文档库 最新最全的文档下载
当前位置:文档库 › 工程水力学复习资料

工程水力学复习资料

工程水力学复习资料
工程水力学复习资料

工程水力学

复习要点

液体的主要物理性质

连续介质、密度、粘滞性、压缩性、表面张力

一、水跃复习要点

1.棱柱体水平明渠的水跃方程

2.共轭水深的计算

3.水跃跃长的计算

1、一、水跃的概念

水跃(hydraulic jump):是明槽水流从急流状态过渡到缓流状态时水面突然跃起的局部水力现象。

水跃的分区旋滚区:水跃区域的上部呈饱搀空气的表面旋滚似的水涡。

主流区:水跃区域下部为在铅直平面内急剧扩张前进的水流。

水跃区的几个要素

跃前水深——跃前断面(表面旋滚起点所在过水断面)的水深;

跃后水深——跃后断面(表面旋滚终点所在过水断面)的水深;水跃高度a=h“-h’水跃长度——跃前断面与跃后断面之间的距离

二、水跃的基本方程

1. 水跃函数

2.水跃的基本方程

式中、分别为跃前水深、跃后水深,称为共轭水深,即对于某一流量Q,具有相

同的水跃函数的那两个水深,即为共轭水深

三、水跃的形式

临界水跃:当时,水跃的跃首刚好发生在收缩断面上,跃后水深等于下游水深,称为临界水跃。

远离式水跃:当时,水跃发生在收缩断面之后,跃后水深大于下游水深,称为远离式水跃。

淹没水跃:当时,当下游水深大于临界水跃的跃后水深时,水跃淹没收缩断面,称为淹没水跃。

二、堰流及闸孔出流复习要点

1、概述

堰和堰流:无压缓流经障壁溢流时,上游发生壅水,然后水面跌落,这一局部水力现象称为堰流(Weir Flow);障壁称为堰。

堰流的基本特征量

1.堰顶水头H;

2.堰宽b;

3.上游堰高P、下游堰高P1;

4.堰顶厚度δ;

5.上、下水位差z;

6.堰前行近流速υ0。

堰的分类

堰流及孔流的界限

堰流:当闸门启出水面,不影响闸坝泄流量时。

孔流:当闸门未启出水面,以致影响闸坝泄流量时。

堰流和孔流的判别式

2、堰流的基本公式

式中:m——堰流流量系数,m=

堰流公式

式中: ——淹没系数,≤1.0;

——侧收缩系数,≤1.0 。

m0——计及行近流速的流量系数。

例:某矩形断面渠道,为引水灌溉修筑宽顶堰(如图10-19)。已知渠道宽B=3m,堰宽b=2m,坎高P=P1=1m,堰上水头H=2m,堰顶为直角进口,单孔,边墩为矩形,下游水深h=2m。试求过堰流量。

解:(1)判别出流形式

h s=h-P=1m>0 ————必要条件

——充分条件

满足淹没溢流必要条件,但不满足充分条件,为自由式溢流。b< B,有侧收缩。综上所述,

本堰为自由溢流有侧收缩的宽顶堰。

(2)计算流量系数m : 堰顶为直角进口,P/H=0.5<3,则由公式得

(3)计算侧收缩系数

(4)计算流量:自由溢流有侧收缩宽顶堰

其中

用迭代法求解Q,第一次取H 0(1)≈H

第二次近似,取

第三次近似,取

本题计算误差限值定为1%,则过堰流量为Q =Q (3) =8.48m3/s (5)校核堰上游流动状态

上游来流为缓流,流经障壁形成堰流,上述计算有效。用迭代法求解宽顶堰流量高次方程,是一种基本的方法,但计算繁复,可编程用计算机求解。 三、泄水建筑物下游的水流衔接与消能复习要点

泄水建筑物下游的水流特性表现为:流速高、水深小、单宽流量大、能量集中。下泄水流对河床具有极大的破坏性,直接威胁大坝本身的安全。 底流消能的水力计算 挑流消能的水力计算

底流式消能(underflow energy dissapition )在建筑物下游采取一定的工程措施,控制水跃发生的位置,通过水跃产生的表面旋滚和强烈的紊动来消除余能。

挑流式消能(ski-jump energy dissapition)将水流挑射至远离建筑物的下游,使下落水舌对河床的冲刷不会危及建筑物的安全。下泄水流的余能一部分在空中消散,大部分在水舌落入下游河道后被消除。

面流式消能(surface flow energy dissapition)

将下泄的高速水流导向下游水流的上层,主流与河床被巨大的底部旋滚隔开。余能主要通过水舌扩散,流速分布调整及底部旋滚与主流的相互作用而消除 §9.1 底流消能的水力计算

泄水建筑物下游收缩断面水深的计算

泄水建筑物下游水跃的位置及其对消能的影响 控制水跃位置的工程措施 例题

某 WES 堰,顶设计水头H d = 3.2 m ,设计水头下溢流堰流量系数 m d = 0.502, 流速系数 为0.95,上下游堰高均为 30 m,下游水深 h t = 4.6 m 。 (1)不考虑侧收缩影响,求通过溢流堰的单宽设计流量q ;

(2)判断通过设计流量时,堰下游水流衔接形式,若需要建消能工,则进行挖深式消能池的水力计算。

1. 判断溢流坝下游水流衔接形式 为了判断溢流坝下游水流衔接形式,先计算下游收缩水深hc 及其共轭水深 hc ” 。可用查图法或迭代法。

解法一:采用查图法计算hc 及hc ”

(1)计算堰顶水头作用下通过溢流堰的单宽流量 当不计侧向收缩影响及行进流速水头时,由实用堰流量公式可得

因下游水位低于堰顶,溢流堰为自由出流。取淹没系数σs = 1.0 。 于是

(2)计算临界水深 h k 对于矩形断面有

,故

(3)计算以下游收缩断面底部水平面为基准的总水头E 0

s

m 42.12m)2.3()s m 8.9(249.00.12

2

32=????=q g

q h 33k

=3s 2H g m b

Q q σ==m 5062)s m 89()s m 2.421(322

232k ..g q h ===

因为溢流坝较高,行近流速水头可以忽略不计 (4) 查图计算hc 及hc ”

及参

变量

查矩形断面渠道收缩水深及其共轭水深求解图得 于是收缩水深

h c 的共轭水深

题目

某溢流坝共7孔,每孔净宽b = 6 m ,闸墩厚度d =1.8 m 。溢流坝顶高程为161 m ,设计水位为167.15 m ,流量系数 m = 0.49,收缩系数ε1= 0.95,挑坎为连续式,坎顶高程为111.0,挑角 = 28°;下游河床高程为102 m ,岩基冲刷系数为1.10(Ⅱ类岩),下游水深为7.0 m 。试估算挑流射程及冲刷深度并检查冲刷坑是否危及大坝安全。

本题首先确定在设计水位167.15 m 时,溢流坝下泄流量 Q ; 然后进行挑流射程 L 及冲刷

24813m

5062m

233k

00...h E ===ξ950.=?m

5190m 50622070k c c ...h h =?==ξm

5187m 506203k c c ...h h ''''=?==ξ

▽ 167.15 161

▽ ▽ 111

▽ 102

▽ 109 θ

22002070c .=ξ0

.3c =''ξ

坑深度 t s 的估算,最后进行冲刷坑后坡 i 的验算。

挑流射程 L 为空中射程 L 0 与水下射程 L 1 之和。若 忽略坎顶水深 h 1 , 则空中射程 L 0 及水下射程 L 1可分别按以下计算式估算:

1.溢流坝下泄流量 Q 的计算

因溢流坝较高,行近流速水头可忽略不计,即H 0≈H = 167.15 m -161m = 6.15 m; 同时下游水位较低,溢流坝为自由泄流,故下泄流量计算式为:

2.冲刷坑深度 t s 的估算

为了计算水下射程 L 1,先计算冲刷坑深度 t s

冲刷坑深度估算式为: 式中, 岩基冲刷系数 k s= 1.10 ,其它各参数计算如下:

3. 射程估算 L

根据已知数据求得 计算流速系数 的经验公式较多,这里采用长江流域规划办公室的经验公式计算

t

??????-++=θ?θ212t 120sin )(112sin S h a S φL θ

?θ212t 2t

s 1

cos tg S h a h t L -++=2

312H g b mn Q '=ε/s

m 1320m)15.6(m/s 8.92m 6749.095.03232=?????=Q t 25

.05.0s s h z

q k t -=/s m 25m 8.1)17(m 67/s m 1320)1(23=?-+?=

-+=d n nb Q q m 15.58m 109m 15.167=-=z m 7m 102m 109t =-=h m 19.8m 7m)8.155(/s)m 25(1.125.05.02s =-??=t m 50m 111m 1611=-=s m

9m 102m 111=-=a

式中流能比

4. 检验冲刷坑后坡 i

故认为冲刷坑不致于危及大坝的安全。

t

35.0E

055

.01K -=?0226

.0m)50(m/s 9.8/s

m 255

.1225.11E =?==s g q K 86

.0055.0135

.0E =-

=K

????? ??-++=θ?θ?2sin 112sin 12

t 12

0S h a S L m

87.64)282sin(m)50(86.0m 7-m 911)

282sin(m)50(86.0220=???? ?

????++????= L m

57.2528cos m)50(86.0m 7m 928tg m 7m 19.8cos tg 222212t

2t

s 1=??-+

+=-++=

θ

?θS h a h t L 091.0m

57.2587.64m 19.8s =+==)(L t i 5

1~

5

.21k =

四、水击的复习要点

1、水击现象的基本概念

水击现象(Water-hammer Phenomena):在有压管道系统中,由于某一管路中的部件工作状态的突然改变,就会引起管内液体流速的急剧变化,同时引起液体压强大幅度波动,这种现象称为水击现象。

直接水击(Rapid Closure):当关闭阀门时间小于或等于一个相长时,最早由阀门处产生的向上传播而后又反射回来的减压顺行波,在阀门全部关闭时还未到达阀门断面,在阀门断面处产生的可能最大水击压强将不受其影响,这种水击称直接水击。

间接水击(Slow Closure):当关闭阀门时间大于一个相长时,从上游反射回来的减压波会部分抵消水击增压,使阀门断面处不致达到最大的水击压强,这种水击称为间接水击。2、有压管道中的水击的四个阶段

1. 增压逆波阶段

水击波的传播现象:一个增压波以一定速度向水库方向传播的现象,

2.:减压顺波阶段

3.:减压逆波阶段

4. 增压顺波阶段

3、水击的计算

1)水击波的传播速度

式中:c0——水中声波的传播速度,c0 =1425m/s ;

E0——水的弹性模量,E0 =2.04′109 N/m2 ;

E——管壁的弹性模量;

D——管径(m);

d——管道壁厚(m)

2)水击压强的计算

直接水击压强最大值计算公式:

间接水击压强计算公式:(用水击联锁方程求解,初估用下式)

式中:Tz——阀门关闭时间;

Tr =2l/c——水击波相长;

v0 ——水击前的管中流速。

4、水击危害的预防

1.设置空气室,或安装具有安全阀性质的水击消除阀;

2.设置调压塔:减小水击压强及缩小水击的影响范围;

3.延长阀门关闭时间;(缓闭止回阀)

4.缩短有压管路的长度;(用明渠代替)

5.减小管内流速(如加大管径)。

五、渗流复习要点

概念

渗流的基本定律渗流的基本方程式

1、渗流简化模型(渗流模型假设)

1)渗流简化模型的定义忽略土壤颗粒的存在,认为水充满整个渗流空间,且满足:

◆对同一过水断面,模型的渗流量等于真实的渗流量。

◆作用于模型任意面积上的渗流压力,应等于真实渗流压力。

◆模型任意体积内所受的阻力等于同体积真实渗流所受的阻力。

2、渗流的基本定律——达西定律

达西定律说明:在某一物质介质的孔隙中,渗流的水力坡度与渗流流速的一次方成正比,因此亦称渗流线性定律。

达西定律适用范围:达西定律只适用于层流渗流

六、高速水流复习要点

高速水流的定义、特性及水力学问题

泄洪消能高速水流脉动压强及流体诱发振动高速掺气水流泄洪雾化

七、相似原理及模型试验基础复习要点

相似的基本概念相似准则水力模型试验种类及模型设计

几何相似指原型和模型几何形状和几何尺寸相似,即原型和模型的对应线性长度之比均保持一个定值。

运动相似原型和模型对应点的流速、加速度向量相似.或者说两个流动的速度场(或加速度场)是几何相似的

动力相似原型与模型中对应点上作用的各同名力矢量互相平行,且其大小具有同一比值。

《流体力学》典型例题

《例题力学》典型例题 例题1:如图所示,质量为m =5 kg 、底面积为S =40 cm ×60 cm 的矩形平板,以U =1 m/s 的速度沿着与水平面成倾角θ=30的斜面作等速下滑运动。已知平板与斜面之间的油层厚度 δ=1 mm ,假设由平板所带动的油层的运动速度呈线性分布。求油的动力粘性系数。 解:由牛顿内摩擦定律,平板所受的剪切应力du U dy τμ μδ == 又因等速运动,惯性力为零。根据牛顿第二定律:0m ==∑F a ,即: gsin 0m S θτ-?= ()32 4 gsin 59.8sin 301100.1021N s m 1406010 m U S θδμ--?????==≈????? 例题2:如图所示,转轴的直径d =0.36 m 、轴承的长度l =1 m ,轴与轴承的缝隙宽度δ=0.23 mm ,缝隙中充满动力粘性系数0.73Pa s μ=?的油,若轴的转速200rpm n =。求克服油的粘性阻力所消耗的功率。 解:由牛顿内摩擦定律,轴与轴承之间的剪切应力 ()60d d n d u y πτμ μδ == 粘性阻力(摩擦力):F S dl ττπ=?= 克服油的粘性阻力所消耗的功率:

()()3 223 22 3 230230603.140.360.732001600.231050938.83(W) d d n d n n l P M F dl πππμωτπδ -==??=??= ???= ? ?= 例题3:如图所示,直径为d 的两个圆盘相互平行,间隙中的液体动力黏度系数为μ,若下盘固定不动,上盘以恒定角速度ω旋转,此时所需力矩为T ,求间隙厚度δ的表达式。 解:根据牛顿黏性定律 d d 2d r r F A r r ω ω μ μ πδ δ == 2d d 2d r T F r r r ω μπδ =?= 4 2 420 d d 232d d d T T r r πμωπμωδδ===? 4 32d T πμωδ= 例题4:如图所示的双U 型管,用来测定比水小的液体的密度,试用液柱高差来确定未知液体的密度ρ(取管中水的密度ρ水=1000 kg/m 3)。 水

水力学复习资料重点讲义资料

水力学复习资料 第零章绪论 0.1水力学的任务与研究对象(了解) 水力学的任务是研究液体(只要是水)的平衡和机械运动的规律及 其实际应用.水力学研究的基本规律有两大主要组成部分:一是关于液体平衡的规律?它研究液体处于静止或相对平衡状态时,作用于液体上各种力之间的关系,这一部分称为水静力学;二是关于液体运动的规律,它研究液体在运动状态时,作用于液体上的力与运动要素之间的关系,以及液体的运动特性与能量转换等,这部分称为水动力学. 0.2液体的粘滞性(理想液体与实际液体最大的差别) 粘滞性当液体处于运动状态时,若液体质点之间发生相对运动,则质点间会产生内摩擦力来阻碍其相对运动,液体的这种性质就称为粘滞性,产生的内摩擦力叫做粘滞力. 0.3牛顿内摩擦定律当液体做层流运动时,相邻液层之间在单位面积上作用的内摩擦力(或粘滞力)的大小与速度梯度成正比,同时和液体的性质有关. 即 0.4牛顿内摩擦定律的另一种表述(了解)P7 0.5运动粘度系数它是动力黏度系数与液体密度的比值,是表征液体粘滞性大小的物理量.其值是随温度的变化而变化的,即温度越高, 其值越小(液体的流动性是随温度的升高而增强的)

0.6牛顿内摩擦定律只适用于牛顿流体(符合牛顿内摩擦定律的液体,其特点是温度不变,动力黏度系数就不变P8图0.3) 0.7体积压缩率液体体积的相对缩小值与压强的增大值之比.(水的压缩性很小,一般不考虑) 0.8表面张力表面张力是指液体自由表面上液体分子由于两侧引力不平衡,使其受到及其微小的拉力(表面张力仅存在于液体表面,液体内部不存在,其值表示为自由面单位长度受到拉力的大小,并且随液体种类和温度的变化而变化,怎样变化) 0.9毛细现象在水力学实验中,经常使用盛有水或水银细玻璃管做测压计,由于表面张力的影响使玻璃管中液面和与之向连通容器中的液面不在同一水平面上.这就是物理学中所讲的毛细现象. 0.10由实验得知,管的内经越小,毛细管升高值越大,所以实验用的测压管内径不宜太小.P10图0.4,0,5 0.11连续介质在水力学中,把液体当作连续介质看待,即假设液体是一种连续充满其所占据空间毫无空隙的连续体.(水力学所研究的液体运动是连续介质的连续流动,但实际上,从微观角度来看,液体分子与分子之间是存在空隙的,但水力学研究的是液体的宏观运动,故将液体看作连续接介质) 0.12把液体看作连续介质的意义 如果我们把液体看作连续介质,则液流中的一切物理量都可以视为空间坐标和时间坐标的连续函数,这样,在研究液体的运动规律时,就可以运用连续函数的分析方法.

流体力学典型例题及答案

1.若流体的密度仅随( )变化而变化,则该流体称为正压性流体。 A.质量 B.体积 C.温度 D.压强 2.亚声速流动,是指马赫数( )时的流动。 A.等于1 B.等于临界马赫数 C.大于1 D.小于1 3.气体温度增加,气体粘度( ) A.增加 B.减小 C.不变 D.增加或减小 4.混合气体的密度可按各种气体( )的百分数来计算。 A.总体积 B.总质量 C.总比容 D.总压强 7.流体流动时,流场各空间点的参数不随时间变化,仅随空间位置而变,这种流动称为( ) A.定常流 B.非定常流 C.非均匀流 D.均匀流 8.流体在流动时,根据流体微团( )来判断流动是有旋流动还是无旋流动。 A.运动轨迹是水平的 B.运动轨迹是曲线 C.运动轨迹是直线 D.是否绕自身轴旋转 9.在同一瞬时,流线上各个流体质点的速度方向总是在该点与此线( ) A.重合 B.相交 C.相切 D.平行 10.图示三个油动机的油缸的内径D相等,油压P也相等,而三缸所配的活塞结构不同,三个油动机的出力F1,F2,F3的大小关系是(忽略活塞重量)( ) A.F 1=F2=F3 B.F1>F2>F3 C.F1F2 12.下列说法中,正确的说法是( ) A.理想不可压均质重力流体作定常或非定常流动时,沿流线总机械能守恒 B.理想不可压均质重力流体作定常流动时,沿流线总机械能守恒 C.理想不可压均质重力流体作非定常流动时,沿流线总机械能守恒 D.理想可压缩重力流体作非定常流动时,沿流线总机械能守恒 13.在缓变流的同一有效截面中,流体的压强分布满足( ) A.p gρ +Z=C B.p=C C. p gρ + v g C 2 2 = D. p gρ +Z+ v g C 2 2 = 14.当圆管中流体作层流流动时,动能修正系数α等于( )

水力学复习资料汇总

第零章绪论 0.1水力学的任务与研究对象(了解) 水力学的任务是研究液体(只要是水)的平衡和机械运动的规律及其实际应用. 水力学研究的基本规律有两大主要组成部分:一是关于液体平衡的规律.它研究液体处于静止或相对平衡状态时,作用于液体上各种力之间的关系,这一部分称为水静力学;二是关于液体运动的规律,它研究液体在运动状态时,作用于液体上的力与运动要素之间的关系,以及液体的运动特性与能量转换等,这部分称为水动力学. 0.2液体的粘滞性(理想液体与实际液体最大的差别) 粘滞性当液体处于运动状态时,若液体质点之间发生相对运动,则质点间会产生内摩擦力来阻碍其相对运动,液体的这种性质就称为粘滞性,产生的内摩擦力叫做粘滞力. 0.3牛顿内摩擦定律当液体做层流运动时,相邻液层之间在单位面积上作用的 内摩擦力(或粘滞力)的大小与速度梯度成正比,同时和液体的性质有关.即 . 0.4牛顿内摩擦定律的另一种表述(了解)P7 0.5运动粘度系数它是动力黏度系数与液体密度的比值,是表征液体粘滞性大小的物理量.其值是随温度的变化而变化的,即温度越高,其值越小(液体的流动性是随温度的升高而增强的) 0.6牛顿内摩擦定律只适用于牛顿流体(符合牛顿内摩擦定律的液体,其特点是温度不变,动力黏度系数就不变P8图0.3) 0.7体积压缩率液体体积的相对缩小值与压强的增大值之比.(水的压缩性很小,一般不考虑) 0.8表面张力表面张力是指液体自由表面上液体分子由于两侧引力不平衡,使其受到及其微小的拉力(表面张力仅存在于液体表面,液体内部不存在,其值表示为自由面单位长度受到拉力的大小,并且随液体种类和温度的变化而变化,怎样变化) 0.9毛细现象在水力学实验中,经常使用盛有水或水银细玻璃管做测压计,由 于表面张力的影响使玻璃管中液面和与之向连通容器中的液面不在同一水平面 上.这就是物理学中所讲的毛细现象. 0.10由实验得知,管的内经越小,毛细管升高值越大,所以实验用的测压管内径不宜太小.P10图0.4,0,5 0.11连续介质在水力学中,把液体当作连续介质看待,即假设液体是一种连续充满其所占据空间毫无空隙的连续体.(水力学所研究的液体运动是连续介质的 连续流动,但实际上,从微观角度来看,液体分子与分子之间是存在空隙的,但水力学研究的是液体的宏观运动,故将液体看作连续接介质) 0.12把液体看作连续介质的意义 如果我们把液体看作连续介质,则液流中的一切物理量都可以视为空间坐标和 时间坐标的连续函数,这样,在研究液体的运动规律时,就可以运用连续函数的 分析方法.

水力学2复习资料(长理港航)

水力学(二)复习资料 第一部分:判断题 1、当水头H 降低,宽顶堰可能转化为实用堰。( ) 2、堰流计算的特点是必须考虑局部水头损失j h 的影响。( ) 3、堰流自由出流的能力小于淹没出流的能力。 ( ) 4、消能池深的设计流量大于消能池长的设计流量( ) 5、均匀流一定是势流。 ( ) 6、做圆周运动的液体一定是有涡流。( ) 7、对明渠非恒定流而言,当0??S Q 时将产生涨水波。( ) 8、平面势流中,某根流线各点的流速势函数值均相等。 ( ) 9、流网中每个网格的对角线应该正交。 ( ) 10、边界层外的液体应视为实际液体,边界层内的液体可视为理想液体。 ( ) 11、边界层内的液体型态只能是紊流 ( ) 12、确定底流式消能池深,应该采用最大流量来计算。( ) 13、在其他情况相同的前提下,弧形闸门的过流能力强于平面闸门。 ( ) 14、理想液体的流动不一定是有势流动。 ( ) 15.只要下游水位不超过宽顶堰的堰顶,堰流就必然为自由出流。 ( ) 16.正坡地下河槽中的浸润线可存在于a 区或b 区。 ( ) 17.堰流水力计算时,水头损失必须同时考虑沿程与局部水头损失。 ( ) 18.只要是运动液体,则其任一点的动水压强各方向是不相等的。 ( ) 19.在远驱式水跃衔接的情况下,堰的过流能力按自由出流公式计算。 ( ) 20. 底流式消力池池深和池长的设计流量都采用最大流量。 ( ) 21.渗流系数及边界条件相同,作用水头不同,两者渗流流网相同。 ( ) 22.无旋运动必须满足y x u u x y ??=??。 ( ) 23.实际水深等于其相应的临界水深时的渗流,称为临界渗流。 ( ) 24.底流消能设计中,取最大流量作为设计流量时,消力池的深度也最大。 ( ) 25.堰顶厚度δ与堰上水头0H 之比0.67<0H δ <2.5时的堰流为实用堰流 。 ( )

水力学——经典题目分析

题一 年调节水库兴利调节计算 要求:根据已给资料推求兴利库容和正常蓄水位。 资料: (1) 设计代表年(P=75%)径流年内分配、综合用水过程及蒸发损失月分配列于下表1,渗漏损失以相应月库容的1%计。 (2) 水库面积曲线和库容曲线如下表2。 (3) V 死 =300万m 3。 表1 水库来、用水及蒸发资料 (P=75%) 表2 水库特性曲线 解:(1)在不考虑损失时,计算各时段的蓄水量 由上表可知为二次运用,)(646031m V 万=,)(188032m V 万=,)(117933m V 万=, )(351234m V 万=,由逆时序法推出)(42133342m V V V V 万兴=-+=。采用早蓄方案,水库月 末蓄水量分别为: 32748m 、34213m 、、34213m 、33409m 、32333m 、32533m 、32704m 、33512m 、31960m 、 3714m 、034213m 经检验弃水量=余水-缺水,符合题意,水库蓄水量=水库月末蓄水量+死V ,见统计表。 (2)在考虑水量损失时,用列表法进行调节计算: 121()2V V V =+,即各时段初、末蓄水量平均值,121 ()2A A A =+,即各时段初、末水面积 平均值。查表2 水库特性曲线,由V 查出A 填写于表格,蒸发损失标准等于表一中的蒸发量。 蒸发损失水量:蒸W =蒸发标准?月平均水面面积÷1000 渗漏损失以相应月库容的1%,渗漏损失水量=月平均蓄水量?渗漏标准 损失水量总和=蒸发损失水量+渗漏损失水量 考虑水库水量损失后的用水量:损用W W M +=

多余水量与不足水量,当M W -来为正和为负时分别填入。 (3)求水库的年调节库容,根据不足水量和多余水量可以看出为两次运用且推算出兴利库容)(44623342m V V V V 万兴=-+=,)(476230044623m V 万总=+=。 (4)求各时段水库蓄水以及弃水,其计算方法与不计损失方法相同。 (5)校核:由于表内数字较多,多次运算容易出错,应检查结果是否正确。水库经过充蓄和泄放,到6月末水库兴利库容应放空,即放到死库容330m 万。V '到最后为300,满足条件。另外还需水量平衡方程 0=---∑∑∑∑弃 损 用 来 W W W W ,进行校核 010854431257914862=---,说明计算无误。 (6)计算正常蓄水位,就是总库容所对应的高程。表2 水库特性曲线,即图1-1,1-2。得到Z ~F ,Z ~V 关系。得到水位865.10m ,即为正常蓄水位。表1-3计入损失的年调节计算表见下页。 图1-2 水库Z-V 关系曲线 图1-1 水库Z-F 关系曲线

昆明理工大学839水力学专业课考研真题(2019年)

以梦为马 不负韶华 昆明理工大学2019年硕士研究生招生入学考试试题(A 卷) 考试科目代码:839 考试科目名称 :水力学(建工学院) 考生答题须知 1. 所有题目(包括填空、选择、图表等类型题目)答题答案必须做在考点发给的答题纸上,做在本试题册上无效。请考生务必在答题纸上写清题号。 2. 评卷时不评阅本试题册,答题如有做在本试题册上而影响成绩的,后果由考生自己负责。 3. 答题时一律使用蓝、黑色墨水笔或圆珠笔作答(画图可用铅笔),用其它笔答题不给分。 4. 答题时不准使用涂改液等具有明显标记的涂改用品。 一、是非判断题(每小题2分,共18分。正确的打√,错误的打×) 1.一元流和数学中的一元函数是一致的。( ) 2.静水总压力的压力中心就是受压面面积的形心。( ) 3.在同样的边界条件下,紊流过水断面上的流速分布比层流要均匀。( ) 4.速度越大,液体的内摩擦力越大。( ) 5.二向曲面上静水总压力的作用点就是静水总压力的水平分力与铅直分力的交点。( ) 6.急变流不可能是恒定流。( ) 7.雷诺数很大时,在紊流核心区中,切应力中的粘滞切应力可以忽略。( ) 8.断面比能沿流程总是减小的。 ( ) 9.当下游水位高于薄壁堰堰顶时,一定是淹没出流。( ) 二、选择题(每小题3分,共30分) 1.在恒定流中( )。 (A )流线一定是平行直线; (B )断面平均流速沿程不变; (C )不同瞬时流线有可能相交; (D )同一点处不同时刻的动水压强相等。 2.一管道均匀层流,当流量增加时,下列答案错误的是( )。 (A )沿程阻力系数λ增大; (B )沿程水头损失增大; (C )边界切应力增大; (D )水力坡度增大。 3.在研究水击时,认为( )。 (A )水是可压缩的,管道是刚体; (B )水是不可压缩的,管道是弹性体; (C )水是不可压缩的,管道是刚体; (D )水和管道都是弹性体。 4. A 、B 两根管道,A 管输水,B 管输油,其长度、管径、壁面粗糙度、雷诺数均相同,则沿程水头损失( )。

【西南●最新版】[0744]《水力学》网上作业及课程考试复习资料(有答案)

[0744]《水力学》第一次作业 [单选题]一水平弯管,管中流量不变,在过水断面A―A内外两侧的1、2两点处各装一根测压管,则两测压管水面的高度h1与h2的关系为 A: h1>h2 B:h1=h2 C:h1

2、绘出图中的受压曲面AB上水平分力的压强分布图和垂直分力的压力体图。 3、 4、图示一跨河倒虹吸管,正方形断面面积为A=0.64 m2,长l =50 m,两个30。折角、进口和出口的局部水头损失系数分别为ζ1=0.2,ζ2=0.5,ζ3=1.0,沿程水力摩擦系数λ=0.024,上下游水位差H=3m。求通过的流量Q ? 解:按短管计算,取下游水面为基准面,对上下游渠道内的 计算断面建立能量方程 计算方形管道断面的水力半径和局部水头损失系数 将参数代入上式计算,可以求解得到 即倒虹吸管内通过的流量为2.662m3/s 。

5、如图从水箱接一橡胶管道及喷嘴,橡胶管直径D=7.5cm,喷嘴出口直径d=2.0cm,水头H=5.5m,由水箱至喷嘴出口的水头损失h w=0.5m。用压力表测得橡胶管与喷嘴接头处的压强p=4.9N/cm2。行近流速v0≈0,取动能、动量修正系数均为1。 (1)计算通过管道的流量Q; (2)如用手握住喷嘴,需要多大的水平力?方向如何? 解:(1)通过流量 以喷嘴出口中心所在水平面为 基准面0―0,选取水箱内接近管道 入口满足渐变流条件的1―1断面、 喷嘴出口处的2―2断面及橡胶管与 喷嘴接头处的3―3断面。对1―1 与2―2列能量方程: (2)手握住喷嘴需要的水平力 橡胶管流速 对喷嘴段3―3与2―2间水体列水平方向的动量方程: P2=0

水力学期末复习整理

水力学期末复习整理 第一章绪论 1.液体质点:微观上充分大,宏观上充分小的液体微团。 2.连续介质:液体和气体充满一个空间时,分子间没有间隙,其物理性质和运动要素都是连续分布的。 3.液体的易流动性:静止时,液体不能承受切力及抵抗剪切变形的特性。 4.液体的粘滞性:在运动状态下,液体所具有抵抗剪切变形的能力。(理想液体无粘滞性) 5.作用在液体上的力按作用特点分为质量力(主力,惯性力)和表面力(压力,切力)。 6.牛顿液体:凡τ与 dy du 呈过原点的正比例关系的液体 第二章 水静力学基础 1.静水压强特点:①作用线垂直于作用面;②同一点处,静水压强各向等值。 2.等压面特性:质量力与等压面互相垂直。 常见等压面:自由液面;同种相连通液体水平面;不相混溶液体交接面。 3.位置水头z :计算点的位置高度,即计算点距计算基准面的高度。 第三章 水动力学基础 1.描述液体运动的两种方法:拉格朗日法;欧拉法。 2.欧拉法的基本概念: 流线:同一时刻与流场中各质点运动速度矢量相切的曲线。 流线的性质:①不相交或不突然转折;②光滑连续;③与恒定流流线重合;④与均匀流流线平行。 流管:在流场中取一封闭几何曲线,在此曲线上各点作流线,则可构成一管状流动界面。 流股:流管内的液流,又称为流束。 过水断面:垂直于流线簇所取的断面。 元流:过水断面无限小的流股。 总流:无数元流的总和。 3.流量Q :单位时间内流经过水断面的液体体积。Q<0流进;Q>0流出。 4.液流分类:①恒定流与非恒定流:运动要素不随时间变化的流动称为恒定流; ②均匀流与非均匀流:流线簇彼此呈平行直线的流动称为均匀流。 非均匀流中又分为渐变流和急变流。 ③有压流与无压流 5.毕托管测流速;文丘里管(有压管)测流量。 第四章 水流阻力与水头损失 1.水头损失类型:沿程水头损失hf ;局部水头损失hj 。 2.黏性底层:在实际液流中,由于液体与管壁间的附着力作用,在管壁上会有一层极薄的液体贴附在管壁上不动,其流速为零。厚度λ δRe 81.32d = 。 3.绝对粗糙度Δ:管壁粗糙突出的平均高度。 4.绝对粗糙度对水流运动的影响:①Δ<δ,管壁绝对粗糙度被黏性底层淹没,Δ对紊流结构基本上没有影响,黏性底层成了紊流流核的天然光滑壁面,称为“水力光滑管”;②Δ>δ,管壁绝对粗糙度突出于黏性底层之外,并深入到紊流的流核之中,可使液流产生旋涡,加剧紊流的脉动,称为“水力粗糙管”。 5.当量粗糙度:和工业管道沿程阻力系数相等的同直径人工均匀粗糙管道的绝对粗糙度。 6.局部边界条件急剧改变是引起局部水头损失的直接原因。 水流的影响有:①导致液流中产生旋涡,加大水流的紊乱与脉动,增大液流的能量损失;②造成液流断面流速重新分布,加大流速梯度及紊流附加切应力,导致局部较集中的水头损失。 第五章 有压管流与孔口﹑管嘴出流 1.有压管路的类型:简单管路;复杂管路(串联,并联,管网);长管与短管。 短管:必须同时计算管路沿程水头损失,局部水头损失及流速水头的管路。(L/d<1000) 长管:管路流速水头及局部水头损失可以忽略不计的管路。(L/d>1000) 第六章 明渠水流 1.棱柱形渠道:断面形状及尺寸沿程不变的渠道(过水面积只随水深h 变化,与断面位置无关); 非棱柱形渠道:断面形状及尺寸沿程变化的渠道(过水面积与水深h 及断面位置有关)。 2.明渠均匀流发生的条件:属于恒定流,流量沿程不变;长直形的棱柱形顺坡(i>0)渠道;渠道糙率n 及坡底i 沿程不变。 明渠均匀流的水力特性:是一种等深,等速直线运动,断面流速沿程不变;总水头线﹑测压管水头线及渠底线三者平行,因此水力坡度J ﹑测压管坡度Jp 及渠底坡度i 三者相等。 3.明渠底坡(渠道底坡i ):渠道沿程单位长度内的渠底高程变化值,又称比降。 按底坡几何特征分为:i>0,顺坡渠道;i=0,平坡渠道;i<0,逆坡渠道。 明渠水力最佳断面:渠道过水断面面积A ,糙率n 及渠道坡底一定时,Q 最大的断面形状。(A 一定,Q 最大;Q 一定,A 最小)

长理水力学复习资料

一、判断题(每题2分,共计20分)(请在你认为正确的题后划√,错误的题后划×) 1、理想液体就是没有粘滞性的液体。(√) 2、静水压强的大小由表面气体压强和液体重量共同构成。() 3、流线上某一点的流速方向与该点的位置无关。() 4、雷诺数的物理意义在于它表示了质点所受惯性力和粘性力的对比关系。(√) 1、静止的液体由于没有相对运动,因此没有粘滞性。() 2、静水压强的方向与受压面的外法线方向一致。() 3、即使是在恒定层流中,液体运动要素的时均值和瞬时值也是不相等的。() 4、长直管道中产生沿程水头损失的根本原因在于液体具有粘滞性。() 1、理想液体就是不考虑表面张力的液体。() 2、静水压强的大小与作用的方向无关。() 1、理想液体就是忽略液体粘滞性的液体。() 2、若某轴向存在质量力,则该轴向一定存在静水压强的变化。() 3、欧拉法主要研究特定质点在某一段时间内的运动规律。() 4、若液体作恒定流动,则其流线与迹线必定重合。() 5、处于紊流运动状态的液体内部,将不可能出现层流流动。() 6、简单长管的作用水头等于其沿程水头损失。() 7、雷诺数的物理意义在于它表示了质点所受惯性力和粘性力的对比关系。() 8、在相同条件下,简单短管自由出流与淹没出流的泄流能力相同。() 9、明渠均匀流的总水头线与测压管水头线重合。() 10、明渠非均匀流的水深和流速沿程不断变化,所以属于非恒定流。() 3、欧拉法不研究液体质点的运动特性。() 4、雷诺数的物理意义在于它表示了质点所受惯性力和粘性力的对比关系。() 5、在相同条件下,简单短管自由出流与淹没出流的泄流能力相同。() 1、因为实际液体存在粘滞性,故实际液体在任何情况下都存在内摩擦力。() 2、只要静水总压力的作用点与受压面的形心点重合,则该受压面必为水平面。() 3、在连续、均质、静止的液体中,液体内部各点的测压管水头保持相等。() 1、牛顿内摩擦力定律适用于急流。() 2、若静水中某一点的相对压强小于0,则其绝对压强一定小于当地大气压。() 3、静水中由压强相等的各点所组成的面统称为等压面。() 4、流线与迹线重合时,表明液体质点的运动要素不随时间而变化。() R与液体的流速v有关,且随流速的增大而增大。()5、雷诺数 e 6、可以忽略局部水头损失的管道称为长管。() 7、明渠均匀水流的动能修正系数和流速水头沿程保持不变。()

水力学典型例题分析(上)

例题1 在旋转锥阀与阀座之间有厚度为1δ,动力粘度为μ的一层油膜,锥阀高为h,上、下底半径分别为1r 和2r 。 试证明,锥阀以角速度ω旋转时,作用在锥阀上的阻力矩为: T = 〔解〕证明: 任取r 到r+dr 的一条微元锥面环带,在半径r 处的速度梯度是 δ ωγ ,切应力ωγτμδ=, 假定锥面上的微元环形面积为dA ,则作用在锥阀微元环带表面上的微元摩擦力是dF=τdA 微元摩擦力矩 dT=τdA ?r 下面讨论dA 的表达式,设半锥角为θ,显然,由锥阀的几何关系可得 2 2 2121)(h r r r r Sin +--= θ θ ππθSin rdr dA rdr dASin 22= = ∴ dr r Sin rdA dT 3 2θ δπμωτ= = ( )1 1 2 2 44 123 2sin 2sin r r r r r r T dT r dr πμωπμωδθ δθ -= = = ?? 将)(4 24 1r r -进行因式分解,并将Sin θ的表达式代入化简整理上式可得 2 21212()(2T r r r r πμωδ = ++例题2 盛有水的密闭容器,其底部圆孔用金属圆球封闭,该球重19.6N ,直径D=10cm ,圆孔直径d=8cm ,水深H 1=50cm 外部容器水面低10cm ,H 2=40cm ,水面为大气压,容器内水面压强为p

(1)当p 0也为大气压时,求球体所受的压力; (2)当p (1)计算p 0=p a 如解例题2(a)图,由压力体的概念球体所受水压力为 ()()? ???? ?--=??????--=464622132213d H H D d H H D P γπγππ ())(205.0408.04.05.06 1.014.3980023↑=??? ????--??=N (2) 设所求真空度为Hm(水柱)高,欲使球体浮起,必须满足由于真空吸起的“吸力”+上举力=球重,如 解例题 2(b) 6.19205.04 2 =+d H πγ () ()m d H 39.008 .014.398004 205.06.194205.06.192 2=???-=-=γπ γ K P ≥0.39 p K ≥9800×0.39=3822N/m 2 当真空度p K ≥3822N/m 2 时,球将浮起。 例题3 管道从1d 突然扩大到2d 时的局部水头损失为j h ',为了减小水头损失的数值,在1d 与2d 之间再增加一个尺寸为d 的管段,试问:(1)d 取何值时可使整体的损失为最小;(2)此时的最小水头损失j h 为多少? 〔解〕(1)根据已知的圆管突然扩大局部水头损失公式

水力学第四版复习资料整理

水力学 一、概念 1.水力学:是一门技术学科,它是力学的一个分支。水力学的 任务是研究液体(主要是水)的平衡和机械运动的规律及其 实际应用。 2.水力学:分为水静力学和水动力学。 3.水静力学:关于液体平衡的规律,它研究液体处于静止(或 相对平衡)状态时,作用于液体上的各种力之间的关系。 4.水动力学:关于液体运动的规律,它研究液体在运动状态时, 作用于液体上的力与运动要素之间的关系,以及液体的运动 特性与能量转换等。 5.粘滞性:当液体处于运动状态时,若液体质点之间存在着相 对运动,则质点间要产生内在摩擦力抵抗其相对运动,这种 性质称为液体的粘滞性,此内摩擦力又称为粘滞力。 6.连续介质:一咱连续充满其所占据空间毫无空隙的连续体。 7.理想液体:就是把水看作绝对不可压缩、不能膨胀、没有粘 滞性、没有表面张力的连续介质。 8.质量力:通过所研究液体的每一部分质量而作用于液体的、 其大小与液体的质量与比例的力。如重力、惯性力。 9.单位质量力:作用在单位质量液体上的质量力。 10.绝对压强:以设想没有大气存在的绝对真空状态作为零点 计量的压强。p’>0

11.相对压强:把当地大气压Pa作为零点计量的压强。p 12.真空:当液体中某点的绝对压强小于当地压强,即其相对 压强为负值时,则称该点存在真空。也称负压。真空的大小用真空度Pk表示。 13.恒定流:在流场中任何空间点上所有的运动要素都不随时 间而改变,这种水流称为恒定流。 14.非恒定流:流场中任何空间点上有任何一个运动要是随时 间而变化的,这种水流称为非恒定流。 15.流管:在水流中任意取一微分面积dA,通过该面积周界上 的每一个点,均可作一根流线,这样就构成一个封闭的管状曲面,称为流管。 16.微小流束:充满以流管为边界的一束液流。 17.总流:有一定大小尺寸的实际水流。 18.过水断面:与微小流束或总流的流线成正交的横断面。 19.流量:单位时间内通过某一过水断面的液体体积。Q 20.均匀流:流线为相互平行的直线的水流 21.非均匀流:流线不是互相平行的直线的水流。按流线不平 行和弯曲的程度,可分为渐变流和急变流两种类型。 22.渐变流:当水流的流线虽然不是互相平行直线,但几乎近 于平行直线时称为渐变流(或缓变流)。所以渐变流的情况就是均匀流。 23.急变流:若水流的流线之间夹角很大或者流线的曲率半径

工程水力学复习资料

工程水力学 复习要点 液体的主要物理性质 连续介质、密度、粘滞性、压缩性、表面张力 一、水跃复习要点 1.棱柱体水平明渠的水跃方程 2.共轭水深的计算 3.水跃跃长的计算 1、一、水跃的概念 水跃(hydraulic jump):是明槽水流从急流状态过渡到缓流状态时水面突然跃起的局部水力现象。 水跃的分区旋滚区:水跃区域的上部呈饱搀空气的表面旋滚似的水涡。 主流区:水跃区域下部为在铅直平面内急剧扩张前进的水流。 水跃区的几个要素 跃前水深——跃前断面(表面旋滚起点所在过水断面)的水深; 跃后水深——跃后断面(表面旋滚终点所在过水断面)的水深;水跃高度a=h“-h’水跃长度——跃前断面与跃后断面之间的距离 二、水跃的基本方程 1. 水跃函数

2.水跃的基本方程 式中、分别为跃前水深、跃后水深,称为共轭水深,即对于某一流量Q,具有相 同的水跃函数的那两个水深,即为共轭水深 三、水跃的形式 临界水跃:当时,水跃的跃首刚好发生在收缩断面上,跃后水深等于下游水深,称为临界水跃。 远离式水跃:当时,水跃发生在收缩断面之后,跃后水深大于下游水深,称为远离式水跃。 淹没水跃:当时,当下游水深大于临界水跃的跃后水深时,水跃淹没收缩断面,称为淹没水跃。 二、堰流及闸孔出流复习要点 1、概述 堰和堰流:无压缓流经障壁溢流时,上游发生壅水,然后水面跌落,这一局部水力现象称为堰流(Weir Flow);障壁称为堰。 堰流的基本特征量 1.堰顶水头H;

2.堰宽b; 3.上游堰高P、下游堰高P1; 4.堰顶厚度δ; 5.上、下水位差z; 6.堰前行近流速υ0。 堰的分类 堰流及孔流的界限 堰流:当闸门启出水面,不影响闸坝泄流量时。 孔流:当闸门未启出水面,以致影响闸坝泄流量时。 堰流和孔流的判别式 2、堰流的基本公式 式中:m——堰流流量系数,m= 堰流公式 式中: ——淹没系数,≤1.0; ——侧收缩系数,≤1.0 。 m0——计及行近流速的流量系数。

工程水文水力学思考题和计算题(25题思考问答题-20题计算题答卷)

工程水文水力学思考题和计算题 一、思考问答 1、水文现象是一种自然现象,它具有什么特性,各用什么方法研究? 答:1)成因分析法: 根据水文变化的成因规律,由其影响因素预报、预测水文情势的方法。如降雨径流预报法、河流洪水演算法等。 2)数理统计法:根据水文现象的统计规律,对水文观测资料统计分析,进行水文情势预测、预报的方法。如设计年径流计算、设计洪水计算、地区经验公式等。 水文计算常常是二种方法综合使用,相辅相成,例如由暴雨资料推求设计洪水,就是先由数理统计法求设计暴雨,再按成因分析法将设计暴雨转化为设计洪水。此外,当没有水文资料时,可以根据水文现象的变化在地区分布上呈现的一定规律(水文现象在各流域、各地区的分布规律)来研究短缺和无资料地区的水文特征值。 2、何谓水量平衡?试叙闭合流域水量平衡方程在实际工作中的应用和意义。 答:对任一地区、任一时段进入的水量与输出的水量之差,必等于其蓄水量的变化量,这就是水量平衡原理,是水文计算中始终要遵循的一项基本原理。 依此,可得任一地区、任一时段的水量平衡方程。对一闭合流域:设P 为某一特定时段的降雨量,E 为该时段内的蒸发量,R 为该时段该流域的径流量,则有:P=R+EC+△U △U为该时段流域内的蓄水量,△U=U1+U 2。 对于多年平均情况,△U =0,则闭合流域多年平均水量平衡方程变为:P=R+ E 影响水资源的因素十分复杂,水资源的许多有关问题,难于由有关的成因因素直接计算求解,而运用水量平衡关系,往往可以使问题得到解决。因此,水量平衡原理在水文分析计算和水资源规划的分析计算中有广泛的应用。如利用水量平衡式可以用已知的水文要素推求另外的未知要素。例如:某闭合流域的多年平均降雨量P=1020mm ,多年平均径流深R=420mm,试求多年平均蒸发量 E 。E=P-R=600mm。

水力学典型复习题及答案详解.

水力学练习题及参考答案 一、是非题(正确的划“√”,错误的划“×) 1、理想液体就是不考虑粘滞性的实际不存在的理想化的液体。(√) 2、图中矩形面板所受静水总压力的作用点与受压面的形心点O重合。(×) 3、园管中层流的雷诺数必然大于3000。(×) 4、明槽水流的急流和缓流是用Fr判别的,当Fr>1为急流。(√) 5、水流总是从压强大的地方向压强小的地方流动。(×) 6、水流总是从流速大的地方向流速小的地方流动。(×) 6、达西定律适用于所有的渗流。(×) 7、闸孔出流的流量与闸前水头的1/2次方成正比。(√) 8、渐变流过水断面上各点的测压管水头都相同。(√) 9、粘滞性是引起液流运动能量损失的根本原因。(√) 10、直立平板静水总压力的作用点就是平板的形心。(×) 11、层流的沿程水头损失系数仅与雷诺数有关。(√) 12、陡坡上出现均匀流必为急流,缓坡上出现均匀流必为缓流。(√) 13、在作用水头相同的条件下,孔口的流量系数比等直径的管嘴流量系数大。(×) 14、两条明渠的断面形状、尺寸、糙率和通过的流量完全相等,但底坡不同,因此它们 的正常水深不等。(√) 15、直立平板静水总压力的作用点与平板的形心不重合。(√) 16、水力粗糙管道是表示管道的边壁比较粗糙。(×) 17、水头损失可以区分为沿程水头损失和局部水头损失。(√) 18、牛顿内摩擦定律适用于所有的液体。(×) 19、静止液体中同一点各方向的静水压强数值相等。(√) 20、明渠过流断面上各点的流速都是相等的。(×) 21、缓坡上可以出现均匀的急流。(√) 22、静止水体中,某点的真空压强为50kPa,则该点相对压强为-50 kPa。(√) 24、满宁公式只能适用于紊流阻力平方区。(√) 25、水深相同的静止水面一定是等压面。(√) 26、恒定流一定是均匀流,层流也一定是均匀流。(×) 27、紊流光滑区的沿程水头损失系数仅与雷诺数有关。(√) 28、陡坡上可以出现均匀的缓流。(×) 29、满宁公式只能适用于紊流阻力平方区。(√) 30、当明渠均匀流水深大于临界水深,该水流一定是急流。(×)

考研水力学复习要点范文

One 绪 论 1、水力学的任务: 一、研究液体(主要是水)的平衡。二、液体机械运动的规律及其实际应用。 2、液体的主要物理性质: 2.1、惯性、质量与密度 惯性力:当液体受外力作用使运动状态发生改变时,由于液体的惯性引起对外界抵 抗的反作用力。 F =-m*a 单位:N 量纲:MLT-2 密度:是指单位体积液体所含有的质量。国际单位:kg/m 3 量纲:[ML-3] 一个标准大气压下,温度为4℃,蒸馏水密度为1000 kg/m 3 。 2.2万有引力特性与重力 万有引力:是指任何物体之间相互具有吸引力的性质,其吸引力称为万有引力。 重力:地球对物体的引力称为重力,或称为重量。 2.3粘滞性与粘滞系数 当液体处在运动状态时,若液体质点之间存在着相对运动,则质点间要产生内摩擦力抵抗其相对运动,这种性质称为液体的粘滞性,此内摩擦力又称为粘滞力。 动力粘滞系数,简称粘度,随液体种类不同而异的比例系数。 国际单位 :牛顿?秒/米2 牛顿内摩擦定律:作层流运动的液体,相邻液层间单位面积上所作用的内摩擦力(或粘滞力),与流速梯度成正比,同时与液体的性质有关。 牛顿内磨擦定律适用条件:只能适用于牛顿流体。 2.4压缩性及压缩率 2.5 表面张力 表面张力仅在自由表面存在,液体内部并不存在。大小:用表面张力系数 来度量。单位:牛顿/米(N/m )。 3、连续介质和理想液体、实际液体的概念 3.1连续介质: 即假设液体是一种连续充满其所占据空间毫无空隙的连续体。 3.2理想液体:就是把水看作绝对不可压缩、不能膨胀、没有粘滞性、没有表面张力的连续介质。 3.3有没有考虑粘滞性:是理想液体和实际液体的最主要差别。 4、作用于液体上的力 4.1表面力:作用于液体的表面,并与受作用的表面面积成比例的力。例如摩擦力、水压力。 4.2质量力:是指通过所研究液体的每一部分质量而作用于液体的、其大小与液体的质量成比例的力。如重力、惯性力。 5、水力学的研究方法 5.1理论分析 5.2科学实验。包括原型观测、模型试验、系统试验。 5.3数值计算 η2/m s N ?σ

水力学总复习题+答案.

第1章 绪 论 一、选择题 1.按连续介质的概念,流体质点是指( ) A .流体的分子; B. 流体内的固体颗粒; C . 无大小的几何点; D. 几何尺寸同流动 空间相比是极小量,又含有大量分子的微元体。 2.作用在流体的质量力包括( ) A. 压力; B. 摩擦力; C. 重力; D. 惯性力。 3.单位质量力的国际单位是:( ) A . N ; B. m/s ; C. N/kg ; D. m/s 2。 4.与牛顿内摩擦定律直接有关系的因素是( ) A. 切应力和压强; B. 切应力和剪切变形速率;C. 切应力和剪切变形。 5.水的粘性随温度的升高而( ) A . 增大; B. 减小; C. 不变。 6.气体的粘性随温度的升高而( ) A. 增大;B. 减小;C. 不变。 7.流体的运动粘度υ的国际单位是( ) A. m 2/s ;B. N/m 2 ; C. kg/m ;D. N ·s/m 2 8.理想流体的特征是( ) A. 粘度是常数;B. 不可压缩;C. 无粘性; D. 符合pV=RT 。 9.当水的压强增加1个大气压时,水的密度增大约为( ) A. 200001 ; B. 100001 ;C. 40001 。 10.水力学中,单位质量力是指作用在( ) A. 单位面积液体上的质量力; B. 单位体积液体上的质量力; C. 单位质量液体上的质量力; D. 单位重量液体上的质量力。 11.以下关于流体粘性的说法中不正确的是( ) A. 粘性是流体的固有属性;B. 量度 C. 大。 12.已知液体中的流速分布μ-y A.τ=0;B.τ=常数; C. τ=13 A. 液体微团比液体质点大;B.

水力学复习知识点学习资料

学习资料 仅供学习与参考 1.水力学的研究方法:理论分析方法、实验方法,数值计算法。 2.实验方法:原型观测、模型试验。 3.液体的主要物理性质:①质量和密度 ②重量和重度 ③易流动性与粘滞性 ④压缩性 ⑤气化特性和表面张力。 4.理想液体:没有粘滞性的液体(μ=0)。 5.实际液体:存在粘滞性的液体(μ≠0)。 6.牛顿液体:τ与du/dy 呈过原点的正比例关系的液体。 7.非牛顿液体:与牛顿内摩擦定律不相符的液体。 8.作用在液体上的力:即作用在隔离体上的外力。 9.按物理性质区分:粘性力、重力、惯性力、弹性力、表面张力。10.按力的作用特点区分:质量力和表面力两类。 11.质量力:作用在液体每一质点上,其大小与受作用液体质量成正比例的力。 12.表面力:作用于液体隔离 1.静水压强特性:①垂直指向作用面 ②同一点处,静水压强各向等值。 2.静水压强分布的微分方程:dp=ρ(Xdx+ Ydy+ Zdz),它表明静水压强分布取决于液体所受的单位质量力。 3.等压面:液体压强相等各点所构成的曲面。等压面概念的应用应注意,它必须是相连通的同种液体。 4.压强的单位可有三种表示方法:①用单位面积上的力表示:应力单位Pa ,kN/m 2②用液柱高度表示:m (液柱),如p=98kN/m 2,则有p/γ=98/9.8=10m (水柱) ③用工程大气压Pa 的倍数表示:1p a =98kP a 。 5.绝对压强p abs :以绝对真空作起算零点的压强(是液体的实际压强,≥0)p abs =p o +γh 6.相对压强p γ:以工程大气压p a 作起算零点的压强,p γ=p abs -p a = (p o +γh )- p a 真空:绝对压强小于大气压强时的水力现象。真空值p v :大气压强与绝对压强的差值。 7.帕斯卡原理:在静止液体中任一点压强的增减,必将引起其他各点压强的等值增减。应用:水压机、水力起重机及液压传动装置等。 8.压强分布图的绘制与应用要点:①压强分布图中各点压强方向恒垂直指向作用面,两受压面交点处的压强具有各向等值性。②压强分布图与受压面所构成的体积,即为作用于受压面上的静水总压力,其作用线通过此力图体积的重心。③由于建筑物通常都处于大气之中,作用于建筑物的有效力为相对压强,故一般只需绘制相对压强分布图。④工程应用中可绘制建筑物有关受压部分的压强分布图。 9.水静力学基本方程z+p/γ=C ,z ——计算点的位置高度,p/γ——由p =γh ,称为压强高度,z+p/γ——计算点处测压管中水面距计算基准面的高度,z+p/γ=C ——静止液体中各位置高度与压强高度之和不变。 10.浮体:漂浮在液体自由表面的物体。潜体:沉没于液体底部的物体。浮力:物体在液体中所受铅锤向上的浮托力。 11.压力体:以曲面为底直至自由表面间铅垂液体 的体积。虚压力体:液体和压力体分居曲面两侧。实压力体:液体和压力体居曲面同一侧。 12.阿基米德原理:物体在静止液体中所受曲面总压力 p z ,其大小等于物体 描述液体运动的两种方法:拉格朗日法(把液体看成质点系,用质点的迹线来描绘流场中的运动情况),欧拉法(以空间点的流速、加速度为研究对象)。 2.迹线:某液体质点在运动过程中,不同时刻所流经的空间点所连成的线。 3.流线:同一时刻与流场中各点运动速度矢量相切的曲线。4.流线特性:1、一般不会相交,也不会成90°转折。2、只能是一根光滑曲线。3、任一瞬时,液体质点沿流线的切线方向流动,在不同瞬时,因流速可能有变化,流线的图形可以不同。 5.流管:在流场中取一封闭的几何曲线C ,在此曲线上各点作流线则可以构成一管状流面。 6.过水断面:垂直于流线簇所取的断面A 。元流:过水断面无限小的流股,成为元流。 7.液流分类:1、恒定流(运动要素不随时间变化的流动)与非恒定流2、均匀流(流线簇彼此呈平行直线的流动)与非均匀流(又分为渐变流与急变流)3、有压流(过水断面全部边界都与固体边壁接触且无自由表面、液体压强大部分不等于大气压强的流动)与无压流。 8.理想液体元流能量方程各项意义z —计算点距基准面的位置高度,又称位置水头p/r —测压管中水面距计算点的压强高度,又称为压强水头z+p/r —测压管水面距基准面的高度,又称测管水头或单位重量液体的总势能u 2 /2g —流速u 所转化的高度。H 计算点处液体的总水头。 9.水力坡度:单位长度上的水头损失。 10.测管坡度:单位长度上的测管水头变化。11.控制断面:在总流中任取一流段作隔离体,其前后过水断面称为控制断面。 12.什么是理想液体?什么为实际液体?没有粘滞性的液体称为理想液体,反之有粘滞性的液体称为实际液体。 13.恒定流是否可以同时为急变流?均匀流是否可以同时为非恒定流?答:恒定流可以为急变流。恒定流是运动要素不随时间变化的流动,急变流是流线簇彼此不平行,流线间夹角大或流线曲率大的流动,二者定义之间不存在矛盾。均匀流不可以为非恒定流。均匀流中过水断面为平面,沿程断面流速分布相同,断面流速相等,而非恒定流的这些运动要素是 1.水头损失:单位重量液体在流动中的能量损失。 2.沿程阻力:液体内摩擦力,它与液体流动的路程成正比 3.局部阻力:局部边界条件急剧改变引起流速沿程突变所产生的惯性阻力。 4.层流:液体质点在流动中互不发生混掺而是分层有序的流动 5.紊流:液体质点互相混

相关文档