文档库 最新最全的文档下载
当前位置:文档库 › 基质结构对潜流人工湿地氮磷降解规律的影响_谭良良

基质结构对潜流人工湿地氮磷降解规律的影响_谭良良

基质结构对潜流人工湿地氮磷降解规律的影响_谭良良
基质结构对潜流人工湿地氮磷降解规律的影响_谭良良

人工湿地设计规范方案

人工湿地设计规范 1总则 1.0.1为贯彻《中华人民共和国环境保护法》和《中华人民共和国水污染环境防治法》,规范人工湿地污水处理技术,保护和改善环境,提高人民健康水平,建设环境友好型社会,特制定本规程。 1.0.2本规程适用于江苏省内人工湿地污水处理系统的设计、施工、验收和运行管理。 1.0.3人工湿地污水处理对象为生活污水、生活废水,或具有类似性质的污废水。包括城市生活污水、农村生活污水、学校生活污水、住宅小区生活污水、宾馆污水、机关事业单位污水、疗养院污水、景区污水、污水处理厂尾水等。 1.0.4本规程适用的处理规模:生活污水处理规模≤2000m3/日处理水量,城市污水处理厂尾水处理时规模≤10000m3/日处理水量。 1.0.5人工湿地污水处理系统的设计、施工、验收和运行管理除应符合本规程外,还应符合国家、省现行有关标准的规定。 2术语 2.1.1人工湿地constructedwetlands 人工湿地是人们模拟天然湿地系统结构和功能而建造的、可控制运行的湿地系统,用以对受污染水进行处理的一种工艺,由围护结构、人工介质、水生植物等部分构成。当水进入人工湿地时,其污染物被床体吸附、过滤、分解而达到水质净化作用。 人工湿地分为表面流人工湿地、水平潜流人工湿地和垂直潜流人工湿地。 2.1.2表面流人工湿地freewatersurfaceconstructedwetlands

指水在人工湿地介质层表面流动,依靠表层介质、植物根茎的拦截及其上的生物膜降解作用,使水净化的人工湿地。 2.1.3水平潜流人工湿地 subsurfacehorizontalflowconstructedwetlands 指水从人工湿地池体一端进入,水平流经人工湿地介质,通过介质的拦截、植物根部及生物膜的降解作用,使水净化的人工湿地。 2.1.4垂直流人工湿地verticalflowconstructedwetlands 指水从人工湿地表面垂直流过人工湿地介质床而从底部排出,或从人工湿地底部进入垂直流向介质表层并排出,使水得以净化的人工湿地。垂直流人工湿地分单向垂直流人工湿地和复合垂直流人工湿地两种。 2.1.5孔隙率porosity 指人工湿地充填介质中,存在于介质间的孔隙体积占全部体积的百分比。 2.1.6水力停留时间hydraulicretentiontime 指水在人工湿地内的平均停留时间。 2.1.7表面污染物负荷organicsurfaceloading 指一定人工湿地表面积中,单位时间内去除的污染物数量。 2.1.8表面水力负荷hydraulicsurfaceloading 指一定人工湿地表面中,单位时间内通过的水体积。 2.1.9水力坡度hydraulicslope 指水在人工湿地内,沿水流方向单位渗流路程长度上的水位下降值。 2.1.10渗透系数permeabilitycoefficient指水在人工湿地介质或防渗层中,单位时间内流动通过的距离。 3人工湿地处理工艺设计 3.1处理设施选址与总体布置

人工湿地的磷去除机理

生态环境 2006, 15(2): 391-396 https://www.wendangku.net/doc/487180378.html, Ecology and Environment E-mail: editor@https://www.wendangku.net/doc/487180378.html, 基金项目:国家重点基础研究发展规划项目(2002CB412302);国家重大科技专项(K99-05-35-02) 作者简介:卢少勇(1976-),男,助理研究员,博士,研究方向为水污染治理与生态修复。Tel: +86-10-136********;E-mail: lusy@https://www.wendangku.net/doc/487180378.html, 收稿日期:2005-11-06 人工湿地的磷去除机理 卢少勇1, 2,金相灿1,余 刚2 1. 中国环境科学研究院湖泊环境研究中心//国家环境保护湖泊污染控制重点实验室,北京 100012; 2. 清华大学环境科学与工程系,北京 100084 摘要:人类生产和生活所产生的磷负荷导致了全中国范围湖泊的富营养化,控制此磷负荷的廉价而有效的具有非常广阔的应用前景技术是人工湿地技术。人工湿地中的磷的存在形态主要有有机磷(生物态和非生物态的)、磷酸、可溶性磷酸盐和不溶性磷酸盐。文章总结了人工湿地中的磷去除机理,在防渗人工湿地系统中,主要的磷去除机理包括化学作用(如沉淀作用和吸附作用);生物作用(如植物吸收作用和微生物吸收与积累作用)和物理作用(如沉积作用)。在未防渗的人工湿地系统中,湿地系统和周围水体(如地下水)的交换量对湿地的磷去除有重要的影响。通常情况下,物理作用和化学作用是人工湿地中最主要的磷去除途径。人工湿地中微生物对磷的去除作用的大小和其所处环境中的氧状态密切相关,植物吸收对磷的去除作用的大小和收割频率与时期、进水负荷、植物物种和气候条件等有关。 关键词:人工湿地;磷;去除机理 中图分类号:X52 文献标识码:A 文章编号:1672-2175(2006)02-0391-06 人类生产和生活所产生的磷负荷导致了全中国范围湖泊的富营养化,控制此磷负荷的廉价而有效的具有非常广阔的应用前景技术是人工湿地技术。人工湿地是20世纪70年代开始发展起来的污水处理工艺[1],自1974年在西德首次建立人工湿地工程(处理城市污水)以来,人工湿地在污水处理领域和水资源保护中得到了大量的应用。人工湿地是独特的土壤-植物-微生物生态系统。人工湿地处理系统人为地将污水投配到常处于浸没状态且生长有水生植物(如芦苇、香蒲和茭草等)的土地上,沿一定方向流动的污水在耐水植物、土壤和微生物等的协同作用下得到净化[2]4-5。由于人工湿地具有氮和磷去除效果好、投资低、运行费用省、耐冲击负荷能力强、维护管理简便和生态景观性能好等一系列优点,因此在资金不富裕但有富余可用地的村镇以及城市污水二级处理厂的深度处理中具有广阔的应用前景[2]179-183, [3,4]。磷是湖泊等水体富营养化的重要因素乃至限制因素,探明用于去除污水中磷的人工湿地系统中的磷去除机理具有重要的意义。 1 人工湿地的磷去除机理 湿地系统去除来水中磷的机理主要为物理、化学和生物作用[5-12],详见表1。 磷在污水中常以磷酸盐(PO 43-、HPO 43-、H 2PO 4-)、聚磷酸盐和有机磷存在。磷是植物生长所必需的元素,污水中的无机磷被植物的吸收和同化而合成ATP 等,通过收割而被带出系统。生物氧化 将绝大多数磷转化为磷酸盐。生物同化无机磷或微生物分解有机磷时,磷的价态不变。低氧化态磷热力学不稳定(即使在高还原性的湿地土壤中也易被氧化为PO 43-),土壤磷以+5价(氧化态)为主。土壤中膦化氢(气态磷)极少[5,13]。湿地土柱(soil column )中的磷几乎都是结合态磷(bound P )、无机磷和有机磷[14]。 图1(下页)为湿地系统中的磷形态转化图。防渗湿地系统中,进水磷的分配途径有出水、植物吸收、微生物的吸收和积累以及沉积吸附沉淀。未防渗湿地系统中,还要考虑湿地与周围水体交换的磷量,如图1中所示的过程⑥,下文中所提及的湿地均指防渗湿地。降水带入的磷的质量浓度一般很低。通常情况下,沉积、吸附、沉淀和微生物的吸收和积累是湿地中最主要的磷去向。另外,在湿地系统中,由于植物土壤蒸发蒸腾作用导致湿地中部分水分损失,而降水导致湿地水量增加,湿地与周围水体存在水量交换,因此进水量可能与出水量差别较 表1 湿地中的磷去除机理 Table 1 Phosphorus removal mechanisms in wetland 机理 备注 物理 沉积 固体重力沉淀 化学 沉淀 不溶物的形成或共沉淀 吸附 吸附在基质或植物表面 生物 植物吸收 适宜条件下植物摄取量较显著 微生物吸收与积累 微生物吸收量取决于其生长所需,积

污水处理工艺中如何进行脱氮除磷

污水处理工艺中如何进行脱氮除磷? 氮、磷的主要危害:一是受纳水体富营养化;二是影响水源水质,增加给水处理成本;三是对人和生物有一定的毒害。 生物脱氮分为三步: 1、氨化作用,即水中的有机氮在氨化细菌的作用下转化成氨氮。在普通活性污泥法中,氨化作用进行得很快,无需采取特殊的措施。 2、硝化作用,即在供氧充足的条件下,水中的氨氮首先在亚硝酸钠的作用下被氧化成亚硝酸盐,然再在硝酸菌的作用下进一步氧化成硝酸盐。为防止生长缓慢的亚硝酸细菌和硝酸细菌从活性污泥系统中流失, 要求很长的污泥龄。 3、反硝化作用, 即硝化产生的亚硝酸盐和硝酸盐在反硝化细菌的作用下被还原成氮气。这一步速率也比较快, 但由于反硝化细菌是兼性厌氧菌, 只有在缺氧或厌氧条件下才能进行反硝化, 因此需要为其创造一个缺氧或厌氧的环境( 好氧池的混合液回流到缺氧池) 。 生物除磷原理 所谓生物除磷, 是利用聚磷菌一类的微生物, 在厌氧条件下释放磷。而在好氧条件下, 能够过量地从外部环境摄取磷, 在数量上超过其生理需要, 并将磷以聚合的形态储藏在菌体内, 形成高磷污泥排出系统, 达到从污水中除磷的效果。 可分为三个阶段,,即细菌的压抑放磷、过渡积累和奢量吸收。 首先将活性污泥处于短时间的厌氧状态时,储磷菌把储存的聚磷酸盐进行分解,提供能量,并 大量吸收污水中的BOD、释放磷( 聚磷酸盐水解为正磷酸盐) ,使污水中BOD 下降,磷含量升高。然后在好氧阶段,微生物利用被氧化分解所获得的能量,大量吸收在厌氧阶段释放的磷和原污水中的磷,完成磷的过渡积累和最后的奢量吸收,在细胞体内合成聚磷酸盐而储存起来,从而达到去除BOD 和磷的目的。 脱氮除磷工艺 1、传统A2/O 法即厌氧→缺氧→好氧活性污泥法。污水在流经三个不同功能分区的过程中,在不同微生物菌群作用下,使污水中的有机物、氮和磷得到去除。原污水的碳源物质(BOD)首先进入厌氧池聚磷菌优先利用污水中易生物降解有机物成为优势菌种,为除磷创造了条件,然后污水进入缺氧池,反硝化菌利用其它可利用的碳源将回流到缺氧池的硝态氮还原成氮气排入到大气中, 达到脱氮的目的。 2、氧化沟工艺是一种污水处理工艺形式,因其构造简单、易于维护管理,很快得到广泛应用。主要有Passveer单沟型、Orbal同心圆型、Carrousel循环折流型、D型双沟式和T型三沟式等。传统Passveer单沟型和Carrousel型氧化沟不具备脱氮除磷功能,但是在Carrousel氧化沟前增设厌氧池,在沟体内通过曝气装置的合理设置形成缺氧区和好氧区,形成改良型氧化沟,便具备生物脱氮除磷功能。 3、SBR 法是间歇式活性污泥法,降解有机物,属循环式活性污泥法范围,主要是好氧活性污泥,回流到反应池前部的污泥吸附区,回流污泥中硝酸盐得以反硝化在充分条件下可大量吸附进水中的有机物达到脱氮除磷的效果。 随着对脱氮除磷机理的深入探究,新工艺的不断出现及其可行性, 为水处理工艺提供了新的理论和思路。但社会的可持续发展给污水脱氮除磷处理提出了越来越高的要求,污水处理已不仅限于满足排放标准,更要考虑污水的资源化和能源化的问题,必须朝着最小的COD 氧化、最低的氮磷排放量、最少的剩余污泥排放等可持续污水处理工艺的方向发展。而生物学及其技术的发展,能使生物脱氮除磷工艺得到更大的发展。

生物脱氮除磷工艺技术的应用

生物脱氮除磷工艺技术的应用班级: 学号: 作者:

生物脱氮除磷工艺技术的应用 摘要:生物脱氮除磷技术是技术上可行、经济上合理的新的水处理技术,其在城市生活污水和工业废水处理中得到推广使用。重点介绍了生物脱氮除磷的基本理论,并对近年来我国生物脱氮除磷技术在城市生活污水处理、工业废水处理、中水回用方面的应用进展进行了综述。 关键词:生活污水处理;生物脱氮除磷;机理 前言: 随着国家经济的快速发展,水体污染也越来越严重。大量的研究已经证明,污水中的氮和磷是导致水体富营养化的主要原因之一,脱氮除磷已迫在眉睫。经过实验和工程经验表明,生物脱氮除磷工艺是消除水体富营养化的有效方法。许多发达国家对日常排放的污水中的氮和磷的含量都做了限定,并要求污水处理厂达到除氮除磷的要求。而且对于中国这么一个水资源本来就十分短缺的国家来说,严格控制含氮、磷污水的超标排放是十分必要的。 一、生物脱氮除磷的基本原理 1.1 生物脱氮的基本原理 生物脱氮通过氨化、硝化、反硝化三个步骤完成: 1、氨化反应 有机氮化合物在氨化细菌的作用下分解,转化为氨态氮,这一过程称为“氨化反应”。以氨基酸为例,其反应式为: RCHNH2COOH+O2 ? ?→ ?氨化菌 RCOOH+CO2+NH3 2、硝化反应 在硝化细菌的作用下,氨态氮进一步分解、氧化,就此分两个阶段进行。首先,在亚硝化细菌的作用下,使氨(NH4+)转化为亚硝酸氮,亚硝酸氮在硝酸菌的作用下,进一步转化为硝酸氮。 3、反硝化反应 反硝化反应是指硝酸氮和亚硝酸氮在反硝化菌的作用下,被还原为气态氮的过程。 1.2 生物除磷的基本原理 所谓生物除磷,是利用聚磷菌一类的微生物,能够过量地、在数量上超过其生理需要的、从外部环境摄取磷,并将磷以聚合物的形态贮藏在菌体内,形成富磷污泥。排出系统外,达到废水中除磷的效果。

潜流人工湿地施工方案

宿迁洋河新区水环境整治工程PPP项目 ——潜流湿地工程 施 工 方 案 编制人: 审核人: 编制单位: 编制日期:年月日

一、工程概况 1.工程简介 宿迁洋河新区水环境整治工程PPP项目潜流湿地工程,本项目垂直流人工湿地工程位于污水处理厂东侧绿地。 本工程建设内容,湿地总占地面积为1.01公顷,总有效面积9402m 2,划分为12标准单元,每个单元净面积为783.5 m3,总处理水量为3000m3/d,每天运行24小时,平均设计流量125 m3/h。湿地内部种植水生植物,湿地的水生植物由再生水厂供水,通过地埋PVC布水管进行连接供水,然后再由碎石、陶粒回填料进行过滤,最后由PVC放空管收集通过表流湿地进入泵站。 经原地面实际复测,测得原地面平均高程16.5m左右,湿地填料底标高为15.3m,整体需开挖土方1.2m左右。 2.参建单位 工程名称:宿迁洋河新区水环境整治工程PPP项目 建设单位:宿迁市东方水环境建设发展有限公司 监理单位:江苏兴盛工程监理有限公司 设计单位:北京市东方利禾景观设计有限公司 施工单位:北京东方园林环境股份有限公司

二、编制依据 1.招标技术资料 宿迁洋河新区水环境整治工程部分施工图纸; 宿迁洋河新区水环境整治工程部分招标文件; 宿迁洋河新区水环境整治工程部分岩土工程勘察报告。 2.现场实地调查 我单位针对本标段施工现场的具体情况进行了实地踏勘,另结合我单位自身的资源情况和实际施工能力、承担类似工程的施工经历、经验等编制了细致的材料。 3.采用技术规范及标准和相关法律、法规 《关于在基本建设工程中加强地下文物保护管理的通知》; 《宿迁市地方环境保护法规》; 《消防条例》; 《关于在基本建设工程中加强地下通讯电缆保护管理条例》; 《建设工程施工现场管理规定》; 《工程测量规范》GB50026-2007; 《水利水电工程施工测量规范》SL52-93; 《水利水电工程施工质量验收规程》(SL223-2008); 《土工合成材料应用技术规范》GB50290-98; 《土工合成材料测试规程》SL/T235-1999; 《土工试验规程》SL237-1999; 《碾压式土石坝施工技术规范》DL/T5129-2001;

人工湿地对污染物的去除机理综述论文

人工湿地对污染物的去除机理综述 09环境工程环建系 摘要:人工湿地是一项复合生态系统工程,其去除机理错综复杂。主要从人工湿地的组成及其功能综述了人工湿地废水处理污染物的降解机理及去除 途径。人工湿地处理效果受植物、基质、微生物、气候等因素的影响。关键词:人工湿地;去除机理;影响因素 前沿 随着人口剧增、工业化及城市化进程加速, 水污染问题日趋严重, 保护水环境的任务变得越来越艰巨。在各种污水处理方法中, 生态处理技术由于投资少、操作简单、处理效果好、抗冲击力强, 同时可使污水处理与创建生态景观有机结合起来, 具有良好的环境效益、经济效益及社会效益, 已逐步被越来越多的国家所接受, 并广泛予以应用。湿地是陆地与水生系统之间的过渡地带,有着很高的生产力以及转换、储存有机物和营养盐的能力。湿地处于水陆交错带可对流经其的水流及其携带的营养物质起到过滤净化作用,由于其在水分和化学循环中所表现出来的功能,被誉为“地球之肾”。 人工湿地是通过模拟自然湿地, 人为设计与建造的由基质、植物、微生物和水体组成的复合体,利用生态系统中基质-水生植物-微生物的物理、化学和生物的三种协同作用来实现对污水的净化。人工湿地对有机物、营养物质有较强的去除能力,在实现生态环境效益的同时可美化环境,实现废水资源化 [1]。 1人工湿地系统处理污水的原理 1.1人工湿地的构建 人工湿地一般由以下单元构成:由填料、土壤和植物根系组成的基质层;能在

水饱和厌氧状态基质层中生长的植物,如芦苇、香蒲、水葱等;可在基质层中及基质表面流动的水体;好氧和厌氧微生物(细菌、真菌、藻类和原生生物等);底部防渗层。 1.2人工湿地类型 传统的人工湿地主要有自由表面流人工湿地, 水平潜流人工湿地和垂直潜流人工湿地。随着对人工湿地研究的不断深入,一些组合工艺和一些新型人工湿地也不断产生。 1.3人工湿地去污机理与工艺流程 人工湿地对废水的净化处理包括了物理、化学和生物三种作用。湿地系统在运转时,填料表面和植物根系由于大量微生物的生长而形成生物膜[2]。废水流经生物膜会使大量的SS被填料和植物根系阻挡截留;有机污染物也通过生物膜的吸收、同化及异化作用而被去除。湿地床系统中因植物根系对溶解氧的传递释放,使其周围环境中依次呈现出好氧、缺氧和厌氧状态,保证了废水中氮、磷不仅能被植物和微生物作为营养成分而直接吸收,而且还可以通过硝化、反硝化作用及微生物对磷的过量积累作用将其从废水中去除。污染物最终通过湿地床填料的定期更换或收割栽种的植物从系统中去除,人工湿地中各种物质的迁移和转化过程(见图1.3)[3]。 1.3湿地中各种物质的迁移和转化过程

潜流人工湿地组合工艺设计方法研究

潜流人工湿地组合工艺设计方法研究 摘要:人工湿地作为一种新型生态污水处理技术,在实际应用中取得了快速发展。潜流湿地是目前较多采用的人工湿地类型,但单一的潜流系统存在许多问题,因此各种类型的湿地被组合起来以提高去除效果。文中较详细的介绍了目前人工湿地污水处理的工艺结构,并对潜流人工湿地的组合工艺和设计方法进行论述,力图找到合理的工艺流程,来提高人工湿地的去除效果,为人工湿地污水处理技术的应用研究提供了有益的参考。 关键词:人工湿地;潜流;组合工艺 人工湿地是模拟自然湿地的人工生态系统类似自然沼泽地”但由人工建造和监督控制,是一种人为地将石、砂、土壤、煤渣等一种或几种介质按一定比例构成基质,并有选择性的植入植物的污水处理生态系统。”基于人工湿地独特的优势,近年来人工湿地净化技术在全国开始广泛应用,但是也存在一些未被克服的人工湿地生态系统处理废水技术发展的制约因素。目前世界上人们正在投入大量精力以改良人工湿地技术,对所有人工湿地系统进行深入研究以改良和优化工程设计参数,并对系统的长期运行能力和管理问题进行完善。 潜流湿地是目前较多采用的人工湿地类型,但单一的潜流系统存在许多问题:如水平潜流人工湿地控制相对复杂,脱氮、除磷的效果不如垂直流人工湿地。而垂直潜流人工湿地硝化能力高于水平潜流湿地,对有机物的去除能力不如水平潜流人工湿地系统。所以将对潜流人工湿地的组合工艺和设计方法进行论述,力图找到合理的工艺流程,来提高人工湿地的去除效果。 1 人工湿地污水处理系统的适用范围、构成及工艺特点 1 .1 人工湿地污水处理系统的适用范围 人] 一湿地污水处理系统充分发挥资源的生产潜力,防止 环境的再污染,获得污水处理与资源化的最佳效益,比较适 合于处理水量不大、水质变化较小、管理水平要求不高的城 镇污水。一般适用于生活污水深度处理,湖泊水体循环净化 及生态维护,河流水体达标处理及生态维护,小区中水回用 等四个方面。 1 . 2 人工湿地主要构建类型及特点 人工湿地可按污水在湿地床中流动的方式不同分为三 种类型:表面流湿地( F WS ) 潜流湿地( S F S ) 和垂直流湿地 ( v F w) 。随着人湿地技术的发展,近年来出现了许多复合 和改进工艺,使人工湿地的处理水平得到了提高。 ( 1 ) 表面流湿地系统 表面流人工湿地,水面位于湿地基质层以上,水深一般 作者简介:尹连庆( 1 9 5 9 ) ,男,华北电力大学教授,主要从事电力环保科研工作,E ma i l :g u r u i h u a ~2 0 0 8 @1 6 3 c o m 2 0 0 8年3 6卷第6期广州化工·6 7· 0 .3 ~0 .5 m,水流呈推流式前进。污水从入口以一定速度缓慢 流过湿地表面,部分污水或蒸发或渗入地下,出水由溢流堰 流出。近水面部分为好氧层,较深部分及底部通常为厌氧层。 特点:表面流湿地水力负荷一般较低,达到同等处理效果的 条件下,其占地面积要比潜流型大,并且易受季节影响( 冬季

污水处理工艺脱氮除磷基本原理

污水处理生物脱氮除磷基本原理 国外从六十年代开始系统地进行了脱氮除磷的物理处理方法研究,结果认为物理法的缺点是耗药量大、污泥多、运行费用高等。因此,城市污水处理厂一般不推荐采用。从七十年代以来,国外开始研究并逐步采用活性污泥法生物脱氮除磷。我国从八十年代开始研究生物脱氮除磷技术,在八十年代后期逐步 实现工业化流程。目前,常用的生物脱氮除磷工艺有A2/O法、SBR法、氧化沟法等。 ?生物脱氮原理 生物脱氮是利用自然界氮的循环原理,采用人工方法予以控制,首先,污水中的含氮有机物转化成氨氮,而后在好氧条件下,由硝化菌左右变成硝酸盐氮,这阶段称为好氧硝化。随后在缺氧条件下,由反硝化菌作用,并有外加碳源提供能量,使硝酸盐氮变成氮气逸出,这阶段称为缺氧反硝化。整个生物脱氮过程就是氮的分解还原反应,反应能量从有机物中获取。在硝化和反硝化过程中,影响其脱氮效率的因素是温度、溶解氧、PH值以及碳源,生物脱氮系统中,硝化菌增长速度较缓慢,所以,要有足够的污泥泥龄。反硝化菌的生长主要是在缺氧条件下进行,并且要用充裕的碳源提供能量,才可促使反硝化作用顺利进行。 由此可见,生物脱氮系统中硝化与反硝化反应需要具备如下条件: 硝化阶段:足够的的溶解氧,DO值在2mg/L以上,合适的温度,最好在20℃,不能低于10℃,,足够长的污泥泥龄,合适的PH条件。 反硝化阶段:硝酸盐的存在,缺氧条件DO值在0.2mg/L左右,充足碳源(能源),合适的PH条件。 生物脱氮过程如图5—1所示。 反硝化细菌 +有机物(氨化作用)(硝化作用)(反硝化作用)

?生物除磷原理 磷常以磷酸盐(H 2PO 4 -、HPO 4 2-和H 2 PO 4 3-)、聚磷酸盐和有机磷的形式存在于废水中,生物除 磷就是利用聚磷菌,在厌氧状态释放磷,在好氧状态从外部摄取磷,并将其以聚合形态储藏在体内,形成高磷污泥,排出系统,达到从废水中除磷的效果。 生物除磷主要是通过排出剩余污泥而去除磷的,因此,剩余污泥多少将对除磷效果产生影响,一般污泥龄短的系统产生的剩余污泥量较多,可以取得较高的除磷效果。有报道称,当泥龄为30d时,除磷率为40%,泥龄为17d时,除磷率为50%,而当泥龄降至5d时,除磷率达到87%。 大量的试验观测资料已经完全证实,再说横无除磷工艺中,经过厌氧释放磷酸盐的活性污泥,在好氧状态下有很强的吸磷能力,也就是说,磷的厌氧释放是好氧吸磷和除磷的前提,但并非所有磷的厌氧释放都能增强污泥的好氧吸磷,磷的厌氧释放可以分为两部分:有效释放和无效释放,有效释放是指磷被释放的同时,有机物被吸收到细胞内,并在细胞内储存,即磷的释放是有机物吸收转化这一耗能过程的偶联过程。无效释放则不伴随有机物的吸收和储存,内源损耗,PH变化,毒物作用引起的磷的释放均属无效释放。 在除磷系统的厌氧区中,含聚磷菌的会留污泥与污水混合后,在初始阶段出现磷的有效释放,随着时间的延长,污水中的易降解有机物被耗完以后,虽然吸收和储存有机物的过程基本上已经停止,但微生物为了维持基础生命活动,仍将不断分解聚磷,并把分解产物(磷)释放出来,虽然此时释磷总量不断提高,但单位释磷量所产生吸磷能力随无效释放量的加大而降低。一般来说,污水污泥混合液经过2小时厌氧后,磷的释放已经甚微,在有效释放过程中,磷的释放量与有机物的转化量之间存在着良好的相关性,磷的厌氧释放可使污泥的好氧吸磷能力大大提高,每厌氧释放1mgP,在好氧条件下可吸收2.0~2.24mgP,厌氧时间加长,无效释放逐渐增加,平均厌氧释放1mgP,所产生的好氧吸磷能力降至1mgP以下,甚至达到0.5mgP。因此,生物除磷并非厌氧时间越长越好,同时在运行管理中要尽量避免PH的冲击,否则除磷能

水平潜流人工湿地的脱氮技术方法

环保水处理工程就找“武汉格林环保”水平潜流人工湿地的脱氮技术方法 在当前我国面临的水环境污染形势中,水体富营养化已经成为突出的污染问题。氮是造成水体富营养化的主要因素之一,从水体中高效脱氮已成为水环境领域的研究热点。水平潜流人工湿地(HSSFCWs)作为一种生态化、低成本的污水处理和生态修复技术,其可承受较大的水力负荷和污染物负荷,在全球范围内被广泛应用于污废水的脱氮处理。污染物在水平潜流人工湿地中的去除和转化综合了物理、化学和生物学过程,水平潜流人工湿地的脱氮能力正是源于其中的协同机制。水平潜流人工湿地中存在多种脱氮机理,包括植物吸收、基质吸附、硝化-反硝化等,利用微生物进行硝化-反硝化是水平潜流人工湿地脱氮的主要途径。影响水平潜流人工湿地脱氮的主要因素包括溶解氧、基质、植物、碳源及运行条件等。笔者综述了水平潜流人工湿地脱氮的各种机理和影响系统脱氮的主要因素,同时论述了提高系统脱氮效果的措施,并对今后的相关研究方向进行了展望。 1水平潜流人工湿地脱氮机理 水平潜流人工湿地中氮的去除方式主要包括植物吸收、基质吸附和硝化-反硝化作用等,其中硝化-反硝化作用是其最主要的脱氮机理。污水中的氮主要以有机氮和无机氮2种形态存在,污水进入水平潜流人工湿地后,有机氮被氨化成无机氮,通过硝化及反硝化作用被进一步去除。硝化过程在好氧条件下由亚硝化细菌和硝化细菌来完成: 硝化作用取决于湿地中的溶解氧含量,当湿地中的溶解氧含量足已支持好氧硝化细菌的生长时,硝化反应才得以顺利进行。

环保水处理工程就找“武汉格林环保” 反硝化过程则在缺氧条件下由反硝化细菌来完成。根据反硝化原理,反硝化过程是从NO3-到NO2-、NO、N2O、N2。每个半反应如下: 反硝化作用取决于湿地中的碳源含量,充足的碳源可以为反硝化作用提供足够的电子供体,进而推动上述各半反应的顺利进行。 在水平潜流人工湿地脱氮的过程中,硝化反应仅仅将氨氮转化成硝态氮,并没有使氮从水体中真正脱除。反硝化作用则将硝态氮转换成N2或N2O,使水体中的氮转化成气态氮逸出系统。因此,反硝化作用被认为是系统脱氮的关键因素。 2影响脱氮的主要因素 2.1植物 植物是水平潜流人工湿地重要的组成部分。植物通过生物量增长从湿地中吸收氮素被认为是湿地脱氮的重要途径之一。研究表明,植物吸收的最大总氮量占进水量的5%~15%。此外,植物根系的输氧功能可改变水平潜流人工湿地系统内部的溶解氧环境,为微生物硝化-反硝化作用的进行提供适宜的环境条件,进一步促进氮的去除转化。 不同植物因其生理特性、根系输氧能力等的不同,对氮的吸收能力也存在较大差异,最终导致湿地除污效果的明显不同。表1对比了几种常见湿地植物的脱氮效果。

人工湿地除磷综述(一)

人工湿地除磷综述(一) 摘要:随着人类活动的不断增强,水环境氮、磷的污染日趋严重。人工湿地作为一种生态型的新型污水处理工艺,在实践中已得到成功应用。较之传统的磷的处理方法,人工湿地具有生态性、景观性、经济性等特点。本文在介绍人工湿地中磷的去除机理的基础上,探讨湿地中植物和填料,并指出影响系统除磷效果的影响因素。关键词:人工湿地除磷植物填料影响因素一、前言人工湿地作为一种集生态性、景观性、高效低耗的废水处理工艺,正在应用于多种类型的废水处理中,如生活污水、农业废水、城市暴雨、富营养化景观水、矿山排水等等。随着人类活动的不断增加,水体氮磷的污染日趋严重。大量研究已证实:氮和磷能刺激藻类和光合水生生物的生长,而且最终引起水体富营养化,而磷被认为是产生水体富营养化的最主要因素。由于传统的除磷技术都存在一定的局限性:化学沉淀法除磷,运行费用高,会产生大量的化学污泥;生物法除磷,工程投资高,工艺复杂,运行管理要求高。人工湿地除磷,是在一般的人工湿地系统的基础上,通过人为的控制措施,优化系统达到以除磷为主要目标的废水处理技术,其主要原理是通过湿地中的填料、植物和微生物来完成除磷。人工湿地除磷,具有投资少,运行维护方便,经过优化后处理效果好等特点,在保护水环境,以及进行有效的生态恢复等方面均具有十分重大的意义。二、人工湿地中植物对磷的去除植物是人工湿地处理系统的核心之一,它在人工湿地污水处理系统中发挥多种作用。植物主要通过自

身的光合作用吸收部分污染物,有些种类的植物可以吸收重金属或降解有机污染物。同时植物通过茎、叶中的气孔向系统中输送氧气,以形成根际特殊的环境来促进土壤中微生物的生长。人工湿地能否有效处理污水的一个重要因素是选择的植物种类是否合适。一般来说,人工湿地系统的植物种类应具备以下特征:耐污性能好,处理效果好,成活率高;根系发达,茎叶茂密,输氧能力强,生长周期长;抗冻,抗热,抗病虫能力强;易于维护管理;具有美化景观的作用。许多研究表明,植物的存在对于人工湿地系统净化功能的实现有极大的作用。吴振斌等通过实验,研究了人工湿地系统对污水磷的净化效果,结果发现3个有植物系统的去除率分别是61%、65%和59%,而无植物系统的去除率仅为28%。Peterson的研究发现,对于轻度氮磷负荷的人工湿地处理系统,在植物的生长阶段收割,可以占人工湿地氮总去除量的30%;而在重度氮磷负荷的处理系统中,虽然植物吸收氮的绝对量比轻度氮磷负荷的系统大,但其所占比例低,只有1%~4%。彭江燕等研究了黄昌蒲、美人蕉、水葱、芦苇、风车草5种水生植物净化污水的能力,结果表明,风车草去除磷效果最好,黄昌蒲和美人蕉次之水葱稍高于芦苇。三、人工湿地中填料对磷的去除人工湿地的填料是湿地的基质和载体,其去污过程主要包括基质的吸收和过滤等物理化学作用。填料的固磷作用主要包括化学沉淀、吸附作用、闭蓄作用等几个方面。化学沉淀受溶度积控制,可分为钙、镁或铁、铝控制的两种转化系统。可溶性磷酸盐与这些金属离子发生反应,形成自由能下降很多,可逆

生物脱氮除磷工艺

生物脱氮除磷工艺 第一节 概述 一、营养元素的危害 氮素物质对水体环境和人类都具有很大的危害,主要表现在以下几个方面: 氨氮会消耗水体中的溶解氧; 氨氮会与氯反应生成氯胺或氮气,增加氯的用量; 含氮化合物对人和其它生物有毒害作用:① 氨氮对鱼类有毒害作用;② NO 3- 和NO 2-可被转化为亚硝胺——一种“三致”物质;③ 水中NO 3-高,可导致婴儿患变性血色蛋白症——“Bluebaby ”; 加速水体的“富营养化”过程;所谓“富营养化”就是指水中的藻类大量繁殖而引起水质恶化,其主要因子是N 和P (尤其是P );解决的办法主要就是要严格控制污染源,降低排入水环境的废水中的N 、P 含量;对于城市废水来说,利用传统的活性污泥法进行处理,对N 的去除率一般只有40%左右,对磷的去除率一般只有20~30%。 二、脱氮的物化法 1、氨氮的吹脱法: -++?+OH NH O H NH 423 2 O H H Cl NH HOCl NH 224++→+++ +-+++→+H O H Cl N HOCl Cl NH 332222 每mgNH 4+--N 被氧化为氮气,至少需要7.5mg 3、选择性离子交换法去除氨氮: 采用斜发沸石作为除氨的离子交换体。 出水 折点加氯法脱氯工艺流程

三、除磷的物化法(混凝沉淀法) 1、铝盐除磷 4343AlPO PO Al →+++ 一般用Al 2(SO 4)3,聚氯化铝(PAC )和铝酸钠(NaAlO 2) 2、铁盐除磷:FePO 4 Fe(OH)3 一般用FeCl 2、FeSO 4 或 FeCl 3 Fe 2(SO 4)3 3、石灰混凝除磷 O H PO OH Ca HPO OH Ca 23452423))((345+→++--+ 向含磷的废水中投加石灰,由于形成OH -,污水的pH 值上升,磷与Ca 2+反应,生成羟磷灰石。 第二节 生物脱氮工艺与技术 一、活性污泥法脱氮传统工艺 1、Barth 提出的三级活性污泥法流程: 第一级曝气池的功能:① 碳化——去除BOD 5、COD ;② 氨化——使有机氮转化为氨氮; 第二级是硝化曝气池,投碱以维持pH 值; 第三级为反硝化反应器,可投加甲醇作为外加碳源或引入原废水。 该工艺流程的优点是氨化、硝化、反硝化分别在各自的反应器中进行,反应速率较快且较彻底;但七缺点是处理设备多,造价高,运行管理较为复杂。 2、两级活性污泥法脱氮工艺

人工湿地沸石基质除磷机制

人工湿地沸石基质除磷机制 工业废水、农用化肥、生活污水及家畜禽类粪便排放导致的水体氮磷等营养物质过剩,是藻类等水生生物大量暴发生长繁殖产生水体富营养化的主要因素之一; 有研究表明,只有在磷含量充足的情况下,氮才有可能成为控制藻类生长的决定因素[1].人工湿地技术作为污水除磷廉价而有效的技术[2],其基质在磷素污染物净化方面起着重要的作用.近十余年国内外学者开展了众多研究[3-12]以寻找高效净化磷素的天然基质,如沸石、无烟煤、陶粒、石灰石、废砖块、黄铁矿-石灰石、砾石、海蛎壳、火山岩、海沙、钢渣等.其中,沸石是一种具有硅铝酸盐骨架结构的物质,其内部含有可用于交换阳离子的通道以及空洞,因此沸石表现出良好的氨氮净化效果[13, 14],但其除磷效果却难以得到进一步的提升. 阴离子型层状双羟基氢氧化物(layered double hydroxides, LDHs),是由带正电荷的金属氢氧化物层和层间填充可交换阴离子所构成的层柱状化合物,具有层间阴离子可交换性等特点[15-17]; 其较大的比表面积以及具有比阴离子交换树脂更高的离子交换能力,近年来已广泛应用于复合材料、催化、环境治理、污水处理等领域[18-24],特别是针对主要以阴离子形态存在的水体污染物的净化.但由于LDHs单体粉末状的形态,将其应用于人工湿地吸附水体污染物,将面临颗粒小、比重低以及后期难以实现固液分离等问题,因此可考虑将其覆膜于沸石基质表面以发挥其功能,增强沸石基质对磷素的去除效果,提高沸石基质的除磷脱氮功能. 在前期研究成果的基础上[25, 26],本实验筛选了Zn系LDHs,采用3种3价金属化合物与ZnCl2合成3种Zn-LDHs,以沸石基质为基体进行覆膜改性,利用模拟垂直流人工湿地基质实验柱进行磷素去除的净化实验,并对改性前后基质进行等温吸附实验、解吸实验以及动力学吸附实验,揭示了改性基质增强除磷效果的作用机制,通过有针对性和选择性的LDHs 覆膜改性方式,以期为强化垂直流人工湿地除磷效果的目的提供理论依据. 1 材料与方法 1.1 改性实验方法 1.1.1 原始沸石基质 进行改性实验、吸附实验及除磷净化实验的沸石基质均为球形颗粒状,经粗筛后的原始沸石基质粒径为1.0~3.0 mm; 基质主要特性参数如表 1所示. 表 1 原始沸石基质特性参数 1.1.2 改性药剂

浅谈HDPE防渗膜在水平潜流人工湿地的施工应用

浅谈HDPE防渗膜在水平潜流人工湿地的施工应用 发表时间:2018-08-07T10:20:45.777Z 来源:《基层建设》2018年第19期作者:陆雅萍[导读] 摘要:在现有的规范、标准中,并无针对施工的国标、地标、行标,仅有针对原材料的GB/T17643-2011《土工合成材料聚乙烯土工膜》,施工的要求及标准一般参照设计指标、厂家的相关说明书以及现场人员的经验。 上海同济建设有限公司 200092摘要:在现有的规范、标准中,并无针对施工的国标、地标、行标,仅有针对原材料的GB/T17643-2011《土工合成材料聚乙烯土工膜》,施工的要求及标准一般参照设计指标、厂家的相关说明书以及现场人员的经验。本文以嘉兴市城东再生水厂一期水平潜流人工湿地的HDPE防渗膜施工为例,简单介绍一下HDPE防渗膜在水平潜流人工湿地中的施工应用。 关键词:HDPE防渗膜,人工湿地,施工应用 0 前言 HDPE防渗膜的英文名是High Density Polyethylene lmpermeable membrane,经常被简称作“HDPE”,在汉语译文中又名“高密度聚乙烯防渗膜”,或者“HDPE土工膜”。这种防渗膜是一种用HDPE树脂组合而成的塑料卷材,环境适应能力很强,具备良好的抗开裂性能,而且能够抵御低温与腐蚀的威胁,、抗老化性能极强。此外,HDPE防渗膜的使用温度范围较为广泛,在-60到+60摄氏度左右,使用寿命期多达50年。目前,HDPE防渗膜被广泛应用于生活垃圾填埋场、固废填埋、污水处理厂、人工湖和尾矿处理的防渗工作中,并取得了良好的防渗效果。 在现有的规范、标准中,并无针对施工的国标、地标、行标,仅有针对原材料的GB/T17643-2011《土工合成材料聚乙烯土工膜》,施工的要求及标准一般参照设计指标、厂家的相关说明书以及现场人员的经验。本文以某水平潜流人工湿地的HDPE防渗膜施工为例,简单介绍一下HDPE防渗膜在水平潜流人工湿地中的施工应用。 1 工程概况 项目为湿地及活水公园用地面积约为240亩,深度净化处理嘉兴市城东再生水厂一期工程排放尾水,规模为4万m3/d。位于浙江省嘉兴市三环东路以东约600m,老07省道以南、平湖塘以北、毗邻嘉兴市平湖枢纽。公园采用人工湿地处理工艺深度净化尾水,净化后水体作为景观用水,重新排放进入平湖塘。 地质:嘉兴市区及周围地区地表土层自上而下为:人工填土层、硬壳层(为褐黄色亚粘土)、第一软土层(灰色泥质亚粘土)、第一硬土层(黑绿色粘土、亚粘土)、第二软土层(灰色轻亚粘土、粉细砂)。第二硬土层(灰色、褐黄色粘土)。硬壳层广布市区,厚度1~3m,承载力10~12T/m2,可作为一般工业民用建筑的天然基础;第一、二软土层的承载力较差,在6~8T/m2;第一硬土层具有较高的承载力,可达18T/m2以上。 水文:地下水潜水位埋深一般在-1.30~-0.60m,受季节气候条件及水文因素影响。水质多为淡水,据水质化验报告分析,水质对砼及钢筋混凝土结构中的钢筋均无结晶性侵蚀和分解性侵蚀。 HDPE防渗膜铺设平面布置图

MAP脱氮除磷

磷酸铵镁除磷脱氮技术 目前,生物脱氮除磷常采用A2O工艺,但其流程长且成本高,对进水氨氮浓度变化的适应性及抗负荷冲击的能力较差。本文介绍一种化学沉淀法,即MAP(Magnesium Ammonium Phosphate)脱氮除磷法。 1 MAP除磷脱氮的基本原理 向含NH4+和PO43-的废水中添加镁盐,发生的主要化学反应如下: Mg2++HPO42-+NH4++6H2O→MgNH4PO4·6H2O↓+H+(1) Mg2++PO43-+NH4++6H2O→MgNH4PO4·6H2O↓ (2) Mg2++H2PO4-+NH4++6H2O→MgNH4PO4·6H2O↓+2H+(3) 再经重力沉淀或过滤,就得到MAP。其化学分子式是MgNH4PO4·6H2O,俗称鸟粪石;它的溶度积为2.5×10-13。因为它的养分比其它可溶肥的释放速率慢,可以作缓释肥(SRFs);肥效利用率高,施肥次数少;同时不会出现化肥灼烧的情况。 2 MAP除磷脱氮的影响因素和沉淀物组成分析 2.1 Mg2+,NH4+,PO43-三者在反应过程中的比例 在处理氨氮废水方面,将H3PO4加入到含有MgO的固体粉末中制成一种乳状液,对 2.47×10-3mol/L氨氮废水进行处理,得出H3PO4与MgO的物质的量之比大于1.5时,氨氮去除率最高(90%以上),当进水氨氮质量浓度为42mg/L,在最佳条件下,氨氮质量浓度可降到0.5mg/L 以下[1]。赵庆良[2]等人对5618mg/L氨氮的垃圾渗滤液进行处理,按n(Mg2+):(NH4+):n(PO43-)=1:1:1投加氯化镁和磷酸氢二钠,废水中氨氮质量浓度降为172mg/L,过量投加10%的镁盐或磷酸盐,氨氮质量浓度可分别降为112mg/L和158mg/L,继续提高镁盐或磷酸盐的量,废水中剩余氨氮质量浓度处在100mg/L左右,很难进一步降低。笔者对某一合金厂的质量浓度为1600mg/L的氨氮废水进行处理,按最佳配比n(Mg2+):(NH4+):n(PO43-)=1.3:1:1,加入硫酸镁和磷酸氢二钠,氨氮质量浓度可降到60mg/L,对某炼油厂的氨氮含量高(1231mg/L)的废水用此方法处理,氨氮质量浓度可降到112mg/L。 在除磷方面,国外有人证明,晶体纯度与初始氨氮质量浓度有关,最佳比例n(Mg2+):(NH4+):n (PO43-)=1:1.6:1,磷、镁去除率达95%以上[3]。Katsuura[4]认为n(Mg):n(P)为1.3:1时,除磷效果最好。 2.2 反应的pH值 MAP溶于酸不溶于碱,笔者对模拟氨氮废水进行重复验证,证明废水在pH值为7.0以上,才会出现小颗粒沉淀物,当用NaOH将pH值调至8.0以上时,会出现大量沉淀。pH值在7.0~10.5之间,主要的反应过程如式(1),(2),(3),当pH值上升到10.5~12之间,固定氨会从MgNH4PO4中游离出来,生成更难溶的Mg3(PO4)2(ksp=9.8×10-25)。 笔者在对无杂质氨氮废水与含杂质氨氮废水进行比较,发现前者pH值必须达到7.0以上,才会生成沉淀,而后者在pH值为6.3左右时,水中不断出现白色沉淀物,表明氨氮废水有比较大的悬浮颗粒时,沉淀物MAP可提前生成。 国内外的研究人员对MAP除磷脱氮最佳pH值进行了研究,结果见表1。

脱氮除磷工艺汇总

脱氮除磷工艺汇总 MBR工艺脱氮除磷 MBR就是一种结合膜分离与微生物降解技术的高效污水处理工艺。在反应器内,一方面,膜组件将泥水高效分离,促使出水水质改善;另一方面,污泥停留时间(SRT)与水力停留时(HRT)在反应器内相互独立,可提高污泥浓度;此外,反应器内较长的SRT可使增殖缓慢的某些特殊菌(如自养硝化菌等)在活性污泥中出现,而膜组件又能将这些菌持留,从而使MBR处理效果得以改善。 MBR工艺具有一定局限性,对于生活污水,其仅依靠MBR本身其脱氮除磷能力只能达到40%至60%左右的去除率;对于工业废水,其对难降解有机物的去除率并没有得到太大改善。所以MBR工艺一般与SBR系列/AAO等工艺组合使用。 五种常见组合工艺: SBR-MBR工艺 A2O-MBR工艺 3A-MBR工艺 A2O/A-MBR工艺 A(2A)O-MBR工艺 SBR-MBR工艺: 将SBR与MBR相结合形成的SBR-MBR工艺,除了具有一般MBR的优点外,对于膜组件本身与SBR工艺两种程序运行都互有帮助。由于膜组件的截留过滤作用,反应中的微生物能最大限度地增长,利于世代时间较长的硝化及亚硝化细菌的生长繁殖,因此,污泥的生物活性高,吸附与降解有机物的能力较强,同时也具有较好的硝化能力。此外,SBR式的工作方式为除磷菌的生长创造了条件,同时也满足了脱氮的需要,使得单一反应器内实现同时高效去除氮磷及有机物成为可能。与传统SBR系统相比,SBR-MBR在反应阶段利用膜分离排水,可以减少传统SBR 的循环时间;同时,序批式的运行方式可以延缓膜污染。 A2O-MBR工艺: 由A2O工艺与MBR膜分离技术结合而成的具有同步脱氮除磷功能的A2O-MBR工艺,可进一步拓展MBR的应用范畴。在该工艺中设置有两段回流,一段就是膜池的混

相关文档