文档库 最新最全的文档下载
当前位置:文档库 › 光的等厚干涉 实验报告

光的等厚干涉 实验报告

光的等厚干涉 实验报告
光的等厚干涉 实验报告

大连理工大学

大学物理实验报告

姓名童凌炜学号200767025实验台号

实验时间2008 年11 月04 日,第11周,星期二第5-6 节

实验名称光的等厚干涉

教师评语

实验目的与要求:

1.观察牛顿环现象及其特点,加深对等厚干涉现象的认识和理解。

2.学习用等厚干涉法测量平凸透镜曲率半径和薄膜厚度。

3.掌握读数显微镜的使用方法。

实验原理和内容:

1.牛顿环

牛顿环器件由一块曲率半径很大的平凸透镜叠放在一块光学平板玻璃上构成,结构如图所示。

当平行单色光垂直照射到牛顿环器件上时,由于平凸透镜和玻璃之间存在一层从中心向外厚度

递增的空气膜,经空气膜和玻璃之间的上下界面反射的两束光存在光程差,它们在平凸透镜

的凸面(底面)相遇后将发生干涉,干涉图样是以接触点为中心的一组明暗相间、内疏外密的

同心圆,称为牛顿环(如图所示。由牛顿最早发现)。由于同一干涉圆环各处的空气薄膜厚

度相等,故称为等厚干涉。牛顿环实验装置的光路图如下图所示:

设射入单色光的波长为λ, 在距接触点r k 处将产生第k 级牛顿环, 此处对应的空气膜厚度为d k , 则空气膜上下两界面依次反射的两束光线的光程差为

2

δ+

=k k nd

式中, n 为空气的折射率(一般取1), λ/2是光从光疏介质(空气)射到光密介质(玻璃)的交界面上反射时产生的半波损失。

根据干涉条件, 当光程差为波长的整数倍时干涉相长, 反之为半波长奇数倍时干涉相消, 故薄膜上下界面上的两束反射光的光程差存在两种情况:

2

)

12(2

22

λ

λ

δ+=

+

=k k d k k

由上页图可得干涉环半径r k , 膜的厚度d k 与平凸透镜的曲率半径R 之间的关系

222)(k k r d R R +-=。 由于dk 远小于R , 故可以将其平方项忽略而得到2

2k k r Rd =。 结合以上

的两种情况公式, 得到:

λkR Rd r k k ==22

, 暗环...,2,1,0=k

由以上公式课件, r k 与d k 成二次幂的关系, 故牛顿环之间并不是等距的, 且为了避免背光因素干扰, 一般选取暗环作为观测对象。

而在实际中由于压力形变等原因, 凸透镜与平板玻璃的接触不是一个理想的点而是一个圆面; 另外镜面沾染回程会导致环中心成为一个光斑, 这些都致使干涉环的级数和半径无法准确测量。 而使用差值法消去附加的光程差, 用测量暗环的直径来代替半径, 都可以减少以上类型的误差出现。 由上可得:

λ

)(422n m D D R n

m --=

式中, D m 、D n 分别是第m 级与第n 级的暗环直径, 由上式即可计算出曲率半径R 。 由于式中使用环数差m-n 代替了级数k , 避免了圆环中心及暗环级数无法确定的问题。

凸透镜的曲率半径也可以由作图法得出。 测得多组不同的D m 和m , 根据公式m R D

m

λ42=,

可知只要作图求出斜率λR 4, 代入已知的单色光波长, 即可求出凸透镜的曲率半径R 。 2. 劈尖

将两块光学平玻璃叠合在一起, 并在其另一端插入待测的薄片或细丝(尽可能使其与玻璃的搭接线平行), 则在两块玻璃之间形成以空气劈尖, 如下图所示:

K=1,2,3,…., 明环 K=0,1,2,…., 暗环

当单色光垂直射入时, 在空气薄膜上下两界面反射的两束光发生干涉; 由于空气劈尖厚度相等之处是平行于两玻璃交线的平行直线, 因此干涉条纹是一组明暗相间的等距平行条纹, 属于等厚干涉。 干涉条件如下:

2

)

12(2

λ

δ+=+

=k d k k

可知, 第k 级暗条纹对应的空气劈尖厚度为

2

λ

k

d k =

由干涉条件可知, 当k=0时d 0=0, 对应玻璃板的搭接处, 为零级暗条纹。 若在待测薄物体出出现的是第N 级暗条纹, 可知待测薄片的厚度(或细丝的直径)为

2

λ

N

d =

实际操作中由于N 值较大且干涉条纹细密, 不利于N 值的准确测量。 可先测出n 条干涉条纹的距离l , 在测得劈尖交线到薄片处的距离为L , 则干涉条纹的总数为:

L l

n N =

代入厚度计算式, 可得厚度/直径为:

L l

n

d 2λ=

主要仪器设备:

读数显微镜, 纳光灯, 牛顿环器件, 劈尖器件。

步骤与操作方法: 1. 牛顿环直径的测量

(1) 准备工作: 点亮并预热纳光灯; 调整光路, 使纳光灯均匀照射到读数显微镜的反光

镜上, 并调节反光镜片使得光束垂直射入牛顿环器件。 恰当调整牛顿环器件, 直至肉眼课件细小的正常完整的牛顿环干涉条纹后, 把牛顿环器件放至显微镜的中央并对

k=0, 1, 2,…

准。完成显微镜的调焦,使牛顿环的中央与十字交叉的中心对准后,固定牛顿环器

件。

(2)测量牛顿环的直径:

从第6级开始逐级测量到第15级暗环的直径,使用单项测量法。

转动测微鼓轮,从零环处开始向左计数,到第15级暗环时,继续向左跨过直至第18

级暗环后反向转动鼓轮(目的是消除空程误差),使十字线返回到与第15级暗环外侧

相切时,开始读数;继续转动鼓轮,均以左侧相切的方式,读取第14,13,12.……

7,6级暗环的读数并记录。

继续转动鼓轮,使十字叉线向右跨过圆环中心,使竖直叉丝依次与第6级到第15级

的暗环的右内侧相切,顺次记录读数。

同一级暗环的左右位置两次读数之差为暗环的直径。

2.用劈尖测量薄片的厚度(或细丝直径)

(1)将牛顿环器件换成劈尖器件,重新进行方位与角度调整,直至可见清晰的平行干涉条纹,且条纹与搭接线平行;干涉条纹与竖直叉丝平行。

(2)在劈尖中部条纹清晰处,测出每隔10条暗纹的距离l,测量5次。

(3)测出两玻璃搭接线到薄片的有效距离L,测量5次。

* 注意,测量时,为了避免螺距的空程误差,读数显微镜的测微鼓轮在每一次测量过程中只能单方向旋转,中途不能反转。

数据记录与处理:

牛顿环第一次测量直径

第二次测量直径

劈尖干涉短距离(l)

劈尖干涉全距离(L)

结果与分析:(除了序号外,没有标注的数据单位均为mm) 由牛顿环半径,用逐差法计算平凸透镜的曲率半径:

由第一组数据获得的环直径:

由第二组数据获得的环直径:

由以上两组数据获得直径平均值为:

已知纳光灯的波长λ= 0.0000005893m

得到凸透镜曲率半径的最终结果:

R=0.87±0.02 m

用劈尖测量薄片厚度

10条暗纹的长度数据及其处理

得到10条暗纹的间距长度为: l=(1.30±0.03)*10-03 m

劈尖干涉条纹的整体长度数据及其处理

得到劈尖干涉条纹的整体长度为:

L=(40.4±0.2)*10-03 m

由以上数据, 得到薄片厚度d 的平均值为 d(avg)= 9.14484E-05 影响系数 Cl=0.07, CL=0.002, 得到d 的不确定度为m UL CL Ul Cl Ud -062210*2.00)*()*(=+=

可以得到, 薄片厚度d 为: d= (9.1±0.2)*10-05 m

讨论、建议与质疑:

1.如果牛顿环中心是亮斑而不是暗斑,说明凸透镜和平板玻璃的接触不紧密,或者说没有接触,

这样形成的牛顿环图样不是由凸透镜的下表面所真实形成的牛顿环,将导致测量结果出现误差,结果不准确。

2.牛顿环器件由外侧的三个紧固螺丝来保证凸透镜和平板玻璃的紧密接触,经测试可以发现,如

果接触点不是凸透镜球面的几何中心,形成的牛顿环图样将不是对称的同心圆,这样将会影响测量而导致结果不准确。因此在调节牛顿环器件时,应同时旋动三个紧固螺丝,保证凸透镜和平板玻璃压紧时,接触点是其几何中心。另外,对焦时牛顿环器件一旦位置确定后,就不要再移动,实验中发现,轻微移动牛顿环器件,都将导致干涉图样剧烈晃动和变形。

3.如果读数显微镜的视场不亮,可以有三个调节步骤:一,整体移动显微镜,使反光镜组对

准纳光灯;二,通过旋钮调节物镜下方的反光玻璃,使其成45度,正好将光线反射到牛顿环器件上;三,调节载物台下方的反光镜,是纳光灯的光线可以通过载物台玻璃照射到牛顿环器件。总之,调节反射光路,是解决视场偏暗的主要方法。

4.该实验中获得的感触是,耐心,细心,是实验成功的重要保证。另外,长期使用读数显微

镜容易导致视疲劳,建议改进成由电子显示屏输出的样式,而不用肉眼直接观察。

大物实验报告光的等厚干涉

大学物理实验报告 实验名称:光的等厚干涉 学院:机电工程学院 班级:车辆151班 姓名:吴倩萍 学号:5902415034 时间:第8周周三下午3:45开始 地点:基础实验大楼313 一、实验目的: 1.观察牛顿环和劈尖的干涉现象。 2.了解形成等厚干涉现象的条件及特点。 3.用干涉法测量透镜的曲率半径以及测量物体的微小直径或厚度。 二、实验仪器: 牛顿环装置、钠光灯、读数显微镜、劈尖等。 三、实验原理:

在平面玻璃板BB上放置一曲率半径为R的平凸透镜AOA,两者之间便形成一层空气薄层。当用单色光垂直照射下来时,从空气上下两个表面反射的光束1和光束2在空气表面层附近相遇产生干涉,空气层厚度相等处形成同一级的干涉条纹,这种干涉现象称为等厚干涉。 1.用牛顿环测量平凸透镜表面的曲率半径 (1)安放实验仪器。(2)调节牛顿环仪边框上三个螺旋,使在牛顿环仪中心出现一组同心干涉环。将牛顿环仪放在显微镜的平台上,调节45°玻璃板,以便获得最大的照度。(3)调节读数显微镜调焦手轮,直至在显微镜内能看到清晰的干涉条纹的像。适当移动牛顿环位置,使干涉条纹的中央暗区在显微镜叉丝的正下方,观察干涉条纹是否在显微镜的读数范围内,以便测量。(4)转动测微鼓轮,先使镜筒由牛顿环中心向左移动,顺序数到第24暗环,再反向至第22暗环并使竖直叉丝对准暗环中间,开始记录。在整个测量过程中,鼓轮只能沿同一个方向依次测完全部数据。将数据填入表中,显然,某环左右位置读数之差即为该环的直径。用逐差法求出R,并计算误差。 2.用劈尖干涉法则细丝直径 (1)将被测细丝夹在两块平板玻璃的一端,另一端直接接触,形成劈尖,然后置于读数显微镜载物台上。(2)调节叉丝方位

等厚干涉实验报告(2)

大学物理实验报告(等厚干涉) 、实验目的: 1?、观察牛顿环和劈尖的干涉现象。 2、了解形成等厚干涉现象的条件极其特点。 3、用干涉法测量透镜的曲率半径以及测量物体的微小直径或厚度。 二、实验原理: 1.牛顿环 牛顿环器件由一块曲率半径很大的平凸透镜叠放在一块光学平板玻璃上构成,结构如图所示。 当平行单色光垂直照射到牛顿环器件上时,由于平凸透镜和玻璃之间存在一层从中心向外厚度递增的空 气膜,经空气膜和玻璃之间的上下界面反射的两束光存在光程差,它们在平凸透镜的凸面(底面)相遇后将发生干涉,干涉图样是以接触点为中心的一组明暗相间、内疏外密的同心圆,称为牛顿环(如图所示。由牛顿最早发现)。由于同一干涉圆环各处的空气薄膜厚度相等,故称为等厚干涉。牛顿环实验装置的光路图如下图所示: 设射入单色光的波长为入,在距接触点r k处将产生第k级牛顿环,此处对应的空气膜厚度为d k,则空 气膜上下两界面依次反射的两束光线的光程差为 - 扎 =2nd k 亠— 2 式中,n为空气的折射率(一般取1),入/2是光从光疏介质(空气)射到光密介质(玻璃)的交界面上反射时产生的半波损失。 下界面上的两束反射光的光程差存在两种情况: 根据干涉条件,当光程差为波长的整数倍时干涉相长, 反之为半波长奇数倍时干涉相消, 故薄膜上 2k K=1,2,3,….,明环

(2k 1) 2K=0,1,2,….,暗环

2 2 2 由上页图可得干涉环半径r k,膜的厚度d k与平凸透镜的曲率半径R之间的关系R =(R-d k) - r k o o 由于dk远小于R,故可以将其平方项忽略而得到2Rd k二r k o结合以上的两种情况公式,得到: *5 r k =2Rd k二kR,, k= 0,1,2…,暗环 由以上公式课件,r k与d k成二次幕的关系,故牛顿环之间并不是等距的,且为了避免背光因素干扰, 般选取暗环作为观测对象。 而在实际中由于压力形变等原因,凸透镜与平板玻璃的接触不是一个理想的点而是一个圆面;另外镜 要作图求出斜率4R,,代入已知的单色光波长,即可求出凸透镜的曲率半径R o 2.劈尖 将两块光学平玻璃叠合在一起,并在其另一端插入待测的薄片或细丝(尽可能使其与玻璃的搭接线平行) 则在两块玻璃之间形成以空气劈尖,如下图所示: 当单色光垂直射入时,在空气薄膜上下两界面反射的两束光发生干涉;由于空气劈尖厚度相等之处是平行于两玻璃交线的平行直线,因此干涉条纹是一组明暗相间的等距平行条纹,属于等厚干涉。干涉条件如下: k =2d k - =(2k 1) 2 k=0, 1,2,… 可知,第k级暗条纹对应的空气劈尖厚度为 面沾染回程会导致环中心成为一个光斑, 这些都致使干涉环的级数和半径无法准确测量。而使用差值法消去附加的光程差,用测量暗环的直径来代替半径, 都可以减少以上类型的误差出现。由上可得: 2 2 d m — d n R 二--------- 4(m - n) ■ 式中,D m、D n分别是第m级与第n级的暗环直径,由上式即可计算出曲率半径由于式中使用环数差m-n代替了级数k,避免了圆环中心及暗环级数无法确定的问题。 凸透镜的曲率半径也可以由作图法得出。测得多组不同的D m和m,根据公式D2m = 4R m , 可知只 Hi

迈克尔逊干涉仪实验报告87789

迈克耳逊干涉仪 一.实验目的 1.了解迈克尔逊干涉仪的结构和原理,掌握调节方法; 2.用迈克尔逊干涉仪测量钠光波长和精细结构。 二.实验仪器 迈克尔逊干涉仪、钠光灯、透镜等。 三.实验原理 迈克耳孙干涉仪原理如图所示。两平面反射镜M1、M2、光源 S和观察点E (或接收屏)四者北东西南各据一方。M1、M2相互垂直,M2是固定的,M1可沿导轨做精密移动。G1和G2是两块材料相同薄厚均匀相等的平行玻璃片。G1的一个表面上镀有半透明的薄银层或铝层,形成半反半透膜,可使入射光分成强度基本相等的两束光,称G1为分光板。G2与G1平行,以保证两束光在玻璃中所走的光程完全相等且与入射光的波长无关,保证仪器能够观察单、复色光的干涉。可见G2作为补偿光程用,故称之为补偿板。G1、G2与平面镜M1、M2倾斜成45°角。

如上图所示一束光入射到G1上,被G1分为反射光和透射光,这两束光分别经M1和M2反射后又沿原路返回,在分化板后表面分别被透射和反射,于E处相遇后成为相干光,可以产生干涉现象。图中M′2是平面镜M2由半反膜形成的虚像。观察者从E处去看,经M2反射的光好像是从M′2来的。因此干涉仪所产生的干涉和由平面M1与M′2之间的空气薄膜所产生的干涉是完全一样的,在讨论干涉条纹的形成时,只需考察M1和M2两个面所形成的空气薄膜即可。两面相互平行可到面光源在无穷远处产生的等倾干涉,两面有小的夹角可得到面光源在空气膜近处形成的等厚干涉。若光源是点光源,则上述两种情况均可在空间形成非定域干涉。设M1和M′2之间的距离为d,则它们所形成的空气薄膜造成的相干光的光程差近似用下式表示 若M1与M′2平行,则各处d相同,可得等倾干涉。系统具有轴对称不变性,故屏E上的干涉条纹应为一组同心圆环,圆心处对应的光程差最大且等于2d,d 越大圆环越密。反之中心圆斑变大圆环变疏。若d增加则中心“冒出”一个条纹,反之d减小则中心“缩进”一个条纹。故干涉条纹在中心处“冒出”或“缩进”的个数N与d的变化量△d之间有下列关系 根据该关系式就可测量光波波长λ或长度△d。 钠黄双线的精细结构测量原理简介: 干涉条纹可见度定义为:当,时V=1, 此时干涉条纹最清晰,可见度最大;时V=0,可见度最小。 从一视见度最低的位置开始算起,测量一次视见度最低处的位置,者其间的光程差 为,且由关系算出谱线的精细结构。 四.实验结果计与分析 次数初读数 d1(mm) 末读数 d2(mm) △ d=|d1-d2| (mm) (nm)(nm ) 137.7247937.754420.02963592.6592.6

迈克尔逊干涉仪实验报告精品

1 2 1 2 1 2 1 2 1 2 实验目的: 1) 学会使用迈克尔逊干涉仪 2) 观察等倾、等厚和非定域干涉现象 3) 测量氦氖激光的波长和钠光双线的波长差。 实验仪器: 氦氖激光光源、钠光灯、迈克尔逊干涉仪、毛玻璃屏实验原理: 1:迈克尔逊干涉仪的原理: 迈克尔逊干涉仪的光路图如图所示,光源 S 出 发的光经过称 45。 放置的背面镀银的半透玻璃板 P 1 被分成互相垂直的强度几乎相等的两束光, 光 路 1 通过 M 1 镜反射并再次通过 P 1 照射在观察平 面 E 上,光路 2 通过厚度、折射率与 P 1 相同的玻 璃板 P 2 后由 M 2 镜反射再次通过 P 2 并由 P 1 背面的 反射层反射照射在观察平面 E 上。图中平行于 M 的M ' 是M 经 P 反射所成的虚 1 2 2 1 像,即 P 到 M 与 P 到 M ' 的光程距离相等,故从 P 到M 的光路可用 P 到M ' 等 价替代。这样可以认为 M 与 M ' 之间形成了一个空气间隙, 这个空气间隙的厚度 可以通过移动 M 1 完成,空气间隙的夹角可以通过改变 M 1 镜或 M 2 镜的角度实现。 当 M 与M ' 平行时可以在观察平面 E 处观察到等倾干涉现象,当 M 与M ' 有一 1 2 1 2 定的夹角时可以在观察平面 E 处观察到等厚干涉现象。 2:激光器激光波长测量原理: 由等倾干涉条纹的特点,当 θ =0 时的光程差 δ 最大,即圆心所对应的

1 2 1 2 干 涉级别最高。转动手轮移动 M1,当 d 增加时,相当 于增大了和 k 相应的θ 角 ,可以看到圆 环一个个从中心 “冒出” ;若 d 减小时,圆环逐渐 缩小, 最后“淹没”在中心处。 每“冒” 出或“ 缩”进一个干涉环,相应的光程差改变了一个波长, 也就是 M 与 M ’ 之间距离 变化了半个波长。 若将 M 与 M ’ 之间距离改变了 △d 时,观察到 N 个干涉环变化,则 △d=N 由此可测单色光 的波长。 3:钠光双线波长差的测定: 在使用迈克尔逊干涉仪观察低压钠黄灯双线的等倾干涉条纹时,可以看到 随着动镜 M 1 的移动,条纹本身出现了由清晰到模糊再到清晰的周期性变化,即 反衬度从最大到最小再到最大的周期性变化, 利用这一特性, 可测量钠光双线波长差,对于等倾干涉而言,波长差的计算公式为: 实验内容与数据处理: (1) )观察非定域干涉条纹 1) 通过粗调手轮打开激光光源, 调节激光器使其光束大致垂直于平面反光镜 M 2 入射,取掉投影屏 E ,可以看到两排激光点 2) 粗调手轮移动 M 1 镜的位置,使得通过分光板分开的两路光光程大致相等 3) 调节M 1 、M 2 镜后面的两个旋钮, 使两排激光点重合为一排,并使两个最 亮的光点重合在一起。此时再放上投影屏 E ,就可以看到干涉条纹。 4) 仔细调节 M 、 M 镜后面的两个旋钮,使 M 与 M ' 平行,这时在屏上可 以看到同心圆条纹,这些条纹为非定域条纹。 5) 转动微调手轮,观察干涉条纹的形状、疏密及中心“吞” 、“吐”条纹随光程差 改变的变化情况。

光的等厚干涉实验报告

大连理工大学 大学物理实验报告 姓名学号实验台号 实验时间 2008 年 11 月 04 日,第11周,星期二第 5-6 节 实验名称光的等厚干涉 教师评语 实验目的与要求: 1.观察牛顿环现象及其特点,加深对等厚干涉现象的认识和理解。 2.学习用等厚干涉法测量平凸透镜曲率半径和薄膜厚度。 3.掌握读数显微镜的使用方法。 实验原理和内容: 1.牛顿环 牛顿环器件由一块曲率半径很大的平凸透镜叠放在一块光学平板玻璃上构成,结构如图所示。 当平行单色光垂直照射到牛顿环器件上时,由于平凸透镜和玻璃之间存在一层从中心向外厚度 递增的空气膜,经空气膜和玻璃之间的上下界面反射的两束光存在光程差,它们在平凸透镜 的凸面(底面)相遇后将发生干涉,干涉图样是以接触点为中心的一组明暗相间、内疏外密的 同心圆,称为牛顿环(如图所示。由牛顿最早发现)。由于同一干涉圆环各处的空气薄膜厚 度相等,故称为等厚干涉。牛顿环实验装置的光路图如下图所示:

设射入单色光的波长为λ, 在距接触点r k 处将产生第k 级牛顿环, 此处对应的空气膜厚度为d k , 则空气膜上下两界面依次反射的两束光线的光程差为 2 2λ δ+ =k k nd 式中, n 为空气的折射率(一般取1), λ/2是光从光疏介质(空气)射到光密介质(玻璃)的交界面上反射时产生的半波损失。 根据干涉条件, 当光程差为波长的整数倍时干涉相长, 反之为半波长奇数倍时干涉相消, 故薄膜上下界面上的两束反射光的光程差存在两种情况: 2 ) 12(2 22 2λ λ λ δ+= + =k k d k k 由上页图可得干涉环半径r k , 膜的厚度d k 与平凸透镜的曲率半径R 之间的关系 222)(k k r d R R +-=。 由于dk 远小于R , 故可以将其平方项忽略而得到2 2k k r Rd =。 结合以上 的两种情况公式, 得到: λkR Rd r k k ==22 , 暗环...,2,1,0=k 由以上公式课件, r k 与d k 成二次幂的关系, 故牛顿环之间并不是等距的, 且为了避免背光因素干扰, 一般选取暗环作为观测对象。 而在实际中由于压力形变等原因, 凸透镜与平板玻璃的接触不是一个理想的点而是一个圆面; 另外镜面沾染回程会导致环中心成为一个光斑, 这些都致使干涉环的级数和半径无法准确测量。 而使用差值法消去附加的光程差, 用测量暗环的直径来代替半径, 都可以减少以上类型的误差出现。 由上可得: λ )(422n m D D R n m --= 式中, D m 、D n 分别是第m 级与第n 级的暗环直径, 由上式即可计算出曲率半径R 。 由于式中使用环数差m-n 代替了级数k , 避免了圆环中心及暗环级数无法确定的问题。 凸透镜的曲率半径也可以由作图法得出。 测得多组不同的D m 和m , 根据公式m R D m λ42=, 可知只要作图求出斜率λR 4, 代入已知的单色光波长, 即可求出凸透镜的曲率半径R 。 2. 劈尖 将两块光学平玻璃叠合在一起, 并在其另一端插入待测的薄片或细丝(尽可能使其与玻璃的搭接线平行), 则在两块玻璃之间形成以空气劈尖, 如下图所示: K=1,2,3,…., 明环 K=0,1,2,…., 暗环

等厚干涉牛顿环实验报告材料97459

等厚干涉——牛顿环 等厚干涉是薄膜干涉的一种。薄膜层的上下表面有一很小的倾角是,从光源发出的光经上下表面反射后在上表面附近相遇时产生干涉,并且厚度相同的地方形成同一干涉条纹,这种干涉就叫等厚干涉。其中牛顿环是等厚干涉的一个最典型的例子,最早为牛顿所发现,但由于他主张微粒子学说而并未能对他做出正确的解释。光的等厚干涉原理在生产实践中育有广泛的应用,它可用于检测透镜的曲率,测量光波波长,精确地测量微笑长度、厚度和角度,检验物体表面的光洁度、平整度等。 一.实验目的 (1)用牛顿环观察和分析等厚干涉现象; (2)学习利用干涉现象测量透镜的曲率半径; 二.实验仪器 读数显微镜钠光灯牛顿环仪

三. 实验原理 牛顿环装置是由一块曲率半径较大的平凸面放在一块光学玻璃平板(平镜)上构成的,如图。平凸透镜的凸面与玻璃平板之间的空气层厚度从中心到边缘逐渐增加,若以平行单光垂直照射到牛顿环上,则经空气层上、下表面反射的两光束存在光程差,他们在平凸透镜的凸面相遇后,将发生干涉。从透镜上看到的干涉花样是以玻璃接触点为中心的一系列明暗相间的圆环,称为牛顿环。同一干涉环上各处的空气层厚度是相同的,因此他属于等厚干涉。 图2 图3 由图2可见,若设透镜的曲率半径为R ,与接触点O 相距为r 处空气层的厚度为d ,其几何关系式为 2222222)(r d Rd R r d R R ++-=+-= 由于r R >>,可以略去d 2得

R r d 22 = (1) 光线应是垂直入射的,计算光程差时还要考虑光波在平玻璃上反射会有半波损失,,从而带来2λ的附加程差,所以总光程差为 2 2λ + =?d (2) 所以暗环的条件是 2 ) 12(λ +=?k (3) 其中 3,2,1,0=k 为干涉暗条纹的级数。综合(1)(2)(3)式可得第可k 级暗环的半径为 λkR r k =2 (4) 由式(4)可知,如果单色光源的波长λ已知,测出第m 级的暗环半径r m,,即可得出平图透镜的曲率半径R ;反之,如果R 已知,测出r m 后,就可计算出入射单色光波的波长λ。但是用此测量关系式往往误差很大,原因在于凸面和平面不可能是理想的点接触;接触压力会引起局部形变,使接触处成为一个圆形平面,干涉环中心为一暗斑。或者空气间隙层有了灰尘,附加了光程差,干涉环中心为一亮(或暗)斑,均无法确定环的几何中心。实际测量时,我们可以通过测量距中心较远的两个暗环半径r m 和r n 的平方差来计算曲率半径R 。因为 λMR r m =2 λnR r n =2 两式相减可得 λ)(22n m R r r n m -=-

迈克尔逊干涉仪实验报告

实验目的: 1)学会使用迈克尔逊干涉仪 2)观察等倾、等厚和非定域干涉现象 3)测量氦氖激光的波长和钠光双线的波长差。 实验仪器: 氦氖激光光源、钠光灯、迈克尔逊干涉仪、毛玻璃屏 实验原理: 1:迈克尔逊干涉仪的原理: 迈克尔逊干涉仪的光路图如图所示,光源S 出发的光经过称。45放置的背面镀银的半透玻璃板1P 被分成互相垂直的强度几乎相等的两束光,光 路1通过1M 镜反射并再次通过1P 照射在观察平 面E 上,光路2通过厚度、折射率与1P 相同的玻 璃板2P 后由2M 镜反射再次通过2P 并由1P 背面 的反射层反射照射在观察平面E 上。图中平行于1M 的'2M 是2M 经1P 反射所成的虚像,即1P 到2M 与1P 到'2M 的光程距离相等,故从1P 到2M 的光路可用1P 到'2M 等价替代。这样可以认为1M 与'2M 之间形成了一个空气间隙,这个空气间隙的厚度可以通过移动1M 完成,空气间隙的夹角可以通过改变1M 镜或2M 镜的角度实现。当1M 与' 2M 平行时可以在观察平面E 处观察到等倾干涉现象,当1M 与'2M 有一定的夹角时可以在观察平面E 处观察到等厚干涉现象。 2:激光器激光波长测量原理: 由等倾干涉条纹的特点,当θ =0 时的光程差δ 最大,即圆心所对应的干

涉级别最高。转动手轮移动 M1,当 d 增加时,相当 于增大了和 k 相应的θ 角 ,可以看到圆 环一个个从中心“冒出” ;若 d 减小时,圆环逐渐 缩小,最后“淹没”在中心处。 每“冒”出或“缩”进一个干涉环,相应的光程差改变了一个波长,也就是 M 与M ’之间距离 变化了半个波长。 若将 M 与 M ’之间距离改变了△d 时,观察到 N 个干涉环变化,则△d =N 由此可测单色光的波长。 3:钠光双线波长差的测定: 在使用迈克尔逊干涉仪观察低压钠黄灯双线的等倾干涉条纹时,可以看到随着动镜1M 的移动,条纹本身出现了由清晰到模糊再到清晰的周期性变化,即反衬度从最大到最小再到最大的周期性变化,利用这一特性,可测量钠光双线波长差,对于等倾干涉而言,波长差的计算公式为: 实验内容与数据处理: (1)观察非定域干涉条纹 1)通过粗调手轮打开激光光源,调节激光器使其光束大致垂直于平面反光镜2M 入射,取掉投影屏E ,可以看到两排激光点 2)粗调手轮移动1M 镜的位置,使得通过分光板分开的两路光光程大致相等 3)调节1M 、2M 镜后面的两个旋钮,使两排激光点重合为一排,并使两个最亮的光点重合在一起。此时再放上投影屏E ,就可以看到干涉条纹。 4)仔细调节1M 、2M 镜后面的两个旋钮,使1M 与' 2M 平行,这时在屏上可以看到同心圆条纹,这些条纹为非定域条纹。 5)转动微调手轮,观察干涉条纹的形状、疏密及中心“吞”、“吐”条纹随光程差改变的变化情况。

六年级科学上实验报告单

大象版小学六年级上册科学实验报告单实验名称探寻植物角花草倾斜生长原因 实验器材水、植株、土质、遮光纸盒、水壶、剪刀 猜测花草倾斜生长与光源的方向有关 实验步骤1、准备好4个相同的矿泉水瓶,剪掉上部后,留下10厘米做花盆,在花盆内盛入土质量,并用水壶盛如水,均匀地浇上水; 2、在每个花盆中央栽入1株准备好的植株,用手指压紧覆盖根部的土; 3、分别用遮光纸罩住每一盆植株,并编上序号,在1号的左侧、2号的右侧、3号的前边、4号的顶部剪一个透光孔; 4、每天定时给4盆植株均匀地浇同样多的水。 观察到的现象或实验结果现象:两个星期后: 1号盆的植株把头偏向了左测的透光孔; 2号盆的植株把头偏向了右测的透光孔; 3号盆的植株把头偏向了前测的透光孔; 4号盆的植株直立向上生长。 实验结果:植物角里的花草,把头探向窗外与光源的方向有关。 实验结论植物倾斜生长与光源的方向有关,植物的生长具有向光性。 大象版小学六年级上册科学实验报告单 实验名称探寻植物角花草倾斜生长原因 实验器材水、植株、土质、水壶 猜测花草倾斜生长与水分供应的方向和距离有关 实验步骤 1、准备好做花盆,在花盆内盛入土质量,并用水壶盛如水,均匀地浇上水; 2、在每个花盆中央栽入1株准备好的植株,用手指压紧覆盖根部的土; 3、给每盆植株编上序号,命名为1号、2号、3号和4号,把四盆植株摆放到自 然光下; 4、每天定时在1号盆的左侧、2号盆的右侧、3号盆距离10厘米左右、4号盆距 离20厘米左右浇水。 观察到的现象 或实验结果 现象:两个星期后:四个盆内的植株无偏头情况 清除土质后发现: 1号盆的植株的根系大部分向左侧发展; 2号盆的植株的根系大部分向右侧发展; 3号盆的植株的根系较1号和2号盆的偏少和偏短; 4号盆的植株的根系较1至3号盆的最少,且最短; 实验结果:花草倾斜生长与水分供应的方向和距离无关。 实验结论 植物倾斜生长与水分供应的方向和距离无关,但根系生长的方向与水分供应的方向、长短和多少与水分供应的距离有关,植物的根部生长具有向水性。 大象版小学六年级上册科学实验报告单 实验名称探寻植物是否通过根来“喝水” 实验器材烧瓶、植物油、水、菊花 猜测植物通过根来“喝水”

迈克尔逊干涉仪(实验报告)

一、实验目的 1、掌握迈克尔逊干涉仪的调节方法并观察各种干涉图样。 2、区别等倾干涉、等厚干涉和非定域干涉,测定 He-Ne 激光波长 二、实验仪器 迈克尔逊干涉仪、 He-Ne 激光器及光源、小孔光阑、扩束镜(短焦距会聚镜)、毛玻璃屏等。 (图一) (图二) 三、实验原理 ①用 He-Ne 激光器做光源,使激光通过扩束镜会聚后发散,此时就得到了一个相关性很好的点光源,射到分光板 P1和 P2上后就将光分成了两束分别射到 M1 和 M2 上,反射后通过 P1 、 P2 就可以得到两束相关光,此时就会产生干涉条纹。 ②产生干涉条纹的条件,如图 2 所示, B 、 C 是两个相干点光源,则到 A 点的光程差δ =AB-AC=BCcosi , 若在 A 点出产生了亮条纹,则δ =2dcosi=k λ (k 为亮条纹的级数 ) ,因为 i 和 k 均为不可测的量,所以取其差值,即λ =2 Δ d/ Δ k。 四、实验步骤 1、打开激光电源,先不要放扩束镜,让激光照到分光镜 P1 上,并调节激光的反射光照射到激光筒上。 2、调节 M2 的位置使屏上两排光中最亮的两个光点重回,并调至其闪烁。 3、将扩束镜放于激光前,调节扩束镜的高度和偏角,使光能照在 P1分光镜上,看显示屏上有没有产生同心圆的干涉条纹图案。没有的话重复 2 、 3 步骤,直到产生同心圆的干涉条纹图案。 4、微调 M2是干涉图案处于显示屏的中间。 5、转动微量读数鼓轮,使 M1 移动,可以看到中心条纹冒出或缩进,若看不到此现象,先转动可度轮,再转动微量读数鼓轮。记下当前位置的读数 d0 ,转动微量读数鼓轮,看到中心条纹冒出或缩进 30 次则记一次数据,共记录 10 次数据即 d0、 d1 (9)

大物实验报告-光的等厚干涉

大学物理实验报告实验名称:光的等厚干涉 学院:机电工程学院 班级:车辆151班 姓名:吴倩萍 学号:5902415034 时间:第8周周三下午3: 45开始 地点:基础实验大楼313

一、实验目的: 1?观察牛顿环和劈尖的干涉现象。 2?了解形成等厚干涉现象的条件及特点。 3?用干涉法测量透镜的曲率半径以及测量物体的微小直径或厚 度。 二、实验仪器: 牛顿环装置、钠光灯、读数显微镜、劈尖等。 三、实验原理: 在平面玻璃板BB上放置一曲率半径为R的平凸透镜AOA,两者之间便形成一层空气薄层。当用单色光垂直照射下来时,从空气上下两个表面反射的光束1和光束2在空气表面层附近相遇产生干涉,空气层厚度相等处形成同一级的干涉条纹,这种干涉现 象称为等厚干涉。 1.用牛顿环测量平凸透镜表面的曲率半径 (1)安放实验仪器。(2)调节牛顿环仪边框上三个螺旋,使在牛顿环仪中心出现一组同心干涉环。将牛顿环仪放在显微镜的平台上,调节45 °玻璃板,以便获得最大的照度。(3)调节读数显微镜调焦手轮,直至在显微镜内能看到清晰的干涉条纹的像。适当移动牛顿环位置,使干涉条纹的中央暗区在显微镜叉丝的正下方,观察干涉条纹是否在显微镜的读数范围内,以便测量。(4)

转动测微鼓轮,先使镜筒由牛顿环中心向左移动,顺序数到第 24暗环,再反向至第22暗环并使竖直叉丝对准暗环中间,开始记录。在整个测量过程中,鼓轮只能沿同一个方向依次测完全部数据。将数据填入表中,显然,某环左右位置读数之差即为该环的直径。用逐差法求出R,并计算误差。 2.用劈尖干涉法则细丝直径 (1)将被测细丝夹在两块平板玻璃的一端,另一端直接接触, 形成劈尖,然后置于读数显微镜载物台上。( 2)调节叉丝方位 和劈尖放置方位,使镜筒移动方向与干涉条纹相垂直,以便准确测出条纹间距。(3)用读数显微镜测出20条暗条纹间的垂直距离I,再测出棱边到细丝所在处的总长度L,求出细丝直径do (4) 重复步骤3,各测三次,将数据填入自拟表格中。求其平均值o 四、实验内容: 观察牛顿环 (1)接通钠光灯电源使灯管预热。 (2)将牛顿环装置放置在读数显微镜镜筒下,并将下面的反射 镜置于背光位置。 (3)待钠光灯正常发光后,调节光源的位置,使450半反射镜正对钠灯窗口,并且同高。

“迈克尔逊干涉仪”实验报告

“迈克尔逊干涉仪”实验报告 【引言】 迈克尔逊干涉仪是美国物理学家迈克尔逊(A.A.Michelson)发明的。1887年迈克尔逊和莫雷(Morley)否定了“以太”的存在,为爱因斯坦的狭义相对论提供了实验依据。迈克尔逊用镉红光波长作为干涉仪光源来测量标准米尺的长度,建立了以光波长为基准的绝对长度标准,即1m=1 553 164.13个镉红线的波长。在光谱学方面,迈克尔逊发现了氢光谱的精细结构以及水银和铊光谱的超精细结构,这一发现在现代原子理论中起了重大作用。迈克尔逊还用该干涉仪测量出太阳系以外星球的大小。 因创造精密的光学仪器,和用以进行光谱学和度量学的研究,并精密测出光速,迈克尔逊于1907年获得了诺贝尔物理学奖。 【实验目的】 (1)了解迈克尔逊干涉仪的原理和调整方法。 (2)测量光波的波长和钠双线波长差。 【实验仪器】 迈克尔逊干涉仪、He-Ne激光器、钠光灯、扩束镜 【实验原理】 1.迈克尔逊干涉仪结构原理 图1是迈克尔逊干涉仪光路图,点光源 S发出的光射在分光镜G1,G1右表面镀有半 透半反射膜,使入射光分成强度相等的两束。 反射光和透射光分别垂直入射到全反射镜M1 和M2,它们经反射后再回到G1的半透半反射 膜处,再分别经过透射和反射后,来到观察区 域E。如到达E处的两束光满足相干条件,可 发生干涉现象。 G2为补偿扳,它与G1为相同材料,有 相同的厚度,且平行安装,目的是要使参加干 涉的两光束经过玻璃板的次数相等,波阵面不会发生横向平移。 M1为可动全反射镜,背部有三个粗调螺丝。 M2为固定全反射镜,背部有三个粗调螺丝,侧面和下面有两个微调螺丝。 2.可动全反镜移动及读数 可动全反镜在导轨上可由粗动手轮和微动手轮的转动而前后移动。可动全反镜位置的读数为: ××.□□△△△ (mm) (1)××在mm刻度尺上读出。

迈克尔逊干涉仪实验报告

迈克尔逊干涉仪实验报 告 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

迈克耳逊干涉仪 一. 实验目的 1.了解迈克尔逊干涉仪的结构和原理,掌握调节方法; 2.用迈克尔逊干涉仪测量钠光波长和精细结构。 二. 实验仪器 迈克尔逊干涉仪、钠光灯、透镜等。 三. 实验原理 迈克耳孙干涉仪原理如图所示。两平面反射镜M1、M2、光源 S和观察点E (或接收屏)四者北东西南各据一方。M1、M2相互垂直,M2是固定的,M1可沿导轨做精密移动。G1和G2是两块材料相同薄厚均匀相等的平行玻璃片。G1的一个表面上镀有半透明的薄银层或铝层,形成半反半透膜,可使入射光分成强度基本相等的两束光,称G1为分光板。G2与G1平行,以保证两束光在玻璃中所走的光程完全相等且与入射光的波长无关,保证仪器能够观察单、复色光的干涉。可见G2作为补偿光程用,故称之为补偿板。G1、G2与平面镜M1、M2倾斜成45°角。 如上图所示一束光入射到G1上,被G1分为反射光和透射光,这两束光分别经M1和M2反射后又沿原路返回,在分化板后表面分别被透射和反射,于E处相遇后成为相干光,可以产生干涉现象。图中M′2是平面镜M2由半反膜形成的虚像。观察者从E处去看,经M2反射的光好像是从M′2来的。因此干涉仪所产生的干涉和由平面M1与M′2之间的空气薄膜所产生的干涉是完全一样的,在讨论干涉条纹的形成时,只需考察M1和M2两个面所形成的空气薄膜即可。两面相互平行可到面光源在无穷远处产生的等倾干涉,两面有小的夹角可得到面光源在空气膜近处形成的等厚

干涉。若光源是点光源,则上述两种情况均可在空间形成非定域干涉。设M1和M ′2之间的距离为d ,则它们所形成的空气薄膜造成的相干光的光程差近似用下式表示 若M1与M ′2平行,则各处d 相同,可得等倾干涉。系统具有轴对称不变性,故屏E 上的干涉条纹应为一组同心圆环,圆心处对应的光程差最大且等于2d,d 越大圆环越密。反之中心圆斑变大圆环变疏。若d 增加 则中心“冒出”一个条纹,反之d 减小 则中心“缩进”一个条纹。故干涉条纹在中心处“冒出”或“缩进”的个数N 与d 的变化量△d 之间有下列关系 根据该关系式就可测量光波波长λ或长度△d 。 钠黄双线的精细结构测量原理简介: 干涉条纹可见度定义为: 当,时V=1,此时干涉条纹最清晰,可见度最大;时V=0,可见度最小。 从一视见度最低的位置开始算起,测量一次视见度最低处的位置,者其间的光程差为,且由关系算出谱线的精细结构。 四. 实验结果计与分析 钠光的平均波长 次数 初读数 d 1(mm ) 末读数 d 2(mm ) △d=|d 1-d 2| (mm) (nm) (nm) 1 其中λ=2*Δd/100,根据λ0=; = E=% 钠光的精细结构:

测定三棱镜折射率实验报告_0

测定三棱镜折射率实验报告 各位读友大家好!你有你的木棉,我有我的文章,为了你的木棉,应读我的文章!若为比翼双飞鸟,定是人间有情人!若读此篇优秀文,必成天上比翼鸟! 【实验目的】利用分光计测定玻璃三棱镜的折射率;【实验仪器】分光计,玻璃三棱镜,钠光灯。【实验原理】最小偏向角法是测定三棱镜折射率的基本方法之一,如图10所示,三角形%26#8197;ABC%26#8197;表示玻璃三棱镜的横截面,AB和AC是透光的光学表面,又称折射面,其夹角a称为三棱镜的顶角;BC%26#8197;为毛玻璃面,称为三棱镜的底面。假设某一波长的光线%26#8197;LD%26#8197;入射到棱镜的%26#8197;AB%26#8197;面上,经过两次折射后沿%26#8197;ER%26#8197;方向射出,则入射线%26#8197;LD%26#8197;与出射线%26#8197;ER%26#8197;的夹

角%26#8197;%26#8197;称为偏向角。图10三棱镜的折射由图10中的几何关系,可得偏向角(3)因为顶角a满足,则(4)对于给定的三棱镜来说,角a是固定的,随和而变化。其中与、、依次相关,因此实际上是的函数,偏向角也就仅随而变化。在实验中可观察到,当变化时,偏向角有一极小值,称为最小偏向角。理论上可以证明,当时,具有最小值。显然这时入射光和出射光的方向相对于三棱镜是对称的,如图11所示。您正浏览的文章由第一'范文网整理,版权归原作者、原出处所有。图11最小偏向角若用表示最小偏向角,将代入(4)式得(5)或(6)因为%26#8197;,所以%26#8197;,又因为%26#8197;,则(7)根据折射定律得,(8)将式(6)、(7)代入式(8)得:(9)由式(9)可知,只要测出入射光线的最小偏向角及三棱镜的顶角,即可求出该三棱镜对该波长入射光的折射率n.【实验内容与步骤】1.调节分光计按实验24一1中的要求与步骤调整好分

等厚干涉牛顿环实验报告

等厚干涉牛顿环实验报告 This manuscript was revised on November 28, 2020

等厚干涉——牛顿环 等厚干涉是薄膜干涉的一种。薄膜层的上下表面有一很小的倾角是,从光源发出的光经上下表面反射后在上表面附近相遇时产生干涉,并且厚度相同的地方形成同一干涉条纹,这种干涉就叫等厚干涉。其中牛顿环是等厚干涉的一个最典型的例子,最早为牛顿所发现,但由于他主张微粒子学说而并未能对他做出正确的解释。光的等厚干涉原理在生产实践中育有广泛的应用,它可用于检测透镜的曲率,测量光波波长,精确地测量微笑长度、厚度和角度,检验物体表面的光洁度、平整度等。 一. 实验目的 (1)用牛顿环观察和分析等厚干涉现象; (2)学习利用干涉现象测量透镜的曲率半径; 二. 实验仪器 读数显微镜钠光灯牛顿环仪 三. 实验原理 牛顿环装置是由一块曲率半径较大的平凸面放在一块光 学玻璃平板(平镜)上构成的,如图。平凸透镜的凸面与玻 璃平板之间的空气层厚度从中心到边缘逐渐增加,若以平行单光垂直照射到牛顿环上,则经空气层上、下表面反射的两光束存在光程差,他们在平凸透镜的凸面相遇后,将发生干涉。从透镜上看到的干涉花样是以玻璃接触点为中心的

一系列明暗相间的圆环,称为牛顿环。同一干涉环上各处的空气层厚度是相同的,因此他属于等厚干涉。 图2 图3 由图2可见,若设透镜的曲率半径为R ,与接触点O 相距为r 处空气层的厚度为d ,其几何关系式为 由于r R >>,可以略去d 2得 R r d 22 = (1) 光线应是垂直入射的,计算光程差时还要考虑光波在平玻璃上反射会有半波损失,,从而带来λ的附加程差,所以总光程差为 2 2λ + =?d (2) 所以暗环的条件是 2 ) 12(λ +=?k (3) 其中 3,2,1, 0=k 为干涉暗条纹的级数。综合(1)(2)(3)式可得第可k 级暗环的半径为 λkR r k =2 (4) 由式(4)可知,如果单色光源的波长λ已知,测出第m 级的暗环半径r m,,即可得出平图透镜的曲率半径R ;反之,如果R 已知,测出r m 后,就可计算出入射单色光波的波长λ。但是用此测量关系式往往误差很大,原因在于凸面和平面不可能是理想的点接触;接触压力会引起局部形变,使接触处成为一个圆形平面,干涉环中心为一暗斑。或者空气间隙层有了灰尘,附加了光程差,干涉环中心为一亮(或暗)斑,均无法确定环

迈克尔逊干涉仪实验报告

迈克尔逊干涉仪实验报告 一、实验题目:迈克尔逊干涉仪 二、实验目的: 1. 了解迈克尔逊干涉仪的结构、原理和调节方法; 2. 观察等倾干涉、等厚干涉现象; 3. 利用迈克尔逊干涉仪测量He-Ne激光器的波长; 三、实验仪器: 迈克尔逊干涉仪、He-Ne激光器、扩束镜、观察屏、小孔光阑四、实验原理(原理图、公式推导和文字说明): 在图M 2′是镜子M 2 经A面反射所成的虚像。调整好的迈克尔逊干涉仪,在 标准状态下M 1、M 2 ′互相平行,设其间距为d.。用凸透镜会聚后的点光源S是 一个很强的单色光源,其光线经M 1、M 2 反射后的光束等效于两个虚光源S 1 、S 2 ′ 发出的相干光束,而S 1、S 2 ′的间距为M 1 、M 2 ′的间距的两倍,即2d。虚光源 S 1、S 2 ′发出的球面波将在它们相遇的空间处处相干,呈现非定域干涉现象,其 干涉花纹在空间不同的位置将可能是圆形环纹、椭圆形环纹或弧形的干涉条纹。 通常将观察屏F安放在垂直于S 1、S 2 ′的连线方位,屏至S 2 ′的距离为R,屏上 干涉花纹为一组同心的圆环,圆心为O。 设S 1、S 2 ′至观察屏上一点P的光程差为δ,则 )1 /) (4 1 ( ) 2 ( 2 2 2 2 2 2 2 2 2 - + + + ? + = + - + + = r R d Rd r R r R r d R δ (1) 一般情况下d R>>,则利用二项式定理并忽略d的高次项,于是有

??? ? ??+++=? ??? ??+-++?+=)(12)(816)(2)(4222 22222222222 2 r R R dr r R dR r R d R r R d Rd r R δ (2) 所以 )sin 1(cos 22θθδR d d + = (3) 由式(3)可知: 1. 0=θ,此时光程差最大,d 2=δ,即圆心所对应的干涉级最高。旋转微调鼓轮使M 1移动,若使d 增加时,可以看到圆环一个个地从中心冒出,而后往外扩张;若使d 减小时,圆环逐渐收缩,最后消失在中心处。每“冒出”(或“消失”)一个圆环,相当于S 1、S 2′的距离变化了一个波长λ大小。如若“冒出”(或“消失”)的圆环数目为N ,则相应的M 1镜将移动Δd ,显然: N d /2?=λ (4) 从仪器上读出Δd 并数出相应的N ,光波波长即能通过式(4)计算出来。 2. 对于较大的d 值,光程差δ每改变一个波长所需的θ的改变量将减小,即两相邻的环纹之间的间隔变小,所以,增大d 时,干涉环纹将变密变细。 五、实验步骤 六、实验数据处理(整理表格、计算过程、结论、误差分析): m m 105-5?=?仪 N=30

光的折射(20201109224218)

义务教育课程标准实验教科书物理八年级上册 第二章第四节《光的折射》 课标要求: 探究并了解光的折射的规律 教学设计思想: 创设情景,通过“探索--- 自得式”教学,激发学生自主学习的兴趣重视交流与合作,使学生在愉快中“探究-- 自得”,促进自我发展 本章在对折射现象的研究中,定位在认识折射现象上。理解由于折射而产生的现象基础是折射定律,而折射定律的学习历来是初中学生物理学习的难点。因而本节的重点是探究光从空气斜射入水或其他介质中的光线偏折的规律。引导学生运用所学知识解释实际问题,例如鱼在那里,池水变浅等。 教学目标: 1、目的和要求: (1).知识与技能 ?了解光的折射现象:光从空气射入水中或其他介质中时的偏折规律。 ?了解光在发生折射时,光路的可逆性。 (2).过程与方法。 ?通过观察,认识折射现象。 ?体验由折射引起的错觉。 (3).情感、态度与价值观。 ?初步领略折射现象的美妙,获得对自然现象的热爱、亲近的情感。 2、重点:通过实验,探究光从空气射入水中或其他介质中时的偏折规律。 3、难点:光的折射在实际问题上的研究,如折射使池水“变浅”等 4、教学资源 (1)、教学场所: 多媒体物理实验室 (2)、器材准备: 教师:实物投影仪,激光笔、玻璃砖、白胶板、水槽、空烧杯、纸杯 学生:盛水的水槽、激光笔、蚊香、空烧杯、纸杯、彩色粉笔、硬币 (3)、媒体课件:Powerpoint 幻灯片 教学流程图:

、引入;设疑,引起兴趣 四、拓展体验 五、学以致用

《光的折射》教学反思 《新课程标准》强调学生的自主学习、合作学习和探究学习的学习方式的转变。以F就《光的折射》的教学进行教学反思,从而反思新课程标准的实施与落实。 一、教学设计及过程的分析 1、从内容来看:从教案中明确了知识目标,符合大纲的基本要求,并就重、难点的知识目标也分别明确指出,就知识目标来说是适合学生实际的。 2、在教学策略的选择上,基本体现了发现式教学策略。从学生的腿在水面处看上去变短的现象提出问题;接着引导学生通过改进的水槽,用激光让学生自主探究光的折射现象;接着进一步提出

(完整版)迈克尔逊干涉研究性实验报告

研究性实验报告 迈克逊干涉

迈克尔逊干涉 摘要:迈克尔逊干涉仪是一个设计非常巧妙的分振幅双光束干涉装置,有光源发出的光,经过分光束镜分成相互垂直的两束光;它们反射回来又经分光束镜相遇发生干涉,其光路实际上是在M1、M2’之间形成了一个空气薄膜,并且这个薄膜的厚度和形状可以根据需要而变化,光源,物光,参考光和观察屏四者在布局上彼此完全分开,每一路都有充分的空间,可以安插其他器件进行调整测量,测量上有很大的灵活性,加上精密的机械传动和读数测量系统,迈克尔逊干涉仪构成了现代各种干涉仪的基础,迈克逊干涉仪既可以使用点光源,也可以使用扩展光源,既可以观察非定域干涉条纹,也可以研究定域干涉条纹,既可以实现等倾干涉,也可以获得等厚干涉条纹。本实验利用迈克尔逊干涉仪来测量氦氖激光波长。 一、实验目的 1.了解迈克尔逊干涉仪的结构和调整方法; 2.观察等倾干涉现象; 3.测量氦氖激光波长。 二、实验仪器 迈克尔逊干涉仪,氦氖激光器,小孔,扩束镜,毛玻璃 三、实验原理 1.仪器光路原理 1 G1和G2是两块平行放置的平行平面玻璃板,它们的折射率和厚度都完全相同。G1的背面镀有半反射膜,称作分光板。G2称作补偿板。M1和M2是两块平面反射镜,它们装在与G1成45o角的彼此互相垂直的两臂上。M2固定不动,M1可沿臂轴方向前后平移。 由扩展光源S发出的光束,经分光板分成两部分,它们分别近于垂直地入射在平面反射镜M1和M2上。经M1反射的光回到分光板后一部分透过分光板沿E的方向传播,而经M2反射的光回到分光板后则是一部分被反射在E方向。由于两者是相干的,在E处可观察到相干条纹。 光束自M1和M2上的反射相当于自距离为d的M1和M2ˊ上的反射,其中M2ˊ是平面镜M2为分光板所成的虚像。因此,迈克尔逊干涉仪所产生的干涉与厚度为d、没有多次反射的空气平行平面板所产生的干涉完全一样。经M1反射的光三次穿过分光板,而经M2反射的光只通过分光板一次,补偿板就是为消除这种不对称性而设置的。 双光束在观察平面处的光程差由下式给定: Δ=2dcosi 式中:d是M1和M2ˊ之间的距离,i是光源S在M1上的入射角。

等厚干涉牛顿环实验报告

等厚干涉牛顿环实验报告 Final revision on November 26, 2020

等厚干涉——牛顿环 等厚干涉是薄膜干涉的一种。薄膜层的上下表面有一很小的倾角是,从光源发出的光经上下表面反射后在上表面附近相遇时产生干涉,并且厚度相同的地方形成同一干涉条纹,这种干涉就叫等厚干涉。其中牛顿环是等厚干涉的一个最典型的例子,最早为牛顿所发现,但由于他主张微粒子学说而并未能对他做出正确的解释。光的等厚干涉原理在生产实践中育有广泛的应用,它可用于检测透镜的曲率,测量光波波长,精确地测量微笑长度、厚度和角度,检验物体表面的光洁度、平整度等。 一. 实验目的 (1)用牛顿环观察和分析等厚干涉现象; (2)学习利用干涉现象测量透镜的曲率半径; 二. 实验仪器 读数显微镜钠光灯牛顿环仪 三. 实验原理 牛顿环装置是由一块曲率半径较大的平凸面放在 一块光学玻璃平板(平镜)上构成的,如图。平凸透 镜的凸面与玻璃平板之间的空气层厚度从中心到边缘逐渐增加,若以平行单光垂直照射到牛顿环上,则经空气层上、下表面反射的两

光束存在光程差,他们在平凸透镜的凸面相遇后,将发生干涉。从透镜上看到的干涉花样是以玻璃接触点为中心的一系列明暗相间的圆环,称为牛顿环。同一干涉环上各处的空气层厚度是相同的,因此他属于等厚干涉。 图2 图3 由图2可见,若设透镜的曲率半径为R ,与接触点O 相距为r 处空气层的厚度为d ,其几何关系式为 由于r R >>,可以略去d 2得 R r d 22 = (1) 光线应是垂直入射的,计算光程差时还要考虑光波在平玻璃上反射会有半波损失,,从而带来λ的附加程差,所以总光程差为 2 2λ + =?d (2) 所以暗环的条件是 2 ) 12(λ +=?k (3) 其中 3,2,1, 0=k 为干涉暗条纹的级数。综合(1)(2)(3)式可得第可k 级暗环的半径为 λkR r k =2 (4) 由式(4)可知,如果单色光源的波长λ已知,测出第m 级的暗环半径r m,,即可得出平图透镜的曲率半径R ;反之,如果R 已知,测出r m 后,就可计算出入射单色光波的波长λ。但是用此测量关系式往往误差很大,原因在于凸面和平面不可能是理想的点接触;接触压力会引起局部形变,使接触处成为一个圆形平面,干涉环中心为一暗斑。或者空气间隙层有了灰尘,附加了光程差,干涉环中心为

相关文档
相关文档 最新文档