文档库 最新最全的文档下载
当前位置:文档库 › 基于51单片机制作的数字电压表

基于51单片机制作的数字电压表

基于51单片机制作的数字电压表
基于51单片机制作的数字电压表

基于51单片机数字电压表的设计

基于51单片机数字电压表的设计

摘要:本文介绍了基于STC89C52单片机为核心的,以AD0809数模转换芯片作为采样,以四位八段数码管作为显示的具有测量功能的具有一定精度的数字电压表。在实现基础功能的情况下,另外还可以扩展串行口通信,时钟,等其他一系列功能,使系统达到了良好的设计效果和要求。本课题主要解决A/D转换,数据处理及显示控制等三个模块。

关键词:STC89C52;数字电压表;模数转换;数字信号

Abstract:This paper introduces STC89C52 SCM as the core based on AD0809 analog-to-digital conversion chip, as sampled to four seven segment digital tube as display with certain with measuring function of digital voltmeter accuracy. The basic function in realizing circumstance, also can expand serial port communication, clock, and other series of function, make the system to achieve a good design effect and requirements.This subject mainly to solve AD, data processing and display control three modules.

Key words: Digital voltmeter; Frequency-field; Digital signal

本设计在分析研究和总结了单片机技术的发展历史及趋势的基础上,以使用可靠,经济,精度高等设计原则为目标,设计出基于单片机的数字测量电压表。单片机有着微处理所具备的功能,它可单独地完成现代工业控制所要求的智能化控制功能,这是单片机最大的特征。

单片机控制系统能够取代以前利用复杂电子线路或数字电路构成的控制系统,可用软件控制来实现,并能够实现智能化。由于单片机具有功能强,体积小,功耗低,价格便宜,工作可靠,使用方便等特点,因此,现在单片机控制范畴无所不在,例如通信产品,家用电器,智能化仪器仪表,过程控制和专用控制装置等等,单片机的应用领域越来越广泛。

1 系统构成

该电压表的测量电路主要由三个模块组成:A/D转换模块、数据处理模块及显示控制模块。A/D转换主要由芯片ADC0809来完成,它负责把采集到的模拟量转换为相应的数字量再传送到数据处理模块。数据处理则由芯片STC89C51来完成,其负责把ADC0809传送来的数字量,经一定的数据处理,产生相应的显示码送到显示模块进行显示;另外它还控制着ADC0809芯片的工作。显示模块主要由7段数码管显示测量到的电压值

系统构成框图

2 系统硬件设计

2.1 电源电路原理

由于本系统的主控芯片是单片机,所以应提供五伏的恒流源作为单片机的基准电压。主要原理是用变压器将220V交流电压进行变压,然后经过电桥整流,将交流电变为直流电源,经过稳压管稳压,得到稳定的5V电源供单片机使用。

电桥由整流二极管1N4007所搭建的电

桥将交流变为直流,为了保证电源更加的平稳,减少波动分别在稳压管两端加470μF 滤波电容,和两个0.1μF 的104瓷片电容。 由三极稳压管7805稳压,保证有稳定的五伏电源,为了显示通电状况,有一红色发光二级管作为显示电路显示,外接限流电阻1k Ω

。原理图如图所示:

组成电桥

电源模块总原理图

2.2 单片机最小系统电路

1、复位电路:复位电路为高电平复位通常在复位引脚RST 上接一个电容到VCC ,在连接一个电阻到GND ,由此形有足够的高电平时间进行复位,随后返回到低电平进入正常的工作状态,这个电阻和电容的典型值是8.2k 和10uF

复位电路原理图

2、振荡电路:

STC89C52使用11.0592MHz 的晶体振荡器作为振荡源,由于单片机内部带有振荡电路,所以外部只要连接一个晶振和两个电容即可,电容容量一般在15pF 至50pF

之间。

51单片机引脚图

2.3 A/D 转换器与单片机接口电路

A/D 转换器主要采用ADC0809,由于ADC0809在进行A/D 转换时需要有CLK 信号,

而此时的ADC0809的CLK 是接在STC89C52

单片机的P3.3端口上,也就是要求从P3.3输出CLK信号供ADC0809使用。因此产生CLK 信号的方法就得用软件来产生了,单片机的P0.0~P0.7与A/D转换器D0~D7相连,产生相应的数字量经过其输出通道D0~D7传送给单片机进行处理。P3.0与A/D转换器ST相连,控制A/D转换器的启动端,P3.1与A/D转换器OE相连,控制A/D转换器的输出允许端,P3.2 与A/D转换器EOC相连,控制转换结束信号。

2.4 显示电路

显示电路主要由四位一体七段LED数码管组成,用于显示测量到的电压值。它是一个共阳极的数码管,每一位数码管的a,b,c,d,e,f,g和dp端都各自连接在一起,用于接收单片机的P1口产生的显示段码。1,2,3,4引脚端为其位选端,用于接收单片机的P2口产生的位选码。

数码管

内部原理图

数码管引脚图

2.5

总电路原理图:

3 单片机内部程序源

C语言源程序

#include

unsigned char code dispbitcode[]={0xfe,0xfd,0xfb,0xf7,

0xef,0xdf,0xbf,0x7f};

unsigned char code dispcode[]={0x3f,0x06,0x5b,0x4f,0x66, 0x6d,0x7d,0x07,0x7f,0x6f,0x00}; unsigned char dispbuf[8]={10,10,10,10,10,0,0,0}; unsigned char dispcount;

unsigned char getdata;

unsigned int temp;

long int i;\\代替原来的unsigned char i;

sbit ST=P3^0;

sbit OE=P3^1;

sbit EOC=P3^2;

sbit CLK=P3^3;

void main(void)

{

ST=0;

OE=0;

ET0=1;

ET1=1;

EA=1;

TMOD=0x12;

TH0=216;

TL0=216;

TH1=(65536-5000)/256;

TL1=(65536-5000)%256;

TR1=1;

TR0=1;

ST=1;

ST=0;

while(1)

{

if(EOC==1)

{

OE=1;

getdata=P0;

OE=0;

i=getdata*196;

dispbuf[5]=i/10000;

i=i%10000;

dispbuf[6]=i/1000;

i=i%1000;

dispbuf[7]=i/100;

/

*原来的:

t emp = getdata * 235;

temp=temp/128;

i=5;

dispbuf[0]=10;

dispbuf[1]=10;

dispbuf[2]=10;

dispbuf[3]=10;

dispbuf[4]=10;

dispbuf[5]=0;

dispbuf[6]=0;

dispbuf[7]=0;

while(temp/10)

{

dispbuf[i]=temp%10;

temp=temp/10;

i++;

}

dispbuf[i]=temp; */

ST=1;

ST=0;

}

}

}

void t0(void) interrupt 1 using 0 //定时器0 中断服务

{

CLK=~CLK;

}

void t1(void) interrupt 3 using 0 //定时器1 中断服务

{

TH1=(65536-6000)/256;

TL1=(65536-6000)%256;

P1=dispcode[dispbuf[dispcount]];

P2=dispbitcode[dispcount];

if(dispcount==5)

{

P1=P1 | 0x80;

}

dispcount++;

if(dispcount==8)

{

dispcount=0;

}

}

4 测试结果与误差分析

4.1 电源模块

电源模块通电后测量,显示电压值为4.98V,基本属于稳定的五伏直流电源,产生误差的原因可能是焊接问题,也可能是廉价的硬件不够精准,但基本达到预期目的。

4.2 最小系统模块

经过对单片机内部程序的编写,最小系统模块可以控制流水灯的闪烁,证明单片机没有问题,最小系统性能完好,复位电路正常工作。

4.3 数码管测试

将万用表调到测试档,逐个点亮数码管,数码管显示没有问题,数码管正常工作。

4.4 整体测试

在A/D转换器上加3V电压,数码管没有显示,经过多项测试,数码管均没有显示。整体测试失败。

4.5 针对问题进行讨论与分析

后经过分析,可能是由于系统电流过低,无法使数码管正常点亮。于是在数码管上加上8050三极管进行放大处理,从而驱动数码管显示。连接完毕后,仍无法解决问题。于是进行软件仿真来测试电路问题。

5 proteus仿真测试

仿真后效果图:

经过仿真测试,证明原理图没有问题,单片机内部程序无问题,所以可能是导线有断裂,或者接触不良所产生的。

6结语

本文通过单片机和A/D转换器经过数码管显示,制作了数字电压表,虽然实验作品失败了,没有通过测试,但是经过仿真证明,数字电压表是可以实现的,以后还要进行深一步的了解和研究,同时要提高焊接技术。

基于51单片机的DS18B20数字温度计的实训报告

电子信息职业技术学院 暨国家示性软件职业技术学院 单片机实训 题目:用MCS-51单片机和 18B20实现数字温度计 姓名: 系别:网络系 专业:计算机控制技术 班级:计控 指导教师: * 伟 时间安排:2013年1月7日至 2013年1月11日

摘要 随着国民经济的发展,人们需要对各中加热炉、热处理炉、反应炉和锅炉中温度进行监测和控制。采用单片机来对他们控制不仅具有控制方便,简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标,从而能够大大的提高产品的质量和数量。 在日常生活及工业生产过程中,经常要用到温度的检测及控制,温度是生产过程和科学实验中普遍而且重要的物理参数之一。在生产过程中,为了高效地进行生产,必须对它的主要参数,如温度、压力、流量等进行有效的控制。温度控制在生产过程中占有相当大的比例。温度测量是温度控制的基础,技术已经比较成熟。传统的测温元件有热电偶和二电阻。而热电偶和热电阻测出的一般都是电压,再转换成对应的温度,这些方法相对比较复杂,需要比较多的外部硬件支持。我们用一种相对比较简单的方式来测量。 我们采用美国DALLAS半导体公司继DS18B20之后推出的一种改进型智能温度传感器DS18B20作为检测元件,温度围为-55~125 oC,最高分辨率可达0.0625 oC。DS18B20可以直接读出北侧温度值,而且采用三线制与单片机相连,减少了外部的硬件电路,具有低成本和易使用的特点。 本文介绍一种基于AT89C51单片机的一种温度测量及报警电路,该电路采用DS18B20作为温度监测元件,测量围0℃-~+100℃,使用LED模块显示,能设置温度报警上下限。正文着重给出了软硬件系统的各部分电路,介绍了集成温度传感器DS18B20的原理,AT89C51单片机功能和应用。该电路设计新颖、功能强大、结构简单。 关键词:单片机,数字控制,温度计, DS18B20,AT89S51

单片机课程设计数字电压表

单片机课程设计 ——电压表的设计 学院:信息工程学院 专业:电子信息科学与技术 班级:2011150 学号:201115002 姓名:王冬冬 同组同学:凡俊兴 201115001

目录 1 引言 (1) 2设计原理及要求 (2) 2.1数字电压表的实现原理 (2) 2.2数字电压表的设计要求 (2) 3软件仿真电路设计 (2) 3.1设计思路 (2) 3.2仿真电路图 (3) 3.3设计过程 (3) 3.4 AT89C51的功能介绍 (4) 3.4.1简单概述 (4) 3.4.2主要功能特性 (5) 3.4.3 AT89C51的引脚介绍 (5) 3.5 ADC0809的引脚及功能介绍 (7) 3.5.1芯片概述 (7) 3.5.2 引脚简介 (8) 3.5.3 ADC0809的转换原理 (8) 3.6 74LS373芯片的引脚及功能 (8) 3.6.1芯片概述 (8) 3.6.2引脚介绍 (9) 3.7 LED数码管的控制显示 (9) 3.7.1 LED数码管的模型 (9)

LED数码管模型如图3-6所示。 (9) 3.7.2 LED数码管的接口简介 (9) 4系统软件程序的设计 (9) 4.1 主程序 (10) 4.2 A/D转换子程序 (11) 4.3 中断显示程序 (12) 5使用说明与调试结果 (13) 6总结 (13) 参考文献 (14) 附录1 源程序 (15) 附录2原理电路 (19)

1 引言 在电量的测量中,电压、电流和频率是最基本的三个被测量,其中电压量的测量最为经常。而且随着电子技术的发展,更是经常需要测量高精度的电压,所以数字电压表就成为一种必不可少的测量仪器。数字电压表简称DVM,它是采用数字化测量技术,把连续的模拟量转换成不连续、离散的数字形式并加以显示的仪表。由于数字式仪器具有读数准确方便、精度高、误差小、测量速度快等特而得到广泛应用[1]。 传统的指针式刻度电压表功能单一,进度低,容易引起视差和视觉疲劳,因而不能满足数字化时代的需要。采用单片机的数字电压表,将连续的模拟量如直流电压转换成不连续的离散的数字形式并加以显示,从而精度高、抗干扰能力强,可扩展性强、集成方便,还可与PC实时通信。数字电压表是诸多数字化仪表的核心与基础[2]。以数字电压表为核心,可以扩展成各种通用数字仪表、专用数字仪表及各种非电量的数字化仪表。目前,由各种单片机和A/D转换器构成的数字电压表作全面深入的了解是很有必要的。 最近的几十年来,随着半导体技术、集成电路(IC)和微处理器技术的发展,数字电路和数字化测量技术也有了巨大的进步,从而促使了数字电压表的快速发展,并不断出现新的类型[4]。数字电压表从1952年问世以来,经历了不断改进的过程,从最早采用继电器、电子管和形式发展到了现在的全固态化、集成化(IC 化),另一方面,精度也从0.01%-0.005%。 目前,数字电压表的内部核心部件是A/D转换器,转换的精度很大程度上影响着数字电压表的准确度,因而,以后数字电压表的发展就着眼在高精度和低成本这两个方面[3]。 本文是以简易数字直流电压表的设计为研究内容,本系统主要包括三大模块:转换模块、数据处理模块及显示模块。其中,A/D转换采用ADC0808对输入的模拟信号进行转换,控制核心AT89C51再对转换的结果进行运算处理,最后驱动输出装置LED显示数字电压信号

简单51单片机数字时钟设计

题目:简单51单片机数字时钟设计 院系: 物理与电气工程学院 专业:自动化专业 班级:10级自动化 姓名:苏吉振 学号:2 老师:李艾华

引言 20世纪末,电子技术获得了飞速的发展,在其推动下,现代电子产品几乎渗透了社会的各个领域,有力地推动了社会生产力的发展和社会信息化程度的提高,同时也使现代电子产品性能进一步提高,产品更新换代的节奏也越来越快。 时间对人们来说总是那么宝贵,工作的忙碌性和繁杂性容易使人忘记当前的时间。忘记了要做的事情,当事情不是很重要的时候,这种遗忘无伤大雅。但是,一旦重要事情,一时的耽误可能酿成大祸。 目前,单片机正朝着高性能和多品种方向发展趋势将是进一步向着CMOS 化、低功耗、小体积、大容量、高性能、低价格和外围电路内装化等几个方面发展。下面是单片机的主要发展趋势。 单片机应用的重要意义还在于,它从根本上改变了传统的控制系统设计思想和设计方法。从前必须由模拟电路或数字电路实现的大部分功能,现在已能用单片机通过软件方法来实现了。这种软件代替硬件的控制技术也称为微控制技术,是传统控制技术的一次革命。 单片机模块中最常见的是数字钟,数字钟是一种用数字电路技术实现时、分、秒计时的装置,与机械式时钟相比具有更高的准确性和直观性,且无机械装置,具有更更长的使用寿命,因此得到了广泛的使用。 数字钟是采用数字电路实现对时,分,秒数字显示的计时装置,广泛用于个 人家庭,车站, 码头办公室等公共场所,成为人们日常生活中不可少的必需品,由于数字集成电路的发展和石英晶体振荡器的广泛应用,使得数字钟的精度,远远超过老式钟表, 钟表的数字化给人们生产生活带来了极大的方便,而且大大地扩展了钟表原先的报时功能。诸如定时自动报警、按时自动打铃、时间程序自动控制、定时广播、自动起闭路灯、定时开关烘箱、通断动力设备、甚至各种定时电气的自动启用等,所有这些,都是以钟表数字化为基础的。因此,研究数字钟及扩大其应用,有着非常现实的意义。

基于51单片机的数字钟

专业课程设计报告 专业班级 课程 题目基于51单片机的数字钟的设计报告学号 学生姓名 指导教师 成绩 2013年6月20日

基于A T89C51的数字钟总体设计说明书 目录 1. 51单片机设计数字钟设计的现实意义 (2) 2. 总体设计 (2) 2.1.开发与运行环境 (2) 2.2.硬件功能描述 (2) 2.3.硬件结构 (3) 3. 硬件模块设计 (3) 3.1.描述 (3) 3.1.1. AT89C51单片机简介 (3) 3.1.2. 键盘电路的设计 (4) 3.1.3. 显示器的选择 (5) 3.1.4. 蜂鸣器驱动电路 (5) 3.1.5. 各部分功能 (6) 4. 嵌入式软件设计 (7) 4.1.流程逻辑 (7) 4.2.算法 (7) 4.2.1. 中断定时器的设置 (27) 4.2.2. 闹钟子函数 (28) 4.2.3. 计时函数 (29) 4.2.4. 键盘扫描函数 (31) 4.2.5. 时间和闹钟的设置 (32) 5. 实验器材清单 (33) 6. 测试与性能分析 (33) 6.1.测试结果 (33) 6.2.优点 (33) 6.3.结论 (34) 7. 心得体会 (36) 8. 致谢 (36) 9. 参考文献 (37)

1.51单片机设计数字钟设计的现实意义 20世纪末,电子技术获得了飞速的发展,在其推动下,现代电子产品几乎渗透了社会的各个领域,有力地推动了社会生产力的发展和社会信息化程度的提高,同时也使现代电子产品性能进一步提高,产品更新换代的节奏也越来越快。时间对人们来说总是那么宝贵,工作的忙碌性和繁杂性容易使人忘记当前的时间。忘记了要做的事情,当事情不是很重要的时候,这种遗忘无伤大雅。但是,一旦重要事情,一时的耽误可能酿成大祸。例如,许多火灾都是由于人们一时忘记了关闭煤气或是忘记充电时间等造成的。而钟表的数字化给人们生产生活带来了极大的方便。数字钟是通过数字电路实现时,分,秒数字显示的计时装置,广泛用于个人家庭、车站、码头办公室等公共场所,成为人们日常生活中不可少的必需品。由于数字集成电路的发展和石英晶体振荡器的广泛应用,使得数字钟的精度,远远超过老式钟表,钟表的数字化给人们生产生活带来了极大的方便,而且大大地扩展了钟表原先的报时功能,诸如定时自动报警、按时自动打铃、时间程序自动控制、定时广播、自动起闭路灯、定时开关烤箱、通断动力设备、甚至各种定时电气的自动启用等。所有这些,都是以钟表数字化为基础的。因此,研究数字钟及扩大其应用,有着非常现实的意义。 2.总体设计 2.1.开发与运行环境 在硬件方面,除了CPU外,使用八个七段LED数码管来进行显示,LED采用的是动态扫描显示。通过LED能够较为准确地显示时、分、秒。四个简单的按键实现对时间的调整。软件方面采用C语言编程。使用Keil单片机模拟调试软件,测试程序的可行性并用Proteus进行仿真。 2.2.硬件功能描述 硬件部分设置了的三个按键S1、S2、S3、S4。当按键S1第一次按下时,停止计时进

基于51单片机及DS18B20温度传感器的数字温度计程序(详细注释)

基于51单片机及DS18B20温度传感器的数字温度计程序(详细注释)

电路实物图如下图所示: C 语言程序如下所示: /******************************************************************** zicreate ----------------------------- Copyright (C) https://www.wendangku.net/doc/456772378.html, -------------------------- * 程序名; 基于DS18B20的测温系统 * 功 能: 实时测量温度,超过上下限报警,报警温度可手动调整。K1是用来 * 进入上下限调节模式的,当按一下K1进入上限调节模式,再按一下进入下限 * 调节模式。在正常模式下,按一下K2进入查看上限温度模式,显示1s 左右自动 * 退出;按一下K3进入查看下限温度模式,显示1s 左右自动退出;按一下K4消除 * 按键音,再按一下启动按键音。在调节上下限温度模式下,K2是实现加1功能, * K1是实现减1功能,K3是用来设定上下限温度正负的。 * 编程者:Jason * 编程时间:2009/10/2 *********************************************************************/ #include //将AT89X52.h 头文件包含到主程序 #include //将intrins.h 头文件包含到主程序(调用其中的_nop_()空操作函数延时) #define uint unsigned int //变量类型宏定义,用uint 表示无符号整形(16位) #define uchar unsigned char //变量类型宏定义,用uchar 表示无符号字符型(8位) uchar max=0x00,min=0x00; //max 是上限报警温度,min 是下限报警温度 bit s=0; //s 是调整上下限温度时温度闪烁的标志位,s=0不显示200ms ,s=1显示1s 左右 bit s1=0; //s1标志位用于上下限查看时的显示 void display1(uint z); //声明display1()函数 #include"ds18b20.h" //将ds18b20.h 头文件包含到主程序 #include"keyscan.h" //将keyscan.h 头文件包含到主程序 #include"display.h" //将display.h 头文件包含到主程序

51单片机简单数字电压表

毕业论文声明 本人郑重声明: 1.此毕业论文是本人在指导教师指导下独立进行研究取得的成果。除了特别加以标注地方外,本文不包含他人或其它机构已经发表或撰写过的研究成果。对本文研究做出重要贡献的个人与集体均已在文中作了明确标明。本人完全意识到本声明的法律结果由本人承担。 2.本人完全了解学校、学院有关保留、使用学位论文的规定,同意学校与学院保留并向国家有关部门或机构送交此论文的复印件和电子版,允许此文被查阅和借阅。本人授权大学学院可以将此文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本文。 3.若在大学学院毕业论文审查小组复审中,发现本文有抄袭,一切后果均由本人承担,与毕业论文指导老师无关。 4.本人所呈交的毕业论文,是在指导老师的指导下独立进行研究所取得的成果。论文中凡引用他人已经发布或未发表的成果、数据、观点等,均已明确注明出处。论文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的研究成果。对本文的研究成果做出重要贡献的个人和集体,均已在论文中已明确的方式标明。

学位论文作者(签名): 年月

关于毕业论文使用授权的声明 本人在指导老师的指导下所完成的论文及相关的资料(包括图纸、实验记录、原始数据、实物照片、图片、录音带、设计手稿等),知识产权归属华北电力大学。本人完全了解大学有关保存,使用毕业论文的规定。同意学校保存或向国家有关部门或机构送交论文的纸质版或电子版,允许论文被查阅或借阅。本人授权大学可以将本毕业论文的全部或部分内容编入有关数据库进行检索,可以采用任何复制手段保存或编汇本毕业论文。如果发表相关成果,一定征得指导教师同意,且第一署名单位为大学。本人毕业后使用毕业论文或与该论文直接相关的学术论文或成果时,第一署名单位仍然为大学。本人完全了解大学关于收集、保存、使用学位论文的规定,同意如下各项内容: 按照学校要求提交学位论文的印刷本和电子版本;学校有权保存学位论文的印刷本和电子版,并采用影印、缩印、扫描、数字化或其它手段保存或汇编本学位论文;学校有权提供目录检索以及提供本学位论文全文或者部分的阅览服务;学校有权按有关规定向国家有关部门或者机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入学校有关数据库和收录到《中国学位论文全文数据库》进行信息服务。在不以赢利为目的的前提下,学校可以适当复制论文的部分或全部内容用于学术活动。 论文作者签名:日期: 指导教师签名:日期: 单片机硬件实习任务书

基于单片机的数字钟设计-(1)

基于单片机的数字时钟摘要 20世纪末,电子技术获得了飞速的发展,在其推动下,现代电子产品几乎渗透了社会的各个领域,有力地推动了社会生产力的发展和社会信息化程度的提高,同时也使现代电子产品性能进一步提高,产品更新换代的节奏也越来越快。 单片机模块中最常见的是数字钟,数字钟是一种用数字电路技术实现时、分、秒计时的装置,与机械式时钟相比具有更高的准确性和直观性,且无机械装置,具有更更长的使用寿命,因此得到了广泛的使用。 本课题主要研究的是基于单片机的数字钟设计,采用AT89C51单片机作为系统的主控芯片,外接LED显示电路,按键电路,晶振电路,复位电路模块构成一个简单的数字钟。通过按键电路能对时、分、秒分别进行设置和实时调整,并将结果显示在数码管上。 关键词:数字钟,单片机,数码管

Abstract Author:cheng dong Tutor:wang xin Electronic technology has been developed rapidly in the 20 century,with its modern electronic products, pushed by almost permeated every area of society has vigorously promoted social productive forces development and improvement of social informatization level, also make modern electronic product performance further improved, and the rhythm of upgrade its products is becoming more and more quickly. The most common SCM module is a digital clock, a digital clock is a kind of digital circuit technology implementation, minutes and seconds, the timing device with mechanical clock compared with higher accuracy and intuitive and no mechanical device, has more longer service life, so it has been widely used. This topic research is the digital clock design based on SCM, AT89C51 SCM as the main control chip system, external LED display circuit, key circuits, crystals circuit, reset circuit module constitute a simple digital clock. Through the key circuits can respectively the diffculties, minutes and seconds setting and real-time adjustment, and the result showed that in the digital tube. Key words:digital clock SCM ; digital

基于单片机的数字电压表

基于单片机的数字电压表 摘要:本文介绍一种基于89S52单片机的一种电压测量电路,该电路采用ICL7135高精度、双积分A/D转换电路,测量范围直流0-±2000伏,使用LCD液晶模块显示,可以与PC机进行串行通信。正文着重给出了软硬件系统的各部分电路,介绍了双积分电路的原理,89S52的特点,ICL7135的功能和应用,LCD1601的功能和应用。该电路设计新颖、功能强大、可扩展性强。 关键词:电压测量,ICL7135,双积分A/D转换器,1601液晶模块 Abstract: The introduction of a cost-based 89S52 MCU a voltage measurement circuits, the circuits used ICL7135 high-precision, dual-scoring A/D conversion circuits, measuring scope DC 0-2000 volts, the use of LCD that can be carried out with a PC serial communications. The paper focuses on providing a software and hardware system components circuit, introduced double integral circuit theory, 89S52 features ICL7135 functions and applications, LCD1601 functions and applications. the circuit design innovative, powerful, can be expansionary strong. Key Words: Digital Voltmeter ICL7135 LCD1601 89S52 1前言 数字电压表(Digital Voltmeter)简称DVM,它是采用数字化测量技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表。传统的指针式电压表功能单一、精度低,不能满足数字化时代的需求,采用单片机的数字电压表,由精度高、抗干扰能力强,可扩展性强、集成方便,还可与PC进行实时通信。目前,由各种单片A/D 转换器构成的数字电压表,已被广泛用于电子及电工测量、工业自动化仪表、自动测试系统等智能化测量领域,示出强大的生命力。与此同时,由DVM扩展而成的各种通用及专用数字仪器仪表,也把电量及非电量测量技术提高到崭新水平。本章重点介绍单片A/D 转换器以及由它们构成的基于单片机的数字电压表的工作原理。

51单片机数字时钟

计算机硬件综合课程 设计报告 课目: 学院: 班级: 姓名: 指导教师: 目录 1 设计要求 功能需求 设计要求

2 硬件设计及描述 总体描述 系统总体框图 Proteus仿真电路图 3 软件设计流程及描述 程序流程图 函数模块及功能 4 心得体会 附:源程序 设计要求 功能需求 实现数字时钟准确实时的计时与显示功能; 实现闹钟功能,即系统时间到达闹钟时间时闹铃响; 实现时间和闹钟时间的调时功能; 刚启动系统的时候在数码管上滚动显示数字串(学号)。设计要求 应用MCS-51单片机设计实现数字时钟电路; 使用定时器/计数器中断实现计时; 选用8个数码管显示时间;

使用3个按钮实现调时间和闹钟时间的功能。按钮1:更换模式(模式0:正常显示时间;模式1:调当前时间的小时;模式2;调当前时间的分钟;模式3:调闹钟时间的小时;模式4:调闹钟时间的分钟);按钮2:在非模式0下给需要调节的时间数加一,但不溢出;按钮3:在非模式0下给需要调节的时间数减一,但不小于零; 在非0模式下,给正在调节的时间闪烁提示; 使用扬声器实现闹钟功能; 采用C语言编写程序并调试。 2 硬件设计及描述 总体描述 单片机采用AT89C51型; 时间显示电路:采用8个共阴极数码管,P1口驱动显示数字,P2口作为扫描信号; 时间设置电路:、、分别连接3个按键,实现调模式,时间加和时间减; 闹钟:口接扬声器。 系统总体框图 Proteus仿真电路图

3 软件设计流程及描述 程序流程图

函数模块及功能 void display_led() 学号的滚动显示函数; void display() 显示时间以及显示调节时间和闹钟时间的闪烁; void key_prc() 键盘功能函数,实现3个按键有关的模式转换以及数字加一减一; void init() 初始化设置中断;

基于51单片机的数字钟设计

20世纪末,电子技术获得了飞速的发展,在其推动下,现代电子产品几乎渗透了社会的各个领域,有力地推动了社会生产力的发展和社会信息化程度的提高,同时也使现代电子产品性能进一步提高,产品更新换代的节奏也越来越快。 单片机模块中最常见的是数字钟,数字钟是一种用数字电路技术实现时、分、秒计时的装置,与机械式时钟相比具有更高的准确性和直观性,且无机械装置,具有更更长的使用寿命,因此得到了广泛的使用。 本课题主要研究的是基于单片机的数字钟设计,采用AT89C51单片机作为系统的主控芯片,外接LED显示电路,按键电路,晶振电路,复位电路模块构成一个简单的数字钟。通过按键电路能对时、分、秒分别进行设置和实时调整,并将结果显示在数码管上。

1 引言 (3) 2 单片机介绍 (4) 3 数字钟硬件设计 (4) 3.1系统方案的确定 (4) 3.2功能分析 (4) 3.3数字钟设计原理 (5) 3.3.1键盘控制电路 (5) 3.3.2晶振电路 (6) 3.3.3复位电路 (7) 3.3.4数码显示电路 (7) 4.数字钟的软件设计 (8) 4.1程序设计内容 (8) 4.2源程序 (9)

1 引言 在单片机技术日趋成熟的今天,其灵活的硬件电路和软件电路的设计,让单片机得到广泛的应用,几乎是从小的电子产品,到大的工业控制,单片机都起到了举足轻重的作用。单片机小的系统结构几乎是所有具有可编程硬件的一个缩影,可谓是“麻雀虽小,肝胆俱全”,单片机的学习和研究是对微机系统学习和研究的简捷途径。基于单片机的定时和控制装置在许多行业有着广泛的应用,而数字钟是其中最基本的,也是最具有代表性的一个例子[1],用数字电路实现对时、分、秒数字显示的计时装置。因为机具有体积小、功耗低、功能强、性价比高、易于推广应用的优点,在自动化装置、智能仪器表、过程控制、通信、家用电器等许多领域得到日益广泛的应用[2],因此具有很大的研究价值。

基于单片机的数字温度计设计开题报告

****大学综合性设计实验 开题报告 ?实验题目:数字温度计的设计 ?学生专业10电气工程与自动化 ?同组人:———————— ?指导老师: 2013年4月

1.国内外现状及研究意义 随着科技的不断发展,现代社会对各种信息参数的准确度和精确度的要求都有了几何级的增长,而如何准确而又迅速的获得这些参数就需要受制于现代信息基础的发展水平。在三大信息信息采集(即传感器技术)、信息传输(通信技术)和信息处理(计算机技术)中,传感器属于信息技术的前沿尖端产品,尤其是温度传感器技术,在我国各领域已经引用的非常广泛,可以说是渗透到社会的每一个领域,人民的生活与环境的温度息息相关,在工业生产过程中需要实时测量温度,在农业生产中也离不开温度的测量,因此研究温度的测量方法和装置具有重要的意义。 测量温度的关键是温度传感器,温度传感器的发展经历了三个发展阶段: ①传统的分立式温度传感器 ②模拟集成温度传感器 ③智能集成温度传感器。 目前的智能温度传感器(亦称数字温度传感器)是在20世纪90年代中期问世的,它是微电子技术、计算机技术和自动测试技术(ATE)的结晶,特点是能输出温度数据及相关的温度控制量,适配各种微控制器(MCU)。社会的发展使人们对传感器的要求也越来越高,现在的温度传感器正在基于单片机的基础上从模拟式向数字式,从集成化向智能化、网络化的方向飞速发展,并朝着高精度、多功能、总线标准化、高可靠性及安全性、开发虚拟传感器和网络传感器、研制单片测温系统等高科技的方向迅速发展,本文将介绍智能集成温度传感器DS18B20的结构特征及控制方法,并对以此传感器,AT89S51单片机为控制器构成的数字温度测量装置的工作原理及程序设计作了详细的介绍。与传统的温度计相比,其具有读数方便,测温范围广,测温准确,输出温度采用数字显示,主要用于对测温要求比较准确的场所,或科研实验室使用。该设计控制器使用ATMEL公司的AT89S51单片机,测温传感器使用DALLAS公司DS18B20,用液晶来实现温度显示。 2.方案设计及内容 (一)、方案一 采用热电偶温差电路测温,温度检测部分可以使用低温热偶,热电偶由两个焊接在一起的异金属导线所组成,热电偶产生的热电势由两种金属的接触电势和单一导体的温差电势组成。通过将参考结点保持在已知温度并测量该电压,便可推断出检测结点的温度。数据采集部分则使用带有A/D 通道的单片机,在将随被测温度变化的电压或电流采集过来,进行A/D 转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来。热电偶的优点是工作温度范围非常宽,且体积小,

基于单片机的数字电压表设计

引言 数字电压表(Digital Voltmeter)简称DVM,它是采用数字化测量技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表。传统的指针式电压表功能单一、精度低,不能满足数字化时代的需求,采用单片机的数字电压表,由精度高、抗干扰能力强,可扩展性强、集成方便。目前,由各种单片A/D 转换器构成的数字电压表,已被广泛用于电子及电工测量、工业自动化仪表、自动测试系统等智能化测量领域,示出强大的生命力。与此同时,由DVM扩展而成的各种通用及专用数字仪器仪表,也把电量及非电量测量技术提高到崭新水平。本论文重点介绍单片A/D 转换器以及由它们构成的基于单片机的数字电压表的工作原理。

1 实训要求 (1)基本要求: ①实现8路直流电压检测 ②测量电压范围0-5V ③显示指定电压通道和电压值 ④用按键切换显示通道 (2)发挥要求 ①测量电压范围为0-25V ②循环显示8路电压 2 实训目的 (1)进一步熟悉和掌握单片机的结构和工作原理; (2)掌握单片机的借口技术及,ADC0809芯片的特性,控制方法; (3)通过这次实训设计,掌握以单片机为核心的电路设计的基本方法和技术;(4)通过实际程序设计和调试,逐步掌握模块化程序设计的方法和调试技术。 3 实训意义 通过完成一个包括电路设计和程序开发的完整过程,使自身了解开发单片机应用系统的全过程,强化巩固所学知识,为以后的学习和工作打下基础。 4 总体实训方案 测量一个0——5V的直流电压,通过输入电路把信号送给AD0809,转换为数字信号再送至89s52单片机,通过其P1口经数码管显示出测量值。 4.1 结构框图 如图1—1所示 图1—1

基于51单片机的数字时钟的设计

基于51单片机的数字时钟的设计 摘要:现代生活中,对于数字电子钟的使用情况已经远远大于对于机械表的使用。数字时钟不仅仅是使用方便,而且由于单片机的引入,额外增加了自动控制和闹钟报时等功能,十分便利。本次毕业设计,是以STC89C52芯片为核心,添加适当外围电路,辅以C语言,所形成的数字电子钟。除了51单片机芯片,还主要用到了时钟芯片DS1302和型号是1602的液晶显示屏。 关键词:STC89C52;数字电子钟;C语言。

Design of Digital Clock System Based on MSC-51 Singlechip Abstract: In modern life, the use of digital electronic clock has been far greater than for the use of mechanical watches. Digital Clock is not just easy to use, and because of the introduction of single-chip, additional automatic control and alarm clock timekeeping functions, is very convenient. The graduation project is based STC89C52 chip as the core, adding the appropriate external circuit, supplemented by the C language, the formation of digital electronic clock. In addition to 51 single-chip, is also largely used in the clock chip DS1302 and models are 1602 LCD display. Keywords: STC89C52; digital electronic clock; C language.

基于51单片机的数字温度计设计

基于51单片机的数字温度计设计 一.课题选择 随着时代的发展,控制智能化,仪器小型化,功耗微量化得到广泛关注。单片机控制系统无疑在这方面起到了举足轻重的作用。单片机的应用系统设计业已成为新的技术热点,其中数字温度计就是一个典型的例子,它可广泛应用与生产生活的各个方面,具有巨大的市场前景。 二.设计目的 1.理解掌握51单片机的功能和实际应用。 2.掌握仿真开发软件的使用。 3.掌握数字式温度计电路的设计、组装与调试方法。 三.实验要求 1.以51系列单片机为核心器件,组成一个数字式温度计。 2.采用数字式温度传感器为检测器件,进行单点温度检测。 3.温度显示采用4位LED数码管显示,三位整数,一位小数。 四.设计思路 1.根据设计要求,选择STC89C51RC单片机为核心器件。 2.温度检测采用DS18B20数字式温度传感器。与单片机的接口为P 3.6引脚。 3.采用usb数据线连接充电宝供电,接电后由按钮开关控制电路供电。 硬件电路设计总体框图为图1: 五.系统的硬件构成及功能 1.主控制器 单片机STC89C51RC具有低电压供电和体积小等特点,有40个引脚,其仿真图像如下图所示:

2.显示电路 显示电路采用4位共阳LED数码管,从P3口RXD,TXD串口输出段码。LED数码管在仿真软件中如下图所示: 3.温度传感器 DS18B20是美国DALLAS半导体公司最新推出的一种改进型智能温度传感器,与传统的热敏电阻等测温元件相比,它能直接读出被测温度,并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。DS18B20的性能特点如下: 1.独特的单线接口仅需一个端口引脚进行通讯。 2.简单的多点分布应用。 3.无需外部器件。 4.可通过数据线供电。 5.零待机功耗。 6.测温范围-55~+125摄氏度。 其电路图如下图所示:

数字电压表单片机课程设计

《单片机技术及其应用》 课程设计报告 题目:数字电压表的设计 班级:11通信本2班 学号:1011028432 姓名:段苓苓 同组人员:钟梦为梅韶田赵赫宇周洋 指导教师:刘少敏薛莲 2014年06月26日

目录 1 引言 (1) 1.1 设计意义 (1) 1.2 系统功能要求 (1) 2 设计内容 (1) 2.1 设计思路 (1) 2.2 主要功能 (2) 3 方案论证 (2) 3.1 程序设计 (2) 3.2 电路设计原理 (3) 3.3 软件设计方案 (4) 3.4 硬件设计方案 (4) 4 单元电路设计 (5) 4.1 数码管显示器 (5) 4.2 单片机的晶振电路 (6) 4.3 显示模块 (7) 4.4 ADC0808模数转换芯片 (7) 4.5 复位电路 (8)

4.6 AT89C52单片机的引脚介绍 (9) 4.7 模拟输入电路 (10) 4.8 总电路设计 (10) 5 系统软件程序的设计 (11) 5.1 主程序 (11) 5.2 A/D转换子程序 (11) 5.3 显示子程序 (11) 6 调试及性能分析 (11) 6.1 调试方法及步骤 (11) 6.2 实物调试数据 (12) 6.3 误差分析 (13) 7 心得体会 (14) 8 指导老师意见 (15) 附录: (16)

数字电压表的设计 1 引言 1.1 设计意义 我们学习的是单片机这门课程,这门课程最显著的特点就是它是一门实用技术课程,它要求我们不仅仅要掌握扎实的理论基础,更重要的是要学会如何去真真利用它为我们的电路设计服务,也只有通过课程设计这样的动手实践才是我们掌握这门技术的最佳途径,因此,我们开设这样的实践是很重要的,也是我们努力去学习钻研的动力。 数字电压表是采用数字化检测技术,把连续的模拟量(直流输入电压)换成不连续的、离散的数字形式并加以现实的仪表,克服了传统模拟电压表的读书不方便和不精确等问题。不能满足数字化时代的需求,采用单片机的数字电压表,由精度高、抗干扰能力强,可扩展性强集成方便,还可以与PC进行实时通信。目前,由各种单片A/D转换器构成的数字电压表,已广泛应用于电子电工测量、工业自动化仪表、自动测试系统等智能化测量领域,展现了强大的生命力。与此同时,由数字电压表扩展而成的各种通用及专用数字化仪器,也把电量及非电量测量技术提高到了崭新的水平,因此,通过这次课程设计能让我们了解这些知识,为以后研究相关技术打下坚实的基础。 1.2 系统功能要求 采用51系列单片机和ADC设计一个数字电压表,测量0~5V范围内的8路输入电压值,并在4位LED数码管上轮流显示或单路选择显示,要求显示两位小数。 2 设计内容 2.1 设计思路 (1)根据设计要求,选择AT89C51单片机为核心控制器件。 (2)A/D转换采用ADC0808实现,与单片机的接口为P1口和P2口的高四位引脚。 (3)电压显示采用4位一体的LED数码管。 (4)LED数码的段码输入,由并行端口P0产生:位码输入,用并行端口P2低四位产生。

基于单片机的数字时钟之C51单片机

山东大学威海分校 基于单片机的数字时钟 C51单片机 王若愚 学号200800800307 2010/7/18

概述 AT89C51是美国ATMEL公司生产的低功耗,高性能CMOS8位单片机,片内含4K的可编程的Flash只读程序存储器,器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准8051指令系统及引脚。它集Flash程序存储器既可在线编程(ISP)也可用传统方法进行编程及通用8位微处理器于单片机芯片中,ATMEL公司的功能强大,低价位AT89S51单片机可为您提供许多高性价比的应用场合,可灵活应用于各种控制领域。 功能特性概述 AT89S51提供以下标准功能:4K字节闪速存储器,128字节内部RAM,32个I/O口线,看门狗(WDT),两个数据指针,两个16位定时/计数器,一个5向量两级中断结构,一个全双工串行通信口,片内振荡器及时钟电路。同时,AT89S51可降至0HZ的静态逻辑操作,并支持两种软件可选的节电工作模式。空闲方式停止CPU的工作,但允许RAM,定时/计数器,串行通信口及中断系统继续工作。掉电方式保存RAM中到内容,但振荡器停止工作并禁止其它所有工作部件直到下一个硬件复位。

AT89S51硬件电路原理 复位及振荡电路 复位电路由按键复位和上电复位两部分组成,如图2所示。AT89S系列单片及为高电平复位,通常在复位引脚RST上连接一个电容到VCC,再连接一个电阻到GND,由此形成一个RC 充放电回路保证单片机在上电时RST脚上有足够时间的高电平进行复位,随后回归到低电平进入正常工作状态,这个电阻和电容的典型值为8.2K和10uF。 按键复位就是在复位电容上并联一个开关,当开关按下时电容被放电、RST也被拉到高电平,而且由于电容的充电,会保持一段时间的高电平来使单片机复位。 MCS51 LITE使用22.1184MHz的晶体振荡器作为振荡源,由于单片机内部带有振荡电路, 所以外部只要连接一个晶振和两个电容即可,电容容量一般在15pF至50pF之间。

单片机课程设计—数字温度计

第1章概述 1.1 数字温度计简介 随着人们生活水平的不断提高,单片机控制无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的,其中数字温度计就是一个典型的例子,但人们对它的要求越来越高,要为现代人工作、科研、生活、提供更好的更方便的设施就需要从数单片机技术入手,一切向着数字化控制,智能化控制方向发展。 此次课程设计所介绍的数字温度计与传统的温度计相比,具有读数方便,测温范围广,测温准确,其输出温度采用数字显示,主要用于对测温比较准确的场所,或科研实验室使用,该设计控制器使用单片机AT89S51,测温传感器使用DS18B20,用3位共阳极LED数码管以串口传送数据,实现温度显示,能准确达到以上要求。 1.2 设计内容及要求 本次单片机课程设计将以51系列单片机为核心,以开发板为平台;设计一个数字式温度计,要求使用温度传感器(可以采用DS18B20或采用AD590)测量温度,再经单片机处理后,由LED数码管显示测量的温度值。测温范围为0~100℃,精度误差在0.5℃以内。

第2章系统总体方案设计 2.1数字温度计设计的方案 在做数字温度计的单片机电路中,对信号的采集电路大多都是使用传感器,这是非常容易实现的,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,就可以满足设计要求。采集之后,通过使用51系列的单片机,可以对数据进行相应的处理,再由LED显示电路对其数据进行显示。 2.2系统设计框图 温度计电路设计总体设计方框图如图 2.1所示,控制器采用单片机AT89S51,温度传感器采用DS18B20,用6位LED数码管以串口传送数据实现温度显示。此外,还添加了报警系统,对温度实施监控。 图2.1 数字温度计框图

51单片机数字电压表实验报告

微控制器技术创新设计实验报告 姓名:学号:班级: 一、项目背景 使用单片机AT89C52和ADC0808设计一个数字电压表,能够测量0-5V之间的直流电压值,四位数码显示。在单片机的作用下,能监测两路的输入电压值,用8位串行A/D转换器,8位分辨率,逐次逼近型,基准电压为5V;显示精度0.001伏。 二、项目整体方案设计 ADC0808 是含8 位A/D 转换器、8 路多路开关,以及与微型计算机兼容的控制逻辑的CMOS组件,其转换方法为逐次逼近型。ADC0808的精度为1/2LSB。在AD 转换器内部有一个高阻抗斩波稳定比较器,一个带模拟开关树组的256 电阻分压器,以及一个逐次通近型寄存器。8 路的模拟开关的通断由地址锁存器和译码器控制,可以在8 个通道中任意访问一个单边的模拟信号。

三、硬件设计 四、软件设计 #include #include"intrins.h" #define uchar unsigned char #define uint unsigned int sbit OE = P2^7; sbit EOC=P2^6; sbit START=P2^5;

sbit CLK=P2^4; sbit CS0=P2^0; sbit CS1=P2^1; sbit CS2=P2^2; sbit CS3=P2^3; uint adval,volt; uchar tab[]={0xC0,0xF9,0xA4,0xB0,0x99,0x92,0x82,0xF8, 0x80,0x90,0x88,0x83,0xC6,0xA1,0x86,0x8E}; void delayms(uint ms) { uchar j; while(ms --) { for(j=0;j<120;j++); } } void ADC_read() { START=0; START=1; START=0; while(EOC==0);

相关文档
相关文档 最新文档