文档库 最新最全的文档下载
当前位置:文档库 › 微生物酶法生产D-泛酸和D-泛醇项目

微生物酶法生产D-泛酸和D-泛醇项目

微生物酶法生产D-泛酸和D-泛醇项目
微生物酶法生产D-泛酸和D-泛醇项目

微生物限度检查方法及其验证报告(修改)

文件编号:73021微生物限度检查方法及其验证报告

目录1 样品相关信息 1.1 基本信息 2 主要仪器设备和试验耗材信息 2.1 主要使用的仪器设备 2.2 试验用培养基 2.3 试验用试剂 2.4 试验用菌种 3 试验环境 3.1 无菌室 3.2 洁净工作台 3.3 生物安全柜 4 试验方案 4.1 验证试验目的 4.2 微生物限度检查方法草案 5 方法验证试验 5.1 菌液制备 5.2 计数培养基适用性检查 5.3 控制菌检查用培养基使用性检查 5.4 供试液制备 5.5 方法验证 5.5.1 菌落计数方法验证试验 5.5.2 控制菌检查方法的验证 5.6 方法验证结论 6 供试品微生物限度检查结果

1 样品相关信息 1.1 基本信息(三批) 2 主要仪器设备和试验耗材信息2.1 主要使用的仪器设备 2.2 试验用培养基 2.2.1 对照培养基

2.2.2 试验用培养基 2.3 试验用试剂 2.4 试验用菌种

3 试验环境 《中国药典》2015版规定,微生物限度检查应在环境洁净度10000级下的局部洁净度100级的单向流空气区域进行。 本公司微生物限度室、阳性对照室、生物安全柜及超净工作台洁净度检测无特殊情况下每季度进行一次。 3.1 无菌室 无菌室按《医药工业洁净厂房设计规》GB 50457-2008监测,静态洁净度检测结果符合GB50457-2008对10000级洁净度要求。 3.2 超净工作台 超净工作台按《医药工业洁净厂房设计规》GB50457-2008监测,静态洁净度检测结果符合GB50457-2008对100级洁净度要求。 超净工作台沉降菌检测记录 2015.11.15 3.3生物安全柜 生物安全柜按《生物安全实验室建筑技术规》GB50346-2011监测,静态洁净度检测结果符合GB50457-2008对100级洁净度要求。 生物安全柜沉降菌监测记录 2015.11.15 4 试验方案 按《中国药典》2015年版第四部:(通则1105)非无菌产品微生物限度检查:微生物计数法、(通则1106)非无菌产品微生物限度检查:控制菌检查法、(通则1107)非无菌药品微生物限度标准及(通则1121)抑菌效力检查法规定,本品微生物限度标准为:1g供试品中,需氧菌总数不得过1000cfu,霉菌和酵母菌总数不得过100cfu,大肠埃希菌不得检出。

地沟油制备生物柴油的技术方法

同时使0号柴油的闪点提高,凝点和冷滤点降低,使储运过程更加安全,低温性能得到改善,有利于在更宽的温度范围内使用,可以满足使用要求。

地沟油酸催化法制备生物柴油是利用地沟油与甲醇或乙醇等低碳醇在酸性催化剂条件下进行酯交换反应,生成相应脂肪酸甲酯或乙酯。姚亚光等以酸作为催化剂,首先对地沟油进行除杂、脱胶、脱色、脱水的预处理,在酸催化条件下利用地沟油制备生物柴油,通过对地沟油与甲醇、乙醇酯化反应进行正交实验,实验确定了酸催化地沟油制备生物柴油的最佳反应条件为:甲醇温度为70 ℃,油醇摩尔比为1∶40,催化剂浓度为7%,反应时间为6小时,级差顺序依次是:油醇摩尔比、反应时间、催化剂浓度、温度;乙醇温度为80 ℃,油醇摩尔比为1∶30,催化剂浓度为5%,反应时间为6小时,级差顺序依次是:油醇摩尔比、温度、催化剂浓度、反应时间。通过该方法制备出性质优良的生物柴油。主要优点有:良好的可燃性(十六烷值)、蒸发性(馏程及馏出温度)、安全性(闪点),黏度和冷凝点温度,对发动机的腐蚀性(酸度和酸值),热值。该实验制备的生物柴油在很多方面具有普通柴油无法比拟的优越特性。 付严等以地沟油为原料,研究了地沟油和甲醇在三段式反应器中固定化脂肪酶上合成生物柴油。对地沟油的酸值、皂化值以及水含量进行了检测。考察了进料流速、溶剂、水含量对反应的影响。在40 ℃,正己烷作溶剂,添加水含量为地沟油质量的20%,每一段反应器中添加的甲醇与地沟油的摩尔比为1∶1时,生物柴油产率为94%。 陈英明等将地沟油通过过滤、脱胶、脱色、脱水等预处理后,与甲醇、正己烷、水等按一定比例通过搅拌器混合均匀,用蠕动泵输送到填充片状固定化酶的反应器顶部,滴入反应器内,恒温循环水浴。将三支反应器串联起来形成一个三级反应系统,每一级反应器进料的油醇摩尔比均为1∶1,每级反应的产物及时去除副产物甘油。将反应产物通过水洗、蒸馏等除去甲醇、水和正己烷,得到粗制生物柴油。以该方法制备的生物柴油,采用GC-2010型气相色谱仪和QP2010型色质联用仪对该生物柴油作定性分析,运用GC-MS方法确定生物柴油中脂肪酸甲酯、游离脂肪酸和甘油酯类的位置,由此确定GC色谱图中各种成分及其含量,并通过面积法和内标法测定生物柴油的转化率和产率,最终得到地沟油酶法制得的生物柴油转化率达到93.53%、产率为77.45%。 李为民等以地沟油为原料制备生物柴油,先通过预酯化把地沟油酸值降低到2±1 mg KOH/g,再进行酯交换制备生物柴油,通过正交试验得到地沟油预酯化反应的最佳条件是:浓硫酸用量为2%、甲醇用量为16%、反应 温度75 ℃、反应时间4 小时;地沟油酯交换反应的最优工艺条件是:甲醇20%、KOH用量1%、反应温度65 ℃、反应时间2 小时,且制备所得的生物柴油达到国家生物柴油标准要求。 张爱华等利用多元醇的预酯化技术对地沟油进行处理,以碱性离子液体1-甲基-3-丁基咪唑氢氧化物为催化剂制备生物柴油。考察了离子液体的用量、醇与油物质的量比、反应温度和反应时间对酯交换反应的影响。结果显示,以地沟油制备生物柴油的工艺条件为:醇与油物质的量比为8∶1、反应温度70 ℃、反应时间110 分钟、催化剂用量为原料油质量的3.0%。在此条件下,脂肪酸甲酯转化率为95.7%。实验考察了甘油加入量、反应温度、反应时间对预酯化反应的影响,同时考察了催化剂用量、醇油摩尔比、反应温度、反应时间对酯交换反应的影响。通过正交试验确定了地沟油预酯化—酯交换反应制备生物柴油的最佳反应条件。陈安等根据地沟油酸值高的特点,采用固酸、固碱两步非均相催化法开发生物柴油。此法避免了均相酸法耐酸设备价格高、反应时间长、酯化率低、有废水等缺点;克服了均相碱催化酯交换反应对高酸值地沟油易皂化、得率低、产生大量废水等弊病;同时,也弥补了两步均相法产生大量废水、影响环境的不足。通过试验确定了该方法的最佳实验条件为:反应时间2.5 小时,醇油摩尔比10∶1,固碱催化剂为油重的2.0%,助溶剂四氢呋喃为3%,反应温度71 ℃。此时酯化率在96%以上。 超临界酯交换反应即无催化的酯交换反应。当甲醇 地沟油超临界法生产生物柴油

生物柴油生产工艺

生物柴油的制备方法主要有 4 种: 直接混合法( 或稀释法) 、微乳化法、高温热裂解法和酯交换法。前两种方法属于物理方法, 虽简单易行, 能降低动植物油的黏度, 但十六烷值不高, 燃烧中积炭及润滑油污染等问题难以解决。高温裂解法过程简单,没有污染物产生, 缺点是在高温下进行, 需催化剂,裂解设备昂贵, 反应程度难控制, 且高温裂解法主要产品是生物汽油, 生物柴油产量不高。酯交换法又分为碱催化酯交换法、酸催化酯交换法、生物酶催化酯交换法和超临界酯交换法。酯交换法是目前研究最多并已工业化生产的方法但生物酶催化酯交换法目前存在着甲酯转化率不高, 仅有40%~60%, 短链醇( 甲醇、乙醇) 对脂肪酶毒性较大,酶寿命缩短; 生成的甘油对酯交换反应产生副作用,短期内要实现生物酶法生产生物柴油, 还是比较困难。超临界酯交换法由于设备成本较高, 反应压力、温度也高, 一程度上影响了该技术的工业化, 目前主要处于试验室研究阶段。 1 生物柴油生产工艺 目前, 国内采用的原料主要有地沟油、酸化油、混合脂肪酸、废弃的植物和动物油等, 根据不同的原料应采用不同的工艺组合来 生产生物柴油。因目前国内企业的日处理量不是很大( 大多为5~50t /d 不等) , 酯交换( 酯化) 工序一般采用反应釜间歇式的; 分离、水洗工序有采用罐组间歇式的, 也有采离心机进行连续分离、水洗的。 1 地沟油制取生物柴油 地沟油水分大、杂质含量多, 酸值较高, 酸值一般在20(KOH)

/(mg/g) 油左右。由地沟油制得的生物柴油颜色较深, 一般需经过脱色或蒸馏工序、添加剂调配工序处理。 碱法催化制备生物柴油工艺流程 氢氧化钠→甲醇粗甘油→脱溶→精制→甘油 ↓↑ 地沟油→过滤→干燥→酯交换→分离→脱溶→水洗→干燥→生物柴油 2酸化油制取生物柴油 酸化油的机械杂质含量较大( 如细白土颗粒) , 酸值一般在80~160(KOH) /(mg/g) 油间, 国内有一步酸催化法和先酸催化后碱催化两步法来制备生物柴油。因酸化油中含有一定量的悬浮细白土颗粒及胶杂, 在反应过程易被硫酸炭化, 在反应釜底部会有一定量的黑色废渣。在酯化反应过程国内有采用均相反应的, 也有采用非均相反应的, 各有利弊。均相反应( 反应体系温度60~65℃) 甲醇在体系内分布均匀, 接触面积大, 利于参与反应, 但生成的水没有带走, 阻碍反应进程; 非均相反应( 反应体系温度105~115℃) 甲醇以热蒸汽形式鼓入, 可以带走一部分生成的水, 有利于反应进程, 以及免去反应釜的搅拌装置, 但甲醇气体在油相的停留时间短、接触面积小, 不利于参与反应,需要更多的热能和甲醇循环量。由酸化油制得的生物柴油颜色也较深, 一般需经过脱色或蒸馏工序、添加剂调配工序处理。一步酸催化制备生物柴油工艺流程:

无菌检验室、微生物限度检验室、阳性对照室验证方案

无菌检验室微生物限度检验室 阳性对照检验室黑曲霉对照检验室 验证方案 上善医疗器械 2011年月 目录 1.验证的目的 2.验证小组成员 3.验证小组分工 4.验证依据 5.标准容 6.检验室的自净器和超净台安装确认 7.自净器和超净台的运行确认 8.洁净度的测定 9.验证结果及评价: 10.责任 1.验证的目的 1.1检查并确认检验室的自净器和超净台的安装符合设计要求。 1.2检测并确认检验室的自净器和超净台的运行性能应能达到检验要求及验证标准。 1.3洁净度测试,确认检验室能达到规定的洁净度。

3验证小组分工: 3.1组长:负责审核验证方案是否可行。 3.2副组长:负责组织实施验证、审核测试结果、评价及结论,负责验证报告的会签与批准。 3.3组员:负责无菌检验室、微生物检验室、阳性对照检验室、黑曲霉对照检验室的验证过程;提供监测结果。 3.4组员:负责无菌室正常管理。 4.验证依据: GB—T16294—1996 医药工业洁净室(区)沉降菌的测试方法 YY0033-2000 无菌医疗器具生产管理规 6.检验室的自净器和超净台安装确认 6.1部件安装确认

6.2高效过滤器的检漏测试 采用尘埃粒子计数器对高效过滤器进行检漏测试,采样头离过滤器距离约2cm,沿过滤器出风侧及边框来回扫描。 检漏测试结果记录在自净器和超净台运行确认记录上。 7.自净器和超净台的运行确认 7.1风速测定 采用风速仪贴近高效过滤器出风口测定,一般测定4个点,求出平均风速。 超净台测定8个点,求平均风速。 7.2压差测定 采用微压表测定 7.3温度、相对湿度测定 采用温湿度记录仪测定 7.4结果记录如下:

微生物限度检查记录 版

表:微生物限度检查记录(通用) 三、大肠埃希菌检查 胰酪大豆胨液体培养基(配制批号:)、麦康凯液体培养基(配制批号:)麦康凯琼脂培养基(配制批号:)

微生物限度检查记录 (30~35℃,3~5天) 20℃~25℃,5~7天) 沙氏葡萄糖琼脂培养基(配制批号:) 三、控制菌检查(30-35℃)

表: 胰酪大豆胨液体培养基(配制批号:)、麦康凯液体培养基(配制批号:)麦康凯琼脂培养基(配制批号:) (30℃~35℃) 胰酪大豆胨液体培养基(配制批号:)、RV沙门增菌液体培养基(配制批号:),木糖赖氨酸脱氧胆酸盐琼脂培养基(配制批号:)、三糖铁琼脂(配制批号:) 五、耐胆盐革兰阴性菌检查 胰酪大豆胨液体培养基(配制批号:)、肠道菌增菌液体培养基(配制批号:),紫红胆盐葡萄糖琼脂培养基(配制批号:)

表: (含药材原粉的片剂) 胰酪大豆胨液体培养基(配制批号: )、麦康凯液体培养基(配制批号: )麦康凯琼脂培养基(配制批号: ) (30℃~35℃) 胰酪大豆胨液体培养基(配制批号: )、RV 沙门增菌液体培养基(配制批号: ),木糖赖氨酸脱氧胆酸盐琼脂培养基(配制批号: )、三糖铁琼脂(配制批号: ) 五、耐胆盐革兰阴性菌检查 胰酪大豆胨液体培养基(配制批号: )、肠道菌增菌液体培养基(配制批号: ),紫红胆盐葡萄糖琼脂培养基(配制批号: )

表:微生物限度检查记录(蛇胆川贝液) 三、大肠埃希菌检查 胰酪大豆胨液体培养基(配制批号:)、RV沙门增菌液体培养基(配制批号:),木糖赖氨酸脱氧胆酸盐琼脂培养基(配制批号:)、三糖铁琼脂(配制批号:)

阿托伐他汀酶法生产工艺

阿托伐他汀酶法生产工艺 本生物法制备阿托伐他汀原料药,为目前国内最新工艺,仅有两家运用,一家为生产,另一家处于中试阶段。可直接购买A6或A5开始,国内A6或A5已经规模生产,因此成本较自己再合成成本更低。三种酶在国内苏州汉酶有限公司有商品出售,酶代号为供应商代号,若进行战略合作,则全程技术服务可与之深谈。 ATS-6生产工序 一.配比 ATS-5 146.6kG 苯乙烯212.5L (在冷库存放)温度高会聚合 THF 173+104kg 二异丙胺381kg 乙酸叔丁酯406kg 甲基叔丁基醚170+920+1900kg 金属锂26kg 15%盐酸1900+(150-360)L 碳酸氢钠0.5kg 水450+260 ATS-7酶法工艺 一.配比

1.碳酸钠 50kg 2.纯化水 400+400+20L 3.三乙醇胺 8kg 4.15%盐酸适量 5.硅藻土 40kg 6.活性炭 60kg 7.乙酸乙酯 800+400+400+400L 8.饱和盐水 200+200 9.ATS-6 250-300kg(相对146kgATS-5) 10.酶YK 260*1/催化率*0.8 11.酶YM 260*1/催化率*0.9 12.酶YN 260*1/催化率*0.9 ATS-8制备工艺 一.配比 1.ATS-7 一整批(240-280) 2.甲苯 330+460+900L 3.丙烷 260kg 4.甲基磺酸 1.35-2.7L 5.碳酸氢钠 3.3kg 6.水 320+400+400 7.己烷 750L

ATS-8一精 一.配比 1.ATS-8粗品 4批约620-880kg 2.己烷 1400-1500L 3.乙醇 -1 160kg(套用母液加40-80kg) 4.活性炭 9kg 5.己烷乙醇混合液 20L(3:1) ATS-8二精 一.配比 1.AT S-8一精物一整批约600kg 2.己烷-1 1000-1100L 3.乙醇-1 60-120kg 4.乙醇-2 20kg 5.己烷-2 20L 套用母液总收率可以达到100%,按以上投料量月正常生产可以产出9t成品;二异丙胺,乙酸叔丁酯,甲基叔丁基醚可以上塔回收,乙酸乙酯,甲苯,己烷可以套用。 卢红生 2014年3月2日

微生物限度检查室沉降菌检查标准操作程序

微生物限度检查室沉降菌检查标准操作程序 一、目的:为规定微生物限度检查室沉降菌测试方法和要求,特制定本操作规程。 二、适用范围:适用于公司微生物限度检查室沉降菌测试。 三、责任者:质量监督员、质量检验人员。 四、正文: 2 仪器和设备: a、高压消毒锅 b、恒温培养箱 c、培养皿(φ90mm×15mm) d、培养基(营养琼脂培养基) 3 测试方法: 3.1 将已制备好的培养皿按要求放置,打开培养皿盖,使培养基表面暴露 0.5h,再将培养皿盖盖上后倒置。 3.2 全部采样结束后,将培养皿倒置于恒温培养箱中 30~35℃培养 48h。 3.3 每批培养基可选定 3 只培养皿作对照试验,检验培养基本身是否污 染。 3.4 用肉眼直接计数,标记或在菌落计数器上点计,然后用 5~10 放大镜 检查,有否遗漏,若培养皿上有 2 个或 2 个以上的菌落重叠,可分 辨时,仍以 2 个或 2 个以上菌落计数。 3.5 注意事项: 3.5.1 测试用具要作灭菌处理,以确保测试的可靠性、正确性。 3.5.2 采取一切措施防止人为对样品的污染。 3.5.3 对培养基培养条件及其他参数作详细的记录。 3.5.4 采样前应仔细检查每个培养皿的质量,如发现变质、破损或污染的 应剔除。 4测试规则: 4.1 测试状态: 4.1.1 沉降菌测试前,微生物限度检查室的温湿度须达到规定的要求;换

气次数,空气流速必须控制在规定值内。 4.1.2 测试前,微生物限度检查室应已经消毒过。 4.1.3 测试状态为静态测试,并在报告中注明测试状态。 4.2 测试人员: 4.2.1 测试人员必须穿戴符合洁净室级别的工作服。 4.2.2 静态测试时,室内测试人员不得多于二人。 4.3 测试时间:对单向流,如 100 级净化工作台,测试应在净化空调系 统正常运行不少于10min 后开始。 采样点布置见“质检微生物限度检查室悬浮粒子测试操作规程”。 4.4.1 采样点的布置: 采样点的位置可以同悬浮粒子测试点。 4.4.1.1 工作区采样点的位置离地 0.8m~1.5m 左右(略高于工作面)。 4.4.1.2 可在关键设备或关键工作活动范围处增加采样点。 4.5 记录: 测试报告中应记录房间温度、相对湿度及测试状态。 4.6 结果计算: 4.6.1 用计算方法得出各个培养皿的菌落数。 4.6.2 平均菌落数的计算 平均菌落数M= M1+M2+ +Mn N 式中:M:平均菌落数; M1:1 号培养皿菌落数; M2:2 号培养皿菌落数; Mn:n 号培养皿菌落数; N:培养皿总数 5 结果评定: 用平均菌落数判断微生物限度检查空气中的微生物。 5.1 微生物限度检查室内的菌落数必须低于所选定的评定标准。 5.2 若某区域的平均菌落数超过评定标准,则必须对此区域进行消毒,然后采样两次,测试结果均须合格。

制药企业微生物限度控制菌检查培养基适用性检查记录表式样

控制菌检查培养基适用性检查记录 一、菌液制备(需要的菌种在□内划“√”): □(1)大肠埃希菌新鲜肉汤培养物1ml ,9ml0.9%无菌NaCl溶液,10倍递增稀释; □(2)金黄色葡萄球菌新鲜肉汤培养物1ml,9ml0.9%无菌NaCl溶液,10倍递增稀释; □(3)乙型副伤寒沙门菌新鲜肉汤培养物1ml,9ml0.9%无菌NaCl溶液,10倍递增稀释; □(4)铜绿假单胞菌新鲜肉汤培养物1ml,9ml0.9%无菌NaCl溶液,10倍递增稀释; □(5)生孢梭菌新鲜硫乙醇酸盐流体培养物1ml,9ml0.9%无菌NaCl溶液,10倍递增稀释; 二、每ml菌液含菌量的计数测定。 测定方法:取稀释后的菌液1ml(剩余的菌液冷藏保存),置直径90mm的无菌平皿中,注入15-20ml已经过适用性检查确正的温度不超过45℃的溶化的营养琼脂培养基(细菌类别计数选用该培养基)或玫瑰红钠琼脂培养基(霉菌、酵母菌类别计数选用该培养基),混匀,凝固,倒置培养。每稀释级每种培养基至少制备2个平板。细菌类别培养温度为30℃~35℃;霉菌、酵母菌类别培养温度为23℃~28℃。细菌类别培养3天,霉菌、酵母菌类别培养5天。 三、检查结果:需做的检查在□内划“√”。 □ 1. 增菌培养基促生长能力检查

分别接种不大于100cfu的试验菌于被检培养基和对照培养基中,在相应控制菌检查规定的培养温度及最短培养时间下培养。与对照培养基管比较,被检培养基管试验菌。 检验标准:与对照培养基管比较,被检培养基管试验菌应生长良好。 结论: □ 2. 固体培养基促生长能力检查 检验标准:被检培养基的菌落数与对照培养基菌落数相比大于70%,且菌落形态大小应与对照培养基上的菌落一致。判该培养基的适用性检查符合规定。 结论: □ 3. 培养基抑制能力检查 分别接种试验菌于被检培养基中,在相应控制菌检查规定的培养温度和时间下培养,试验菌。 检验标准:试验菌应不得生长。 结论: □ 4. 培养基指示能力检查 分别接种少量试验菌于被检培养基和对照培养基中,在相应控制菌检查规定的培养温度和时间下培养。被检培养基中试验菌生长的菌落形态、大小、指示剂反应情况等。 检验标准:被检培养基中试验菌生长的菌落形态、大小、指示剂反应情况等应与对照培养基一致。 结论: 结论: 检验人:复核人:

化学法生产生物柴油与生物法生产生物柴油有何优缺点

化学法生产生物柴油与生物法生产生物柴油有何优缺点 随着石油日益枯竭和人们对环境的重视, 迫切需要寻找一种对环保的新的可再生能源以解决能源及环境问题, 在此背景下产生了生物柴油。生物柴油是指以动植物油脂等可再生的生物资源生产的可用于压燃式发动机的清洁替代燃油, 它是由一系列长链脂肪酸甲酯组成。到目前为止, 已有多种生产生物柴油的方法, 包括高温裂解法、酯交换法等化学法和用固定化酶法,全细胞催化剂法等生物技术法 1化学法生产生物柴油 化学法包括热烈解法、酯交换法等。 1.1 热裂解法 植物油热烈解是对植物油进行热裂解反应Schwab 和Pioch 分别在这一方面进行了探索,所得生物柴油的性能与普通柴油相接近。 1.2 酯交换法 酯交换法是目前生产生物柴油的主要方法。目前, 生物柴油主要是用化学法生产, 即用动物和植物油脂和甲醇或乙醇等低碳醇在酸或者碱性催化剂和高温( 230~ 250 ℃ ) 下进行转酯化反应, 生成相应的脂肪酸甲酯或乙酯, 再经洗涤干燥即得生物柴油。甲醇或乙醇在生产过程中可循环使用, 生产设备与一般制油设备相同, 生产过程中可产生10 % 左右的副产品甘油。目前生物柴油的主要问题是成本高, 据统计生物柴油制备成本的75 %是原料成本。因此, 用廉价原料及提高转化率从而降低成本是生物柴油能否实用化的关键。美国已开始通过基因工程方法研究高油含量的植物。日本采用工业废油和废煎炸油。欧州是在不适合种植粮食的土地上种植富油脂的农作物。但化学法合成生物柴油有以下缺点: 工艺复杂、醇必须过量, 后续工艺必须有相应的醇回收装置, 能耗高, 色泽深, 由于脂肪中不饱和脂肪酸在 高温下容易变质, 酯化产物难于回收, 成本高,生成过程有废碱液排放。 2生物法生产生物柴油 2.1 固定化脂肪酶 脂肪酶在水溶液中不稳定, 易失活, 因此常用固定化脂肪酶。将酶固定在合适的载体上, 催化结束后便能很容易地从反应混合物中分离出来, 简化了下游工艺。另外, 载体的支撑使酶稳定性及最佳温度提高, 增大了转化率, 缩短了反应时间。酶的高稳定性还能降低失活率, 使酶能被重复利用。。Du 等报道了载体的另一有利影响, 载体材料能影响酰基对酶的有效性, 如1, 3-氯代脂肪酶理论上转化率只能达到66% , 但在基质上却转化了90% 以上。固定化技 术可分为吸附、截留、封装和交叉链接。最常用的是基于范德华力或其他弱作用力的表面吸附技术, 此法简单, 成本低, 不含有毒化学物质,酶活性易保持且在酯交换后还能恢复。用于吸附脂肪酶的载体材料中丙烯酸树脂是最常用的,另外还有大孔树脂、硅胶、硅藻土等, 甚至还有纺织薄膜。用吸附法时所有植物油的转化率普遍高于90%。 酶的交叉链接是固定化的合适方法。通过多功能化学物质的反应可实现分子间的交叉链接, 如戊二醛、环己烷二异氰酸盐与酶分子,总量较小,但稳定性提高。Kumari 等报道了P-洋葱假单胞菌的交叉链接在紫藤木印迪卡油与乙醇酯交换上的应用, 收率为92%。交叉链接脂肪酶形成粒度只有10 um 的无基质聚合物,在非均匀反应系统中使用会加大产物分离的难度。将不同的固定化方法结合起来, 能够克服只使用一种方法带来的问题。Yadav 等将C-南极脂肪酶吸收进六角中孔二氧化硅中, 用海藻酸钙密封, 对氯苯甲醇和乙烯基乙酸盐进 行酯交换反应[。这种固定化杂化酶系统的转化率为68%, 活性消耗仅为4%, 且有极好的可重复利用性。该系统结合了蛋白质载体吸收及密封技术的优点, 因为它提供了稳定的类似笼子的保持架, 有助于酶限制和酶溶滤作用。 2.2 全细胞催化剂 酶催化的酯交换反应, 尤其当使用固定化脂肪酶时耗能少, 利于甘油的分离和生物催

酶法合成阿莫西林原理

酶法合成阿莫西林介绍 β-内酰胺抗生素经过多年的发展,己成为抗生素中的最主要类型之一。由于具有良好的抗菌效力,较低的毒副作用,在临床上广泛应用,其发展非常迅速。现全世界耗用量已过万吨,预计今后还会增长。其中,青霉素和头孢菌素为最重要的两大类β-内酰胺抗生素。酶法合成技术始于20世纪60年代末70年代初,经过30多年的发展,现在酶缩合反应技术、产品分离以及固定化酶技术等方面取得很大的发展,配套技术日益完善,具备了大规模工业化生产的条件。全球著名的β-内酰胺抗生素生产厂家如荷兰DSM公司已有酶法合成的商品头孢氨苄、阿莫西林等产品面世。由于酶法应用于β-内酰胺抗生素合成,不仅可减少反应步骤,而且还可减少废弃物的产生,有利于保护环境,降低生产成本,产品质量优异,所含杂质极少。因此,21世纪β-内酰胺抗生素的酶法合成将是发展的必然趋势。我国酶法合成研究起步并不晚,但至今仍未形成大规模工业化生产,与国外先进厂家差距较大。随着我国经济快速发展,人们对自身居住环境的要求,政府对环保的重视,政府和越来越多的企业加大“绿色化学制药”的研究开发,特别是加快工业化生产的推进进程。 酶法产品主要有三大特点: 一是产品含量稳定、变化小,可降低制剂在有效期内的检测风险,并且杂质低,降解速度慢,对制剂的安全性,尤其是特殊制剂的稳定性尤为重要。 二是酶法产品生产批量能够达到化学法产品的2~3倍,这既能够大幅度节省制剂生产商的检验成本,粗略估算原料检测成本能够节约人民币9元/kg;同时,也便于物流、仓储和生产管理。 三是酶法产品是通过生物酶一步到位生产而得,以纯净水为介质,不使用传统化学工艺中的特殊化工原料,有机溶剂的使用量大幅度减少90%,废水排放减少80%,品质更纯净。 1 青霉素酰化酶的发展 青霉素酰化酶是从微生物或其代谢产物中发现的一类具有特定活性的蛋白质。能够产生青霉素酰化酶的微生物广泛分布于细菌、放线菌、真菌和酵母中,如:醋酸杆菌、假单胞菌、粪产碱菌、黄单胞菌、产气单胞菌、大肠杆菌、芽孢杆菌、枝状杆菌、克氏梭菌( Kluyvera) 等,其中常用的有巴氏醋酸杆菌、粪产碱

生物柴油生产工艺

学院:化学与环境保护学院专业:化学工程与工艺 姓名:朱慧芳 学号:201031204011

新型藻类制生物柴油生产工艺 摘要:我国石油资源紧缺,研究开发生物柴油是当务之急。结合我国情况介绍了几种可用于生产生物柴油的原料,并针对不同的原料,提出了几种可供使用的生产工艺。用泔水油、地沟油和油厂下脚料等原料生产生物柴油工艺成熟、经济合算, 值得推广。为适应我国生物柴油的研究与生产,建议加快制定我国生物柴油的相关标准。 关键词:生物柴油;酯化;醇解;酯交换;脂肪酸;脂肪酸甲酯 一生物柴油概述 生物柴油 (Biodiesel),又称脂肪酸甲酯 (Fatty Acid Ester)是以植物果实、种子、植物导管乳汁或动物脂肪油、废弃的食用油等作原料,与醇类 (甲醇、乙醇) 经交酯化反应 (Transesterification reaction) 获得。生物柴油这一概念最早由德国工程师Dr. Rudolf Diesel (1858-1913) 于1895年提出,是指利用各类动植物油脂为原料,与甲醇或乙醇等醇类物质经过交脂化反应改性,使其最终变成可供内燃机使用的一种燃料。在1900年巴黎博览会上Dr.Rudolf Diesel展示了使用花生油作燃料的发动机。生物柴油具有一些明显优势,其含硫量低,可减少约30%的二氧化硫和硫化物的排放;生物柴油具有较好的润滑性能,可以降低喷油泵、发动机缸体和连杆的磨损,延长其使

用寿命;生物柴油具有良好的燃料性能,而且在运输、储存、使用等方面的安全性均好于普通柴油。此外生物柴油是一种可再生能源,也是一种降解性较高的能源。 二生产生物柴油背景技术市场分析 1生物柴油原料 由于各国的资源差异,生物柴油的原料差异较大,欧盟主要是菜籽油为主,美国主要是以大豆油为主。我国主要生物柴油主要以废弃油脂以及木本原料为主,并在价格合适的情况下考虑进口棕榈油。 2 生物柴油的优缺点 (1)生物柴油优势 与常规柴油相比,生物柴油下述具有无法比拟的性能。 1) 具有优良的环保特性。主要表现在由于生物柴油中硫含量低,使得二氧化硫和硫化物的排放低,可减少约30%(有催化剂时为70%);生物柴油中不含对环境会造成污染的芳香族烷烃,因而废气对人体损害低于柴油。检测表明,与普通柴油相比,使用生物柴油可降低90%的空气毒性,降低94%的患碍率;由于生物柴油含氧量高,使其燃烧时排烟少,一氧化碳的排放与柴油相比减少约10%(有催化剂时为95%);生物柴油的生物降解性高。 2) 具有较好的低温发动机启动性能。无添加剂冷滤点达-20℃。 3) 具有较好的润滑性能。使喷油泵、发动机缸体和连杆的磨损率低,使用寿命长。 4) 具有较好的安全性能。由于闪点高,生物柴油不属于危险品。因

无菌检查室微生物限度检查室的管理规定

【最新资料,WORD文档,可编辑】

1. 明确无菌检查室、微生物限度检查室的要求和规定,确保检验结果的准确性。 2.范围: 适用于本厂质监科无菌检查室、微生物限度检查室的操作。 3.责任: 质监科化验室有关人员。 4.内容:

4.1本厂无菌检查室为1万级、局部(净化操作台)100级的洁净室;微生物限度检查室为1 万级的洁净室。 4.2室内严禁放置杂物,无关人员严禁入内。 4.3室内应保持整洁,定期用甲醛熏蒸消毒(每月一次);使用前用0.1%新洁尔灭溶液擦拭消 毒净化工作台。 4.4在操作前,对菌检室、缓冲间及净化工作台进行紫外线消毒30分钟,并打 开净化工作台的层流净化装置。操作完毕及时清理,擦净台面,再开紫外灯 照射30分钟。 4.5化验员进入无菌室,必须按规定程序进行更衣、戴帽、换鞋等;操作前用0.1%新洁尔灭或 75%酒精进行手消毒。 4.6吸取菌液时,切勿直接用口接触吸管。吸完菌液的吸管放入5%石炭酸消毒液中。 4.7接种针在每次使用前后,必须通过火焰烧红灭菌,冷却后方可接种培养物。 4.8所有带菌的实验用品,须经有效的消毒灭菌方法处理后,再洗刷,严禁污染下水道。 第2页/共2页 4.9如有菌液污染桌面或地面,应立即用消毒水彻底消毒后,再作处理。

4.10无菌室每月检查杂菌数(在室内打开营养琼脂培养皿30分钟,经37℃培养48小时),10000 级平均菌数不得过3个/皿,100级平均菌落数不得过 1个/皿,如超过应进行清洁消毒。 4.11无菌检查室和微生物限度检查室的清洁卫生均按“1万级洁净区的清洁卫生操作规程”进 行。 欢迎下载阅读!

无菌检查和微生物限度检查操作规范

无菌检查和微生物限度检查操作规范 (中国药品生物制品检定所) 一、无菌室的要求: 无菌室是无菌检查、微生物限度检查的重要设备,面积不小于6平米,高度2.4-2.8m为宜。建筑材料要光洁,不吸潮,无凸起,耐腐蚀,易清洗。无菌室内部应六面光滑,无缝隙,里面连接处应呈凹凸形,不留死角。操作间和缓冲间的门不应直对,缓冲间两个。 无菌室内采光面积要大,照明灯应镶嵌在天花板内,光照应分布均匀,光照度不低于300lux,电源开关应设在室外。 无菌室、缓冲间和操作间均应设置紫外线杀菌灯,每立方米2-2.5瓦,距实验台高度不超过1米,并应定期检查辐射强度,距1米处应不低于70微瓦/平方厘米,无菌室内应安装空气除菌过滤层流装置及调温装置,控制温度18-26℃,相对湿度40%-60%,操作间或净化工作台的洁净空气应保持与相临环境形成正压,不低于4.9帕。操作区洁净度100级,操作间洁净度10000级,洁净度定期检查。 无菌室及缓冲间不得存放其他杂物,如培养箱。 用消毒液清洁无菌室操作台面,开启无菌室紫外灯和层流空气过滤30分钟以上。无菌室的无菌程度,常用的沉降菌测定方法为:取营养肉汤琼脂平板3个,置无菌室的操作区台面左、中、右位置上,开盖暴露30分钟,在30-35℃培养2天后,计算菌落数。用于无菌检查的无菌室或微生物限度检查的无菌室,细菌总数应小于3个,浮游菌每立方米应小于5个,否则,不能用于无菌检查和微生物限度检查。 二、培养基的准备 1、培养基的制备: 配制培养基的蒸馏水或去离子水应符合规定。再称取需气菌、厌气菌培养基、真菌培养基的干燥培养基,加水溶化后,调节PH值,使灭菌后需气菌、厌气菌培养基的PH值为7.0-7.3,真菌培养基的PH值为6.2-6.6,分装、盖塞、灭菌,待用。 2、培养基灵敏度试验: 培养基是无菌试验的基准物质,关系到无菌试验结果的科学、准确、可信度,因此,培养基灵敏度试验是无菌试验的重要组成部分。只有使用灵敏度试验合格的培养基,才能保证无菌试验结果准确、可靠。 培养基灵敏度试验操作如下:取藤黄微球菌、生孢梭菌、白色念珠菌的新鲜培养液,分别10倍递增稀释,制成每ml 含10-100个菌,并作菌落记数。将制备好的菌液分别加至需气菌、厌气菌培养基、真菌培养基各3管。至规定温度培养5天,每株菌接种的培养基不少于2管生长,则改培养基的灵敏度试验合格。 3、培养基用前的检查: (1)无菌检查:各种培养基在规定温度培养3天,应无菌生长。 (2)新鲜程度检查:需气菌、厌气菌培养基氧化层的颜色用前不能超过1/5,否则,不能使用。应煮沸去氧,只限加热一次。 4、培养基的保存时限: 配制好的无菌试验用培养基在2周内用完。 三、菌种复苏和保藏 1、菌种复苏: 先将冻干菌种的封口端用砂轮刻痕,在刻痕处过火焰数次,用无菌湿棉球炸裂后打开,然后,加入0.3-0.4ml稀释液于菌种管底部,将菌种稀释、混匀,并吸出菌液,接种于适宜的培养基。培养时间和温度根据不同的菌种而定。仔细检查菌种的有关特性,如无发现异常,即可传代、使用。 2、药品微生物用的菌种传代方法: 取复苏好的菌种一支,接种于规定的培养基数管,培养后,置冰箱中保藏。取出使用的菌种,经一段时间后即可废弃。 为防止微生物突变,菌种应尽量避免不必要的接种和传代。

固定化酶

1.2 脂肪酶的研究与应用 1.2.1 脂肪酶的研究概况 脂肪酶可以根据其来源分类,分为微生物脂肪酶、动物脂肪酶和植物脂肪酶。脂肪酶可以很容易地从微生物真菌(如南极洲假丝酵母)或细菌(如荧光假单胞菌)中通过发酵过程高产量地生产出来,其过程缺乏基本的净化步骤。一些脂肪酶表现出对底物的位置专一性,而另一些则不然。对不同来源的游离脂肪酶类型的比较研究表明,荧光P.脂肪酶具有最高的酶活性。通常,来自真菌来源的脂肪酶比来自细菌来源的脂肪酶表现出更好的甘油三酯酯交换活性。 作为一种多功能生物催化剂,脂肪酶具有其他酶蛋白无法比拟的优点[15]:1、在有机溶剂中具有良好的稳定性;2、催化过程不需要辅助因子,一般不发生副反应;3、可以催化水解,酯化,酯交换等众多反应[16];4、具有独特的化学选择性、区域选择性及立体选择性;5、底物谱广,可催化非天然底物进行反应。与动植物脂肪酶相比,微生物脂肪酶生产周期短,分离纯化相对简单,并可利用基因工程和蛋白质工程等技术实现酶的改造并构建生产工程菌[17],适合工业化生产与应用。1994年,丹麦Novozymes公司首次应用基因工程菌生产来源于Thermomyces lanuginosus的脂肪酶Lipolase,此后许多来源于微生物的脂肪酶也实现了商业化生产[18]。脂肪酶的应用领域日益扩大,被广泛运用于生物柴油、食品加工、面粉改良、造纸造酒、有机合成等化工领域[19]。 1.2.2 脂肪酶的结构及催化机制 脂肪酶是一类重要的水解酶,催化三酰甘油酯中酯键的裂解,具有广泛的生物技术应用价值。脂肪酶是在人体内正确分配和利用油脂所必需的酶。脂蛋白脂肪酶(LPL)在毛细血管中很活跃,它通过水解包装脂蛋白中的甘油三酯,在防止血脂异常方面起着至关重要的作用。30年前,有人提出了一种不活泼的LPL低聚物的存在。M., Tushar Ranjan (2020)指出天然油中高浓度的omega - 3脂肪酸(?-3 FAs)对于维持身体健康非常重要。脂肪酶是一种很有前途的富集催化剂,但脂肪酶的脂肪酸特异性较差。 在脂肪酶催化酯键水解的过程中,活性酶的构象和四面体跃迁态的稳定都是至关重要的。利用蛋白酶定点突变实验的x射线结构数据和结果已被用作预测可

一步酶法生产 7-ACA

一步酶法生产7-ACA的优点 7-氨基头孢烷酸(7-ACA)是生产头孢菌素类抗生素的重要母核,头孢菌素分子中由于都含有β-内酰胺结构。它能抑制肽转肽酶所催化的转肽反应,使线性高聚物不能交联成网状结构,抑制粘肽的台成,从而阻止细胞壁的形成,导致细胞的死亡。 目前7-ACA生产采用新型酶法工艺,国内已成功开发出新型酶法7-ACA生产技术,打破国外对一步酶法生产7-ACA 技术的垄断。而目前国内的生产厂家采用的双酶大多数是从国外进口的,成本与化学法不相上下。通过本项目技术的使用大大降低7-ACA的成本,从而获得成本优势。新型酶法较好解决了旧酶法技术生产7-ACA在质量、色泽上劣于化学法的问题,同时在生产上的使用批次也大幅度增加,从而也降低了生产成本。 7-ACA和头孢菌素的合成工艺主要有化学法和酶法两种。化学半合成技术主要包括酰氯法和混酐法,化学法合成存在着活化、缩合、保护和去保护的过程;合成过程长、步骤多反应条件苛刻产生大量的三废等弊端,而酶法合成工艺与化学法相比,由于具有许多优点,如:生产工艺简单,周期短;反应条件温和,pH接近中性;高度的区域和立体选择性以及无需保护和去保护过程,割除了化学合成中所需的毒害物质;劳动环境得到改善,减少了三废的排放。因此,用

酶法实现7-ACA及头孢菌素的半合成体现了绿色环保工艺的各种优势。

一步酶法和两步酶法制备7-ACA优势对比分析 对比项一步酶法(CPCA)两步酶法(DAO 与GAC)生物酶NRB—103 D—氨基酸氧化酶 GL—7ACA酰化酶 设备投资减少30% 较大 操作步骤4步6步 操作周期每批90min 每批150min 同等设备条件产量增大一倍较小 7-ACA转化率/% ≥95 ≥93 收率/% 46—50 44—45 7-ACA含量/% ≥98.5 ≥97 技术安全特性优优 技术环保特性优优 技术发展空间非常大有 优点高转化率,高纯度,高经济性,环境保 护。生产成本低, 减少有机溶媒用量,利于环保。 缺点转化率低,酶解路线长、氧化条件 控制难度大、设备条件高。 一步酶法工艺技术指标: 底物浓度:2.0-3.0% 转化率:不低于98% 得率:不低于95% 反应时间: 90 分钟 固定化头孢菌素酰化酶( immoblized CPC acylase) 酶活:80-100U/g 使用寿命:100 次

生物柴油工艺流程图CAD图

一、概述 1.1生物柴油概述生物柴油(Biodiesel) ,又称脂肪酸甲酯(Fatty Acid Ester) 是以植物果实、种子、植物导管乳汁或动物脂肪油、废弃的食用油等作原料,与醇类(甲醇、乙醇) 经交酯化反应(Transesterification reaction) 获得。生物柴油这一概念最早由德国工程师Dr.Rudolf Diesel (1858-1913) 于1895年提出,是指利用各类动植物油脂为原料,与甲醇或乙醇等醇类物质经过交脂化反应改性,使其最终变成可供内燃机使用的一种燃料。在1900年巴黎博览会上,Dr.Rudolf Diesel展示了使用花生油作燃料的发动机。生物柴油具有一些明显优势,其含硫量低,可减少约30%的二氧化硫和硫化物的排放;生物柴油具有较好的润滑性能,可以降低喷油泵、发动机缸体和连杆的磨损,延长其使用寿命;生物柴油具有良好的燃料性能,而且在运输、储存、使用等方面的安全性均好于普通柴油。此外,生物柴油是一种可再生能源,也是一种降解性较高的能源。1.2使用生物柴油可降低二氧化碳排放生物柴油的使用能减少温室气体二氧化碳的排放,可以这样来理解:燃烧生物柴油所产生的二氧化碳与其原料生长过程中吸收的二氧化碳基本平衡,所以不会增加大气中二氧化碳的含量.而燃烧矿物燃料所释放的二氧化碳需要几百万年才能再转变为石化能,故使用生物柴油能大大减少石化燃料的消耗,相当于降低了二氧化碳的排放。美国能源部研究得出的结论是:使用B20(生

物柴油和普通柴油按1:4混合)和B100(纯生物柴油)较之使用柴油,从燃料生命循环的角度考虑,能分别降低二氧化碳排放的15.6%和78.4%。 1.3生物柴油降低空气污染物的排放生物柴油由于本身含氧10%左右,十六烷值较高,且不含芳香烃和硫,所以它能够降低CO、HC、微粒、NOx和芳香烃等污染物的发动机排气管排放,尤其是微粒中PM10的排放,而它正是导致人类呼吸系统疾病根源的污染物。生物柴油具有许多优点:*原料来源广泛,可利用各种动、植物油作原料。*生物柴油作为柴油代用品使用时柴油机不需作任何改动或更换零件。*可得到经济价值较高的副产品甘油(Glycerine) 以供化工品、医药品等市场。*相对于石化柴油,生物柴油贮存、运输和使用都很安全(不腐蚀溶器,非易燃易爆) ;*可再生性(一年生的能源作物可连年种植收获,多年生的木本植物可一年种维持数十年的经济利用期,效益高;*可在自然状况下实现生物降解,减少对人类生存环境的污染。 生物柴油突出的环保性和可再生性,引起了世界发达国家尤其是资源贫乏国家的高度重视。德国已将生物柴油应用在奔驰、宝马、大众、奥迪等轿车上,全国现有900多家生物柴油加油站。美国、印度等其他发达国家和发展中国家也在积极发展生物柴油产业。目前,世界生物柴油年产量已超过350万吨,预计2010年可达3000万吨以上。1.4我国生物柴油发展的现状在生物柴油方面,我国的技术研究并不落后于欧美等发达国家,从各种公开的文献资料上,涉及生物柴油的文献80余篇,涉及技术研究的文献20余篇,内容包括了生物

微生物限度检查室管理规程 (2)

目的:规范微生物实验室管理,确保微生物检验结果的准确性。 范围:适用于微生物实验室。 职责:微生物检测人员及检验室负责人对此规程执行负责。 内容: 1.微生物实验室包括微生物限度检查室、阳性菌接种室及抗生素微生物检定室。1、1 微生物实验室结构应坚固、严密、防尘、光线明亮,地面应光滑,并应有缓冲间,设双层传递窗传递物件。 1、2 室内温度18~26℃,相对湿度为45~65%,室内必须保持整洁。 2、微生物实验室洁净度要求: 2、1微生物实验室洁净度应符合相应的医药洁净室设计规范与验收要求。 2、1、1 操作室洁净度应符合洁净度C级要求。 2、1、2 操作台洁净度应符合洁净度A级要求。 3.微生物实验室的使用: 3.1微生物实验室由微生物检验员管理及使用,其她人员须经主管人员批准后方可进入与使用。 3、2 微生物实验室的人员需经过相关的岗位培训,必要时定期进行再培训。 3、3微生物实验室操作人员应严格遵守洁净工作区域净化控制规定。 3.3、1 保持个人卫生,不得佩带饰物,不得涂抹化妆品。 3、3、2 室内应穿戴专用衣帽、口罩及鞋子。 3、3、3 手部应进行2次消毒,宜带无菌手套。 3、3.4 在操作中,操作台面应垫上消毒布巾,以防操作中有滴落液污染台面。3、3、5 人员进入微生物限度检查室、阳性对照室或抗生素微生物检定室前,在一更脱外衣、换鞋后,进入一更缓冲间洗手,并消毒后,进入二更自上而下依次换上洁净帽、口罩、洁净服、洁净鞋后,进入二更缓冲间,手经再次用消毒液消毒后方可进入微生物限度检查室或阳性对照室,实验操作前须带上无菌手套。 3、4微生物实验室使用前应确保操作室的洁净程度。 3、4.1微生物实验室的清洁分为一般清洁及彻底清洁,其具体的清洁部位、方式方法、频率见下表所示:

相关文档