的设备处于停止状态。 为了避免电气特性及恶劣工作环境带来的干扰,该电路采用光电耦合器TLP521对信号实现了一次电-光-电的转换,从而起到输入\输出隔离的作用。 同时,还安装有LED 工作指示灯,可以使用户对每一通路的工作情况一目了然。其中一路的开关量采集电路如图1所示: 图 1 开关量采集电路 光耦TLP521将红外发光二极管和发光三级管相互绝缘的组合在一起,发光二极管为输入回路,它将电能转换成光能;发光三极管为输出回路,它将光能再转换成电能,实现了两部分电路的电气隔离。 当输入范围为18 ~24VDC 时,认为是高电平,此时光耦导通,电阻R10、R14和发光二极管共同构成输入回路。 根据光耦导通时电流为4 ~10mA ,当输入最高电压24V 时, mA V R R mA V 42414101024<+<,即Ω<+<Ωk R R k 614104.2 当输入低于18V 时认为是低电平,此时光耦的工作电流肯定低于4m A ,此时光耦不导通,电阻 R10、 R14和R12共同构成输入回路,所以: mA R R R V 412 141018<++,即R10+R14+R12>4.5k Ω。在设计中,选择R10=R12=2k Ω,R12=1k Ω。

光耦导通的最小电流为4mA,根据光耦的电流传输比CTR(Current Transfer Ratio)为50%,指当管压降U CE足够大时,集电极电流I C与发光二极管输入电流I F的百分比,所以集电极电流I C=I F*50%=4mA* 50%=2mA,同时为了使光电三极管尽快进入饱和区,选取上拉电阻R8为4.7KΩ。 最后,为了保护光耦,防止大的输入电压突变,在限流电阻R12的两端并联肖特基二极管IN5819。

测控电路课程设计温度测控电路

燕山大学 测控电路课程设计说明书题目温度测控电路 学院(系):电气工程学院 年级专业: XX医疗仪器X班 学号: XXXXXXXXXXXX 学生姓名: XXX 指导教师: XX 教师职称: XX

燕山大学课程设计(论文)任务书 院(系):电气工程学院基层教学单位:电子实验中心 20xx年7月 2日

燕山大学课程设计评审意见表

目录 第1章引言 (2) 1.1温度测量系统的简介 (2) 第2章温度测量仪的电路设计 (3) 2.1 温度测量仪总体框图 (3)

2.2 AD590集成温度传感器 (4) 2.3 K—℃变换器 (6) 2.4 放大器 (7) 2.5 比较器 (8) 2.6 报警电路设计 (9) 2.7 电路原理图 (10) 第3章仿真与制作 (11) 3.1 电路的仿真 (11) 3.2 仿真结果及其分析 (12) 第4章课程设计总结 (13) 附录元件清单 (14) 参考文献 (15) 第1章引言 1.1温度测量系统的简介 生活中有很多需要温度测量的地方比如热水器、电冰箱等温度测量系统就是必不可少的。它包括了温度传感器、放大器、 比较器、电阻、模拟电路实验箱、发光二极管、蜂鸣器等等。其中温度传感器是一个热敏电阻,它通过感知温度的变化来改变电路中电流的大小,并影

响电路中二极管和蜂鸣器中所通过的电流,使其产生变化。而后通过multisim 软件仿真的实现来使二极管发光以及使蜂鸣器报警,从而来实现温度预警。 温度的测量是生产生活中时常需要的工作,进入21世纪后,温度传感器正朝着高精度、多功能、总线标准化、高可靠性及安全性、开发虚拟传感器和网络传感器测温系统等高科技的方向迅速发展。 Multisim是加拿大图像交互技术公司(Interactive Image Technoligics 简称IIT公司)推出的以Windows为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。 第2章温度测量仪的电路设计 2.1 温度测量仪总体框图 使用温度测量仪,首先经过AD590集成温度传感器的作用,使外界温度转换为电流用表示。因为上述为绝对温度K和电流之间的转换关系,而在设

单片机温度采集显示系统设计

课程设计 课程名称:微机原理与接口技术课程设计题目名称:温度采集显示系统 学生学院 专业班级 学号 学生姓名 指导教师

一、设计题目 温度采集系统 二、设计任务和要求 功能要求: (1)温度测量范围 0 - 99℃。 (2)温度分辨率±1℃。 (3)选择合适的温度传感器。 (4)使用键盘输入温度的最高点和最低点,温度超出范围时候报警。(报警温度不需要保存) 要求完成的内容: (1)系统硬件设计,并用电子CAD软件绘制出原理图, (2)给出流程图,编写并调试程序。 (3)撰写设计报告。 三、原理电路图和设计程序 1、方案比较 (1)、系统总体方案设计 总体框架图如图1示,软件流程图如图示

①该温度控制系统的设计包括硬件设计和软件设计两大部分,结合实际情况,该系统应具备如下功能: A、实时采集温度; B、显示温度; C、串行传送数据; D、控制外设;

②系统硬件设计 系统的硬件设计部分主要由以下几部分组成: A、单片机最小系统; B、温度采集模块; C、温度显示模块; D、串行通信模块; E、报警电路; 图2 软件流程图 (2)、方案比较 方案一采用8031作为控制核心,以使用最为普遍的器件ADC0809作模数转换,控制上使用对电阻丝加电使其升温和开动风扇使其降温。此方案简易可行,器件的价格便宜,但8031内部没有程序存储器,需要扩展,增加了电路的复杂性,且ADC0809是8位的模数转换,不能满足本题目的精度要求。 方案二采用比较流行的AT89S51作为电路的控制核心, AT89S52不但与8051,8052 指令,管脚完全兼容,而且其片内的程序存储器采用FLASH 工艺,用户可以用电的方式瞬间擦除、改写。AT89S52 单片机还支持在线编程,用户通过简单的电路连接就可以将电脑里的程序下载到单片机中,减少调试程序时不断拆卸和插入给芯片带来的损坏。此外AT89S52 单片机有8 KB的程序存储器和256 B 的数据存储器,不需外部扩展存储芯片,可以降低硬件电路的复杂度。此方案电路简单并且可以满足题目中的各项要求的精度。

温度采集电路设计

温度采集电路设计(滤波、峰值保持、多路开关、AD转换) 温度采集电路是本次设计的主要内容,是整个单片机温度控制系统设计中不可缺少的部分。本系统根据工艺要求对加热炉出口的工件进行实时的温度检测。当加热炉出口没有工件被推出时,温度采集部分不进行温度采集;当有工件被推出时,通过气缸的驱动信号和气缸的位置开关信号获得工件的推出时刻和温度采集的时间段,温度采集部分在工件从加热炉被推出的时刻开始采集工件的温度,根据本次设计的要求,要在温度采集时间段内对工件进行20个点的温度采集,并要采集到工件温度的峰值。 3.2.1温度传感器部分 1.温度传感器的选取 由于温度传感器要测取的是加热炉出口的被推出的高温的金属工件,加热工件的温度高达上千度,且是要测量处于运动状态的工件,且工业现场的灰尘、震动等的干扰严重。所以可以考虑热电偶温度传感器或者红外温度传感器。但考虑到工艺要求和在加热炉出口处热电偶温度传感器安装的难度比较大,所以优先考虑红外温度传感器。 根据技术指标,温度测量范围600℃~1200℃,温度测量误差±4℃,考虑到后面还有A/D转换器部分和软件部分会增大测量误差,所以温度传感器的分辨率和精度最好控制在±1℃以内。 综合上述因素,温度传感器部分选取海贝尔公司HBIR系列的在线式红外测温探头HBIR—5816。HBIR系列工业级在线式红外测温探头安装简便,易于维护,适用于电力、冶金等相关领域的测温。 2.HBIR—5816介绍 测温范围:600℃~1500℃ 分辨率:0.1℃ 精度:±1.0℃ 响应时间:100ms 供电要求:+5VDC,+12VDC,+24VDC 模拟输出:4~20mA 表3.1传感器引线定义表

测控电路设计

第一章设计题目及要求 1.1 课程设计题目 利用气体传感器设计一个烟雾报警器,要求有检测、报警输出。 1.2 课程设计要求 (1)、在一定空间范围内,如果出现超过设定浓度的烟雾时,烟雾报警器就会产生声光报警,而且可以人为取消报警。 (2)、工作在常温、常压、静态、环境良好;精度:0.1%FS;分辨率:按参考文献上常用传感器类比;测量范围:按参考文献上常用传感器类比;

第二章方案设计 根据课程设计的要求,确定本设计的方案,主要是利用气体传感器作为转换电路的核心,然后将传感器转换出来的电信号输入到单片机中进行相应的处理。 2.1基本原理的概述 本设计的基本原理是利用气体传感器将对烟雾浓度的变化转变为电压的变化,并利用电压比较器比较之后输出控制信号,电压比较器输出的电压有高电平和低电平,而单片机的输入端一般为低电平作为信号,所以可以将有烟雾时的电压比较器的输出调整为低电平输出,而单片机在接受到低电平之后,进行相应的报警操作。 2.2总体设计方案的确定 根据设计方案的基本原理可知,烟雾报警系统主要分为三个部分:气体传感器、电压比较器、单片机。 在正常状态下,没有烟雾时气敏元件的电阻值较大,输出电压较小,此时的输出电压比参考电压小,由电压比较器输出的为高电平,无法引起单片机的动作。而当有烟雾时,MQ-2气敏传感器输出的电压值较高,在一定程度时将超过参考电压的电压值,此时由电压比较器输出的电压为低电平,引起单片机的动作。总体设计方案如图2.1所示,下面的设计主要就遵循基本原理方框图来进行设计。 图2.1 烟雾传感器基本原理方框图

第三章系统电路的设计 本章节中主要讨论的是传感器的选择及其特性,测控电路的设计及其计算以及整体测控系统的电路设计与计算,以下就各个部分进行详细的。 3.1传感器的选择及其特性 根据被测量的性质选择需要的传感器,由于在这里需要测量的量是烟雾的浓度,所以选择烟雾传感器,烟雾传感器有许多种类:半导体气敏、离子式传感器等等,本设计选用的是半导体气敏传感器。 3.1.1 半导体气敏传感器的性质 根据课程设计的要求可知,本设计是针对烟雾传感器的报警系统,则所应用到的传感器应是对气体具有作用的传感器,这里选用半导体气敏传感器。利用半导体吸附气体后引起其性质变化特性而制成的器件称为气体传感器,半导体气体传感器的敏感部分是金属氧化物半导体微结晶粒子烧结体,当它的表面吸附有被检测气体时,半导体微结晶粒子烧结体接触界面的导电粒子比例将发生变化,继而使气敏元件的电阻值随被测气体浓度的变化而变化,本设计采用的是MQ-2气敏元件,气敏元件的电阻值随被测气体浓度的升高而降低。 3.1.2 MQ-2烟雾传感器原理 MQ-2烟雾传感器是利用气敏元件构成电路将烟雾浓度的变化转变为电信号的变化,主要利用气敏元件阻值随气体浓度变化的性质。 (1)气敏元件的原理MQ-2是一种体电阻控制型的气敏器件,其阻值随被测气体的浓度而变化。气敏元件又是一种“气—电”传感器件,它将被测气体的浓度信号转变为相应的电信号。 MQ-2气体传感器工作时必须经过加热这个程序,其目的是加速气体的吸附、跳出过程的作用;烧去气敏元件的油垢和污物,能起到清洁作用,控制不同的加热温度,能对不同的气体有不同的选择作用。 如图3.1所示,在气体传感器加热到稳定的状态时,被测气体接触到元件的表面而被吸附,此时气敏元件的电阻率会按一定的规律进行变化。当气敏传感器通电以后,气敏元件的电阻会急剧下降(指在清洁的空气中,无被测气体时),过一段时间之后有逐步上升到一个稳定的值,这一段时间一般为2-10分钟,称这一段时间为“初始稳定状态”。 气敏元件达到初始稳定状态以后,才能用于气体检测和烟雾报警,检测开始到电阻值稳定的时间与气敏元件的材料和结构有关,一般为10-30秒。当测试完毕以后,气敏元件置于普通大气之中,其阻值会逐渐恢复到检测之前的状态。半导体气敏元件是以被测气体和半导体表面或基面之间的可逆反应为基础,所以可以反复使用,这样就利于传感器的多次使用。

温湿度采集系统设计

目录 第1章设计意义及要求 (1) 1.1 设计意义 (1) 1.2 设计要求 (1) 第2章硬件设计 (2) 2.1 AT89S52芯片介绍 (2) 2.2 液晶显示器LCD1602 (3) 2.2.1 液晶显示原理 (3) 2.2.2 液晶显示器分类 (3) 2.2.3 显示原理 (3) 2.2.4 LCD1602的基本参数及引脚功能 (4) 2.3 温湿度模块DHT11介绍 (6) 2.3.1 DHT11概述 (6) 2.3.2 DHT11传感特性说明 (7) 2.3.3 DHT11封装信息 (8) 2.3.4 串行接口(单线双向) (8) 第3章设计实现 (11) 3.1 设计框图及流程 (11) 3.2 设计结果及分析 (11) 第4章设计总结 (13) 参考文献 (14) 附录 (15)

第1章设计意义及要求 1.1 设计意义 最近几年来,随着科技的飞速发展,单片机领域正在不断的走向社会各个角落,还带动传统控制检测日新月异更新。在实时运作和自动控制的单片机应用到系统中,单片机如今是作为一个核心部件来使用,仅掌握单片机方面知识是不够的,还应根据其具体硬件结构,以及针对具体应用对象特点的软件结合,加以完善。 现代社会越来越多的场所会涉及到温度与湿度并将其显示。由于温度与湿度不管是从物理量本身还是在实际人们的生活中都有着密切的关系,例如:冬天温度为18至25℃,湿度为30%至80%;夏天温度为23至28℃,湿度为30%至60%。在此范围内感到舒适的人占95%以上。在装有空调的室内,室温为19至24℃,湿度为40%至50%时,人会感到最舒适。如果考虑到温、湿度对人思维活动的影响,最适宜的室温度应是工作效率高。18℃,湿度应是40%至60%,此时,人的精神状态好,思维最敏捷。所以,本课程设计就是通过单片机驱动LCD1602,液晶显示温湿度,通过此设计,可以发现本设计有一定的扩展性,而且可以作为其他有关设计的基础。如何高效、稳定地对数据(包括温度、湿度光线、压力等项目)进行实时采集对于现代的企业、工厂、研究所等对数据精度要求较高的单位具有非常重要的意义。 1.2 设计要求 本系统设计采用温度和湿度作为采集对象,是以单片机为核心的温度、湿度采集、数字显示系统,用液晶显示出当前温度、湿度的信息。以此了解AT89S52芯片为核心外接温度传感器和湿度传感器模块在液晶显示屏上显示当前的温度和湿度的过程。

各种电压电流采样电路的设计

常用采样电路设计方案比较 配电网静态同步补偿器(DSTATCOM)系统总体硬件结构框图如图2-1所示。由图2-1可知DSTATCOM的系统硬件大致可以分成三部分,即主电路部分、控制电路部分、以及介于主电路和控制电路之间的检测与驱动电路。其中采样电路包括3路交流电压、6路交流电流、2路直流电压和2路直流电流、电网电压同步信号。3路交流电压采样电路即采样电网三相电压信号;6路交流电流采样电路分别为电网侧三相电流和补偿侧三相电流的电流采样信号;2路直流电压和2路直流电流的采样电路DSTATCOM的桥式换流电路的直流侧电压信号和电流信号;电网电压同步信号采样电路即电网电压同步信号。 信号调 理TMS320 LF2407A DSP 键盘显示 电路电压电流信号驱动电路保护电路 控制电路检测与驱动 电路主电路 图2-1 DSTATCOM系统总体硬件结构框图 1.1常用电网电压同步采样电路及其特点 1.1.1 常用电网电压采样电路1 从D-STATCOM的工作原理可知,当逆变器的输出电压矢量与电网电压矢量幅值大小相等,方向相同时,连接电抗器内没有电流流动,而D-STATCOM 工作在感性或容性状态都可由调节以上两矢量的夹角来进行控制,因此,逆变器输出的电压矢量的幅值及方向的调节都是以电网电压的幅值和方向作为参考的,因此,系统电压与电网电压的同步问题就显得尤为重要。

图2-2 同步信号产生电路1 从图2-2所示同步电路由三部分组成,第一部分是由电阻、电容组成的RC滤波环节,为减小系统与电网的相位误差,该滤波环节的时间常数应远小于系统的输出频率,即该误差可忽略不计。其中R5=1K ,C4=15pF,则时间常数错误!未找到引用源。<

相关文档
相关文档 最新文档