文档库 最新最全的文档下载
当前位置:文档库 › 微分几何4

微分几何4

微分几何4
微分几何4

微分几何第四版习题答案解析梅向明

§1曲面的概念 1.求正螺面r r ={ u v cos ,u v sin , bv }的坐标曲线. 解 u-曲线为r r ={u 0cos v ,u 0sin v ,bv 0 }={0,0,bv 0}+u {0cos v ,0sin v ,0},为曲线的直母线;v-曲线为r r ={0u v cos ,0u v sin ,bv }为圆柱螺线. 2.证明双曲抛物面r r ={a (u+v ), b (u-v ),2uv }的坐标曲线就是它的直母线。

证 u-曲线为r r ={ a (u+0v ), b (u-0v ),2u 0v }={ a 0v , b 0v ,0}+ u{a,b,20v }表示过点{ a 0v , b 0v ,0}以{a,b,20v }为方向向量的直线; v-曲线为r r ={a (0u +v ), b (0u -v ),20u v }={a 0u , b 0u ,0}+v{a,-b,20u }表示过点(a 0u , b 0u ,0)以{a,-b,20u }为方向向量的直线。 3.求球面r r =}sin ,sin cos ,sin cos {?????a a a 上任意点的切平面和法线方程。 解 ?r ρ =}cos ,sin sin ,cos sin {?????a a a -- ,?r ρ=}0,cos cos ,sin cos {????a a - 任意点的切平面方程为00 cos cos sin cos cos sin sin cos sin sin sin cos cos cos =------? ?? ????? ??????a a a a a a z a y a x 即 xcos ?cos ? + ycos ?sin ? + zsin ? - a = 0 ; 法线方程为 ? ? ????????sin sin sin cos sin cos cos cos cos cos a z a y a x -=-=- 。 4.求椭圆柱面22 221x y a b +=在任意点的切平面方程,并证明沿每一条直母线,此 曲面只有一个切平面 。 解 椭圆柱面22 221x y a b +=的参数方程为x = cos ?, y = asin ?, z = t , }0,cos ,sin {??θb a r -=ρ , }1,0,0{=t r ρ 。所以切平面方程为: 01 0cos sin sin cos =----????b a t z b y a x ,即x bcos ? + y asin ? - a b = 0 此方程与t 无关,对于?的每一确定的值,确定唯一一个切平面,而?的每一数值对应一条直母线,说明沿每一条直母线,此曲面只有一个切平面 。

微分几何习题全解(梅向明高教版第四版)

微分几何主要习题解答 第一章 曲线论 §2 向量函数 5. 向量函数)(t r 具有固定方向的充要条件是)(t r × ) ('t r = 0 。 分析:一个向量函数)(t r 一般可以写成)(t r =)(t λ)(t e 的形式,其中)(t e 为单位向 量函数,)(t λ为数量函数,那么)(t r 具有固定方向的充要条件是)(t e 具有固定方向,即)(t e 为常向量,(因为)(t e 的长度固定)。 证 对于向量函数)(t r ,设)(t e 为其单位向量,则)(t r =)(t λ)(t e ,若)(t r 具有固 定方向,则)(t e 为常向量,那么)('t r =)('t λe ,所以 r ×'r =λ'λ(e ×e )=0 。 反之,若r ×'r =0 ,对)(t r =)(t λ)(t e 求微商得'r ='λe +λ 'e ,于是r × 'r =2 λ(e ×'e )=0 ,则有 λ = 0 或e ×'e =0 。当)(t λ= 0时,)(t r =0 可与任意方 向平行;当λ≠ 0时,有e ×'e =0 ,而(e ×'e 2)=22'e e -(e ·'e 2)=2'e ,(因为e 具有固定长, e ·'e = 0) ,所以 'e =0 ,即e 为常向量。所以,)(t r 具有固定方向。 6.向量函数)(t r 平行于固定平面的充要条件是(r 'r ''r )=0 。 分析:向量函数)(t r 平行于固定平面的充要条件是存在一个定向向量)(t n ,使 )(t r ·n = 0 ,所以我们要寻求这个向量n 及n 与'r ,''r 的关系。 证 若)(t r 平行于一固定平面π,设n 是平面π的一个单位法向量,则n 为常向 量,且)(t r ·n = 0 。两次求微商得'r ·n = 0 ,''r ·n = 0 ,即向量r ,'r ,''r 垂直 于同一非零向量n ,因而共面,即(r 'r ''r )=0 。 反之, 若(r 'r ''r )=0,则有r ×'r =0 或r ×'r ≠0 。若r ×'r =0 ,由上题知 )(t r 具有固定方向,自然平行于一固定平面,若r ×' r ≠ ,则存在数量函数)(t λ、 )(t μ,使''r = r λ +μ'r ①

微分几何课程教学大纲

“微分几何”课程教学大纲 英文名称: 课程编号: 学时:学分: 适用对象:理学院数学各专业本科生(二年级下) 先修课程:数学分析、高等代数与几何 使用教材及参考书: 陈维恒著,《微分几何初步》,北大出版社 梅向明著,《微分几何》 虞言林著,《微分几何》 一、课程性质、目的和任务 本课程主要介绍维芡氏空间中曲线和曲面的经典局部理论,使学生树立正确的几何观念,为进一步学习现代数学和物理提供基础和背景。 二、教学基本要求 本课程要求学生建立正确的几何概念、掌握描述和刻划曲线及曲面形状的方法和手段,会进行初步的曲率计算,并能理解绝妙定理的重要意义。 三、教学内容及要求 第一章预备知识 标架 向量值函数 第二章曲线论 参数曲线 曲线的弧长 曲线的曲率和标架 挠率和公式 曲线论基本定理 曲线在一点的标准展开 平面曲线 重点掌握:曲线的标架及公式 第三章曲面的第一基本形式 曲面的定义 切不面及切向量 曲面的第一基本形式 曲面上正交参数曲面网的存在性 保长对应和保角对应 可展曲面 重点掌握:第一基本形式的定义,计算及作用,可展曲面的三种基本形式。 第四章曲面的第二基本形式 第二基本形式 法曲率 映射和映射 主方向和主曲率的计算 标形和曲面在一点的近似展开 某些特殊曲面。

重点掌握:第二基本形式的定义,法曲率、主曲率、曲率、中曲率的计算。第五章曲面论基本定理 自然标架的运动公式 曲面一唯一性定理 曲面论基本议程 曲面的存在定理 定理。 重点掌握:自然标架的运动公司,曲面基本议程,曲率的内在计算(定理)。第六章测地曲率和测地线 测地曲率和测地挠率 测地线 测地坐标系 常曲率曲面 向量场的平行移动 公式 重点掌握:测地曲率的定义和测地线议程,平行移动和协变微分。 大纲制定者:李洪军执笔 大纲审定者:陈红斌 大纲批准者:张胜利 大纲校对者:李洪军 “数学分析”课程教学大纲 英文名称: 课程编号: 课程类型:必修课 学时:学分: 适用对象:理学院数学各专业一、二年级本科生 先修课程:高中数学 使用教材及参考书: .陈传璋等,《数学分析》,高等教育出版社。 .张筑生主编,《数学分析新讲》,北京大学出版社,年

微分几何试题库

微分几何 一、判断题 1 、两个向量函数之和的极限等于极限的和(√) 2、二阶微分方程22 u v du u v dudv u v dv ++=总表示曲面上两族曲A(,)2B(,)B(,)0 线. (?) 3、若() s t均在[a,b]连续,则他们的和也在该区间连续(√)r t和() 4、向量函数() s t具有固定长的充要条件是对于t的每一个值, s t平行(×) s t的微商与() () 5、等距变换一定是保角变换.(√) 6、连接曲面上两点的所有曲线段中,测地线一定是最短的.(?) 7、常向量的微商不等于零(×) 8、螺旋线x=cost,y=sint,z=t在点(1,0,0)的切线为X=Y=Z(×) 9、对于曲线s=() s t上一点(t=t0),若其微商是零,则这一点为曲线的正常点(×) 10、曲线上的正常点的切向量是存在的(√) 11、曲线的法面垂直于过切点的切线(√) 12、单位切向量的模是1(√) 13、每一个保角变换一定是等距变换(×) 14、空间曲线的形状由曲率与挠率唯一确定.(√) F=,这里F是第一基本量.(√)15、坐标曲线网是正交网的充要条件是0

二、填空题 16、曲面上的一个坐标网,其中一族是测地线 17、螺旋线x=2cost,y=2sint,z=2t,在点(1,0,0)的法平面是___ y+z=0, . 18.设给出1 c 类曲线:)(t r r =,.b t a ≤≤则其弧长可表示为?'b a dt t r )( 19、已知33{cos ,sin ,cos 2}r x x x =,02x π << ,则α=1 {3cos ,3sin ,4}5 x x --, β= {sin ,cos ,0}x x ,γ=1{4cos ,4sin ,3}5x x --,κ= 625sin 2x ,τ=8 25sin 2x 。 20、曲面的在曲线,如果它上面每一点的切点方向都是渐近方向,则称为渐进曲线。 21、旋转面r ={()cos ,()sin ,()t t t ?θ?θψ},他的坐标网是否为正交的?____是_____(填“是”或“不是”). 22、过点平行于法方向的直线叫做曲面在该点的_____法线_____线. 23.任何两个向量q p ,的数量积=?q p )cos(~ pq q p 24、保持曲面上任意曲线的长度不便的变称为____等距(保长)变换__. 25、圆柱螺线的曲率和挠率都是_____常数____数(填“常数”或“非常数”). 26.若曲线(c)用自然参数表示)(t r r =,则曲线(c)在)(0s P 点的密切平面的方程是 0))(),(),((000=-s r s r s r R 27.曲线的基本三棱形由三个基本向量和密切平面、法平面、从切平面 28.杜邦指标线的方程为1222±=++Ny Mxy Lx 29、已知曲面{cos ,sin ,6}r u v u v v =,0u >,02 v π ≤<,则它的第一基本形式 为 222(36)du u dv ++ ,第二基本形式为 dv ,高斯曲率

第四版 微分几何 第二章课后习题答案

第二章 曲面论 §1曲面的概念 1.求正螺面r ={ u v cos ,u v sin , bv }的坐标曲线. 解 u-曲线为r ={u 0cos v ,u 0sin v ,bv 0 }={0,0,bv 0}+u {0cos v ,0sin v ,0},为曲线的直母线;v-曲线为r ={0u v cos ,0u v sin ,bv }为圆柱螺线. 2.证明双曲抛物面r ={a (u+v ), b (u-v ),2uv }的坐标曲线就是它的直母线。 证 u-曲线为r ={ a (u+0v ), b (u-0v ),2u 0v }={ a 0v , b 0v ,0}+ u{a,b,20v }表示过点{ a 0v , b 0v ,0}以{a,b,20v }为方向向量的直线; v-曲线为r ={a (0u +v ), b (0u -v ),20u v }={a 0u , b 0u ,0}+v{a,-b,20u }表示过点(a 0u , b 0u ,0)以{a,-b,20u }为方向向量的直线。 3.求球面r =}sin ,sin cos ,sin cos {?????a a a 上任意点的切平面和法线方程。

4.求椭圆柱面 222 2 1x y a b + =在任意点的切平面方程, 并证明沿每一条直母线,此曲面只有一个切平面 。 解 椭圆柱面 222 2 1x y a b + =的参数方程为x = cos ?, y = asin ?, z = t , }0,cos ,sin {??θb a r -= , }1,0,0{=t r 。所以切平面方程为: 01 0cos sin sin cos =----?? ??b a t z b y a x ,即x bcos ? + y asin ? - a b = 0 此方程与t 无关,对于?的每一确定的值,确定唯一一个切平面,而?的每一数值对应一条直母线,说明沿每一条直母线,此曲面只有一个切平面 。 5.证明曲面},,{3 uv a v u r = 的切平面和三个坐标平面所构成的四面体的体积是常 数。 证 },0,1{23 v u a r u -= ,},1,0{23 uv a r v -= 。切平面方程为:33=++z a uv v y u x 。 与三坐标轴的交点分别为(3u,0,0),(0,3v,0),(0,0, uv a 2 3)。于是,四面体的体积为: 3 3 2 9| |3| |3||36 1a uv a v u V = =是常数。

高斯曲率的意义与作用

高斯曲率的意义与作用 1引言 在曲面论中,应用较多的是高斯曲率.高斯曲率是微分几何学发展的里程碑,开创了微分几何学的一个新纪元.正是高斯这一伟大发现启发我们对于抽象的曲面进行研究,也就是对于只给定第一基本形式的曲面研究其几何性质.同时高斯定理说明,曲面的度量性质本身蕴含着一定的弯曲性质,这是曲线所不具有的特点. 2 预备知识 2.1 主曲率 2.1.1 主曲率的定义 [1](99) p 曲面上一点处主方向上的法曲率称为曲面在此点的主曲率. 由于曲面上一点处的主方向是过此点的曲率线的方向,因此主曲率也就是曲面上一点处沿曲率线方向的法曲率. 2.1.2 主曲率的计算公式 主曲率满足 0N N N N L k E M k F M k F N k G --=-- 即 222()(2)()N N EG F K LG MF NE K LN M ---++-=[1](102)0p 2.1.3 有关主曲率的一个命题 [1](102) p 曲面上的一点(非脐点)的主曲率是曲面在这点所有方向的法曲率的最大值和最小值. 2.2 高斯映射(球面表示) 设σ是曲面S :(,)r r u v =r r 上一块不大的区域,另外再做一个单位球面.现在建立σ中的点和 单位球面的点的对应关系如下:σ中任取一点(,)P u v =,作曲面在P 点处的单位法向量 (,)n n u v =r r ,然后把n r 的始端平移到单位球的中心,则n r 的另一端点就在单位球面上,设该点为P ',这样对于曲面的小区域σ中的每一点(,)r u v r ,(,)u v σ∈与球面上向径为(,)n u v r 的点对应.因此, 曲面上所给出的小区域σ表示到单位球面的对应区域* σ上.也就是说,建立了曲面的小区域σ到单位球面上区域* σ的对应.我们把曲面上的点与球面上的点的这种对应称为曲面的球面表示,也称

微分几何练习题库及参考答案(已修改)

《微分几何》复习题与参考答案 一、填空题 1.极限232 lim[(31)i j k]t t t →+-+=138i j k -+. 2.设f ()(sin )i j t t t =+,2g()(1)i j t t t e =++,求0 lim(()())t f t g t →?= 0 . 3.已知{}42 r()d =1,2,3t t -?, {}6 4 r()d =2,1,2t t -?,{}2,1,1a =,{}1,1,0b =-,则 4 6 2 2 ()()a r t dt+b a r t dt=???? ?{}3,9,5-. 4.已知()r t a '=(a 为常向量),则()r t =ta c +. 5.已知()r t ta '=,(a 为常向量),则()r t = 2 12 t a c +. 6. 最“贴近”空间曲线的直线和平面分别是该曲线的___ 切线___和 密切平面____. 7. 曲率恒等于零的曲线是_____ 直线____________ . 8. 挠率恒等于零的曲线是_____ 平面曲线________ . 9. 切线(副法线)和固定方向成固定角的曲线称为 一般螺线 . 10. 曲线()r r t =在t = 2处有3αβ=,则曲线在t = 2处的曲率k = 3 . 11. 若在点00(,)u v 处v 0u r r ?≠,则00(,)u v 为曲面的_ 正常______点. 12. 已知()(2)(ln )f t t j t k =++,()(sin )(cos )g t t i t j =-,0t >,则4 ()d f g dt dt ?=?4cos 62-. 13.曲线{}3()2,,t r t t t e =在任意点的切向量为{}22,3,t t e . 14.曲线{}()cosh ,sinh ,r t a t a t at =在0t =点的切向量为{}0,,a a . 15.曲线{}()cos ,sin ,r t a t a t bt =在0t =点的切向量为{}0,,a b . 16.设曲线2:,,t t C x e y e z t -===,当1t =时的切线方程为 2111 -=-- =-z e e y e e x . 17.设曲线t t t e z t e y t e x ===,sin ,cos ,当0t =时的切线方程为11-==-z y x . 18. 曲面的曲纹坐标网是曲率线网的充要条件是____F =M =0_ ______________. 19. u -曲线(v -曲线)的正交轨线的微分方程是 _____ E d u +F d v =0(F d u +G d v =0)__. 20. 在欧拉公式2212cos sin n k k k θθ=+中,θ是 方向(d) 与u -曲线 的夹角. 21. 曲面的三个基本形式,,I II III 、高斯曲率K 、平均曲率H 之间的关系是20H K III -II +I = . 22.已知{}r(,),,u v u v u v uv =+-,其中2,sin u t v t ==,则dr d t ={}2cos ,2cos ,2cos t t t t vt u t +-+. 23.已知{}r(,)cos cos , cos sin ,sin a a a ?θ?θ?θ?=,其中t =?,2t =θ,则

微分几何第四版习题答案梅向明

§1曲面的概念 1.求正螺面r ={ u v cos ,u v sin , bv }的坐标曲线. 解 u-曲线为r ={u 0cos v ,u 0sin v ,bv 0 }={0,0,bv 0}+u {0cos v ,0sin v ,0},为曲线的直母线;v-曲线为r ={0u v cos ,0u v sin ,bv }为圆柱螺线. 2.证明双曲抛物面r ={a (u+v ), b (u-v ),2uv }的坐标曲线就是它的直母线。 证 u-曲线为r ={ a (u+0v ), b (u-0v ),2u 0v }={ a 0v , b 0v ,0}+ u{a,b,20v }表示过点{ a 0v , b 0v ,0}以{a,b,20v }为方向向量的直线; v-曲线为r ={a (0u +v ), b (0u -v ),20u v }={a 0u , b 0u ,0}+v{a,-b,20u }表示过点(a 0u , b 0u ,0)以{a,-b,20u }为方向向量的直线。 3.求球面r =}sin ,sin cos ,sin cos {?????a a a 上任意点的切平面和法线方程。 解 ?r =}cos ,sin sin ,cos sin {?????a a a -- ,?r =}0,cos cos ,sin cos {????a a - 任意点的切平面方程为00 cos cos sin cos cos sin sin cos sin sin sin cos cos cos =------? ?? ????? ??????a a a a a a z a y a x 即 xcos ?cos ? + ycos ?sin ? + zsin ? - a = 0 ; 法线方程为 ? ? ????????sin sin sin cos sin cos cos cos cos cos a z a y a x -=-=- 。 4.求椭圆柱面22 221x y a b +=在任意点的切平面方程,并证明沿每一条直母线,此曲面只 有一个切平面 。 解 椭圆柱面22 221x y a b +=的参数方程为x = cos ?, y = asin ?, z = t , }0,cos ,sin {??θb a r -= , }1,0,0{=t r 。所以切平面方程为: 01 0cos sin sin cos =----????b a t z b y a x ,即x bcos ? + y asin ? - a b = 0 此方程与t 无关,对于?的每一确定的值,确定唯一一个切平面,而?的每一数值对应一条

第四版微分几何期末复习总结

( )2 211 22222222221212u u 2222221u u 1.I I du sinh udv ,u=v u=v I du sinh udu =+sinh u du =cos h udu ,u=v A(u ),B(u )u 求曲率和挠率.(1)题1=解:求,,,,,,,,,/()(2)题2 ={}{ }{ }1212223123322112212222 ).r ),r r (1+t ),r 6a 0,6a ,(r r r )=216a k 1/[3a(1+t )],=k;(3).r a cos ,asin ,b k,;,,.r r r absin ,ab cos ,a ,r r k a /(a b ), =b /(a τθθθταβγθθτ?=?==-?=?=?=-?=?=++解:...,,,题3求圆柱螺线=的解:...{ }{ }{}1 2 1 1 12121 112121112b );=r /r -asin ,a cos ,b ,=(r r )/r r bsin ,b cos ,a =[(r r )r -(r r )r ]/[r r r ]cos ,-sin ,0. αθθγαβ θθβθθ=??=?=-????=-切向量, 主法u 222u u u uu u u uu u 3.(1) 1.r {(u)cos ,(u)sin ,(u)},(u)0,r ,r E=r r ='+',F=r r =0,G=r r r ,r ,r n [r r ]/L=n r =-[''''M=n r 0,N=n r [']/θθθθθθθθθθθ?θ?θψ??ψ??ψ?ψ?ψ =>?? ??== ?=? ?-?=?=题求的高斯曲率和平均曲率.解:求求23/2121222212xOz x=(z)z (u)u L=-M 0,N=F=M 0k L/E ''/[(1')],k N/G 1/[k k k -''/[(1')];H k +k '''(?ψ???????????==? ====-+==?==+-取平面上最初的曲线为得因为,所以旋转面的坐标曲线为曲率线,并且主曲率为高斯曲率平均曲率为=[1/2]()=[1+]/[223/222N T N N N N 222222*********')(2).r ucosv usinv bv k ,K,H.E=1,F=0,G=u +b ;L=0,L k E,M k F;M k F,N k G]0K b /[u +b ],K b /[u +b ];K K K b /[(u +b )],H [1/2](K +K )0..?+----=== -==- ==]. 题2 求正螺面={,,}的解:由题意得代入主曲率公式[解得(3)题3确定抛222200000T N N 12z a x +y .p ax q ay,r a,s 0,t a p q ,r a,s 0,t a E=1+p =1,F=pq=0,G=1+q 1,L=r /a M=s /N=t /a a-k ,0;0,a-k ]0K K ======?=====物面=()在(0,0)的主曲率解:由题意得=2,=222在(0,0)处=0,=022;2,,2代入主曲率公式得[22解得2a.“求主曲率,高斯曲率和平均曲率” 4.k 0k r 0,r =0r =a(),r a b,b =0r =0,r =a()s ττγαγγγ?? ?? ? ? ≡≡=≡+≡???证明的曲线是直线;0的曲线是平面曲线.证:已知因而,由此得到常向量再积分=其中也是常向量,即得证;若0,则是固定向量,但是我们已知,因而有积分后得常数,所以曲线在一个平面上。

微分几何试题库

微分几何 一、判断题 1、两个向量函数之和的极限等于极限的和(√) 2、二阶微分方程22A(,)2B(,)B(,)0u v du u v dudv u v dv ++=总表示曲面上两族曲线.(?) 3、若4 ()s t 的微商与()s t 平行(5、等距变换一定是保角变换678910、曲线上的正常点的切向量是存在的(1112131415二、16、曲面上的一个坐标网,其中一族是测地线 17、螺旋线x=2cost,y=2sint,z=2t,在点(1,0,0)的法平面是___y+z=0,. 18.设给出1c 类曲线:)(t r r =,.b t a ≤≤则其弧长可表示为?'b a dt t r )( 19、已知33{cos ,sin ,cos 2}r x x x =,02x π << ,则α=1 {3cos ,3sin ,4}5 x x --,β={sin ,cos ,0}x x ,

γ=1{4cos ,4sin ,3}5x x --,κ= 625sin 2x ,τ=8 25sin 2x 。 20、曲面的在曲线,如果它上面每一点的切点方向都是渐近方向,则称为渐进曲线。 21、旋转面r ={()cos ,()sin ,()t t t ?θ?θψ},他的坐标网是否为正交的?____是_____(填“是”或“不是”). 22、过点平行于法方向的直线叫做曲面在该点的_____法线_____线. 23.242526.27.28.29第二基本形式为 21236 u -+:du 30同或对称。3132.一个曲面为可展曲面的充分必要条件为此曲面为单参数平面族的包络 三、综合题 33.求曲线t te z t t y t t x ===,cos ,sin 在原点的密切平面,法平面,切线方程。 解:},,cos ,sin {t te t t t t r = 在原点处0=t 在原点处切平面的方程为:

微分几何 陈维桓 习题答案

习题答案2 p. 58 习题3.1 2. 在球面2222{(,,)|1}S x y z x y z =++=上,命(0,0,1)N =,(0,0,1)S =-. 对于赤道平面上的任意一点(,,0)p u v =,可以作为一的一条直线经过,N p 两点,它与球面有唯一的交点,记为p '. (1) 证明:点p '的坐标是 2 221u x u v =++,2221 v y u v =++,222211u v z u v +-=++, 并且它给出了球面上去掉北极N 的剩余部分的正则参数表示; (2) 求球面上去掉南极S 的剩余部分的类似的正则参数表示; (3) 求上面两种正则参数表示在公共部分的参数变换; (4) 证明球面是可定向曲面. 证明. (1) 设(,)r u v Op '=v . 如图,,,N p p '三点共线,故有t ∈R 使得 (1)Op tOp t ON '=+-u u u v u u v u u u v . (1) 由于21Op ON =='u u u v u u u v ,222 u v Op =+u u v ,0Op ON '?=u u u v u u u v ,0t ≠,取上式两边的模长平方, 得222/(1)t u v =++. 从而 22222221 (,,)(,,0)(0,0,1)11u v x y z Op u v u v u v +-'==+++++u u u v 22222222 221,,111u v u v u v u v u v ??+-= ?++++++?? ,2 (,)u v ∈R . (2) 由(1)可知 (,,1)(0,0,1)(,,1)r Op tNp ON t u v tu tv t '==+=-+=-u u u v u u u v u u u v v , 又2()dt t udu vdv =-+,所以 2(,,1)(1,0,0)u r t u u v t =--+v ,2(,,1)(0,1,0)v r t v u v t =--+v ,

微分几何期终试题

《微分几何》 期终考试题(A) 班级:____ 学号:______ 姓名:_______ 成绩:_____ 一、 填空题(每空1分, 共20分) 1. 半径为R 的球面的高斯曲率为 ;平面的平均曲率为 . 2. 若的曲率为,挠率为)(t r )(t k )(t τ,则关于原点的对称曲线的曲率为 )(t r ;挠率为 . 3. 法曲率的最大值和最小值正好是曲面的 曲率, 使法曲率达到最大值和最小值的方向是曲面的 方向. 4. 距离单位球面球心距离为)10(<

二、 单项选择题(每题2分,共20分) 1. 等距等价的两曲面上,对应曲线在对应点具有相同的 【 】 A. 曲率 B. 挠率 C. 法曲率 D. 测地曲率 2. 下面各对曲面中,能建立局部等距对应的是 【 】 A. 球面与柱面 B. 柱面与平面 C. 平面与伪球面 D. 伪球面与可展曲面 3. 过空间曲线C 上点P (非逗留点)的切线和P 点的邻近点Q 的平面π,当Q 沿曲线趋于点C P 时,平面π的极限位置称为曲线C 在P 点的 【 】 A. 法平面 B. 密切平面 C. 从切平面 D. 不存在 4. 曲率和挠率均为非零常数的曲线是 【 】 A. 直线 B. 圆 C. 圆柱螺线 D. 平面曲线 5. 下列关于测地线,不正确的说法是 【 】 A. 测地线一定是连接其上两点的最短曲线 B. 测地线具有等距不变性 C. 通过曲面上一点,且具有相同切线的一切曲线中,测地线的曲率最小 D. 平面上测地线必是直线 6. 设曲面的第一、第二基本型分别是,则曲面的两个主曲率分别是 【 】 2222,Ndv Ldu II Gdv Edu I +=+= A.G N k E L k ==21, B. N G k L E k ==21, C. v E G k k ???==ln 21 21 D. u G E k k ??==ln 2121 7. 曲面上曲线的曲率,测地曲率,法曲率之间的关系是 【 】 k g k n k

最新微分几何答案

微分几何答案

第二章曲面论 §1曲面的概念 1.求正螺面={ u ,u , bv }的坐标曲线. 解 u-曲线为={u ,u ,bv }={0,0,bv}+u {,,0},为曲线的直母线;v-曲线为={,,bv }为圆柱螺线. 2.证明双曲抛物面={a(u+v), b(u-v),2uv}的坐标曲线就是它的直母线。 证 u-曲线为={ a(u+), b(u-),2u}={ a, b,0}+ u{a,b,2}表示过点{ a, b,0}以{a,b,2}为方向向量的直线; v-曲线为={a(+v), b(-v),2v}={a, b,0}+v{a,-b,2}表示过点(a, b,0)以{a,-b,2}为方向向量的直线。 3.求球面=上任意点的切平面和法线方程。 解 = ,= 任意点的切平面方程为 即 xcoscos + ycossin + zsin - a = 0 ; 法线方程为。 4.求椭圆柱面在任意点的切平面方程,并证明沿每一条直母线,此曲面只有一个切平面。 解椭圆柱面的参数方程为x = cos, y = asin, z = t , , 。所以切平面方程为: ,即x bcos + y asin - a b = 0 此方程与t无关,对于的每一确定的值,确定唯一一个切平面,而的每一数值对应一条直母线,说明沿每一条直母线,此曲面只有一个切平面。 5.证明曲面的切平面和三个坐标平面所构成的四面体的体积是常数。 证,。切平面方程为:。 与三坐标轴的交点分别为(3u,0,0),(0,3v,0),(0,0,)。于是,四面体的体积为: 是常数。 §2曲面的第一基本形式 1.求双曲抛物面={a(u+v), b(u-v),2uv}的第一基本形式. 解 , ∴ I = 2。 2.求正螺面={ u ,u , bv }的第一基本形式,并证明坐标曲线互相垂直。 解,,,,∴I =,∵F=0,∴坐标曲线互相垂直。 3.在第一基本形式为I =的曲面上,求方程为u = v的曲线的弧长。

微分几何第四版习题答案梅向明

微分几何第四版习题答 案梅向明 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

§1曲面的概念 1.求正螺面r ={ u v cos ,u v sin , bv }的坐标曲线. 解 u-曲线为r ={u 0cos v ,u 0sin v ,bv 0 }={0,0,bv 0}+u {0cos v ,0sin v ,0},为曲线的直母线;v-曲线为r ={0u v cos ,0u v sin ,bv }为圆柱螺线. 2.证明双曲抛物面r ={a (u+v ), b (u-v ),2uv }的坐标曲线就是它的直母线。 证 u-曲线为r ={ a (u+0v ), b (u-0v ),2u 0v }={ a 0v , b 0v ,0}+ u{a,b,20v }表示过点{ a 0v , b 0v ,0}以{a,b,20v }为方向向量的直线; v-曲线为r ={a (0u +v ), b (0u -v ),20u v }={a 0u , b 0u ,0}+v{a,-b,20u }表示过点(a 0u , b 0u ,0)以{a,-b,20u }为方向向量的直线。 3.求球面r =}sin ,sin cos ,sin cos {?????a a a 上任意点的切平面和法线方程。 解 ?r =}cos ,sin sin ,cos sin {?????a a a -- ,?r =}0,cos cos ,sin cos {????a a - 任意点的切平面方程为00 cos cos sin cos cos sin sin cos sin sin sin cos cos cos =------? ?? ????? ??????a a a a a a z a y a x 即 xcos ?cos ? + ycos ?sin ? + zsin ? - a = 0 ; 法线方程为 ? ? ????????sin sin sin cos sin cos cos cos cos cos a z a y a x -=-=- 。 4.求椭圆柱面22 221x y a b +=在任意点的切平面方程,并证明沿每一条直母线,此曲面只有一个 切平面 。 解 椭圆柱面22 221x y a b +=的参数方程为x = cos ?, y = asin ?, z = t , }0,cos ,sin {??θb a r -= , }1,0,0{=t r 。所以切平面方程为: 01 0cos sin sin cos =----????b a t z b y a x ,即x bcos ? + y asin ? - a b = 0

(整理)《微分几何》陈维桓第六章习题及答案.

§ 6.1 测地曲率 1. 证明:旋转面上纬线的测地曲率是常数。 证明: 设旋转面方程为{()cos ,()sin ,()} r f v u f v u g v =, 22222 ()()(()())()f v du f v g v dv ''I =++, 222(),()() E f v G f v g v ''==+ 纬线即u —曲线:0 v v =(常数), 其测地曲率为2 u g k == =为常数。 2、 证明:在球面S (cos cos ,cos sin ,sin )r a u v a u v a u =, ,0222 u v ππ π- <<<< 上,曲线 C 的测地曲率可表示成 ()()sin(())g d s dv s k u s ds ds θ=- , 其中((),())u s v s 是球面S 上曲线C 的参数方程, s 是曲线C 的弧长参数, ()s θ是曲线C 与球面上经线(即u -曲

线)之间的夹角。 证明 易求出2 E a =, 0 F =,2 2 cos G a u =, 因此 g d k ds θθθ= 221ln(cos )sin 2d a u ds a u θθ?=+? sin sin cos d u ds a u θθ= -, 而1sin cos dv ds a u θθ ==, 故 sin g d dv k u ds ds θ= -。 3、证明:在曲面S 的一般参数系(,)u v 下,曲线:(),()C u u s v v s ==的测地曲率是 ()()()()()())g k Bu s Av s u s v s v s u s ''''''''=-+-, 其中s 是曲线C 的弧长参数,2 g EG F =-, 并且 12 112 11 12 22 (())2()()(())A u s u s v s v s ''''=Γ+Γ+Γ, 2222 2111222(())2()()(())B u s u s v s v s ''''=Γ+Γ+Γ 特别是,参数曲线的测地曲率分别为 2 3 11(())u g k u s ',1322(()) v g k v s '= 。 证明 设曲面S 参数方程为12(,)r r u u =,1122:(),()C u u s u u s ==

选课指南(2015级)

复旦大学数学学院 学生选课指南 (自2015年新生开始) Version 1:2015/7/3 选课是大学和中学最大的不同之一,学生在大学学习阶段需要在一定的范围内自己决定学什么课程,这对习惯中小学按学校安排课程学习的学生来说经常会面临选择困境。从2015年开始,数学学院对教学方案作了较大的调整,主要是增加了学生选课的自由度和灵活度,这自然增加了学生选课的难度,因此学院组织撰写选课指南帮助学生选课,请每个学生在选课之前仔细阅读。 大学数学课程的内容和难度都是中学数学不能比拟的,而且这个内容和难度随着年级的增加以很大的加速度增加,所以除了上课时间外,学生平均需要付出两三倍于上课的时间进一步学习巩固,留有足够多的思考时间对学好数学是非常重要的,不投入相当的时间精力是不可能学好任何一门数学课程的,肤浅地学一门数学是没有什么意义的。所以我们建议学生一个学期选的数学专业的课程应该在每周15个课时左右(注意是课时,不是学分,课时通常是大于等于学分的),不应超过18个课时。 A.数学学院毕业学分要求:共143学分

1. 通识课程:40学分。 2. 大类基础课:18 学分 数学分析AI,数学分析AII,大学物理B(上), 大学物理B (下)。 ** 学生也可以选大学物理A系列8个学分。 3. 专业必修课: 28学分 课程: 24学分. 数学分析III,高等代数I, 高等代数II,解析几何,抽象代数I,拓扑I(内容包括欧氏空间拓扑). ** 对于转专业学生,高等数学A(上、下)再加数学分析原理可以代替数学分析AI,AII,III. 毕业论文: 4学分. 按A,B,C,D方式给成绩, 申请A类成绩的学生需教师推荐, 递交论文并答辩. 4. 限定必修课:27学分 从下面12门课程中选9门(27个学分), 超过9门可以算成专业选修课: 常微分方程, 复变函数, 实变函数, 泛函分析, 概率论, 拓扑II, 微分几何, 基础力学, 数理方程, 抽象代数II, 数学模型,微分方程数值解. 5. 专业选修课: 15 学分, 从培养方案所列选修课程中选(信息与计算专业有课程要求), 通常是5门课程. 包括限定必修课中的课程. 6. 任意选修课: 15学分, 可选全校任意课程(包括数学学院专业选修课程). B.学生选课指导: 数学学院的学生需要修的数学课总数大约是:4门大类课程+6门专业必修+9门

微分几何习题及答案解析

第一章 曲线论 §2 向量函数 5. 向量函数)(t r 具有固定方向的充要条件是)(t r × )('t r = 0 。 分析:一个向量函数)(t r 一般可以写成)(t r =)(t λ)(t e 的形式,其中)(t e 为单位向 量函数,)(t λ为数量函数,那么)(t r 具有固定方向的充要条件是)(t e 具有固定方向,即)(t e 为常向量,(因为)(t e 的长度固定)。 证 对于向量函数)(t r ,设)(t e 为其单位向量,则)(t r =)(t λ)(t e ,若)(t r 具有固 定方向,则)(t e 为常向量,那么)('t r =)('t λe ,所以 r ×'r =λ'λ(e ×e )=0 。 反之,若r ×'r =0 ,对)(t r =)(t λ)(t e 求微商得'r ='λe +λ'e ,于是r × 'r =2 λ(e ×'e )=0 ,则有 λ = 0 或e ×'e =0 。当)(t λ= 0时,)(t r =0 可与任意 方向平行;当λ≠0时,有e ×'e =0 ,而(e ×'e 2)=22'e e -(e ·'e 2)=2'e ,(因 为e 具有固定长, e ·'e = 0) ,所以 'e =0 ,即e 为常向量。所以,)(t r 具有固 定方向。 6.向量函数)(t r 平行于固定平面的充要条件是(r 'r ''r )=0 。 分析:向量函数)(t r 平行于固定平面的充要条件是存在一个定向向量)(t n ,使)(t r ·n = 0 ,所以我们要寻求这个向量n 及n 与'r ,''r 的关系。 证 若)(t r 平行于一固定平面π,设n 是平面π的一个单位法向量,则n 为常向 量,且)(t r ·n = 0 。两次求微商得'r ·n = 0 ,''r ·n = 0 ,即向量r ,'r ,' 'r 垂直于同一非零向量n ,因而共面,即(r 'r ''r )=0 。 反之, 若(r 'r ''r )=0,则有r ×'r =0 或r ×'r ≠0 。若r ×'r =0 ,由上题知 )(t r 具有固定方向,自然平行于一固定平面,若r ×' r ≠ ,则存在数量函数)(t λ、

相关文档
相关文档 最新文档