文档库 最新最全的文档下载
当前位置:文档库 › 北京地铁10号线综合监控系统简介

北京地铁10号线综合监控系统简介

北京地铁10号线综合监控系统简介
北京地铁10号线综合监控系统简介

北京地铁10号线综合监控系统简介

张发明1 王 颖2

(中铁电气化局集团一公司,100070,北京;2.北京市轨道交通建设管理有限公司,100032,北京∥第一作者,工程师)

摘 要 综合监控系统是一个功能强大的、开放的、模块化的、可扩展的分布式控制系统,集成和互联了多个子系统。介绍了北京地铁10号线综合监控系统的构成。北京地铁

10号线综合监控系统的集成部分包括供电监控、环境与设

备监控、站台屏蔽门、有线广播、闭路电视等子系统;互联部分包括北京市轨道交通指挥中心、火灾自动报警、列车自动监控、传输、时钟、无线通信、自动售检票、乘客信息、通信专业集中告警设备等子系统。详细介绍了各子系统的具体功能。综合监控系统将提高自动化系统的安全性、可靠性及快速响应能力,实现高性价比,减少重复投资和后期维护成本。综合监控系统为地铁运营管理提供了信息集成平台。关键词 地铁,运营管理,综合监控系统中图分类号 U 231+.92

I ntegrated Supervision and Control System for B eijing Metro Line 10

Zhang Faming ,Wang Y ing

Abstract Integrated Supervision and Control System is a pow 2erful ,open ,modular ,extensible distributed control system ,in 2tegrating and interconnecting many subsystems.This paper in 2troduces the constitution of Integrated Supervision and Control System for Beijing Metro Line 10.The integration parts of this system include power supply monitor ,environment and equip 2ment monitor ,platform shield gate ,cable ,closed circuit televi 2sion and other subsystems.Beijing Urban Rail Control Center ,the automatic fire alarm ,the automatic train control ,transmis 2sion ,the clock ,wireless communications ,the automatic fare checking ,passenger information ,and alarm focused communica 2tion equipment and other subsystems are the interconnect parts of it.The specific functions of these subsystems are presented in de 2tail.The author concludes that the Integrated Supervision and C on 2trol System will enhance the safety ,reliability and rapid response a 2bility of the automatic system to achieve higher performance 2cost ra 2tio and to reduce repeated investment and maintenance cost in the later period.The system als o provides an information 2integrating platform for the subway operation management.

K ey w ords metro ,management of operation ,integrated su 2pervision and control system

First 2author ’s address First Engineering Co.,Ltd.of China Railway Electnification Bureau Group ,100070,Beijing ,China

我国地铁的综合监控经历了从单一到组合、分立到综合的过程。早期的监控系统只是各专业单独设立本系统内部的监控系统,用以监控设备的运行工况,此后虽有过几次综合监控系统的建设,但也未完全完成深度集成与互连。北京地铁10号线的综合监控系统,第一次进行了深度的系统集成和互连,并真正意义上实现了统一指挥运行管理的功能,实现了地铁各专业系统之间的信息互通、资源共享,提高了各系统的协调配合能力,并建立了与北京市轨道交通指挥中心的信息高速通道。

1 综合监控系统的构成

综合监控系统是一个功能强大的、开放的、模块化的、可扩展的分布式控制系统,是一个集成和互连了多个子系统的综合系统。北京地铁10号线综合

监控系统的集成部分包括了供电监控(PSCADA )、环境与设备监控(BAS )、站台屏蔽门(PSD )、有线广播(PA )、闭路电视(CCTV )等子系统,并预留了门禁系统(IAS );互连部分包括了列车自动监控(A TS )、火灾自动报警(FAS )、传输(TS )、时钟(CL K )、无线通信(RC )、自动售检票(AFC )、乘客信息(PIS )、轨道交通指挥中心(TCC )、通信专业集中告警设备等子系统。

综合监控系统由位于控制中心(OCC )的中心系统、网络管理系统(NMS ),位于各车站的车站系统,以及位于车辆段的车辆段系统、后备中心系统、培训管理系统(TMS )、设备维护系统(DMS )等组成。系统纵向分为中心和车站监控系统设备两层。其硬件构成如图1所示。1.1 系统硬件设备

综合监控系统的硬件设备组成有以下特点:采用主备、冗余、分层、分布式C/S 结构,TCP/IP 协议,具有有效的故障隔离和抗干扰措施。主要硬件设备有以太网交换机、服务器(实时、历史及磁盘阵列)、前端处理器、各操作员工作站、打印机、大屏幕显示器和在线式不间断电源(U PS )、紧急后备盘

?

17?

(IBP )等,分别分布在控制中心和各车站、车辆段。1.2 系统软件

综合监控系统的软件主要由基础软件、应用软件、接口软件等构成。基础软件主要完成数据处理、管理等功能;应用软件主要完成系统使用、管理、维护应用等功能;接口软件实现各子系统、设备间的通信处理。1.3 系统网络结构

综合监控系统的网络由主干网、局域网、基础现

场层设备通信网等3部分构成。

主干网:由通信专业完成,用于实现控制中心局域网与各车站、车辆段局域网的互连。网络形式为双路冗余的百兆以太网电接口。

局域层:即控制中心、各车站、车辆段(后备中心)、培训中心、设备维护管理的局域网。各局域网采用冗余的交换式100M 以太网

图1 综合监控系统构成简图

基础现场层设备通讯网:即各子系统执行层面

上的网络,包括FAS 、AFC 、PSD 等,一般采用工业控制网络或现场总线。

2 综合监控系统的主要功能

2.1 综合监控系统功能的概念

集成:表明综合监控系统与子系统之间存在紧密的耦合关系,子系统不需要提供操作界面,所有对子系统的操作完全通过综合监控系统的操作界面完成。正常情况下集成子系统依赖综合监控系统实现正常操作功能。

互连:表明综合监控系统与子系统是采用松耦合的结构,子系统具有完整的操作界面和全套设备,可以脱离综合监控系统独立运行,完成正常和紧急操作。

集成和互连在具体的数据接口协议上并不存在区别。两者的区别仅在于综合监控系统与子系统的功能分配上。2.2 主要功能描述2.2.1 通用功能

主要是综合监控系统各部分需完成的使用、管理等功能,包括数据库管理、输入数据处理、通用的

人机界面(HM I )、监视、系统安全与权限管理、操作员工作站的角色分配、操作互斥和操作授权、遥控、报警、时间同步、数据点的禁止/允许、内部运算、状态概况、统计和报表、历史数据存档和查询、历史趋势记录、实时趋势记录、设备禁止、存档要求、组态维护、通道管理、打印、系统管理、在线帮助等功能。2.2.2 新型功能

(1)网络管理系统功能(NMS ):负责对全线综合系统进行功能维护和网络管理,在车站采用便携式维护计算机对车站网络进行维护。网络管理系统能进行网络管理、配置管理、网络监控、故障报告、事件记录、参数调整、创建、编辑和删除数据库等操作。

(2)设备维护系统功能(DMS ):用来保存OCC 、车站内各类基础设备(如风机、水泵、开关等)的电子版本的技术资料和维护历史记录,收集保存设备运行状态信息,统计设备运行时间和次数;主要包括设备资料输入、修改、删除、查询和设备台帐管理,设备运行状态监视,设备故障报警,预防性维修提示及生成检修工作票,设备统计报表,维护信息输入、修改和查询等功能。

?

27?

(3)培训管理系统功能(TMS ):可对操作人员、

运行维护人员进行上岗培训,使其掌握电力监控与

环控集成系统的运行管理、操作,以及日常维护、故障排除等业务。

(4)联动功能(UA ):为了提高运营效率,综合监控系统具有系统联动功能。例如隧道阻塞管理功能,可在隧道阻塞情况下,通过迅速启动BAS 隧道通风模式进入事故状态。

综合监控系统汇集各个设备系统的信息,实现各系统之间与安全无关的信息互通和联动。与安全相关的信息仍依靠底层的系统之间的安全信息通道实现。系统联动分全自动、半自动和手动3种。2.3 各子系统的主要功能

综合监控系统的集成和互连系统及各系统间的信息交换如图2所示

图2 综合监控系统的综合构成图

2.3.1 集成子系统的具体功能

2.3.1.1 供电监控系统

供电监控(PSCADA )系统通过网络把各变电所

综合自动化系统集成起来,构成全线完整的供电监控系统,完成控制中心监控功能和车站控制室监控功能。PSCADA 系统与各变电所内相对独立的综合自动化系统共同完成对全线开闭所、牵引降压混合变电所、降压变电所内的10kV 开关柜、750V 开关柜、400V 开关柜、牵引变压器、硅整流器、配电变压器、排流柜、牵引网电动隔离开关、交直流电源屏等供电设备的实时监控管理;指挥供电设施的检修调度及事故情况下的抢修调度工作,保证全线的安全可靠供电。PSCADA 系统主要有控制、数据采集处理、显示、报警、调度事物管理,以及维修、事故抢修等调度功能。

PSCADA 系统实行中心级、车站控制室两级管理;中

心级、车站控制室和设备就地级三级控制。2.3.1.2 环境与设备监控系统

环境与设备监控系统(BAS ),对暖通空调系统、给排水系统、电梯系统、低压配电与动力照明系统等车站设备进行全面、有效的自动化监控及管理;自动、实时、定时、现场就地监视设备运行状态,控制开启和关停,检测环境参数,调控环境舒适度及节能管理;采集、处理有关信息,进行历史资料档案和设备维修管理;确保设备处于安全、可靠、高效、节能的最佳运行状态,从而提供一个舒适的乘车环境;并能在列车阻塞事故状态下,更好地协调车站设备的运行,充分发挥各种设备应有的作用,保证乘客的安全和设备的正常运行。2.3.1.3 站台屏蔽门系统

站台屏蔽门(PSD )系统,用于将车站站台与行车区域隔离开,防止乘客在候车时因推挤掉入行车区,保证乘客候车的安全性。PSD 实现系统级、站台级和手动操作三级控制方式。手动操作优先级最高,系统级控制优先级最低。2.3.1.4 闭路电视监控系统

综合监控系统与闭路电视(CCTV )操作界面集成。根据地铁特点,CCTV 从使用上满足中心总调度员、中心行车调度员、中心环境调度员、中心供电调度员和车站值班站长等的操作工作站对相应管辖区域进行监视。其中:站厅区主要监视AFC 进出口闸机与上下站台的自动扶梯的乘客流向;站台监视区主要监视乘客上下列车与安全门开关的情况。分为中心级监控功能和车站级监控功能。2.3.1.5 有线广播系统

综合监控系统与有线广播(PA )系统操作界面集成。地铁PA 由车站广播、车辆段广播两个相互独立的子系统组成,在地铁运营时对乘客发布信息,并在发生灾害时兼做防灾广播。地铁PA 采用中心、车站二级广播组网方案。各车站作为一个独立的区域广播,而中心能够对每个车站进行播音,并具有控制优先权。2.3.2 互连子系统的功能2.3.2.1 北京市轨道交通指挥中心

综合监控系统与北京市轨道交通指挥中心(TCC )互连。TCC 在正常情况下从各线路采集客流信息、设备状态信息等,为各线路提供相关的运营信息及城市职能部门发布的信息(如气象信息、重大

?

37?

活动信息、旅游信息、地震信息等),并负责轨道交通系统与其它职能部门的联络(如消防局、公安局、公安交通管理局等)。在紧急情况下,TCC通过各条线路的控制中心进行协调指挥,处理紧急突发事件,优化轨道交通网的运营组织。

2.3.2.2 火灾自动报警系统

综合监控系统与火灾自动报警系统(FAS)互连。FAS对车站、车辆段、电缆通道等建筑设施的火警安全进行可靠监视管理,具有火灾探测和报警功能;并能在火灾时发出模式指令,使相关系统运行转入火灾模式,实现消防联动。FAS实现中心级、车站级两级管理,中心级、车站级、就地级三级控制方式。中心级主要负责全线FAS集中监控与管理、运营模式、运行累计等工作;车站级作为本站FAS 控制室,设置于各站车站控制室、车辆段消防控制室,主要负责车站级FAS的管理与联动控制。

2.3.2.3 列车自动监控系统

综合监控系统与列车自动监控系统(A TS)互连。A TS监视全线列车的自动运行情况、调整列车运行时刻表并可进行人工干预。A TS为非故障安全系统。A TS收集和传输现场信息。现场数据包括信号设备状态、列车信息和状态(识别号、位置及列车状态)。OCC接收到这些信息后,经处理显示给OCC操作员;OCC操作员据此向A TS发布命令,或给列车分配新的任务。A TS负责监视整个信号系统和列车运行数据,管理并监督列车运行调整算法。如保证按时刻表和行车间隔运行的算法,以及对交通需求和延迟造成时刻表变动的处理功能。2.3.2.4 自动售检票系统

综合监控系统与自动售检票(AFC)系统互连。AFC系统除完成财务、票务管理、决策支持等功能外,还具有设备监视、提供客流信息等功能。

设备监视功能:车站AFC在线/离线状态,以及AFC设备(如自动售票机、进出站闸机、检票机等)的工作状态。

提供客流信息:每隔一段时间,AFC系统对客流信息进行一次统计。

2.3.2.5 乘客信息系统

综合监控系统与乘客信息系统(PIS)互连。PIS从结构上可分为中心子系统、车站子系统、车载子系统、网络子系统、广告制作子系统等五个子系统;从控制功能上可分为信息源、中心播出控制层、车站播出控制层和车站播出设备等四个层次。

PIS主要在OCC提供综合的采编播功能,以便在各个不同的车站上显示图文。显示的主要内容包括视音频信息、文本信息、时间信息、实时列车运营信息及相关的叠加组合信息等;信源格式主要有电视信号视音频信息,MPEG-2、4信号,计算机网络信号,文本信息等。PIS可实现视频、音频、文本、媒体等文件的编辑、播放、存储功能。

2.3.2.6 时钟系统

综合监控系统与时钟(CL K)系统互连。通信系统在控制中心设中心母钟设备、车站设置二级母钟设备,通过接收标准时间信号产生精确的同步时间码,校准一级母钟,并为其它系统提供时钟信号。2.3.2.7 传输系统

综合监控系统与传输系统(TS)联调,主要指传输系统为综合监控系统提供通信主干道。

2.3.2.8 无线通信系统

在综合监控系统控制中心及后备,无线通信(RC)系统均独立设置终端,与综合监控系统互连。RC提供报警信息。

2.3.2.9 通信集中告警设备

综合监控系统对于集中告警设备为系统互连,只监视不控制;返信形式为在操作显示器上设置声光告警信息。综合监控系统通过与集中告警设备互连可监视通信专业的传输、公务、调度专用电话、无线、CCTV、广播、时钟、电源系统主要设备告警和故障情况等八个子系统。

3 结语

由于北京地铁10号线综合监控系统的建设管理由供电专业组织,因此在建设中曾称为供电监控与环境监控二合一系统。综合监控系统将提高自动化系统的安全性、可靠性及快速响应能力,实现高性价比,减少重复投资和后期维护成本。综合监控系统为地铁运营管理提供了信息集成平台,将成为今后城市轨道交通自动化管理的发展趋势。

参考文献

[1] 徐杰,刘春煌,李平,等.城市轨道交通系统信息共享平台研究

[J].城市轨道交通研究,2005(2):35.

[2] 吴新平,董德存.城市轨道交通信息集中监控系统的设计与实

现[J].城市轨道交通研究,2005(4):47.

[3] 王开满,张慎明,江平.轨道交通自动化监控系统的特点及其发

展趋势[J].城市轨道交通研究,2006(2):1.

(收稿日期:2006-07-28)

?

4

7

?

城市轨道交通综合监控系统

城市轨道交通综合监控介绍 单元1 综合监控系统概述 城市轨道交通综合监控系统:简称“综合监控系统”【ISCS】Integrated Supervisory Control System,轨道交通综合监控系统主要功能包括对机电设备的实时集中监控功能和各系统之间协调联动功能两大部分。一方面,通过综合监控系统, 可实现对电力设备、火灾报警信息及其设备、车站环控设备、区间环控设备、环境参数、屏蔽门设备、防淹门设备、电扶梯设备、照明设备、门禁设备、自动售检票设备、广播和闭路电视设备、乘客信息显示系统的播出信息和时钟信息等进行实时集中监视和控制的基本功能;另一方面,通过综合监控系统,还可实现晚间非运营情况下、日间正常运营情况下、紧急突发情况下和重要设备故障情况下各相关系统设备之间协调互动等高级功能。 ISCS相关英文缩写 1 AFC Automatic Fare Collection 自动售检票系统 2 ATC Automatic Train Control 自动列车控制 3 ATO Automatic Train Operation 自动列车运行 4 ATP Automatic Train Protection 自动列车防护 5 ATS Automatic Train Supervision 自动列车监控 6 BAS Building Automatic System 环境与设备监控系统 7 CLK Clock 时钟系统 8 FAS Fire Alarm System 火灾报警系统 9 FEP Front End Processor 前端处理机 10 OCC Operating Control Centre 控制中心 11 CCTV Closed Circuit Television 闭路电视系统 12 ISCS Integrated Supervisory Control System 综合监控系统 13 PA(S)Public Address(System)公共广播(系统) 14 PIS Passenger Information System 乘客信息系统 15 PSCADA Power SCADA 电力监控系统 16 PSD Platform Screen Door 屏蔽门 17 SIG Signaling 信号系统 18 FG Flood Gate 防淹门 19 ACS Access 门禁 20 UPS Uninterrupted Power System 不间断电源系统 21 EMCS Electrical and Mechanical Control System 机电设备监控系统 22 SCADA Supervisory Control and Data Acquisition 监控与数据采集 FACP (Fire Alarm Control Panel )火灾报警控制盘 COM (Communication System )通信系统 ASD (Automatic Sliding door)滑动门 OA (Office Automation )办公自动化系统 ISCS系统介绍 1.硬件构成 1)中心级ISCS硬件设备 2)车站级ISCS硬件设备 2.软件构成 1)数据接口层

地铁综合监控系统施工方法及总结

地铁综合监控系统施工方法及总结 1综合监控系统概况 综合监控系统的主要功能包括对机电设备的实时集中监控功能和各系统之间协调联动功能两大部分。一方面,通过综合监控系统, 可实现对电力设备、火灾报警信息及其设备、车站环控设备、区间环控设备、环境参数、屏蔽门设备、防淹门设备、电扶梯设备、照明设备、门禁设备、自动售检票设备、广播和闭路电视设备、乘客信息显示系统的播出信息和时钟信息等进行实时集中监视和控制的基本功能;另一方面,通过综合监控系统,还可实现晚间非运营情况下、日间正常运营情况下、紧急突发情况下和重要设备故障情况下各相关系统设备之间协调互动等高级功能。 2综合监控系统施工环节及方法 2.1前期现场调查 地铁施工工期紧张、专业较多。各专业为了保证施工工期,不可避免的存在交叉施工作业。对于我们设备安装专业来说,与土建总包单位的配合施工在整个施工过程中是比较重要的一个环节。我们设备安装专业与土建总包专业从工程的开始直至结束,一直贯穿其中。 在施工开展前期,我们设备安装专业需做好现场调查。施工现场调查的情况,对未来施工的顺利开展和工期的确保将起到决定性的因素。所以我们在前期现场调查的时候需要与各土建标段及相关设备安装单位建立有效的联系方式。 对于综合监控专业来说,我们前期现场调查的时候主要要注意以下几个问题: (1)土建总包专业二次结构墙砌筑及孔洞预留情况; (2)土建总包专业设备房间地面找平及墙面抹灰情况; (3)土建总包专业房间内装修50cm线或者1m线画线情况; (4)土建总包专业设备房间临时门窗安装情况; (5)土建总包专业吊装孔预留情况及封堵时间。 以上5项在现场调查期间,我们需要与土建总包单位的相关负责人了解清楚。建立现场情况调查表,逐项与相关人员核实并做记录。并及时沟通更新。确保一手资料的准确性。 2.2基础底座的制作及固定 2.2.1基础底座的制作 (1)准备工作 综合监控设备房间属于弱电设备间,为防止静电对弱电设备产生危害,房间内会安装防静电地板。在土建总包单位施工期间,每个站的土建总包单位的装修层的高度均有差距。所以我们综合监控设备的底座的高度也是不同的。在制作基

地铁视频监控系统应用

以“地铁视频监控系统应用”为例 目前,我国各大城市的地铁交通车站、车辆段、停车场等都安装了视频监控系统,实现了对车站、车辆段、停车场情况的24小时安防监控,并发挥了重要作用。 从简约的角度来分析,地铁视频监控系统可看成由机房内和机房外两大部分所组成。机房外的核心设备为摄像机,主要分布在站台、站厅、自动扶梯、部分机房、变电所变压器室、10KV开关柜室、AFC的售票机和闸机、出入口、垂直电梯口及轿厢、出入段线、平交道口及轨行区、停车列检库内外、洗车库等重要公共区域。通过选择不同种类的摄像机和合理的工程布局,来完成整个车站的视频采集,做到无死角、全方位覆盖。机房内的核心设备为控制管理工作站、网关、流媒体服务器、网络录像机、存储设备、编解码器、电视墙、矩阵等,主要分布在车站、换乘站、停车场控制室、运营中心控制中心和车辆段备用控制中心等,通过这些设备来完成系统媒体流的处理、智能分析、控制信令的交互等功能。 就目前而言,整个系统需要具有如下功能:实时监看、云台控制、图像选择调用、录像存储、摄像范围控制、优先级设置、字符迭加、智能分析和远程系统管理控制,且能够被综合监控系统所集成等。 1云台控制及图像选择功能 系统要求可按优先级对云台进行控制;摄像机的图像可同时在车站、控制中心和临时/备用控制中心显示和控制,也可在综合监控系统中显示和控制。车站值班员可在本地选择调用本站任一摄像机的图像显示,控制中心的各调度员可远程选择调用本线任一摄像机的图像显示,既可用各种时序自动循环切换,也可由操作人员手动切换。 2字符迭加功能 系统能够将车站站名、摄像机编号及位置、摄像日期和时间、正在控制云台摄像机的操作员名字等信息实时迭加在图像中,且一并显示。 3视频分配功能 每路摄像机的视频图像能够被分成多路图像输出,以满足多个视频监控系统共享同一前端摄像机的要求。 4实时监视功能 系统在同一时刻可对同一路监控画面进行监控,也可以根据需要分别监控不同的监控画面,能够进行单画面及多画面分割显示,如固定监视、循环监视、多画面分割监视。 5数字录像存储功能 视频图像以数字方式实时不间断录像存储,具备解决自溢出、无终止循环存储的功能;具备任意控制点自动定时连续录像、手动录像、预制录像等多种录像模式功能,并可分别设置图像编码技术、清晰度、码流大小、帧率等;具备录像回放、检索功能,回放时不影响正常的录制存储,全分布式视频存储的查询、检索服务,全网存储视频的检索回放,且不影响正常视频的存储功能;多种录像数据呈现功能,如:录像数据提取、录像回放、回放处理功能、检索查询、图像抓拍打印;支持本地的直连存储(DAS)、存储局域网(SAN)和网络附件存储(NAS)等多种存储技术。 6优先级设置功能

北京地铁十号线某标工程概况及重点难点施工方案

第2章工程概况 2.1 工程范围 北京地铁十号线xx期工程(第三批)01标段,包括万柳站、起点~万柳站区间、万柳站~苏州街站区间和车辆出入段线区间、倒车线及其附属工程。万柳车站总建筑面积16196.08m2·,正线区间总长度1118.55m,车辆段出入线区间1166.6m,倒车线244.6m。 1、万柳站为明挖车站,包括主体结构、4个出入口和两个风亭; 2、起点~万柳站为明挖区间,由标准段和交叉渡线段组成; 3、万柳站~苏州街站区间以K0+540明暗挖分界点,西侧为明挖区间,东侧为暗挖区间,K0+805处设联络通道一个,联络通道里程处设竖井一座。 4、车辆出入线段分为左线和右线,左线全部为明挖结构,主要衔接万柳站与万柳车辆段。右线为明暗挖相结合,K0+416处为明暗挖分界处,主要衔接万柳车辆段与苏州街站方向。 5、车辆倒车线:长244.6单延米,明挖结构。 6、具体图见2-1全标段工程范围示意图。 隧道洞口 图2-1 全标段工程范围示意图 2.2 工程设计简介 2.2.1 万柳站 万柳站位于巴沟村北路以北,沿巴沟村北路呈东西方向设置,为明挖侧式车站,车站起讫里程为K0+269~K0+497,全长228m。有效站台中心里程为K0+379。车站结构采用双跨单柱结构(局部为双柱三跨结构)。地下一层为车站站厅层,站厅层-出露地面0.6~1.3m,地下二层为车站站台层,站台宽12m,有效长度为120m。车站有效站台中心线处轨顶距地面为11.808m。车站主体工程采用明挖顺作法施工,主体结构外包轮廓尺寸为:长229.6米,宽33.1米,深13.75米。万柳站车站平面图见图2-2。 1、主体结构 主体结构为现浇钢筋混凝土地下双层双跨箱形结构,断面结构尺寸31.5m(宽)×14.1m

苏州市地铁轨道交通一号线综合监控系统施工组织设计

目录 苏州地铁综合监控系统错误!未定义书签。施工组织设计错误!未定义书签。 第一章工程概况错误!未定义书签。 1 工程概况错误!未定义书签。 2 编制说明错误!未定义书签。 第二章施工部署错误!未定义书签。 1 项目管理组织机构错误!未定义书签。 2 主要人员配置错误!未定义书签。 3 项目经理部及主要人员岗位职责错误!未定义书签。 第三章施工速度计划错误!未定义书签。 1 工程计划总体安排错误!未定义书签。 2 工程进度横道图错误!未定义书签。 第四章施工准备与资源配置错误!未定义书签。 1 施工准备错误!未定义书签。 2 资源配置错误!未定义书签。 第五章工施工现场平面布置错误!未定义书签。 第六章施工方法及工艺要求错误!未定义书签。 1 施工总体流程错误!未定义书签。 2 施工组织安排错误!未定义书签。 3 施工工艺和方法错误!未定义书签。 第七章进度管理错误!未定义书签。 1 保证工期组织措施错误!未定义书签。 2 保证工期技术措施错误!未定义书签。 3 人员保证措施错误!未定义书签。 4 监督保证措施错误!未定义书签。 5 交叉作业工期保证措施错误!未定义书签。 6 保证工期物资供应保障措施错误!未定义书签。 第八章质量管理错误!未定义书签。 1 建立完善的工程质量管理组织机构错误!未定义书签。 2 工程质量管理控制措施错误!未定义书签。 3 质量保证体系错误!未定义书签。 第九章安全管理错误!未定义书签。 1 施工现场主要安全隐患与预防错误!未定义书签。 2 建立完善的安全管理组织机构错误!未定义书签。 3 施工安全管理措施错误!未定义书签。 4 设备安全保证措施错误!未定义书签。 5 人身安全保证措施错误!未定义书签。 6 行车安全保证措施错误!未定义书签。 7 安全保护体系错误!未定义书签。 第十章环境管理错误!未定义书签。

地铁监控系统方案【最新】

地铁监控系统方案 适用范围:地铁监控系统方案,铁路监控系统方案 某轨道交通线总长23km ,全线共设22 个地下车站、1 座车辆段、 2 所主变电站、 1 幢控制中心大楼(OCC) ,安保控制管理系统在各车站、控制指挥中心及车辆段设置主、分控制中心,以对轨道交通设备、管理用房和通道进行监控。 系统采用了先进的计算机、通信、网络、自控等技术,为通道和出入口的管理提供智能化手段,从而达到保障地铁内人员的正常出入、维护秩序、防止入侵等目的,同时还可针对工作地点分散的地铁员工施行综合管理,提高地铁整体运营管理水平。 系统分为中央和车站两个管理级,以及现场控制三层网络架构。根据地铁车站运营安全的需要,在各车站前端安装视频监控终端,进行监控的部位包括:地铁隧道、车站控制室、站长室、通信设备室、信号设备室、公共无线引入室、车票分类/ 编码室、交接班室、环控电控室、防灾报警设备室、配电室、消防泵房、值班室、库房、男/ 女更衣室、降压/ 牵引变电所、蓄电池室、环控机房、电梯机房、屏蔽门管理室、AFC 收费区、残疾人进出口等。

系统特别要求设计 安保监控系统的所有设备包括计算机和显示器,应在地铁电磁场和静电干扰的环境中不出现任何画面跳动和扰动; 安保监控系统的所有设备应具有较强的抗电磁干扰能力,并满足国家相关的标准和规范要求; 设备可抵抗无线电频率为150KHZ-27MHZ 中的接触性干扰,并满足国家相关的标准和规范要求。 系统的硬件、软件设计应充分考虑系统的可*性、可维护性、可扩展性、通用性和先进性,并具有故障诊断、在线修改、离线编辑等功能,同时系统设计应遵循模块化原则。 系统应开放协议,开放数据格式及定义。本系统与其它各专业的通信接口,采用国际通用的接口方式及开放性协议。安保监控系统的备份应该具备多层次、异地等方式。 系统抗干扰设计 地铁内部的电磁干扰是安防系统需主要考虑的干扰问题,对于

(整理)地铁综合监控系统方案.

精品文档
地铁综合监控系统方案
概述
地铁商用通信工程综合监控系统,是一套以地铁专用数字传输系统为信息传输通道,以计算机 网络技术、高精度 A/D 转换、嵌入式系统开发、基于 PC 的 GUI 软件开发等技术为基础的一套专用、 独立系统。
通过这套系统可以实现对地铁民用无线射频分配系统中各车站民用通信机房的 POI 下行信号、 机房的温湿度、区间的干线放大器工作状态、电源以及门禁等参数进行实时遥测,并在无线射频分 配系统发生故障时自动报警。为地铁民用无线射频分配系统可靠应用提供了管理手段。
系统在设计时已充分考虑到了地铁民用无线射频分配系统兼容 3G 的扩容问题,预留了网管软 件及各站通讯编码单元内嵌入式软件的升级能力。
系统采用的硬件设备均为成熟产品,提高监控的可靠性,由于监控单元模块化,端口的标准化, 为今后系统的扩展提供了方便;软件以现今最为流行的 Windows 操作系统为基础进行的开发,操作 界面友好,便于操作和维护。
系统需求
1.监控系统建设方式 地铁各个地下商用通信机房均为无人值守机房,因此,对于设备的日常管理及维护,必须
有一套完整、功能强大的网管系统来管理监视各个站设备的日常工作情况;对于系统故障,能 够 及 时 的 发 出 相 应 的 告 警 ,提 醒 相 关 人 员 进 行 处 理 ;同 时 具 备 数 据 库 功 能 ,能 够 储 存 设 备 的 各 种状态、如正常状态、报警状态和故障信息等;同时预留远期接入多条线路进行集中网管监控 的条件。 2.网络结构及系统组成
监控系统采用一级组网。一级组网方式如下:
精品文档

北京地铁10号线二期简介

北京地铁10号线二期简介 地铁10号线二期将于12月28日启动土建工程,预计2013年9月30日竣工。届时,将与已通车的一期工程组成本市第二条地铁环线,连接城市东南部、西北部最为密集的居住区,有效缓解三环路交通压力。

地铁10号线二期工程全长32公里,起点劲松站,终点巴沟站,中间设车站23座,其中换乘站12座。根据10号线二期初步规划,23座车站包括:潘家园站、十里河站、分钟寺站、成寿寺站、宋家庄站、石榴庄站、大红门站、角门东站、角门西站、草桥站、樊家村站、孟家村站、前泥洼站、西局站、六里桥站、马官营站、莲花桥站、公主坟站、西钓鱼台站、慈寿寺站、车道沟站、长春桥站、火器营站。 中铁十六局集团中标北京地铁十号线二期11标工程 2008年10月中旬,中铁十六局集团中标“北京地铁十号线二期11标工程”。 北京地铁十号线二期11标段全长约4.6km,包括两座车站(马官营、莲花桥站)四个区间(西局~六里桥、六里桥~马官营、马官营~莲花桥、莲花桥~公主坟区间),工程位于海淀区、丰台区。其中:西局~六里桥、六里桥~马官营为盾构法施工隧道,马官营和莲花桥站主体均采用盖挖法施工,马官营~莲花桥区间为盾构法和浅埋暗挖法隧道,莲花桥~公主坟区间浅埋暗挖法隧道。项目总投资为81716万元,开工日期为2008年12月28日,完工日期为2013年9月30日。 1、西局~六里桥区间:该区间左、右线里程分别为K43+674.160~K45+056.479(长1382.319m)、K43+674.160~K44+956.000(长1281.840m),区间设2个联络通道,采用盾构法施工,从六里桥南端头始发,到达西局站北端调头,向六里桥方向推进。 2、六里桥~马官营区间:该区间里程为K45+242.879~K46+35.97,线路双线长度为793.091m,设联络通道一个。区间出六里桥站后即下穿京石高速公路,之后沿南北向莲怡园东路方向敷设。莲怡园东路道路红线宽30m,东侧为八一电影制片厂和六里桥北里小区,均为6层住宅楼;西侧是风荷曲苑小区和莲香园小区,临街为18~24层住宅楼,区间结构距离建筑物较近。 3、马官营站:车站位于吴家村与莲怡园东路交叉路口南侧,沿莲怡园东路南北向布置,主体总长度163m,标准段总宽度20.9m,基坑深度约22.5m,覆土厚度约3.5m,有效站台中心里程为K46+107.020,共设3个出入口、2组风亭。围护结构采用钻孔灌注桩+内支撑,主体结构采用钢筋混凝土箱型结构,结构外侧设全包防水层,与钻孔桩一起组成复合墙体系。车站两端区间均为盾构区间,南北两端盾构井均为调头井。 车站周边两条路均已实施规划,其中吴家村道路红线宽40m,莲怡园东路红线宽30m.周边建筑物以住宅及商业为主,东西两侧距离现状建筑物较近,南端盾构井距西侧18层住宅楼仅5.5m.车站主体中部距西侧24层住宅楼为8.0m.路面地下管线较多,施工前需对管线进行改移处理。本站主体结构施工结合两侧建筑物保护方案,采取盖挖法施工,附属结构均采取明挖法施工。 4、马官营~莲花桥区间:该区间里程为K46+197.37~K47+486.198,长度1288.828m.在右线里程K47+241处设盾构始发接收井一座,其中施工期间兼作矿山法隧道施工竖井,永久使用兼联络通道,并在右线里程K46+805处设置联络通道一个。本区间采用一台盾构机从始发井始发,向马官营站掘进,到马官营站后调头,最后在区间盾构井吊出。 5、莲花桥站:车站位于西三环中路莲花立交桥桥区内,主体位于西三环主路下,成南北向布置。主体总长度146.3m,标准段总宽度20.7m,站台宽度12m,底板埋深约18m,顶板覆土平均厚度约3.5m,为岛式站台车站。车站主体基坑围护采用钻孔灌注桩+钢支撑支护结构型式,主体结构为地下两层三跨的矩形框架结构。为了压缩车站长度,且充分利用路西侧绿地,车站布置采用设备用房外挂方案。车站共设2个风道、5个出入口及1个安全出入口。 车站主体结构采用盖挖法施工,分幅施做车站顶板结构;出入口通道及风道结构跨路段采用暗挖法施工,其余附属结构采用明挖法施工。 6、莲花桥~公主坟区间:该区间起讫里程为K47+632.498~K48+466.873,线路双线长度为834.375m,

【交通运输】城市轨道交通综合监控系统

一、填空题(共27空,每空1分) 1.地铁和轻轨的运营管理可分为3部分:列车运行、车站站务、设备运转。 2.集成系统的3个基本特性是:开放系统、应用需求和接口。 3.BAS系统设备总体而言包括了3类设备:车站空调通风系统、隧道通风和其他系统及其机电设备。 4.车站BAS系统除了要具备火灾工况的防灾联动控制系统功能之外,同时它具备对控制范围内的的其他设备的联动控制,如电源控制、导向控制、和屏蔽门的控制等。 5.BAS是一个集成系统,集成系统的一个特点就是它处理各种形式的接口,如FAS接口、低压专业、主控系统。 6.火灾报警系统一般由火灾报警触发器件、火灾报警控制装置、火灾报警装置以及火灾联动控制装置组成。 7.车站级FAS的工作模式有监视模式、报警模式、消防联动模式及防灾通信模式等。 8.车站级监控系统主要实现对车站系统和设备的监控和联动控制。 9.自动化监控系统按照信息的实时响应性要求,可分为实时数据库和事务数据库管理系统两大类。 10.地铁防灾报警系统的功能分为中央级和车站级。 11.在BAS系统中,车站级监控系统位于车站,以车站监控工作站、PLC控制器为基础,具体包括车站监控局域网、打印机、后被操作盘等。 12.设备运转管理以机电设备管理为主,主要是供电系统和地下车站中的通风和供电空调系统。

13.完整的变电所供电系统应当包括保护测控装置、网络层、管理层三大部分。 二、判断题(共13题,每题1分) 1.国内地铁第一次采用综合自动化监控系统的是北京地铁1期工程。(×) 2.ATP是自动防护系统通过固定闭塞或移动闭塞技术实现列车的自动保护,控制方式不同于一般工业自动控制。(√) 3.地铁信号系统属于安全系统。(√) 4.地铁自动化集成系统多一电力SCDA系统为核心。(×) 5.在BAS中,模式控制由OCC实现,模式的判断,命令的发出及正确的模式编号的获得成为实现模式的关键所在。(√) 6.在BAS中,实时数据处理和控制主要由各PLC控制器完成,PLC是车站BAS 系统的核心。(√) 7.火灾报警控制器是火灾报警系统的心脏,是系统运行的指挥中心。(√) 8.深圳地铁1期工程中在OCC设置了EMCS、FAS、SCADA三个独立的总监控功能。(√) 9.在深圳地铁1期工程中EMCS+SCADA+FAS系统在中心是一个完全集成的综合系统共属相同的中央服务器。(√) 10.在城轨交通中,完成接口的开发并实现成功,这是集成系统构建成功的关键。(√) 11.(×) 12.在FAS的车站级功能主要有监视、报警、控制以及其他系统的联动等。(√) 13.城市轨道交通自动化系统是一个地理上分散的DCS系统。(×) 补充:轨道自动化集成系统多以电力SCADA系统为核心。(√)

地铁信息系统集成简介

地铁信息系统集成简介 地铁是城市轨道交通的一部分,随着社会、经济及科技的高速发展,为了缓解城市交通的紧张状况地铁应运而生。地铁是在城市中修建的快速,且大量用电力牵引的轨道交通,它的线路通常设在地下隧道内,有的也在城市中心以外的地区从地下转到地面或高架桥上。地铁与城市其他交通工具相比,具有以下特点:1)地铁是在人口密集区的地下封闭隧道中运行的,而在郊外人口不密集区则是在高架或地面封闭环境中运行的,其占用地面面积较少,能够避免城市地面拥挤,节约城市用地;2)地铁的客运量为4~6万人/小时以上,其运输能力比一般地面交通工具大7~1O倍;3)地铁列车以电力作为动力,对空气污染程度比较小。而其他的地面交通工具一般采用的是汽油、柴油等,不仅消耗能源,还会造成大量污染。地铁综合监控系统作为保证地铁正常运行的管理系统具有非常重要的作用,这里提出了主要针对西安地铁2号线的综合监控系统设计方案。 1 地铁综合监控系统 地铁综合监控系统集成了地铁各专业自动化系统,它采用统一的计算机硬件和软件平台。无论是电力监控还是设备监控,无论是行车调度还是通信监控,它们都是建立在一个统一的计算机网络平台上,由统一的软件系统支持。 地铁综合监控系统实现了电力监控系统(SCADA)、环境与设备监控系统(BAS)、火灾自动报警系统(FAS)、屏蔽门(PSD)等系统的集成,实现了信号系统(SIG)、自动售检票系统(AFC)、广播系统(PA)、视频监控系统(CCTV)、乘客信息系统(PIS)和时钟系统(CLK)的互联。图1为地铁综合监控系统组成框图。 电力监控子系统可实现控制、遥信及信息处理、遥测及数据处理、遥调以及模块操作等功能,而环境与设备监控系统则实现监控、正常显示、故障显示以及运营统计等功能。 2 地铁综合监控系统集成 系统集成就是通过结构化的综合布线系统和计算机网络技术,将各个分离的设备(如个人电脑)、功能和信息等集成到相互关联的、统一和协调的系统之中,使资源达到充分共享,实现集中、高效、便利的管理。 综合监控系统从集成的深度来划分,有现场层集成——完全集成(深度集成)、执行层集成——准集成、管理层集成——表层集成(顶层集成)3种集成方案。 1)顶层集成在OCC和车站的监控层将子系统集成。综合监控系统在管理层面汇集,处理各子系统的数据,实现各子系统间的信息共享、交互及系统联动功能。这种方案的优点是实现简单,但仍然存在车站级设备及接口种类多、实现联动困难等缺点,这种方案集成度最低。

北京地铁10号线一期(含奥运支线)

北京地铁10号线一期(含奥运支线) 北京地铁 10号线一期 工程系段由海 淀区的万柳站 向东苏州街、 黄庄、科南路、 知春路、学院 路、花园东路、 八达岭高速、 熊猫环岛、安 定路、北土城 东路、芍药居、 太阳宫、三元 桥、亮马河、 农展馆、工体 北路、呼家楼、光华路、国贸、双井至劲松站共设22座车站,全部为地下车站,一座车辆段(万柳车辆段)占地面积17.0公顷,一期工程线路全长为24.685km,其中与其他线立交换乘站7座,黄庄站与4号线的黄庄站十字形换乘,知春路与13号线的知春路站为丁字形换乘站经地下通道换乘,惠新西里南口站与5号线惠新西里南口站为十字形换乘站。芍药居站与13号线芍药居站为L字形换乘站经地下通道换乘,三元桥站与机场线三元桥站换乘为平行形通道换乘,国贸站与1号线国贸站换乘为L字形地下通道换乘。熊猫环岛站与奥运支线熊猫环岛站丁字形换乘,奥运支线由熊猫环岛、奥体中心、奥林匹克公园、森林公园,共4座车站,线路全长4.5km。 地铁十号线一期是2003年12月28日开工,计划2008年6月30日竣工通车运营。总投资138亿元,平均每公里造价55904.4万元人民币。奥运支线,投资21亿,平均每公里造价46666.67万元人民币。 城建院是工程的总体设计单位,并负责设计了全线的:线路、轨道、行车组织与管理,供电、客户服务(PIS)、自动售检票(AFC)、安全门、电扶梯、综合监控、勘探、测量,还有13座(10号线9个、奥运支线4座)车站的结构、建筑,动力照明、通风空调、给排水与消防、环控(BAS)、自动报警(FAS)、奥运支线4座车站的精装修设计等专业设计。

北京地铁奥运支线工程 根据2008年第二十九届奥运会申办报告对国际奥委会的承诺,在2008年奥 运会之前,完成300公里的轨道交通线网建设,建成一条直达奥运会中心区的地 铁专线,奥运支线就是为落实上述承诺修建的奥运专用地铁线路。地铁奥运支线 通过地铁十号线与整个北京地铁线网连接,承担了奥林匹克中心区奥运会举办期 间大量观众的疏散任务,疏散客流量达每小时2.88万人次,对于顺利举办第29 届奥运会具有重要意义。 地铁奥运支线利用的是北京市规划轨道交通线网中的8号线中的一部分, 南端起点为熊猫环岛,沿北中轴路中间绿化带和奥林匹克公园中轴线向北,穿过 北四环 路、成Array府路、 大屯路、 辛店村 路后, 终点设 在规划 森林公 园南门。 线路全 长 4.528km,全部为地下线。全线设4座车站,全部为地下站,分别是熊猫环岛站、 奥体中心站、奥运公园站和森林公园站。 为保证奥运期间乘客的安全集散,为节约能源,降低运营费用,经市政府专 门批准,奥运支线车站将安装站台屏蔽门,车站空调系统相应变更为屏蔽门空调 系统。奥运支线的控制中心近期与地铁十号线合建,远期并入地铁八号线。 本工程投资总额27243.6万元。地铁奥运支线采用了与以往北京地铁其他 建设项目不同的BT融资方式实施,2005年6月28日开工建设,2008年6月1 日建成通车。 城建院是该工程的总体设计单位,同时承担了全部土建工点和除通信信号 系统之外的全部设备系统得设计任务。 设计单位:北京城建设计研究总院 项目负责人:曹宗豪 设计时间:2005年--2008年

地铁视频监控解决方案

地铁视频监控解决方案 随着城市交通的发展,日常生活节奏的加快,城市流动人口的增加,在地铁轨道沿线建立视频监控系统,对车站各个关键点以及车厢等场所实现实时视频监控,并同时能为地铁公安、城市公安系统提供公安视频监控功能已是大势所趋,势在必行。 中兴地铁视频监控系统利用通信传输网为基础,构建专业、统一、共享、可靠、安全和高度可扩展的数字化平台,涵盖了地铁各站、停车站、车辆段,并预留系统扩充能力,具有良好的可扩展性。该方案可为车站内的各业务部门提高安全生产能力、提高工作效率、防范事故隐患起到良好作用,实现“面对面、零距离”指挥和交流效果。 中兴地铁视频监控解决方案针对的主要监控对象为车站场所的各个关键点:如出站口、售票厅、候车区域、检票区域、站台、广场等旅客活动场所、重要通道等人流量密集区重点安全防范场所等进行实时视频监控。闭路电视监视系统是保证轨道交通行车组织、保证运输安全的重要设备,系统为控制中心调度员、车站值班员、列车司机等提供有关列车运行、防灾救灾、客流情况及社会治安等方面的视觉信息,系统同时为防灾调度指挥抢险提供指挥辅助工具。 系统架构 系统由前端视频和告警信号的采集、处理,车站监控中心,总监控中心三层架构组成。由临时控制中心或控制中心调度员行车监视、防灾监视,车站值班员监视和司机上、下车监视两大部分构成,组成一个三级(中心、车站、司机)监视、两级控制(总监控中心、车站监控中心)的视频监控网络。

地铁视频监控解决方案组网图 总监控中心:设置中心管理单元、存储管理单元、数据库管理单元、媒体转发单元、接入管理单元、多媒体交换单元、磁盘阵列等设备,实现控制中心对全线视频资源的调看、控制、管理等功能。 车站监控中心:设置摄像机、前端视频处理设备、视频分配器、数字网络实时存储设备、监控终端等。视频分配器负责将前端视频信号分为两路,一路接入多媒体接入单元进行编码传输至控制中心,提供车站监控中心监视与控制。另一路视频流经专用通信系统传输网络送至派出所及轨警分局,然后经多媒体交换单元解码后送至大屏幕电视墙。 在监控现场,在站台、站厅及自动扶梯、出入口、售票处、票务室、检票口等处安装摄像机,采集现场模拟视频信号,在多媒体接入单元进行编码压缩,转换为数字信号,存储在多媒体接入单元的硬盘上,同时通过监控系统承载网,监控信息传输至车站及总监控中心。

北京地铁十号线二期公主坟站下穿既有车站施工方案研究

北京地铁十号线二期公主坟站下穿既有车站施工方案研究 摘要:随着城市地下轨道交通及市政管线等建设,新建线路下穿既有线路愈发常见。本文依托北京地铁十号线二期公主坟站下穿既有一号线车站工程,从施工角度,探讨大断面暗挖隧道“零距离”下穿既有车站施工中,根据施工现场动态完善方案,有效控制既有站沉降的相关技术措施。 关键词:暗挖隧道、下穿、既有车站 1、工程概况 1.1新建站简介 新建的10号线二期公主坟车站,位于复兴路与西三环中路交汇的新兴桥桥区绿地内,采用“分离岛”站台形式与既有1号线十字交叉换乘。 车站全长193.65m,为两端双层、中间单层车站。其中中间下穿既有1号线段长26.1m,结构净宽11.75m,高6.32m,顶板覆土约12.5m,为单层双跨平顶直墙矩形结构,采用“CRD+千斤顶”暗挖法施工。 1.2既有站简介 既有站为钢筋混凝土矩形框架结构,长169.69m、宽20.3m、高7.95m;底板厚0.8m、侧墙厚1m,顶板厚1.3m。自投入运营已近40年,在下穿施工前,由业主委托有资质的第三方对既有线结构现状进行全面的调查评估,根据评估结论,业主组织各方据以制定保证既有线运营安全的施工技术措施。 1.3新建站与既有站位置关系 新建站的车站主体单层段为两个分离式双跨矩形断面,单个矩形断面的开挖尺寸为宽×高=14.5m×9.32m,两矩形断面之间净距49.2m,采取十号线顶板紧贴一号线底板的“零距离”刚性接触下穿既有站。下穿横断面如图1.1新建站与既有站位置关系横断面图。 新建站单层段下穿施工影响范围内存在既有1号线车站四条变形缝,左线左侧距变形缝1.271m,右线右侧距变形缝2.409m。

地铁综合监控火灾自动报警系统(FAS)调试办法

轨道交通1号线火灾自动报警系统调试方案

目录 第一章FAS调试综述错误!未指定书签。 1.FAS调试目的错误!未指定书签。 2.调试依据错误!未指定书签。 3.调试前置条件错误!未指定书签。 4.调试计划错误!未指定书签。 4.1.调试计划安排错误!未指定书签。 4.2.各厂家配合错误!未指定书签。 4.3.调试人员安排错误!未指定书签。 第二章FAS系统调试方案错误!未指定书签。 1.系统组成错误!未指定书签。 2.前置条件错误!未指定书签。 3.调试工具及仪器仪表错误!未指定书签。 4.调试前的准备工作错误!未指定书签。 4.1.熟悉资料错误!未指定书签。 4.2.FAS系统的准备错误!未指定书签。 4.3.一般准备错误!未指定书签。 5.调试内容错误!未指定书签。 5.1.自动报警调试错误!未指定书签。 5.2.系统联合调试错误!未指定书签。 第一章FAS调试综述 1.FAS调试目的 调试就是在正式投入及联调测试前进行一些基本性能试验,来确保各种部位设备、各个系统正常运行,达到设计要求及标准,以保证各个车站FAS系统的综合功能。 2.调试依据 2.1、参考现行规范: 《火灾自动报警系统施工及验收规范》(GB50166-2007)、

《火灾自动报警系统设计规范》(GB50116-2013) 2.2、施工图设计参数及标准; 2.3、轨道交通1号线机电设备采购标招标文件技术部分要求; 3.调试前置条件 3.1、调试前,按规范要求及现场实际情况需要调整相关组件、设施的参数和检查系统线路,对于错线、开路、虚焊和短路进行处理。 3.2、整理好所有施工图纸,包括楼层平面、系统图、接线图、安装图等。 3.3、整理好设计变更文字记录,各种文件和与调试有关的技术资料。 3.4、整理好施工日志,施工记录,包括隐蔽工程验收检查记录、中间验收检查记录、绝缘电阻、接地电阻的测试记录; 3.5、准备好各种调试记录表格。 3.6、电系统:现场各终端联动设备动力、电源、信号等供应正常,子系统自调完毕,设备运行良好,无故障。具备联动条件。FAS自动投入功能正常。 4.调试计划 4.1.调试计划安排 4.1.1编制说明 根据工程总控计划的安排; 本计划的关键点为业主提供的总控计划中的市政供电未正常; 该工程的调试分为单机单系统调试及系统联合调试两个阶段,故在永久用电未正式送电前,采用临电进行各单机单系统调试; 4.1.2调试计划表 调试内容

地铁综合监控系统方案

地铁综合监控系统方案 概述 地铁商用通信工程综合监控系统,是一套以地铁专用数字传输系统为信息传输通道,以计算机网络技术、高精度A/D转换、嵌入式系统开发、基于PC的GUI软件开发等技术为基础的一套专用、独立系统。 通过这套系统可以实现对地铁民用无线射频分配系统中各车站民用通信机房的POI 下行信号 机房的温湿度、区间的干线放大器工作状态、电源以及门禁等参数进行实时遥测,并在无线射频分配系统发生故障时自动报警。为地铁民用无线射频分配系统可靠应用提供了管理手段。 系统在设计时已充分考虑到了地铁民用无线射频分配系统兼容3G的扩容问题,预留了网管软 件及各站通讯编码单元内嵌入式软件的升级能力。 系统采用的硬件设备均为成熟产品,提高监控的可靠性,由于监控单元模块化,端口的标准 化,为今后系统的扩展提供了方便;软件以现今最为流行的Win dows操作系统为基础进行的开发, 操作界面友好,便于操作和维护。 系统需求 1.监控系统建设方式 地铁各个地下商用通信机房均为无人值守机房,因此,对于设备的日常管理及维护,必须有一套完整、功能强大的网管系统来管理监视各个站设备的日常工作情况;对于系统故障,能够及时的发出相应的告警,提醒相关人员进行处理;同时具备数据库功能,能够储存设备的各种状态、如正常状态、报警状态和故障信息等;同时预留远期接入多条线路进行集中网管监控的条件。 2.网络结构及系统组成 监控系统采用一级组网。一级组网方式如下:

方案要求建立一套综合监控系统,对机房内外所有需要监控的设备、机房环境等进行全面监测,为保证商用通信系统正常运行提供保障。 3 .系统监测控制对象 4 ?监控系统技术条件及功能要求 1)监控系统技术条件 监控系统设置信息监测中心,并在各个地下车站设置监测前端设备。系统应具有开放性、标准化、安全性、先进性、系统应采用先进的、开放的、成熟的软硬平台,具有技术先进、功能实用、安全性好等特点。 2)监控系统功能要求 (1)信息监测中心能显示监控对象,包括POI、各个站间的隧道放大器、电源和机房的状态和告警信息,通过菜单或者其它方式选择显示指定监控对象的工作状态等资料,完成监控 数据报表的处理和存储。 (2)监测中心应具有处理功能,监控数目和内容应根据维护管理的实际需要确定,并能对 生成的各种报表进行存储和打印。

城市地铁视频监控联网技术系统

发布时间:2009-3-10 目前城市地铁站视频监控一般分为两级监控;在地铁站端要求监视所有本站图像,另外在监控中心要求可以监视下属各地铁站的情况。考虑到资金投入的问题,在中心端,一般不要求同时看到所有地铁站的所有图像;而是采取两种方式监视:一种是同时监视各地铁站的某几路图像,另外一种是要求可同时看到某一个地铁站的所有图像或大部分图像。这就需要考虑从各地铁站到监控中心的视频传输问题。 从各地铁站到监控中心的视频传输一般有两种方案。 第一种是使用数字视频编解码器,通过SDH提供的E1信道完成视频传输; 第二种是采用光纤方式,独立组成城铁视频监控联网系统完成传输。若采用第一种方式,需要占用大量SDH资源,增大了通信系统的压力。在第二种方式中,如过采用传统点对点方式,则要占用很多的光纤资源。随着现代光纤通信技术和数字视频技术的飞速发展,在监控领域内,实时数字视频的光纤传输也已经被越来越多的人所接收。城铁系统光纤拓扑结构一般呈链状或环网结构,建议采用,系统远端设备对模拟图像进行压缩编码、数字化并通过复用器复接到高速信道,通过电/光转换将信号发送到光纤通道,组成链网或环网;在局端进行反向复用、解码,输出模拟图像,图像质量可达到DVD效果。我们以下面的案例为例,详细介绍如何采用VOX-基于光纤的数字视频传输平台解决城铁视频监控联网传输问题。 现状及用户要求 某城市地铁站联网监控项目,共具有16个地铁站,每个地铁站上传6路图像,共96路图像。 全网共设1个监控中心,在监控中心需要设置6台监视器,同时观看

16个站96图像中的任意6路。同时另设3个独立的操作席,各配1台监视器观看任意1路图像。 设计原则及解决方案 本设计方案着眼于整个系统的先进性、可靠性、灵活性和符合需方远期规划的原则设计,综合考虑系统的可扩展性,业务拓展功能及系统升级功能。 根据现有状况及要求,提出采用北京蛙视通信有限公司的光纤数字音视频传输平台-VOX系统。VOX系统远端设备对模拟图像进行压缩编码、数字化并通过复用器复接到高速信道,通过电/光转换将信号发送到光纤通道,可组成链网或环网;在局端进行反向复用、解码,输出模拟图像,图像质量可达到DVD效果。 VOX系统介绍 VOX系统采用光纤作为传输介质,内置光传输模块,VOX系统摒弃了传统视频光端机点对点的传输模式,采用了电信级的光纤通信系统中数字中继的技术,信号逐级再生,与本地信号进行交叉复用,信号可在任何一点上下,非常灵活。通过时隙配置可以实现图像的全网交叉,使用极为方便。 VOX采用模块化的结构——————包含机箱、光传输板、业务板(视频压缩板、视频解压缩板、数据板、E1版、以太网网桥、以太网接口板)等模块。每个监控点可根据需要及数量选择相关的模块,一般在监控点配置一台VOX设备,需要机箱一个、光传输板一块、业务板若干。在监控中心需VOX机箱一个、光传输板一块、业务板若干。 VOX系统可以实现音视频双向传输和多点信息共享的功能。比如在监控中心插入一块视频压缩板,分中心或地铁站插入一块解压缩板,通过时隙配置即可实现音视频的反向传输,即简单的会议电视功能。 VOX系统可以通过以太网与上级监控联网。VOX系统支持在中心端VOX设备上插入一块10/100M以太网接口板,用于上传视频信号,并且与本地信号互不干扰。上级监控中心可以通过计算机上的解压软件观看图

地铁综合监控系统施工

地铁综合监控系统施工法及总结 1综合监控系统概况 综合监控系统的主要功能包括对机电设备的实时集中监控功能和各系统之间协调联动功能两大部分。一面,通过综合监控系统,可实现对电力设备、火灾报警信息及其设备、车站环控设备、区间环控设备、环境参数、屏蔽门设备、防淹门设备、电扶梯设备、照明设备、门禁设备、自动售检票设备、广播和闭路电视设备、乘客信息显示系统的播出信息和时钟信息等进行实时集中监视和控制的基本功能;另一面,通过综合监控系统,还可实现晚间非运营情况下、日间正常运营情况下、紧急突发情况下和重要设备故障情况下各相关系统设备之间协调互动等高级功能。 2综合监控系统施工环节及法 2.1前期现场调查 地铁施工工期紧、专业较多。各专业为了保证施工工期,不可避免的存在交叉施工作业。对于我们设备安装专业来说,与土建总包单位的配合施工在整个施工过程中是比较重要的一个环节。我们设备安装专业与土建总包专业从工程的开始直至结束,一直贯穿其中。 在施工开展前期,我们设备安装专业需做好现场调查。施工现场调查的情况,对未来施工的顺利开展和工期的确保将起到决定性的因素。所以我们在前期现场调查的时候需要与各土建标段及相关设备安装单位建立有效的联系式。 对于综合监控专业来说,我们前期现场调查的时候主要要注意以下几个问题: (1)土建总包专业二次结构墙砌筑及洞预留情况; (2)土建总包专业设备房间地面找平及墙面抹灰情况; (3)土建总包专业房间装修50cm线或者1m线画线情况; (4)土建总包专业设备房间临时门窗安装情况; (5)土建总包专业吊装预留情况及封堵时间。 以上5项在现场调查期间,我们需要与土建总包单位的相关负责人了解清楚。建立现场情况调查表,逐项与相关人员核实并做记录。并及时沟通更新。确保一手资料的准确性。 2.2基础底座的制作及固定 2.2.1基础底座的制作 (1)准 备工作 综合监控设备房间属于弱电设备间,为防止静电对弱电设备产生危害,房间会安装防静电地板。在土建总包单位施工期间,每个站的土建总包单位的装修层的高度均有差距。所以我们综合监控设备的底座的高度也是不同的。在制作基

典型地铁通信安防系统解决方案

XX地铁安防系统应用案例分析 XX地铁K号线是一条南北客流主干线,线路全长48km,其中高架线约5km,地面线1km,地下线约42km。共设车站30座(其中高架车站1座,地下车站29座),控制中心1座,车辆段1座,停车场1座,本文以该地铁为例,谈其监控解决方案。 系统架构 整个系统建设中,除了垂直电梯的模拟摄像机采用普通D1的编码器接入外,其余点位从图像的采集、传送、存储、显示全部达到高清,要求符合HDTV标准的分辨率1920*1080以上全实时图像画质。 视频监控系统分为控制中心和车站两级组网,两级均可对系统内的图像进行监视和控制,监视功能相互独立,互不影响,控制优先级如下。 · 第一级:中心防灾值班员; · 第二级:车站防灾调度员; · 第三级:中心行车调度员; · 第四级:中心总调调度员; · 第五级:中心电力调度值班员; · 第六级:车站行车调度员; · 第七级:中心客调调度员; · 第八级:其他用户。 运营视频监控系统与公安视频监控系统共用高清数字摄像机,专网高清视频摄像机提供模拟视频输出口供公安系统调看。对于根据运营电视监视设置的摄像机,地铁运营具有优先控制权。优先级可扩展,不同调度员优先级可在控制中心通过软件调整,调整方式灵活快捷,所有云台的优先级均可灵活设置。 系统设置控制中心调度员的行车监视、防灾环控监视、电力设备监视、客调监视和总调监视;采用控制中心远程监控和车站本地监控方式,组成一个完整的视频监控两级监视网络。各车站视频信号,由前端高清IPC采集处理后,送至车站的三层以太网交换机,通过三层组播的方式,控制中心交换机接收此信号后在相关调度员工作站进行视频显示及控制;另外提供8路图像进行相应解码处理后在大屏幕显示,并在控制中心交换机预留相应数字接口至日后TCC系统平台,CCTV监控系统通过标准协议体系和上级平台TCC实现互联互通互控(图1)。 车站监视系统 车站监视系统由前端图像摄取部分、车站视频处理部分、图像显示控制部分及图像上传等几个部分组成。主要设备包括:数字高清摄像机、彩色高清液晶监视器(综合监控专业提供)、司机监视器,视频编码器(垂直电梯内摄像头用),车站视频交换机、NVR视频存储组、车站视频管理服务器、视频控制终端、控制键盘、电源分路器(内置式)、控制切换软件等设备组成。 · 车站控制室设置1台视频监控客户端、1台控制键盘,用于行车和防灾监控;

相关文档