文档库 最新最全的文档下载
当前位置:文档库 › 运筹3

运筹3

运筹3
运筹3

实验报告

一、实验目的及要求

线性规划与对偶的求解;

要求:能够写出求解模型、运用软件进行求解并对求解结果进行分析。

二、实验环境

WinQSB

三、实验内容

书P75, 2.4 给出线性规划问题minz=2X1+3X2+5X3+6X4

X1 +2X2+3X3+X4 ≧2

s.t. -2X1+X2 - X3 + 3X4≦-3

X j ≧0 (j=1, (4)

1.求解原问题,最优解,最优值

2.写出对偶问题,求解,最优解,最优值

maxw=2y1- 3y2

y1- 2y 2≦2

2y1 +y2≦3

s.t. 3y1 - y2≦5

y1 +3y2≦6

y1≦0,y2≧0

3.比较原问题与对偶问题的最终单纯形表

P76, 2.10 考虑如下线性规划问题

minz=60X1 + 40X2 +8 0X3

3X1 +2X2 + X3 ≧2

s.t. 4X1 +X2 + 3X3≧4

2X1 +2X2+2 X3≧3

1.求解原问题,最优解,最优值

X1=0.8333,X2=0.6667,X3=0,最优值76.6667 2. 写出对偶问题,求解,最优解,最优值

maxw=2y1+4y2 + 3y3

3y1+4y2+ 2y 3 ≧60

2y1+ y2 + 2y3 ≧40

y1+3y2+2y3 ≧80

四、总结

通过此次学习,我学会了运用线性规划与对偶的进行求解,能够运用线性规划相关知识写出求解模型、能够运用相关软件进行求解,并且能够对求出的结果进行分析,从而方便问题的解决。

《运筹学》课后习题答案

第一章线性规划1、 由图可得:最优解为 2、用图解法求解线性规划: Min z=2x1+x2 ? ? ? ? ? ? ? ≥ ≤ ≤ ≥ + ≤ + - 10 5 8 24 4 2 1 2 1 2 1 x x x x x x 解: 由图可得:最优解x=1.6,y=6.4

Max z=5x 1+6x 2 ? ?? ??≥≤+-≥-0 ,23222212 121x x x x x x 解: 由图可得:最优解Max z=5x 1+6x 2, Max z= + ∞

Maxz = 2x 1 +x 2 ????? ? ?≥≤+≤+≤0,5242261552121211x x x x x x x 由图可得:最大值?????==+35121x x x , 所以?????==2 3 21x x max Z = 8.

12 12125.max 2328416412 0,1,2maxZ .j Z x x x x x x x j =+?+≤? ≤?? ≤??≥=?如图所示,在(4,2)这一点达到最大值为2 6将线性规划模型化成标准形式: Min z=x 1-2x 2+3x 3 ????? ??≥≥-=++-≥+-≤++无约束 321 321321321,0,05232 7x x x x x x x x x x x x 解:令Z ’=-Z,引进松弛变量x 4≥0,引入剩余变量x 5≥0,并令x 3=x 3’-x 3’’,其中x 3’≥ 0,x 3’’≥0 Max z ’=-x 1+2x 2-3x 3’+3x 3’’ ????? ? ?≥≥≥≥≥≥-=++-=--+-=+-++0 ,0,0'',0',0,05 232 '''7'''543321 3215332143321x x x x x x x x x x x x x x x x x x x

运筹学 第三版3

习题三 3.1 求解下表所示的运输问题,分别用最小元素法、西北角法和伏格尔法给出初始基可行解: 3.2由产地A1,A2发向销地B1,B2的单位费用如下表,产地允许存贮,销地允许缺货,存贮和缺货的单位运费也列入表中。求最优调运方案,使总费用最省。 13 3.5 某玩具公司分别生产三种新型玩具,每月可供量分别为1000、2000、2000件,它们分别被送到甲、乙、丙三个百货商店销售。已知每月百货商店各类玩具预期销售量均为1500件,由于经营方面原因,各商店销售不同玩具的盈利额不同,见下表。又知丙百货商店要求至少供应C玩具1000件,而拒绝进A玩具。求满足上述条件下使总盈利额最大的供销分配方案。

甲 乙 丙 可供量 A 5 4 - 1000 B 16 8 9 2000 C 12 10 11 2000 3.6 目前,城市大学能存贮200个文件在硬盘上,100个文件在计算机存贮器上,300个文件在磁带上。用户想存贮300个字处理文件,100个源程序文件,100个数据文件。每月,一个典型的字处理文件被访问8次,一个典型的源程序文件被访问4次,一个典型的数据文件被访问2次。3.9 某一实际的运输问题可以叙述如下:有n 个地区需要某种物资,需要量分别为b j (j =1,…,n )。这些物资均由某公司分设在m 个地区的工厂供应,各工厂的产量分别为a i (i =1,…,m ),已知从i 地区的工厂至第j 个需求地区的单位物资的运价为c ij ,又∑=m i i a 1 =∑=n j j b 1 ,试阐述其对偶问题并解释 对偶变量的经济意义。

3.10. 为确保飞行安全,飞机上的发动机每半年必须强迫更换进行大修。某维修厂估计某种型号战斗机从下一个半年算起的今后三年内每半年发动机的更换需要量分别为:100,70,80,120,150,140。更换发动机时可以换上新的,也可以用经过大修的旧的发动机。已知每台新发动机的购置费为10万元,而旧发动机的维修有两种方式:快修,每台2万元,半年交货(即本期拆下来送修的下批即可用上);慢修,每台1万元,但需一年交货(即本期拆下来送修的需下下批才能用上)。设该厂新接受该项发动机更换维修任务,又知这种型号战斗机三年后将退役,退役后这种发动机将报废。问在今后三年的每半年内,该厂为满足维修需要各新购、送去快修和慢修的发动机数各是多少,使总的维修费用为最省?(将此问题归结为运输问题,只列出产销平衡表与单位运价表,不求数值解。) 3.11甲、乙两个煤矿分别生产煤500万吨,供应A、B、C三个电厂发电需要,各电厂用量分别为300、300、400 如下列三个表所示。又煤可以直接运达, 案(最小总吨公里数)。 从到甲乙从到A B C 甲0 120 甲150 120 80 乙100 0 乙60 160 40 复习思考题 3.12 试述运输问题数学模型的特征,为什么模型的(m+n)个约束中最多只有(m+n一1)个是独立的。 3.13 试述用最小元素法确定运输问题的初始基可行解的基本思路和基本步骤。 3.14 为什么用伏格尔法给出的运输问题的初始基可行解,较之用最小元素法给出的更接近于最优解。 3.15 试述用闭回路法计算检验数的原理和经济意义,如何从任一空格出发去寻找一条闭回路。 3.16 概述用位势法求检验数的原理和步骤。 3.17 试述表上作业法计算中出现退化的涵义及处理退化的方法。 3.18 如何把一个产销不平衡的运输问题(含产大于销和销大于产)转化为产销平衡的运输问题。 3.19 一般线性规划问题应具备什么特征才可以转化并列出运输问题的数学模型,从而用表上作业法求解。 3.20 判断下列说法是否正确 (a)运输问题是一种特殊的线性规划模型,因而求解结果也可能出现下列四种情况之一:有唯一最优解,有无穷多最优解,无界解,无可行解; (b)表上作业法实质上就是求解运输问题的单纯形法; (c)按最小元素法(或伏格尔法)给出的初始基可行解,从每一空格出发可以找出且仅能找出唯一的闭回路; (d)如果运输问题单位运价表的某一行(或某一列)元素分别加上一个常数k,调运方案将不会发生变化; (e)如果运输问题单位运价表的某一行(或某一列)元素分别乘上一个常数k,调运方案将不会发生变化;

管理运筹学作业 韩伯棠第3版高等教育出版社课后答案

1 课程:管理运筹学 管理运筹学作业 第二章线性规划的图解法 P23:Q2:(1)-(6);Q3:(2) Q2:用图解法求解下列线性规划问题,并指出哪个问题具有唯一最优解,无穷多最优解,无界解或无可行解。 (1)Min f=6X1+4X2 约束条件:2X1+X2>=1, 3X1+4X2>=3 X1, X2>=0 解题如下:如图1 Min f=3.6 X1=0.2, X2=0.6 本题具有唯一最优解。 图1 (2)Max z=4X1+8X2 约束条件:2X1+2X2<=10 -X1+X2>=8 X1,X2>=0 解题如下:如图2: Max Z 无可行解。 图2 1

2 2 (3) Max z =X1+X2 约束条件 8X1+6X2>=24 4X1+6X2>=-12 2X2>=4 X1,X2>=0 解题如下:如图3: Max Z=有无界解。 图3 (4) Max Z =3X1-2X2 约束条件:X1+X2<=1 2X1+2X2>=4 X1,X2>=0 解题如下:如图4: Max Z 无可行解。 图 4

3 (5)Max Z=3X1+9X2 约束条件:X1+3X2<=22 -X1+X2<=4 X2<=6 2X1-5X2<=0 X1,X2>=0 解题如下:如图5: Max Z =66;X1=4 X2=6 本题有唯一最优解。 图5 (6)Max Z=3X1+4X2 约束条件:-X1+2X2<=8 X1+2X2<=12 2X1+X2<=16 2X1-5X2<=0 X1,X2>=0 解题如下:如图6 Max Z =30.669 X1=6.667 X2=2.667 本题有唯一最优解。 3

管理学管理运筹学课后答案——谢家平

管理运筹学 ——管理科学方法谢家平 第一章 第一章 1. 建立线性规划问题要具备三要素:决策变量、约束条件、目标函数。决策变量(Decision Variable)是决策问题待 定的量值,取值一般为非负;约束条件(Constraint Conditions)是指决策变量取值时受到的各种资源条件的限制, 保障决策方案的可行性;目标函数(Objective Function)是决策者希望实现的目标,为决策变量的线性函数表达式, 有的目标要实现极大值,有的则要求极小值。 2.(1)设立决策变量; (2)确定极值化的单一线性目标函数; (3)线性的约束条件:考虑到能力制约,保证能力需求量不能突破有效供给量; (4)非负约束。 3.(1)唯一最优解:只有一个最优点 (2)多重最优解:无穷多个最优解 (3)无界解:可行域无界,目标值无限增大 (4)没有可行解:线性规划问题的可行域是空集 无界解和没有可行解时,可能是建模时有错。 4. 线性规划的标准形式为:目标函数极大化,约束条件为等式,右端常数项bi≥0 , 决策变量满足非负性。 如果加入的这个非负变量取值为非零的话,则说明该约束限定没有约束力,对企业来说不是紧缺资源,所以称为松弛变量;剩余变量取值为非零的话,则说明“≥”型约束的左边取值大于右边规划值,出现剩余量。 5. 可行解:满足约束条件AX =b,X≥0的解,称为可行解。 基可行解:满足非负性约束的基解,称为基可行解。 可行基:对应于基可行解的基,称为可行基。 最优解:使目标函数最优的可行解,称为最优解。 最优基:最优解对应的基矩阵,称为最优基。 6. 计算步骤: 第一步,确定初始基可行解。 第二步,最优性检验与解的判别。 第三步,进行基变换。 第四步,进行函数迭代。 判断方式: 唯一最优解:所有非基变量的检验数为负数,即σj< 0 无穷多最优解:若所有非基变量的检验数σj≤ 0 ,且存在某个非基变量xNk 的检验数σk= 0 ,让其进基,目标函数

《管理运筹学》第三版案例题解

《管理运筹学》案例题解 案例1:北方化工厂月生产计划安排 解:设每月生产产品i (i=1,2,3,4,5)的数量为X i ,价格为P 1i ,Y j 为原材料j 的数量,价格为P 2j ,a ij 为产品i 中原材料j 所需的数量百分比,则: 5 10.6j i ij i Y X a ==∑ 总成本:TC=∑=15 1 2j j j P Y 总销售收入为:5 11 i i i TI X P ==∑ 目标函数为:MAX TP (总利润)=TI-TC 约束条件为: 10 30 24800215 1 ?? ?≤∑=j j Y X 1+X 3=0.7∑=5 1 i i X X 2≤0.05∑=5 1 i i X X 3+X 4≤X 1 Y 3≤4000 X i ≥0,i=1,2,3,4,5 应用计算工具求解得到: X 1=19639.94kg X 2=0kg X 3=7855.97kg X 4=11783.96kg X 5=0kg 最优解为:348286.39元

案例2:石华建设监理工程师配置问题 解:设X i 表示工地i 在标准施工期需要配备的监理工程师,Y j 表示工地j 在高峰施工期需要配备的监理工程师。 约束条件为: X 1≥5 X 2≥4 X 3≥4 X 4≥3 X 5≥3 X 6≥2 X 7≥2 Y 1+Y 2≥14 Y 2+Y 3≥13 Y 3+Y 4≥11 Y 4+Y 5≥10 Y 5+Y 6≥9 Y 6+Y 7≥7 Y 7+Y 1≥14 Y j ≥ X i (i=j ,i=1,2,…,7) 总成本Y 为: Y=∑=+7 1)12/353/7(i i i Y X 解得 X 1=5;X 2=4;X 3=4;X 4=3;X 5=3;X 6=2;X 7=2; 1Y =9;2Y =5;3Y =8;4Y =3;5Y =7;6Y =2;7Y =5; 总成本Y=167.

运筹学作业3(第二章部分习题)答案

运筹学作业2(第二章部分习题)答案 2.4 给出线性规划问题 123412341234min 2356232.. 2330,1,2,3,4 j z x x x x x x x x s t x x x x x j =+++?+++≥? -+-+≤-??≥=? (1)写出其对偶问题;(2)用图解法解对偶问题;(3)利用(2)的结果及根据对偶问 题性质写出原问题的最优解。 解:(1)原问题的对偶问题为: 12 12121212 12max 2322 23.. 35 36 0,0 w y y y y y y s t y y y y y y =--≤??+≤?? -≤??+≤??≥≤? 或者等价变形为: 12 12121212 12max 232223..3536 0,0 w y y y y y y s t y y y y y y =++≤??-≤?? +≤??-≤??≥≥? (2)用图解法求解对偶问题 12 12121212 max 2322 23.. 3536 w y y y y y y s t y y y y =++≤??-≤?? +≤??-≤ 如图示,可行区域为四边形OABC ,最优顶点为B 点,即(1.6,0.2)y * =, 3.8w * =

(3)利用互补松紧定理及(2)的结果求解原问题: 设原问题的最优解为( )1 23 4x x x x x ** ***=。 由于121.60, 0.20y y * * =>=>,故在最优解()12 3 4x x x x x ** * **=处有: 1234 1234232 2330,1,2,3,4j x x x x x x x x x j ******** * ?+++=??-+-+=-??≥=?? 又因对偶问题第4个约束方程为:1.6-0.6=1<6,故40x * =,代入上式得到: 123 123232 230,1,2,3,4j x x x x x x x j ****** * ?++=??-+-=-??≥=?? 原问题有无穷多个最优解。令30x *=得到解为1 1.6x *=,20.2x *= 即()1.60.200x * =, 3.8z * = 2.8题解答见课堂讲解。 2.9 用对偶单纯形法求解下列线性规划问题: (2) 123 123123123min 524324 .. 63510,,0z x x x x x x s t x x x x x x =++++≥?? ++≥??≥? , 解:先将原问题进行标准形化: 1231234123512345max()524324 .. 63510,,,,0 z x x x x x x x s t x x x x x x x x x -=---++-=?? ++-=??≥? 选45,x x 为基变量,并将问题化为: 1231234123512345max()524324 .. 63510,,,,0z x x x x x x x s t x x x x x x x x x -=------+=-?? ---+=-??≥? 列表计算如下:

清华_第三版_运筹学教程_课后答案~(_第一章_第五章部分)

清华第三版 运筹学 答案[键入文字] [键入文字] [键入文字] 运筹学教程 1. 某饲养场饲养动物出售,设每头动物每天至少需700g 蛋白质、30g 矿物质、100mg 维生素。现有五种饲料可供选用,各种饲料每kg 营养成分含量及单价如表1所示。 表1 要求确定既满足动物生长的营养需要,又使费用最省的选用饲料的方案。 解:设总费用为Z 。i=1,2,3,4,5代表5种饲料。i x 表示满足动物生长的营养需要时,第i 种饲料所需的数量。则有: ????? ? ?=≥≥++++≥++++≥++++++++=5,4,3,2,1,01008.022.05.0305.022.05.07008623..8.03.04.07.02.0min 54321543215432154321i x x x x x x x x x x x x x x x x t s x x x x x Z i 2. 某医院护士值班班次、每班工作时间及各班所需护士数如表2所示。每班护士值班 开始时间向病房报道,试决定: (1) 若护士上班后连续工作8h ,该医院最少需要多少名护士,以满足轮班需要; (2) 若除22:00上班的护士连续工作8h 外(取消第6班),其他班次护士由医院 排定上1~4班的其中两个班,则该医院又需要多少名护士满足轮班需要。 表2

6 2:00~6:00 30 解:(1)设x 第i 班开始上班的人数,i=1,2,3,4,5,6 ???????????=≥≥+≥+≥+≥+≥+≥++++++=且为整数 6,5,4,3,2,1,030 2050607060..min 655443 322161 654321i x x x x x x x x x x x x x t s x x x x x x Z i 解:(2)在题设情况下,可知第五班一定要30个人才能满足轮班需要。则设设i x 第i 班开始上班的人数,i=1,2,3,4。 ??? ????? ?? ??? ??=≥=+++=≥+++=+++=≥+++=+++=≥+++=+++=≥+++++++=4 ,3,2,1,1002 1502 16021702 ,160..30 min i 444342414444433422411434 33323133 443333223113242322212244233222211214131211114413312211114321j i y x y y y y y x y x y x y x y y y y y y x y x y x y x y y y y y y x y x y x y x y y y y y y x y x y x y x y t s x x x x Z ij 变量,—是,,,第四班约束,,第三班约束,,第二班约束,第一班约束 3. 要在长度为l 的一根圆钢上截取不同长度的零件毛坯,毛坯长度有n 种,分别为j a (j=1,2,…n )。问每种毛坯应当截取多少根,才能使圆钢残料最少,试建立本问题的数学模型。 解:设i x 表示各种毛坯的数量,i=1,2,…n 。

运筹学第3章答案

3.1某公司今后三年内有五项工程可以考虑投资。每项工程的期望收入和年度费用(万元)如表3-10所示。 表3-10 工 程 费 用 收 入 第一年 第二年 第三年 1 2 3 4 5 5 1 8 4 7 2 5 9 6 7 5 2 8 6 9 30 40 20 15 30 资金拥有量 30 25 30 【解】设10j j x j ?=?? 投资项目 不投资项目,模型为 12345 123451 234512345max 30402015305457830795625 826293001,1,,5j Z x x x x x x x x x x x x x x x x x x x x x j =++++++++≤??++++≤?? ++++≤??=? L =或 最优解X =(1,1,1,0,1),Z=110万元,即选择项目1、2、3、5时总收入最大。 3.2址问题。以汉江、长江为界将武汉市划分为汉口、汉阳和武昌三镇。某商业银行计划投资9000万元在武汉市备选的12个点考虑设立支行,如图3-10所示。每个点的投资额与一年的收益见表3-10。计划汉口投资2~3个支行,汉阳投资1~2个支行,武昌投资3~4个支行。 如何投资使总收益最大,建立该问题的数学模型,说明是什么模型,可以用什么方法求解。 表3-11 地址i 1 2 3 4 5 6 7 8 9 10 11 12 投资额(万元) 900 1200 1000 750 680 800 720 1150 1200 1250 850 1000 收益(万元) 400 500 450 350 300 400 320 460 500 510 380 400 j j 12312 12311124 4771212115588max 40050045040090012001000850100090002,3,1,2,3,4101,,12j j j j j j j j j j j j j Z x x x x x x x x x x x x x x x x j =======++++?+++++≤?? ≥≤≥≤≥≤?? ?==?∑∑∑∑∑∑L L L 或, 图3-10

运筹学第3版熊伟编著习题答案

运筹学(第3版)习题答案 第1章线性规划 P36 第2章线性规划的对偶理论 P74 第3章整数规划 P88 第4章目标规划 P105 第5章运输与指派问题P142 第6章网络模型 P173 第7章网络计划 P195 第8章动态规划 P218 第9章排队论 P248 第10章存储论P277 第11章决策论P304 第12章 多属性决策品P343 第13章博弈论P371 全书420页 第1章 线性规划 1.1工厂每月生产A 、B 、C 三种产品 ,单件产品的原材料消耗量、设备台时的消耗量、资源限量及单件产品利润如表1-23所示. 310和130.试建立该问题的数学模型,使每月利润最大. 【解】设x 1、x 2、x 3分别为产品A 、B 、C 的产量,则数学模型为 1231231 23123123max 1014121.5 1.2425003 1.6 1.21400 150250260310120130,,0 Z x x x x x x x x x x x x x x x =++++≤??++≤??≤≤?? ≤≤??≤≤?≥?? 1.2建筑公司需要用5m 长的塑钢材料制作A 、B 两种型号的窗架.两种窗架所需材料规格 及数量如表1-24所示:

问怎样下料使得(1)用料最少;(2)余料最少. 【解 设x j (j =1,2,…,10)为第j 种方案使用原材料的根数,则 (1)用料最少数学模型为 10 1 12342567368947910 min 2800212002600223900 0,1,2,,10 j j j Z x x x x x x x x x x x x x x x x x x j ==?+++≥? +++≥?? +++≥??+++≥??≥=?∑L (2)余料最少数学模型为 2345681012342567368947910 min 0.50.50.52800 212002********* 0,1,2,,10 j Z x x x x x x x x x x x x x x x x x x x x x x x x j =++++++?+++≥? +++≥?? +++≥??+++≥??≥=?L 1.3某企业需要制定1~6月份产品A 的生产与销售计划。已知产品A 每月底交货,市场需求没有限制,由于仓库容量有限,仓库最多库存产品A1000件,1月初仓库库存200件。1~6月份产品A 的单件成本与售价如表1-25所示。 (2)当1月初库存量为零并且要求6月底需要库存200件时,模型如何变化。 【解】设x j 、y j (j =1,2,…,6)分别为1~6月份的生产量和销售量,则数学模型为

《运筹学》第3章习题

第三章线性规划对偶理论与灵敏度分析习题 一、思考题 1.对偶问题和对偶变量的经济意义是什么? 2.简述对偶单纯形法的计算步骤。它与单纯形法的异同之处是什么? 3.什么是资源的影子价格?它和相应的市场价格之间有什么区别? 4.如何根据原问题和对偶问题之间的对应关系,找出两个问题变量之间、解及检 验数之间的关系? 5.利用对偶单纯形法计算时,如何判断原问题有最优解或无可行解? 6.在线性规划的最优单纯形表中,松弛变量(或剩余变量)0>+k n x ,其经济意 义是什么? 7.在线性规划的最优单纯形表中,松弛变量k n x +的检验数0>+k n σ(标准形为 求最小值),其经济意义是什么? 8.将i j j i b c a ,,的变化直接反映到最优单纯形表中,表中原问题和对偶问题的解 将会出现什么变化?有多少种不同情况?如何去处理? 二、判断下列说法是否正确 1.任何线性规划问题都存在且有唯一的对偶问题。 2.对偶问题的对偶问题一定是原问题。 3.若线性规划的原问题和其对偶问题都有最优解,则最优解一定相等。 4.对于线性规划的原问题和其对偶问题,若其中一个有最优解,另一个也一定 有最优解。 5.若线性规划的原问题有无穷多个最优解时,其对偶问题也有无穷多个最优解。 6.已知在线性规划的对偶问题的最优解中,对偶变量0>* i y ,说明在最优生产计 划中,第i 种资源已经完全用尽。 7.已知在线性规划的对偶问题的最优解中,对偶变量0=*i y ,说明在最优生产计 划中,第i 种资源一定还有剩余。 8.对于i j j i b c a ,,来说,每一个都有有限的变化范围,当其改变超出了这个范围 之后,线性规划的最优解就会发生变化。 9.若某种资源的影子价格为u ,则在其它资源数量不变的情况下,该资源增加k 个单位,相应的目标函数值增加 u k 。 10.应用对偶单纯形法计算时,若单纯形表中某一基变量0

《管理运筹学》第三版案例题解

《管理运筹学》案例题解 案例1北方化工厂月生产计划安排 解:设每月生产产品i(i=1,2, 3, 4, 5)的数量为X i,价格为P ii,Y为原材 料j的数量,价格为P2j,a ij为产品i中原材料j所需的数量百分比,则: 5 0.6Y^Z X i B ij i£ 15 总成本:TC=2;Y j P2j j生 5 总销售收入为:T^Z X i P1i i仝 目标函数为: MAX TP (总利润)=TI-TC

案例2:石华建设监理工程师配置问题 解:设X i 表示工地i 在标准施工期需要配备的监理工程师,Y j 表示工地j 在高峰 施工期需要配备的监理工程师。 约束条件为: X 3 >4 X 4 >3 X 5 >3 X 6 >2 X 7 >2 丫1+丫2>14 丫2+丫3>13 丫3+丫4>11 丫4+丫5>10 丫5+丫6为 丫6+丫7 二7 约束条件为: 15 Z Y j <2X800X j 壬 24X30 10 5 X 1+X 3=0.72: X i i 壬 5 X 2<0.052 X i X 3+X 4W X 1 丫3 <4000 X i > 0,i=1,2,3,4,5 应用计算工具求解得到: X i =19639.94kg X 2=0kg X 3=7855.97kg X 4=11783.96kg X 5=0kg 最优解为:348286.39 元

丫7+丫1>14 Y j>X i (i=j, i=1,2, (7) 总成本丫为: 7 Y=S (7X i /3 + 35Y i/12) i zt 解得 X i=5; X2=4; X3=4; X4=3; X5=3; X6=2 ; X7=2; Y I =9; 丫2=5; 丫3=8; 丫4=3; 丫5=7; 丫 6 =2; 丫7=5;总成本丫=167.

__运筹学概述

第一讲运筹学概述 一、运筹学是什么 ----------------------晕愁学 其实,这绝对一种误解,事实上运筹学方法及应用早在中小学就比较系统地学过,并且在我们每时每刻的生活过程中都在利用。 北师大版小学语文第六册教材中就有一篇课文《田忌赛马》,在座的各位应该都不陌生。这是战国时期运筹学思想成功应用的典型实例。孙膑同志合理地利用当时的现有资源、条件和比赛规则,只建议田忌调换了赛马的出场顺序,就使得原来屡战屡败的战局得到了彻底的扭转,以获胜而告终。形成了本文主题中“初战失败”、“孙膑献计”、“再赛获胜”的三部分内容。 运筹学思想体现的是,将现有资源的作用得到充分发挥,以获得最优的结果。运筹让生活得更有条理的艺术。 谈起运筹学,是否会想到很通俗的例子——沏茶水。沏茶,看起来是一件日常生活中再小不过的事情,却包含着运筹学的道理。让我们来看一看,沏茶的过程可以分为烧开水、洗茶壶、放茶叶多道“工序”。其中,烧开水所需的时间最长,洗茶壶、放茶叶的时间则较短。善于运筹的人,应该是先将水烧上,在烧水的过程中,从从容容地把茶壶洗净,把茶叶放好。而不善运筹的人,可能会先把茶壶洗净,把茶叶放好,才想起来水还没有烧;或者先把水烧开了,才急急忙忙去洗茶壶、放茶叶,搞得手忙脚乱。 另外还有一个例子我们外地生到上海的路线选择,虽然条条大路都能通到上海,但我们都有一个明确的目标,有些人的目标是准备用最短的时间到达,有些人的目标是用最少费用到达,这样基于不同的目标,就会选择不同的最佳路线。 这两个生活中的运筹学实例说明了运筹学应用的思想并不神秘,而现实的生活中,从沏茶、选择路线这样一件小事,到规模宏大的建设项目,都能运用运筹学的原理。在人生大事的安排上,也同样需要下功夫好好运筹一番。 从技术是,也就是运筹学解决决策问题的工具方面,在初中的数学教材中有一个重要的内容是《线性规划》,其中比较详细地讲述了线性规划的数学表述形式和求解方法。只不过没有详细介绍在实际决策过程中的应用。而线性规划是运筹学的主要决策工具,并且我们

运筹学课后习题解答Word版

运筹学部分课后习题解答P47 1.1 用图解法求解线性规划问题 a) 12 12 12 12 min z=23 466 ..424 ,0 x x x x s t x x x x + +≥ ? ? +≥ ? ?≥ ? 解:由图1可知,该问题的可行域为凸集MABCN,且可知线段BA上的点都 为最优解,即该问题有无穷多最优解,这时的最优值为 min 3 z=2303 2 ?+?= P47 1.3 用图解法和单纯形法求解线性规划问题 a) 12 12 12 12 max z=10x5x 349 ..528 ,0 x x s t x x x x + +≤ ? ? +≤ ? ?≥ ? 解:由图1可知,该问题的可行域为凸集OABCO,且可知B点为最优值点, 即 1 12 122 1 349 3 528 2 x x x x x x = ? += ?? ? ?? +== ?? ? ,即最优解为* 3 1, 2 T x ?? = ? ?? 这时的最优值为 max 335 z=1015 22 ?+?=

单纯形法: 原问题化成标准型为 121231241234 max z=10x 5x 349 ..528,,,0x x x s t x x x x x x x +++=?? ++=??≥? j c → 10 5 B C B X b 1x 2x 3x 4x 0 3x 9 3 4 1 0 0 4x 8 [5] 2 0 1 j j C Z - 10 5 0 0 0 3x 21/5 0 [14/5] 1 -3/5 10 1x 8/5 1 2/5 0 1/5 j j C Z - 1 0 - 2 5 2x 3/2 0 1 5/14 -3/14 10 1x 1 1 0 -1/7 2/7 j j C Z - -5/14 -25/14

运筹学第3版熊伟编著习题答案

运筹学(第3版)习题答案 第1章 线性规划 P36 第2章 线性规划的对偶理论 P74 第3章 整数规划 P88 第4章 目标规划 P105 第5章 运输与指派问题P142 第6章 网络模型 P173 第7章 网络计划 P195 第8章 动态规划 P218 第9章 排队论 P248 第10章 存储论P277 第11章 决策论P304 第12章 多属性决策品P343 第13章 博弈论P371 全书420页 第1章 线性规划 1.1 工厂每月生产A 、B 、C 三种产品 ,单件产品的原材料消耗量、设备台时的消耗量、资源限量及单件产品利润如表1-23所示. 310和130.试建立该问题的数学模型,使每月利润最大. 【解】设x 1、x 2、x 3分别为产品A 、B 、C 的产量,则数学模型为 1231231 23123123max 1014121.5 1.2425003 1.6 1.21400 150250260310120130,,0 Z x x x x x x x x x x x x x x x =++++≤??++≤??≤≤?? ≤≤??≤≤?≥?? 1.2 建筑公司需要用5m 长的塑钢材料制作A 、B 两种型号的窗架.两种窗架所需材料规格 及数量如表1-24所示:

问怎样下料使得(1)用料最少;(2)余料最少. 【解 设x j (j =1,2,…,10)为第j 种方案使用原材料的根数,则 (1)用料最少数学模型为 10 1 12342567368947910 min 2800212002600223900 0,1,2,,10 j j j Z x x x x x x x x x x x x x x x x x x j ==?+++≥? +++≥?? +++≥??+++≥??≥=?∑L (2)余料最少数学模型为 2345681012342567368947910 min 0.50.50.52800 212002********* 0,1,2,,10 j Z x x x x x x x x x x x x x x x x x x x x x x x x j =++++++?+++≥? +++≥?? +++≥??+++≥??≥=?L 1.3某企业需要制定1~6月份产品A 的生产与销售计划。已知产品A 每月底交货,市场需求没有限制,由于仓库容量有限,仓库最多库存产品A1000件,1月初仓库库存200件。1~6月份产品A 的单件成本与售价如表1-25所示。 (2)当1月初库存量为零并且要求6月底需要库存200件时,模型如何变化。 【解】设x j 、y j (j =1,2,…,6)分别为1~6月份的生产量和销售量,则数学模型为

运筹学部分课后习题集解答1

运筹学部分课后习题解答 P47 1.1 用图解法求解线性规划问题 a ) 12 121212 min z=23466 ..424,0x x x x s t x x x x ++≥?? +≥??≥? 解:由图1可知,该问题的可行域为凸集MABCN ,且可知线段BA 上的点 都为最优解,即该问题有无穷多最优解,这时的最优值为min 3 z =23032 ?+?= P47 1.3 用图解法和单纯形法求解线性规划问题 a ) 12 121212 max z=10x 5x 349 ..528,0x x s t x x x x ++≤?? +≤??≥? 解:由图1可知,该问题的可行域为凸集OABCO ,且可知B 点为最优值点, 即112122134935282 x x x x x x =?+=?????+== ???,即最优解为* 31,2T x ??= ??? 这时的最优值为max 335 z =101522 ?+? =

单纯形法: 原问题化成标准型为 121231241234 max z=10x 5x 349 ..528,,,0x x x s t x x x x x x x +++=?? ++=??≥? j c → 10 5 B C B X b 1x 2x 3x 4x 0 3x 9 3 4 1 0 0 4x 8 [5] 2 0 1 j j C Z - 10 5 0 0 0 3x 21/5 0 [14/5] 1 -3/5 10 1x 8/5 1 2/5 0 1/5 j j C Z - 1 0 - 2 5 2x 3/2 0 1 5/14 -3/14 10 1x 1 1 0 -1/7 2/7 j j C Z - -5/14 -25/14

韩伯棠教授《管理运筹学》第三版习总复习

一、管理运筹学的定义 运筹学(Operational Research,简称OR) ,英文直译为“运作研究”。 管理运筹学是应用分析、试验、量化的方法,对经济管理系统中的人力、物力、财力等资源进行统筹安排,为决策者提供有依据的最优方案,以实现最有效的管理。 ——《中国企业管理百科全书》 绪论 二、管理运筹学Ⅰ的主要分支 线性规划(Linear Programming,简称LP) 整数规划(Integral Programming,简称IP) 目标规划(Objective Programming,简称OP) 动态规划(Dynamic Programming,简称DP) 图与网络(Graph and Network) 三、管理运筹学的工作步骤 提出问题、分析问题 建立模型 求解 解的检验、控制、实施 四、运筹学方法的特点 1. 最优化方法 2. 定量的方法 线性规划(LP) 一、问题的提出 1.生产计划安排问题: 合理利用人力、物力、财力等,在资源有限的约束条件下,寻求使得获利最大的最优生产计划方案。 2.人力资源分配的问题: 在满足工作的需要的条件下,寻求使用最少的劳动力的最优分配方案。 3.套裁下料问题: 在保证正常生产,完成生产任务的条件下,寻求使用原料最省的最优下料方案。 4.投资问题:在投资额限制的条件下,从多个投资项目中选取使得投资回报最大的最优投资方案。 5.运输问题:寻求使得总运费最小的最优调运方案。 二、建模 1.一般步骤:

分析问题,设出决策变量 根据所提问题列出目标函数 根据已知条件列出所有约束条件 数学模型的一般形式 ★矩阵形式:假设有n个决策变量,m个约束条件。 目标函数:Max (Min)z = CX 约束条件: AX ≤(=, ≥)b . X≥0 其中,C=(c1 , c2 , …, cn )(价值向量) X= (x1 , x2 , …, xn )T(决策变量向量) b=(b1 , b2 , …, bm )T (限定向量) a11 a12 (1) a21 a22 …a2n (约束条件系数矩阵) Am×n = …… am1 am2 …amn 数学模型的特点 (1)由目标函数和约束条件构成; (2)目标函数只有两种情况:求极小或求极大。 (3)双线性 ①目标函数是关于决策变量的线性函数; ②所有约束条件是关于决策变量的线性函数。 三、求解 1.方法一:图解法 (1)适用条件 有且仅有两个决策变量X1,X2。 (2)基本概念 可行解;可行域;最优解 (3)基本思路:先求出可行解(即找出可行域),再在可行解的基础上(即在可行域内)求出最优解。 (4)基本步骤作图找出可行域作出目标函数等值线,判断其平移的方向 平移目标函数等值线,在可行域内找出最优点,计算最优解。 (5)图解法解的情况 ①唯一最优解②无穷多最优解 ③无可行解④无界解 注意:能够区分无可行解和无界解的情况。

规划数学(运筹学)第三版课后习题答案习题

习 题 1 1 用图解法求解下列线性规划问题,并指出问题具有唯一最优解、无穷最优解、无界解还是无可行解。 ??? ??≥≥+≥++=0 x x 42x 4x 66x 4x 3x 2x minz )a (21 212121, ?? ? ??≥≥+≤++=0 x ,x 124x 3x 2 x 2x 2x 3x maxz )b (2121212 1 ?? ???≤≤≤≤≤++=8 x 310x 5120 10x 6x x x maxz )c (21 212 1 ?? ? ??≥≤+-≥-+=0 x ,x 23x 2x 2x 2x 6x 5x maxz )d (21212121 答案: (a)唯一解3*,)5.0,75.0(*==z X T ); (b)无可行解; (c)唯一解16*,) 6,10(*==z X T ); (d)无界解) 2 用单纯形法求解下列线性规划问题。 ?????≥ ≤+≤++=0 x ,x 82x 5x 94x 3x 5x 10x maxz )a (21 212121 ?????? ? ≥ ≤+≤+≤+=0 x , x 5x x 242x 6x 155x x 2x maxz )b (212 12122 1 答案: (a)唯一解5.17*,) 5.1,1(*==z X T ),对偶问题5.17*,)786.1,357.0(*==w Y T ; (b)唯一解5.8*,) 5.1,5.3(*==z X T ) ,5.8*,)5.0,25.0,0(*==w Y T 3 用大M 法和两阶段法求解下列线性规划问题,并指出属于哪一类解。 ????? ??≥≥-≥+-≥+++-=0 x x x 0x 2x 2x 2x 6 x x x 2x x 2x maxz )a (3 , 2, 13231321 321 ?????≥≥+≥++++=0 x , x , x 62x 3x 82x 4x x x 3x 2x minz )b (321 21 3 21 3 21 答案: (a)无界解;(b)唯一解8*,) 0,8.1,8.0(*==z X T ),对偶问题8*,)0,1(*==w Y T 4已知线性规划问题的初始单纯形表(如表1-54所示)和用单纯形法迭代后得到的表(如表1-55所示)如下,试求括弧中未知数a ~l 的值。

电力出版社运筹学答案 第三张基础训练

第3章训练题 32.某单位有5个拟选择的投资项目,其所需投资额及期望收益(单位:万元)如右表所示。由于各项目之间有一定联系,A 、C 、E 之间必须选择一项,且仅需选择一项;B 和D 之间需选择且仅需选择一项;又由于C 和D 两项目密切相关,C 的实施必须以D 的实施为前提条件。该单位共筹集资金15万元,应选择那些投资项目,使期望收益最大? 32.E D C B A ,,,,分别用5,4,3,2,1表示, ???=否则个项目 投资第设, 0,1i x i ,模型为 ???? ? ?? ? ? ==≤++++≤=+=++++++=)5,4,3,2,1(,1015 542461 1967810max 5 4321434253154321i x x x x x x x x x x x x x x x x x x z i 或 投资项目B A ,,最大收益是18万元。 二.实践能力训练 1.某房屋出租者有资产191万元,准备购买两种房产用来出租。第一种房产每栋33万元,但目前只有4栋可买;第二种是套房,每套28万元,数量不限。该房产主每月能用于照料出租房的时间为140小时。第一种房间每栋每月需照料时间为4小时,第二种房产每套需40小时。第一种房产每年每栋净收益为2万元,第二种每套3万元。房产主应如何分配他的资金来购买这两种房产,可使年收益最大? 1.设21,x x 分别表示购买一、二两种房产的套数,模型为 ???? ? ? ?≥≤+≤≤++=且取整数0,1404044191283332max 2 12112121x x x x x x x x x z 第一种房产买3栋,第二种房产买3栋。最大收益是15万元。 3.某超市集团计划在市区Ⅰ、Ⅱ、Ⅲ号地域建立超市网点,可供选择的位置有8处,其中要求:Ⅰ号地域由321,,A A A 三处组成,且至少选两处;Ⅱ号地域由54,A A 两处组成,

管理运筹学(第三版)课后习题答案

管理运筹学(第三版)课后习题答案 篇一:管理运筹学(第三版)课后习题 第 3 章线性规划问题的计算机求解 1、解: ax= 150 x= 70 1 2 目标函数最优值 103000 b 1,3 使用完2,4 没用完 0,330,0,15 c 50,0,200,0 含义: 1 车间每增加 1 工时,总利润增加 50 元 3 车间每增加 1 工时,总利润增加 200 元 2、 4 车间每增加 1 工时,总利润不增加。 d 3 车间,因为增加的利润最大 e 在 400 到正无穷的范围内变化,最优产品的组合不变 f 不变因为在 [0,500]的范围内 g 所谓的上限和下限值指当约束条件的右边值在给定范围内变化时,约束条 件 1 的右边值在 [200,440]变化,对偶价格仍为 50(同理解释其他约束条件)h 100×50=5000 对偶价格不变 i 能 j 不发生变化允许增加的百分比与允许减少的百分比之和没有超出100% k 发生变化 2、解:

a 4000 10000 62000 b 约束条件 1:总投资额增加 1 个单位,风险系数则降低 0.057 约束条件 2:年回报额增加 1 个单位,风险系数升高 2.167 c 约束条件 1 的松弛变量是 0,约束条件 2 的剩余变量是 0 约束条件 3 为大于等于,故其剩余变量为 700000 d 当 c不变时, c 在 3.75 到正无穷的范围内变化,最优解不变 2 1 当 c不变时, c在负无穷到 6.4 的范围内变化,最优解不变 1 2 e 约束条件 1 的右边值在 [780000,1500000]变化,对偶价格仍为 0.057(其他同理) f 不能,理由见百分之一百法则二 3 、解: a 18000 3000 102000 153000 b 总投资额的松弛变量为 0基金 b 的投资额的剩余变量为 0 c 总投资额每增加 1 个单位,回报额增加 0.1 基金 b 的投资额每增加 1 个单位,回报额下降 0.06 d c不变时, c 在负无穷到 10 的范围内变化,其最优解不变 1

相关文档
相关文档 最新文档