文档库 最新最全的文档下载
当前位置:文档库 › Kingston(金士顿) DataTraveler 2.0 USB Device 量产工具 skymedi(擎泰)-SK6281-SK6211芯片量产工具-教程

Kingston(金士顿) DataTraveler 2.0 USB Device 量产工具 skymedi(擎泰)-SK6281-SK6211芯片量产工具-教程

Kingston(金士顿) DataTraveler 2.0 USB Device 量产工具 skymedi(擎泰)-SK6281-SK6211芯片量产工具-教程
Kingston(金士顿) DataTraveler 2.0 USB Device 量产工具 skymedi(擎泰)-SK6281-SK6211芯片量产工具-教程

Kingston(金士顿) DataTraveler 2.0 USB Device 量产工具-skymedi(擎泰)-SK6281/SK6211芯片量产工具-教程

Kingston(金士顿) DataTraveler 2.0 USB Device 量产工具-skymedi(擎泰)-SK6281/SK6211芯片量产工具

因为YLMF雨林木风的多功能便携操作系统优盘版镜像ISO文件已公开下载.

所以,想将自己的Kingston(金士顿) DataTraveler 2.0 USB Device 4G U盘量产

找了好久,才找到合适的量产工具(SK6281/SK6211芯片量产工具),以下是产量工具下载和图文教程:

Kingston(金士顿) DataTraveler 2.0 USB Device 4G U盘

Kingston(金士顿) DataTraveler 2.0 USB Device 4G U盘

用ChipGenius查看U盘的芯片,并找到相应的芯片量产工具。

同时,记好PID和VID,等下会用到

找开SK6281/SK6211芯片量产工具

如果芯片量产工具适合,将可以找到,如下图红色前头所视

Kingston(金士顿) DataTraveler 2.0 USB Device 量产工具-skymedi(擎泰)-SK6281/SK6211芯片量产工具下载:

ChipGenius下载

SK6281/SK6211芯片量产工具

雨林木风多功能便携操作系统优盘版镜像ISO文件

USB接口没反应的原因及解决方法

USB接口没反应的原因及解决方法 1.有些电脑机箱前置USB接口不可用 曾经发现不少朋友所谓的USB接口不能用,只是用户使用了机箱前面的USB接口,但机箱上的USB接口只有将机箱上USB数据线连接到主板上的对应接口上才有用,不少情况是在装机的时候忘记了将机箱上的USB接口线连接到主板,导致后期使用机箱前面的USB 接口发现不可用。我们如果是遇到前置USB接口不可用,不妨连接机箱后面的USB接口,后置USB接口由主板提供,一般问题就可以解决。 2.系统禁用了USB服务 一般如果没有设置过什么,这种情况是不会发生的,但某些朋友可能喜欢使用如金山卫士或者360卫士优化系统,禁用了USB服务,则也会出现USB接口不可用系统即插即用服务被禁用导致USB不可用。 解决办法:如果以前用的好好的,只是优化了一些系统项目导致的问题,则多数是禁用了USB服务导致的,解决办法大家可以截止金山卫士或者360安全卫士的开机优化服务项目检查下是否禁用了某些关键系统服务,发现了开机,或者使用金山卫士优化推荐项,还是不会的朋友可以考虑下系统还原或者重装系统。 3.BIOS设置中禁用了USB功能 在主板BIOS中就有USB控制开关,默认是开启的,如果由于错误设置BIOS或者BIOS 出错则可能导致USB接口被禁用,因此如果排除以上情况,我们不妨再检查下BIOS设置是否禁用了USB。 解决办法:重启电脑,按一直按着DEL键盘,即可进入BIOS设置,然后找到USB设置项目,由于全部是英文,我这里也不怎么好讲解,有兴趣的朋友可以借助以下文章完成解读:bios设置图解教程大全。 https://www.wendangku.net/doc/496138158.html,B接口损坏或者主板故障 如果以上三种情况依然无法解决问题,那么就需要注意USB接口故障还是设备故障了,如上面网友问到的那样,产生的问题也可能是U盘问题,因此大家不妨多拿个几个USB设备来试试,如果多个设备,如手机、U盘等都不可以用,又或者别人电脑能用,自己的则不行,则可能是USB接口损坏,我们可以再试试换主机后面别的USB接口试试,依然不行,则多数是主板问题,建议拿去检修。 基本可以断定电脑USB接口不能用主要是以上四种原因导致的,排除方法也不难,另外最后提醒大家在USB设备传输数据的时候,不要直接拔掉设备,一切从零开始,一步步成长为电脑高手,这样可能会导致USB设备处问题,最后希望大家都能够解决类似USB接口不能用的问题。

光纤接口类型(附图)

光纤接口大全 l各种光纤接口类型介绍 光纤接头 FC 圆型带螺纹(配线架上用的最多) ST 卡接式圆型 SC 卡接式方型(路由器交换机上用的最多) PC 微球面研磨抛光 APC 呈8度角并做微球面研磨抛光 MT-RJ 方型,一头双纤收发一体( 华为8850上有用) 光纤模块:一般都支持热插拔, GBIC Giga Bitrate Interface Converter, 使用的光纤接口多为SC或ST型 SFP 小型封装GBIC,使用的光纤为LC型 使用的光纤: 单模: L ,波长1310 单模长距LH 波长1310,1550 多模:SM 波长850 SX/LH表示可以使用单模或多模光纤

l在表示尾纤接头的标注中,我们常能见到“FC/PC”,“SC/PC” 等,其含义如下 l“/”前面部分表示尾纤的连接器型号 “SC”接头是标准方型接头,采用工程塑料,具有耐高温,不容易氧化优点。传输设备侧光接口一般用SC接头 “LC”接头与SC接头形状相似,较SC接头小一些。 “FC”接头是金属接头,一般在ODF侧采用,金属接头的可插拔次数比塑料要多。 l连接器的品种信号较多,除了上面介绍的三种外,还有MTRJ、ST、MU等,具体的外观参见下图

l/”后面表明光纤接头截面工艺,即研磨方式。 “PC”在电信运营商的设备中应用得最为广泛,其接头截面是平的。 “UPC”的衰耗比“PC”要小,一般用于有特殊需求的设备,一些国外厂家ODF架内部跳纤用的就是FC/UPC,主要是为提高ODF设备自身的指标。 u另外,在广电和早期的CATV中应用较多的是“APC” 型号,其尾纤头采用了带倾角的端面,可以改善电视 信号的质量,主要原因是电视信号是模拟光调制,当 接头耦合面是垂直的时候,反射光沿原路径返回。由 于光纤折射率分布的不均匀会再度返回耦合面,此时 虽然能量很小但由于模拟信号是无法彻底消除噪声 的,所以相当于在原来的清晰信号上叠加了一个带时 延的微弱信号,表现在画面上就是重影。尾纤头带倾 角可使反射光不沿原路径返回。一般数字信号一般不 存在此问题 l光纤连接器 u光纤连接器是光纤与光纤之间进行可拆卸(活动)连接的器件,它是把光纤的两个端面精密对接起来,以 使发射光纤输出的光能量能最大限度地耦合到接收光

对于USB接口供电不足的解决方法

对于USB接口供电不足的解决方法 USB接口即插即用的方便性,使移动硬盘,U盘,等即插即用设备大量出现,但是随之而来的USB设备与主机的兼容性问题也随之出现,不过其中最多的都是因为USB接口的供电问题而导致USB 设备不能使用。USB接口的供电不足引起问题最多的就是移动硬盘。下面就以移动硬盘为例来谈谈USB供电不足的解决办法。 (一)USB接口供电不足的故障表现: 1、系统不能发现移动硬盘,移动硬盘的状态指示灯不亮(绿闪为读盘)或常明为绿色(红色为读盘)。可能同时伴随硬盘有节奏的“咔咔”声,好像硬盘有故障似的。 2、系统能够找到新硬件,表现为新硬件的驱动程序也安装正常,但在我的电脑里面没有盘符显示,无法使用移动硬盘。 3、系统能够打到移动硬盘,也有盘符显示,拷贝小文件正常,但拷贝大文件时容易丢失数据,造成拷贝到移动硬盘中的文件无法打开。 4、比较严重的是主机接上移动硬盘后,主机根本无法启动,提

示系统文件丢失或启动盘无系统文件之类的提示。 (二)USB接口供电不足的解决方法: 1、对于主板上的USB接口有跳线可以改变供电方式的主机 当出现移动硬盘不能正常使用时,我们可以试着改变一下供电途径,把原来的副电源+5VSB供电改为主电源的+5V供电,看移动硬盘是否能够正常使用。 说明一点:我们通常所使用的A TX V2.1版的开关电源,只能提供+5VSB1.5A的电流。但实际上,多数开关电源生产厂家在生产开关电源时为了降低生产成本,对于+5VSB的供电有的采用低频变压器直接降压,再通过7805稳压块稳压后提供给主机;有的使用单管自激式开关电源电路,有个单独的3-5W的开关变压器提供+12V 的直流电压,再经过7805稳压后提供给主机。副电源在主机中的作用主要是提供开机电路,网络唤醒,M唤醒,键盘开机等功能,一般情况下这部分电路对副电源所需的电流比较小,所以多数主机使用此类电源不会产生什么问题。由于7805在加标准散热片的情况下能够输出1.5A的电流,而厂家在生产时多数都不使用散热片或使用小片散热片,所以其电波的输出最多也只有500MA,特别是在长时间大电流工作时,因为7805发热量大,输出电流会随着工作温度的上升而下降,到到截止温度时会停止输出。所以当我们的主板的USB接口使用的是+5VSB供电时,此时我们再使用移动硬盘,肯定会出问题的。

USB读卡器维修实战

随着可扩展存储卡的数码产品逐渐增多,配备读卡器的用户也越来越多。DP一年前也买了一个飚王SSK-18IN1-0414的十八合一读卡器,开始时对所有存储卡大小通吃,可是好景不长,过了半年笔者的一张CF卡读不出来,后来甚至完全“罢工”——所有卡都读不出来了,但电脑能把读卡起识别为“可移动磁盘”,这说明其主控芯片是完好的,可能是个别元件闹情绪罢了。 本着DIY精神,DP把读卡起拆开,发现其主控芯片为安国国际科技(ALCOR MICRO)的AU6362,电源管理芯片为AU1250,还有18个贴片电容,24只贴片电阻,2只贴片电感,一只LED和一只12M的晶振。整体做工和用料还算扎实,因为电脑能识别出读卡器,所以IC损坏的可能性不大,但对于这种低功耗的弱电电路,阻容器件失效的可能性也很小,电感损坏更不可能,也看不出线路断裂和脱焊,所以DP初步判断,问题应该出在晶振那里,因为晶振本来就容易因摔碰而损坏。于是更换同频率的晶振,问题解决。 就是这个晶振,频率为12MHz

后来D P一只买相机时赠送的读卡器也坏了,故障现象是读卡器连接到电脑上毫无反应,说明电脑不能识别出读卡器。细看电路板,做工和用料也很精良,所以DP依然认为核心器件损坏的可能性也不大,因为故障现象不同,所以也基本可以排除晶振损坏。后来DP换插到另外一个U SB接口上,过了一段时间,电脑居然能奇迹般识别出读卡器来。此前置USB接口和其他接口不同的是,本人考虑到USB接口的供电能力差,延长线的损耗和机箱内杂波的干扰,其电源是直接从主机电源上接过去的,而且还加装了滤波电容,所以其供电能力和杂波干扰比其他接口都要好。笔者因此推断,可能是读卡器上的电源滤波电源不良或失效,导致接在普通USB接口上因电源供应恶劣而无法正常工作。更换该电容后,接在所有USB接口上均能正常识别。

电子设计常用芯片

741 运算放大器 2063A JRC杜比降噪 20730 双功放 24C01AIPB21 存储器 27256 256K-EPROM 27512 512K-EPROM 2SK212 显示屏照明 3132V 32V三端稳压 3415D 双运放 3782M 音频功放 4013 双D触发器 4017 十进制计数器/脉冲分配器4021 游戏机手柄 4046 锁相环电路 4067 16通道模拟多路开关 4069 游戏机手柄 4093 四2输入施密特触发器 4098 41256 动态存储器 52432-01 可编程延时电路 56A245 开关电源 5G0401 声控IC 5G673 八位触摸互锁开关 5G673 触摸调光 5G673 电子开关 6116 静态RAM 6164 静态RAM 65840 单片数码卡拉OK变调处理器7107 数字万用表A/D转换器74123 单稳多谐振荡器 74164 移位寄存器 7474 双D触发器 7493 16分频计数器 74HC04 六反相器 74HC157 微机接口 74HC4053 74HCU04 六反相器 74LS00 与门 74LS00 4*2与非门 74LS00 四2与非门 74LS00 与门 74LS04 6*1非门 74LS08 4*2与门 74LS11 三与门 74LS123 双单稳多谐振荡器 74LS123 双单稳多谐振荡器 74LS138 三~八译码器 74LS142 十进制计数器/脉冲分配器74LS154 4-16线译码器 74LS157 四与或门74LS161 四2计数器 74LS161 十六进制同步计数器 74LS161 四~二计数器 74LS164 数码管驱动 74LS18 射频调制器 74LS193 加/减计数器 74LS193 四2进制计数器 74LS194 双向移位寄存器 74LS27 4*2或非门 74LS32 四或门 74LS32 4*2或门 74LS374 八位D触发器 74LS374 三态同相八D触发器 74LS377 74LS48 7位LED驱动 74LS73 双J-K触发器 74LS74 双D触发器 74LS85 四位比较器 74LS90 计数器 75140 线路接收器 75141 线路接收器 75142A 线路接收器 75143A 线路接收器 7555 时钟发生器 79MG 四端负稳压器 8051 空调单片机 8338 六反相器 A1011 降噪 ACVP2205-26 梳状滤波视频处理 AD536 专用运放 AD558 双极型8位D-A(含基准电压)变换器AD558 双极型8位D-A(含基准电压)变换器AD574A 12比特A/D变换器 AD650 AD670 8比特A/D变换器(单电源)1995s-2、15 AD7523 D-A变换器1994x-125 AD7524 D-A变换器1994x-126 AD7533 模数转换器1994x-141 AD7533 模数转换器1995s-184 ADC0804 8比特A/D变换器1995s-2、20 ADC0809 8CH8比特A/D 1995s-2、23 ADC0833 A/D变换4路转换器1995s-2 ADC80 12比特A/D变换器1995s-2、8 ADC84/85 高速12比特A/D变换器1995s-2 AG101 手掌游戏机1993x-155 AM6081 双极型8位D-A变换器1994x-127 AMP1200 音频功放皇后1993s-104 AN115 立体声解码1991-135 AN2510S 摄象机寻象器1994x-109 AN2661NK 影碟机视频1995s-45

电脑usb接口不能用没反应的诊断修复方法

电脑usb接口不能用没反应的诊断修复方法 当出现电脑usb接口不能用没反应的时候,我们千万别慌张,不要认为电脑坏了不能修复了,我们现在就为介绍修复方法,我们首先检查一下插入的设备是否正常,如鼠标、U盘等是不是好的,如果在别的机子上也不能读出,就要考虑插入的设备有问题了。如果在别的电脑上可以读出来,就请下列方法进行修复。U盘插入电脑,电脑提示“无法识别的设备”故障诊断方法如下。第1步:如果U盘插入电脑,电脑提示“无法识别的设备”,说明U盘的供电电路正常。接着检查U盘的USB接口电路故障。第2步:如果U盘的USB接口电路正常,则可能是时钟电路有故障(U盘的时钟频率和电脑不能同步所致)。接着检测时钟电路中的晶振和谐振电容。第3步:如果时钟电路正常,则是主控芯片工作不良。检测主控芯片的供电,如果供电正常,则是主控芯片损坏,更换即可。 另外还有一种原因,就是USB接口供电不足,可能是USB接口连接的外设太多造成供电不足。建议使用带电的USBHUB或者使用USB转PS/2的转接头。还有可能WindowsXP默认开启了节电模式,致使USB接口供电不足,使USB接口间歇性失灵。右击我的电脑/属性/硬件/设备管理器,双击“通用串行总线控制器”会到好几个“USBRoot Hub”双击任意一个,打开属性对话框,切换到“电源管理”选项卡,去除“允许计算机关闭这个设备以节约电源”前的勾选,点击确定返回,依次将每个USBRootHub的属性都修改完后重新启动电脑。USB设备就能恢复稳定运行了,频率尽量设低一些。 如果是有盘符而没有显示出来的,解决方法:右击我的电脑/管理/存储/磁盘管理,然后右击“可移动磁盘”图标”单击快捷菜单中的“更改驱动器和路径”选项,并在随后的界面中单击“添加”按钮,接下来选中“指派驱动器号”,同时从该选项旁边的下拉列表中选择合适的盘符,在单击确定即可。最后打开我的电脑,就能看到移动硬盘的盘符了。 另外还有可能是:1.你的数据线坏了,检测的方法在别人的机器用你的数据线在电脑上一插就知道好坏了。2.就是你的机器的接口有问题,解决的办法就是换个接口。3.可能是你的电脑系统与你的机器不兼容,导致电脑无法识别!有的电脑的前面是供电不足造成的,插后面就可以了。 如果还是不行,就要修复电脑系统了。 1、开机按F8不动到高级选项出现在松手,选“最近一次的正确配置”回车修复。 2、开机按F8进入安全模式后在退出,选重启或关机在开机,就可以进入正常模式(修复注册表)。 3、如果故障依旧,请你用系统自带的系统还原,还原到你没有出现这次故障的时候修复(如果正常模式恢复失败,请开机按F8进入到安全模式中使用系统还原)。 4、如果故障依旧,使用系统盘修复,打开命令提示符输入SFC /SCANNOW回车(SFC和/之间有一个空格),插入原装系统盘修复系统,系统会自动对比修复的。 5、如果故障依旧,

常用的硬件接口及通信协议详解

一:串口 串口是串行接口的简称,分为同步传输(USRT)和异步传输(UART)。在同步通信中,发送端和接收端使用同一个时钟。在异步通信中,接受时钟和发送时钟是不同步的,即发送端和接收端都有自己独立的时钟和相同的速度约定。 1:RS232接口定义 2:异步串口的通信协议 作为UART的一种,工作原理是将传输数据的每个字符一位接一位地传输。图一给出了其工作模式: 图一 其中各位的意义如下: 起始位:先发出一个逻辑”0”的信号,表示传输字符的开始。

数据位:紧接着起始位之后。数据位的个数可以是4、5、6、7、8等,构成一个字符。通常采用ASCII码。从最低位开始传送,靠时钟定位。 奇偶校验位:资料位加上这一位后,使得“1”的位数应为偶数(偶校验)或奇数(奇校验),以此来校验资料传送的正确性。 停止位:它是一个字符数据的结束标志。可以是1位、1.5位、2位的高电平。 空闲位:处于逻辑“1”状态,表示当前线路上没有资料传送。 波特率:是衡量资料传送速率的指针。表示每秒钟传送的二进制位数。例如资料传送速率为120字符/秒,而每一个字符为10位,则其传送的波特率为10×120=1200字符/秒=1200波特。 3:在嵌入式处理器中,通常都集成了串口,只需对相关寄存器进行设置,就可以使用啦。尽管不同的体系结构的处理器中,相关的寄存器可能不大一样,但是基于FIFO的uart框图还是差不多。

发送过程:把数据发送到fifo中,fifo把数据发送到移位寄存器,然后在时钟脉冲的作用下,往串口线上发送一位bit数据。 接受过程:接受移位寄存器接收到数据后,将数据放到fifo中,接受fifo事先设置好触发门限,当fifo中数据超过这个门限时,就触发一个中断,然后调用驱动中的中断服务函数,把数据写到flip_buf 中。 二:SPI SPI,是英语Serial Peripheral Interface的缩写,顾名思义就是串行外围设备接口。SPI,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时为PCB 的布局上节省空间,提供方便,正是出于这种简单易用的特性,现在越来越多的芯片集成了这种通信协议。

USB设备无法识别处理方法大全

USB设备无法识别处理方法大全 无法识别的USB设备:Unknown USB Device. 很多人都遇到过的一个问题,所谓“无法识别”对于操作系统来说,或者是驱动程度有问题,或者是USB设备出现了问题,或者是计算机与USB设备连接出现了故障,解决问题的方法也是从这几处着手。 对于不同的设备会有不同的处理方法,了解USB设备正常工作需要的条件以及一些可能影响USB设备正常工作的因素,会有助于解决问题。 下面是保证USB设备可以正常工作的一些条件:(1)USB设备本身没有任何问题——可以通过在其它计算机上进行测试,保证能正常工作;(2)USB接口没有任何问题——可以通过连接其它的USB设备在此接口上进行测试;(3)USB设备的驱动程序已经正确安装,如果有详细说明书的USB设备,一定要仔细查看相应的说明文件,按照说明安装相应的驱动程序;Windows 2000以后的操作系统以识别大部分的USB设备,Windows 98以前的操作系统可以安装USB设备自带的驱动或者安装通用的USB设备驱动程序。 下面是可能影响USB设备正常工作的一些情形: (1)USB设备已经出现了故障(同样的条件以前可以正常使用,现在出现了问题); (2)USB接口有问题,比如:①USB前置接口极性接反,这可能导致USB设备烧毁,所以一定要仔细看一下主板说明书,防止接错;②接口电压不足,一些移动硬盘常会有这样的问题,主机后面的USB 接口往往会比前置USB接口更可靠一些;③主板与操作系统兼容性有问题,安装最新的主板驱动程序可以最大程度地避免此类问题;④Bios中禁止了USB设备,可能通过更改BIOS中相应的设置来解决;⑤操作系统问题,可以通过重装操作系统来解决。 (3)USB驱动程序有问题:如果怀疑驱动有问题时,应当保证安装了该设备相应型号的最新驱动程序或确认操作系统不需要安装特别的驱动,最新的驱动可以通过从网上设备生产商的主页上去查找。 当USB设备出现问题时,除了根据实际的错误提示信息寻找解决方案以外,还要仔细查看USB设备的具体品牌、型号、生产商,在搜索结果时包括这些信息,可以更容易地找到对应的解决方法。 象有些插拔费劲需要经常处于连接状态的USB设备暂时出现故障,操作系统不停地出现“无法识别的USB设备”这样恼人的提示时,可以在设备管理器中暂时关闭通用串行总线控制器中相应的USB端口或者禁止相应的USB设备。 一、"无法识别的USB设备"处理方法: 1、前置USB线接错。当主板上的USB线和机箱上的前置USB接口对应相接时把正负接反就会发生这类故障,这也是相当危险的,因为正负接反很可能会使得USB设备烧毁。所以尽量采用机箱后置的USB接口,也少用延长线.也可能是断口有问题,换个USB端口看下。 2、USB接口电压不足。当把移动硬盘接在前置USB口上时就有可能发生系统无法识别出设备的故障。原因是移动硬盘功率比较大要求电压相对比较严格,前置接口可能无法提供足够的电压,当然劣质的电源也可能会造成这个问题。解决方法是移动硬盘不要接在前置USB接口上,更换劣质低功率的电源或尽量使用外接电源的硬盘盒,假如有条件的话。 3、主板和系统的兼容性问题。这类故障中最著名的就是NF2主板与USB的兼容性问题。假如你是在NF2的主板上碰到这个问题的话,则可以先安装最新的nForce2专用USB2.0驱动和补丁、最新的主板补丁和操作系统补丁,还是不行的话尝试着刷新一下主板的BIOS一般都能解决。 4、系统或BIOS问题。当你在BIOS或操作系统中禁用了USB时就会发生USB设备无法在系统中识别。解决方法是开启与USB设备相关的选项。就是开机按F2或DEL键,进入BIOS,把enable usb device 选择enable。 5、拔插要小心,读写时千万不可拔出,不然有可能烧毁芯片。XP中任务栏中多出USB设备的图标,打开该图标就会在列表中显示U盘设备,选择将该设备停用,然后你再拔出设备,这样会比较安全。 其实判断软件硬件问题很简单,在别的机器或换个系统(98下要驱动哦)试试就可以了.有些小的问题不妨先用专门软件格式化下.还有提醒大家WINDOWS下格式化时要选择FAT,不要选FAT32。 二、U盘提示无法识别的USB设备维修 故障提示如图:

通信网常见接口一览

各种交换机数据接口类型一览 作为局域网的主要连接设备,以太网交换机成为应用普及最快的网络设备之一,同时,也是随着这种快速的发展,交换机的功能不断增强,随之而来则是交换机端口的更新换代以及各种特殊设备连接端口不断的添加到 交换机上,这也使得交换机的接口类型变得非常丰富,为了让大家对这些接口有一个比较清晰的认识,我们根据资料特地整理了一篇交换机接口的文章: 1、RJ-45接口 这种接口就是我们现在最常见的网络设备接口,俗称“水晶头”,专业术语为RJ-45连接器,属于双绞线以太网接口类型。RJ-45插头只能沿固定方向插入,设有一个塑料弹片与RJ-45插槽卡住以防止脱落。 这种接口在10Base-T以太网、100Base-TX以太网、1000Base-TX 以太网中都可以使用,传输介质都是双绞线,不过根据带宽的不同对介质也有不同的要求,特别是1000Base-TX千兆以太网连接时,至少要使用超五类线,要保证稳定高速的话还要使用6类线。 2、SC光纤接口

SC光纤接口在100Base-TX以太网时代就已经得到了应用,因此当时称为100Base-FX(F是光纤单词fiber的缩写),不过当时由于性能并不比双绞线突出但是成本却较高,因此没有得到普及,现在业界大力推广千兆网络,SC光纤接口则重新受到重视。 光纤接口类型很多,SC光纤接口主要用于局网交换环境,在一些高性能千兆交换机和路由器上提供了这种接口,它与RJ-45接口看上去很相似,不过SC接口显得更扁些,其明显区别还是里面的触片,如果是8条细的铜触片,则是RJ-45接口,如果是一根铜柱则是SC光纤接口。 3、FDDI接口 FDDI是目前成熟的LAN技术中传输速率最高的一种,具有定时令牌协议的特性,支持多种拓扑结构,传输媒体为光纤。 光纤分布式数据接口(FDDI)是由美国国家标准化组织(ANSI)制定的在光缆上发送数字信号的一组协议。FDDI 使用双环令牌,传输速率可以达到 100Mbps。

非接触式IC卡读卡器单芯片解决方案

非接触式 IC 卡读卡器单芯片解决方案 目录: 1.1 非接触式 IC 卡读卡器读写模块介绍 1.2 非接触式 IC 卡读卡器读写模块解决方案的组成 1.3 福骅联盟非接触式 IC 卡读卡器读写模块硬件设计思路 1.4福骅联盟非接触式 IC 卡读卡器读写模块解决方案优势 1.5 软件设计思路 1.6其他及联系方式 1.1 非接触式 IC 卡读卡器读写模块介绍 NFC技术由非接触式射频识别(RFID演变而来,其基础是 RFID 及互连技术。近场通信(Near Field Communication ,NFC是一种短距高频的无线电技术,在 13.56MHz 频率运行于 10厘米距离内。其传输速度有 106 Kbit/秒、212 Kbit/秒或者424 Kbit/秒三种。目前近场通信已通过成为 ISO/IEC IS 18092国际标准、ECMA-340标准与 ETSI TS 102 190标准。 1.2 非接触式 IC 卡读卡器读写模块解决方案的组成 NFC 以及 MCU 控制器,30个快速 I/O端口,2个 I2C、3个 UART、2个 SPI, CAN 接口,USB2.0全速通讯接口组成非接触式 IC 卡读卡器读写模块,同时可以做二次开发。 1.3福骅联盟非接触式 IC 卡读卡器读写模块硬件设计思路 1/通过FU32F103CBNFC来实现数据的打包处理,控制NFC的读写部分;

2/ MCU部分:ARM授权, M3内核, 与STM32F103软件完全兼容, 主频96MHZ, 128K Flash, 20KRAM; 3/NFC部分:支持Type A,Type B,Felica协议,性能稳定; 1.4福骅联盟非接触式 IC 卡读卡器读写模块解决方案优势 性能优势:射频性能完美,数据加密功能独特,完全优于各竞争对手的集成度, 使得整体成本优势明显。 ?具备 4000V 的 ESD 抗干扰指标,可省去外置电路板的 TVS 管节省成本。 ?具备完整的参考程序,可以开源给到客户。 ?具备完整的硬件 DEMO 板,可以给到客户演示评估。 ?供货优势:国内晶圆厂,国内封装,供货有保障。 ?单芯片包含NFC及MCU,产品集成度高,提高生产制造的一致性,稳定性; 降低返修率,最终降低生产制造的综合成本。 1.5软件设计思路 您可以通过联系我们的销售, AE, FAE 获得软件设计指导及方案的完整软件代码; ?完整的参考程序,软件的整体设计思路等; ?整体的硬件设计原理图及 PCB Layout等; ?同时也可取得非接触式 IC 卡读卡器读写模块进行测试; 1.6 其他 除了适用于 IC 卡读写器外,也可适用于政府及企事业单位,校园一卡通设备,手持终端,巡更机,等场景。

如何解决电脑USB接口没反应不能用的问题

如何解决电脑USB接口没反应不能用的问题 我们经常会遇到鼠标或是其它一些USB设备插在电脑USB 接口上没有反应,为什么会这样呢,今天就告诉大家一些常见到的问题与解决方法。 首先我们来说说电脑usb接口不能用可能的最直接原因: ⒈)通常很多朋友遇到的USB接口不能用,很多问题出在USB设备上 前段时间有一朋友买了个智能手机,但想到网上下载点音乐与手机桌面背景图片拷贝到手机SD卡中,结果将数据线与手机和电脑连接之后,手机屏幕上也显示在充电状态,但在电脑中的我的电脑里怎么也找不到可移动磁盘(SD卡)的存在,朋友一着急以为手机USB接口有问题,让笔者给看看,不过笔者看了下手机,手机解锁之后发现手机上有提示是否需要打开USB设备,选择打开之后,一会我的电脑中就显示出了可移动磁盘了。通过这个例子笔者想说,如果遇到USB接口没反应,最好想想设备是否有开关,USB线是否连接好,新设备最好看下使用说明书等等。最好的办法大家可以先换个USB口以及重新拔插几次,不行建议换个电脑试试,检查下到底是

电脑还是设备的问题。 ⒉)USB本身问题 USB接口问题可以分为硬件问题也可以分为软件问题,下面我们先从软件方面说其,比如USB设备的驱动不小小心给删除或者在BIOS中设置了禁用USB设备就会导致电脑USB接口没反应,因此导致USB接口肯定用不了。遇到这种情况我们首先需要确认USB设备没问题,比如我们将无线鼠标或者U盘等USB设备放别的电脑上有用,放这台电脑有问题,则基本可以确认为USB本身问题了。 解决办法可以先这样:首先在这台有问题的电脑上看看USB 是前置接口还是后置接口,很多时候我们会发现一些电脑前置USB 接口不可用,但后面的可以,主要是因为前置USB接口是机箱提供

常用几种通讯协议

常用几种通讯协议 Modbus Modbus技术已成为一种工业标准。它是由Modicon公司制定并开发的。其通讯主要采用RS232,RS485等其他通讯媒介。它为用户提供了一种开放、灵活和标准的通讯技术,降低了开发和维护成本。 Modbus通讯协议由主设备先建立消息格式,格式包括设备地址、功能代码、数据地址和出错校验。从设备必需用Modbus协议建立答复消息,其格式包含确认的功能代码,返回数据和出错校验。如果接收到的数据出错,或者从设备不能执行所要求的命令,从设备将返回出错信息。 Modbus通讯协议拥有自己的消息结构。不管采用何种网络进行通讯,该消息结构均可以被系统采用和识别。利用此通信协议,既可以询问网络上的其他设备,也能答复其他设备的询问,又可以检测并报告出错信息。 在Modbus网络上通讯期间,通讯协议能识别出设备地址,消息,命令,以及包含在消息中的数据和其他信息,如果协议要求从设备予以答复,那么从设备将组建一个消息,并利用Modbus发送出去。 BACnet BACnet是楼宇自动控制系统的数据通讯协议,它由一系列与软件及硬件相关的通讯协议组成,规定了计算机控制器之间所有对话方式。协议包括:(1)所选通讯介质使用的电子信号特性,如何识别计算机网址,判断计算机何时使用网络及如何使用。(2)误码检验,数据压缩和编码以及各计算机专门的信息格式。显然,由于有多种方法可以解决上述问题,但两种不同的通讯模式选择同一种协议的可能性极少,因此,就需要一种标准。即由ISO(国际标准化协会〉于80年代着手解决,制定了《开放式系统互联(OSI〉基本参考模式(Open System Interconnection/Basic Reference Model简称OSI/RM)IS0- 7498》。 OSI/RM是ISO/OSI标准中最重要的一个,它为其它0SI标准的相容性提供了共同的参考,为研究、设计、实现和改造信息处理系统提供了功能上和概念上的框架。它是一个具有总体性的指导性标准,也是理解其它0SI标准的基础和前提。 0SI/RM按分层原则分为七层,即物理层、数据链路层、网络层、运输层、会话层、表示层、应用层。 BACnet既然是一种开放性的计算机网络,就必须参考OSIAM。但BACnet没有从网络的最低层重新定义自己的层次,而是选用已成熟的局域网技术,简化0SI/RM,形成包容许多局 域网的简单而实用的四级体系结构。 四级结构包括物理层、数据链路层、网络层和应用层。

通信各类常用接头介绍

各类常用接头介绍 --广移分公司技术部 (射频篇) 一、馈线接头(连接器) 馈线与设备以及不同类型线缆之间一般采用可拆卸的射频连接器进行连接。连接器俗称接头。 常见的射频连接器有以下几种: 1、DIN型连接器 适用的频率范围为0~11GHz,一般用于宏基站射频输出口。 2、N型连接器 适用的频率范围为0~11GHz,用于中小功率的具有螺纹连接机构的同轴电缆连接器。 这是室内分布中应用最为广泛的一种连接器,具备良好的力学性能,可以配合大部分的馈线使用。

3、BNC/TNC连接器 BNC连接器 适用的频率范围为0~4GHz,是用于低功率的具有卡口连接机构的同轴电缆连接器。这种连接器可以快速连接和分离,具有连接可靠、抗振性好、连接和分离方便等特点,适合频繁连接和分离的场合,广泛 应用于无线电设备和测试仪表中连接同轴射频电缆。 TNC连接器 TNC连接器是BNC连接器的变形,采用螺纹连接机构,用于无线电设备和测试仪表中连接同轴电缆。 其适用的频率范围为0~11GHz。

4、SMA连接器 适用的频率范围为0~18GHz,是超小型的、适合半硬或者柔软射频同轴电缆的连接,具有尺寸小、性能优越、可靠性高、使用寿命长等特点。较长应用于AP、设备modem中的小天线中以及主机内部连线。 但是超小型的接头在工程中容易被损坏,适合要求高性能的微波应用场合,如微波设备的内部连接。 5、反型连接器 通常是一对连接器:阳连接器采用内螺纹联接,阴连接器采用外螺纹联接,但有些连接器与之相反,即阳连接器采用外螺纹联接,阴连接器采用内螺纹联接,这些都统称为反型连接器。 例如某些WLAN的AP设备的外接天线接口就采用了反型SMA连接器。 二、转接头(转接器) 用于连接不同类型接头,常用的有双阴头(用于两根馈线的对接等)、直角转接头(用于施工中避免转弯造成馈线损坏)、7/16转接头(用于基放等设备中DIN接头和N型头的对接)。部分图解如下:

Cortex-M0的RFID读卡器电路设计方案。

主控芯片NXP LPC812($0.6375):LPCS00 系列是基于ARM Cortex-M0+的低成本32 位MCU 系列产品,工作时CPU 频率最高可达30 MHz。它支持最高16 KB 的闪存和4 KB 的SRAM。 射频芯片SLRC610($2.4466) SLRC610($2.4466)是NXP 公司新一代多协议无线近场芯片中的一员,它是用于13.56MHz 的非接触式通信的高度集成的收发器芯片,支持并遵守IS0/IEC15693、EPCUID 和 ISO/IEC18000-3 mode 3/EPC Class-1 HF 协议的卡片。它与主机的通信接口有SPI、UART、I2C 总线(包括I2C 和I2CL 模式)三种。另外,它的安全性比上一代更高,支持安全访问模块(SAM)的连接。 模块硬件设计 模块主要由通信升级接口、调试接口、提示信号、LPC812($0.6375)、SLRC610($2.4466)、模块内置天线等组成。模块框图如图1 所示。 主控芯片电路设计 LPC812($0.6375)是LPC800 系列配置最高的型号,它有TSSOP16、SO2O、TSSOP20($9.9900)三种封装,因为设计的是小模块,所以选用了sO2O 塑料小型封装。由于LPC812($0.6375)支持通过开关矩阵将特殊功能分配到某个I/O 引脚,所以在设计原理图的时候可以充分考虑将某个功能分配到哪个引脚上既方便布线、性能又好。另外,本次设计中LPC812($0.6375)内置的1%精度的12 MHz 内部RC 振荡器作系统时钟。主控芯片电路如图2 所示。

射频芯片电路设计 SLRC610($2.4466)只有一种小型的HVQFN32 封装,特别要注意它的第33 引脚,也就是芯片朝PCB 面正中间一个正方形的面,这个面必须良好接地,否则会出现些奇怪的现象。SLRC610($2.4466)支持SPI、I2C 总线、I2CI 和UART 四种接口,它会在掉电复位后通过IFSEL0 和IFSEL1 电平组合来判断当前主机接口类型。本次设计是采用了硬编码的SPI 接口,在硬件电路上需IFSEL0 接地、IFSEL1 接VCC。射频芯片电路如图3 所示。其巾,引在SLRC610($2.4466)芯片中33 引脚VSS 的作用是接地和散热,所以此引脚必须良好接地。

常见电源稳压芯片

LM2930T-5.0 5.0V低压差稳压器 LM2930T-8.0 8.0V低压差稳压器 LM2931AZ-5.0 5.0V低压差稳压器(TO-92) LM2931T-5.0 5.0V低压差稳压器 LM2931CT 3V to 29V低压差稳压器(TO-220,5PIN) 线性LM2940CT-5.0 5.0V低压差稳压器 LM2940CT-8.0 8.0V低压差稳压器 LM2940CT-9.0 9.0V低压差稳压器 LM2940CT-10 10V低压差稳压器 LM2940CT-12 12V低压差稳压器 LM2940CT-15 15V低压差稳压器 LM123K 5V稳压器(3A) LM323K 5V稳压器(3A) LM117K 1.2V to 37V三端正可调稳压器(1.5A) LM317LZ 1.2V to 37V三端正可调稳压器(0.1A) 线性LM317T 1.2V to 37V三端正可调稳压器(1.5A) LM317K 1.2V to 37V三端正可调稳压器(1.5A) LM133K 三端可调-1.2V to -37V稳压器(3.0A) LM333K 三端可调-1.2V to -37V稳压器(3.0A) LM337K 三端可调-1.2V to -37V稳压器(1.5A)

LM337T 三端可调-1.2V to -37V稳压器(1.5A) 线性LM337LZ 三端可调-1.2V to -37V稳压器(0.1A) LM150K 三端可调1.2V to 32V稳压器(3A) LM350K 三端可调1.2V to 32V稳压器(3A) 线性LM350T 三端可调1.2V to 32V稳压器(3A) 线性LM138K 三端正可调1.2V to 32V稳压器(5A) LM338T 三端正可调1.2V to 32V稳压器(5A) LM338K 三端正可调1.2V to 32V稳压器(5A) LM336-2.5 2.5V精密基准电压源 LM336-5.0 5.0V精密基准电压源 LM385-1.2 1.2V精密基准电压源 LM385-2.5 2.5V精密基准电压源 LM399H 6.9999V精密基准电压源 LM431ACZ 精密可调2.5V to 36V基准稳压源 LM723 高精度可调2V to 37V稳压器 LM105 高精度可调4.5V to 40V稳压器 LM305 高精度可调4.5V to 40V稳压器 MC1403 2.5V基准电压源 MC34063 充电控制器

125K非接触ID卡读卡器设计完整版

125K非接触IC卡读卡头 125K读卡头的工作电压为12V/5v,电流为30——40MA 读卡距离最远15CM 。 如要低功耗最有效是读卡头工作时供电,不工作时断电。读卡距离与卡和天线有关, 可以读各种125K曼彻斯特编码的只读ID卡(4001,EM4100等等)和含E2PROM的RF卡。如E5550。 读卡头(OUT)输出信号为原卡的曼彻斯特码,(用示波器接读卡头输出可以观测ID卡的输出波形)它和其它公司的125K读卡头(输出信号为原卡的曼彻斯特码)是兼容的,可以相互替换,不用修改程序。读卡头也可以读可擦写的125k非接触IC卡,如当读E5550时,卡的用来控制是否启动AOR位应置0,(当置1时IC卡不主动发射数据,需读卡头先发送口令。我的读卡头是只读,不能发数据,当AOR位置1时不能读IC卡的数据)。 天线的设计:天线电感值=345Uh 线径φ0.29mm 圆形(内径):直径6CM 58圈 直径8CM 40圈 直径3CM 83圈 直径2CM 115圈 长方形:9.5*7 CM 38圈 4.7*6.3 CM 50圈 非接触式IC卡简介: 非接触式智能卡以其高度安全保密性,通信高速性,使用方便性,成本日渐低廉等而受到广泛使用,给我们的生活质量带来了很大的提高。 非接触式IC卡简介又称射频卡,成功地解决了无源(卡中无电源)和免接触这一难题,是电子器件领域的一大突破。主要用于智能门禁控制器,智能门锁,考勤机, 自动收费系统等. 射频卡与接触式IC卡,TM卡相比有以下优点: 1 可靠性高,无机械接触,从而避免了各种故障;

2 操作方便,快捷,使用时没有方向性,个方向操作; 3 安全和保密性能好,采用双向验证机制。读写器验证IC卡的合法性,同时IC卡验证读写器的合法性。每张卡均有唯一的序列号。制造厂家在产品出长前已将此序列号固化,不可再更改,因此可以说世界上没有两张相同的非接触IC卡; 只读ID卡的资料 非接触ID卡主要有台湾4001卡和瑞士H4001卡,EM4100。它们都采用125kHz的典型工作频率,有64位激光可编程ROM,调制方式为曼彻斯特码(Manchester)调制,位数据传送周期为512μs,其64位数据结构如图1所示。 连续9位“1”作为头数据,是读取数据时的同步标识;D00~D93位是用户定义数据位;P0~P9是行奇校验位,PC0~PC3是列奇校验位,最后位“0”是结束标志。非接触ID卡的这种数据结构非常有利于判断读出数

常用电源芯片手册

常用电源芯片 第1章DC-DC电源转换器/基准电压源 1.1 DC-DC电源转换器 1.低噪声电荷泵DC-DC电源转换器AAT3113/AAT3114 2.低功耗开关型DC-DC电源转换器ADP3000 3.高效3A开关稳压器AP1501 4.高效率无电感DC-DC电源转换器FAN5660 5.小功率极性反转电源转换器ICL7660 6.高效率DC-DC电源转换控制器IRU3037 7.高性能降压式DC-DC电源转换器ISL6420 8.单片降压式开关稳压器L4960 9.大功率开关稳压器L4970A 10.1.5A降压式开关稳压器L4971 11.2A高效率单片开关稳压器L4978 12.1A高效率升压/降压式DC-DC电源转换器L5970 13.1.5A降压式DC-DC电源转换器LM1572 14.高效率1A降压单片开关稳压器LM1575/LM2575/LM2575HV 15.3A降压单片开关稳压器LM2576/LM2576HV 16.可调升压开关稳压器LM2577 17.3A降压开关稳压器LM2596 ,tob_id_4926 18.高效率5A开关稳压器LM2678 19.升压式DC-DC电源转换器LM2703/LM2704 20.电流模式升压式电源转换器LM2733 21.低噪声升压式电源转换器LM2750 22.小型75V降压式稳压器LM5007 23.低功耗升/降压式DC-DC电源转换器LT1073 24.升压式DC-DC电源转换器LT1615

25.隔离式开关稳压器LT1725 26.低功耗升压电荷泵LT1751 27.大电流高频降压式DC-DC电源转换器LT1765 28.大电流升压转换器LT1935 29.高效升压式电荷泵LT1937 30.高压输入降压式电源转换器LT1956 31.1.5A升压式电源转换器LT1961 32.高压升/降压式电源转换器LT3433 33.单片3A升压式DC-DC电源转换器LT3436 34.通用升压式DC-DC电源转换器LT3460 35.高效率低功耗升压式电源转换器LT3464 36.1.1A升压式DC-DC电源转换器LT3467 37.大电流高效率升压式DC-DC电源转换器LT3782 38.微型低功耗电源转换器LTC1754 39.1.5A单片同步降压式稳压器LTC1875 40.低噪声高效率降压式电荷泵LTC1911 41.低噪声电荷泵LTC3200/LTC3200-5 42.无电感的降压式DC-DC电源转换器LTC3251 43.双输出/低噪声/降压式电荷泵LTC3252 44.同步整流/升压式DC-DC电源转换器LTC3401 45.低功耗同步整流升压式DC-DC电源转换器LTC3402 46.同步整流降压式DC-DC电源转换器LTC3405 47.双路同步降压式DC-DC电源转换器LTC3407 48.高效率同步降压式DC-DC电源转换器LTC3416 49.微型2A升压式DC-DC电源转换器LTC3426 50.2A两相电流升压式DC-DC电源转换器LTC3428 51.单电感升/降压式DC-DC电源转换器LTC3440 52.大电流升/降压式DC-DC电源转换器LTC3442 53.1.4A同步升压式DC-DC电源转换器LTC3458 54.直流同步降压式DC-DC电源转换器LTC3703

相关文档
相关文档 最新文档