文档库 最新最全的文档下载
当前位置:文档库 › 广西陆川县中学高二上学期数学同步作业:第6章 不等式 算术平均数与几何平均数(1)(大纲版)

广西陆川县中学高二上学期数学同步作业:第6章 不等式 算术平均数与几何平均数(1)(大纲版)

算术平均数与几何平均数(1)

一、选择题

1.0,0a b >>

是a b +≥

A .充分不必要条件

B .必要不充分条件

C .充要条件

D .既不充分也不必要条件

2.设,a b 为非零实数,则在○1222a b ab +≥;○222

2()22

a b a b ++≤;○32a b ab a b +≥+中恒成立的个数是

A .0

B .1

C .2

D .3

3.若,x y R ∈,则下列不等式中最小值为2的是

A .22

a b + B

..2ab D .a b +

4.设,(0,1)a b ∈,且a b ≠,下列各式中最大的是 A .212a a +≥ B .2

44a a +≥ C .||2a b b a +≥ D .22

222a b ab a b ≤+ 二、填空题

5.设,,a b c R +∈,2ab =,且22c a b ≤+恒成立,则c 的最大值为 。

6.设0,0,,a b a b >>是常数,则当0x >时,函数()()()x a x b f x x ++=

的最小值是 。 7.若x R +∈,则21

x x +的最 值是 。 8.设,a b R +

2112a b a b ++,按从小到大顺序排列是 。 三、解答题

9.若0,0a b >>,且

411a b +=

,求证:26a b +≥+

10.若,,a b c R +∈,求证:

111111222a b c b c c a a b

++≥+++++。

11.若,,0a b c >,求证:()()()abc a b c b c a c a b ≥+-+-+-。

参考答案

一、选择题

1.A

2.C

3.D

4.D

二、填空题

5. 4

6.2

7.大;12

8. 2112a b a b

+≤≤≤+ 9. 略

10.

略(提示:1111()222a b a b +≥≥+) 11.不妨设0a b c ≥≥>,然后对0b c a +-≤与0b c a +->进行分类证明即可。

河南省:必修(5):算术平均数与几何平均数(焦作市第十一中学-郭振东)

《算术平均数与几何平均数》 焦作市第十一中学 郭振东 【教学目标】 (1) 知识目标 使学生能准确表达两个重要不等式;理解它们成立的条件和意义;能正确运用算术平均数与几何平均数定理求最值. (2) 能力目标 通过对实例的分析和提炼培养学生的观察、分析和抽象、概括能力;通过师生间的合作交流提高学生的数学表达和逻辑思维能力. (3) 情感目标 让学生经历知识的发生、发展、应用的全过程,鼓励学生在学习中勤于思考,积极探索;通过去伪存真的学习过程培养学生批判质疑的理性思维和锲而不舍追求真理的精神. 【教学重点】两个正数的算术平均数与几何平均数定理及应用定理求最值. 【教学难点】在求最值时如何正确运用定理. 【教学过程】 Ⅰ.引言: 某人中秋节到超市买两斤糖果,不巧超市的电子秤坏了,但超市还有一个不等臂但刻度准确的坏天平,于是售货员先把糖果放在天平的左侧称出“一斤”,再拿出一些糖果放在天平的右侧称出“一斤”,然后把两次称出的糖果合在一起给了他,并且解释:“一边多一边少,加在一起就正好.”这种称法准确么?如果不准确,那么是称多了还是称少了? 【分析】设天平左右两侧力臂长分别为1l 、2l ,两次称得的糖果实际重量为x 、y 则:12xl l =,12l yl =,

∴2112 l l x y l l +=+ 这个数比2大还是小呢?有没有好的解决方法?请同学们阅读课本第9,10页算术平均数与几何平均数一节的正文及例1,看看能否在课本中找到答案。同时思考以下问题: 问题1.糖果给多了还是少了?你用什么知识解决了这个问题?如何解决的? 问题 2.除定理外还有一个重要不等式,内容是什么?它与定理有哪些相同点和不同点? 问题3.认真分析例1及其证明过程,你能得到什么启示? Ⅱ. 阅读课文,找寻答案 学生阅读课本后回答问题1和问题2,引出本节知识 一.两重要不等式 如果,a b R ∈那么222a b ab +≥ (当且仅当a b =时取“=”号). 定理 如果,a b 是正数,那么2 a b +(当且仅当a b =时取“=”号). 想一想:“当且仅当”的含义是什么? 介绍2 a b +叫做a 、b a 、 b 的几何平均数. 数列解释:两个正数的等差中项不小于它们的正项等比中项. Ⅲ.例题精析,去伪存真 二.定理应用 例1. 已知,x y 都是正数,求证: (1)如果积xy 是定值P ,那么当x y =时,和x y + 有最小值 (2)如果和x y +是定值S ,那么当x y =时,积xy 有最大值214 S . 回答问题3,得出:

中学数学中的分形几何

中学数学中的分形几何 广西桂林市恭城瑶族自治县栗木中学数学组何桂荣(542502) 桂林市第十八中学数学组蒋雪祥(541004) 内容提要:本文论述了规则图形的容量维,对容量维的计算作了说明,同时还对4个较为著名的与中学有关的,或是可以用于启发学生思维的分形问题进行了分析。 关键字:容量维Sierpinski三角毯Koch曲线 Koch岛Sierpinski-Menger海绵 1973年,曼德勃罗(B.B.Mandelbrot)在法兰西学院讲课时,首次提出了分维和分形几何的设想。分形(Fractal)一词,是曼德勃罗创造出来的,其原意具有不规则、支离破碎等意义,分形几何学是一门以非规则几何形态为研究对象的几何学。由于不规则现象在自然界是普遍存在的,因此分形几何又称为描述大自然的几何学。数千年来,几何学的发展从来没有二十世纪诞生的分形几何那样对物理学和数学发展产生如此巨大的影响。分形几何对我们大多数人来说是陌生的,因为它看起来离我们太远。其实分形就在我们身边,在近年的竞赛与高考中,分形的影子已经出现。中学数学中的分形与数学研究中的分形所看的角度与研究目标都不同,可以说是羊头狗肉之分吧。笔者试对此进行一点探讨,以抛砖引玉尔。 一、规则图形的容量维 为了描述混沌学中奇怪吸引子的这种奇特结构,曼德尔布罗特(Mandelbrot)最早(1975年)引进了分形(既其维数是非整数的对象)的概念。维数是描述客体的重要几何参量。也可以说,维数是为了确定几何对象中一个点的位置所需的独立坐标数目。已经知道:点是零维,线是一维,平面是二维,而立方体是三维的。这种维数称为拓扑维,用字母"d"表示。维数也可以这样来考虑:比如,取一线段,将该线段的长度乘2,就得到另一个线段,长度为n=2个原线段长度。一正方形,每边长×2,得到一个大的正方形,它等于4个原来大小的正方形。一立方体,每边长×2,得到一个大的立方体,它等于8个原来大小的立方体。由此可以推得,一个d维的几何对象,它的每一个独立方向都增长L倍,结果得到N个原来的对象,这三者的关系为,两边取自然对数,得维数。在本例的正方体中,如果是L=2,则必有N=8,于是就有,即立方体是三维的。将上式的定义加以推广,就得到d不必一定是整数,它可以是分数,我们就把这样推广定义的维数称为分维(fractal),用字母"" 表示。对于规则的几何对象,可以使用统一的长度变换倍数L。而对于不规整的复杂体,如海岸线的长度,总长度与测量单位有关,为了得到精确的测量,不是把尺寸放大L倍,而是测量单位缩小为原来的ε倍,L=1/ε,测量长度次数N随ε减小而增大,记为N(ε),这时分维定义为:。上式定义的分维称为容量维,又称为柯尔莫哥洛夫(A.N.Kolmogorov)容量维。可以证明,拓扑维d和分维满足如下关系:d≤式中取等号是对普通规则几何对象而言的。容量维为非整数的典型的例子是康托集合。 如图示,考虑一闭合线段[0,1],将其分成三等分,舍弃中段,剩下的两段 再分别三等分和舍弃中段,如此继续下去,最后剩下的点的总体就是康托集合。它是一种处处稀疏的对象(自相似结构),其拓扑维d=0,现在来求它的分维。当ε=1/3,N=2;当ε =1/9,N=4;...亦即当时,N=。于是可得康托集合的容量维为由此可见康托集合满足关系d ≤D。奇怪吸引子的维数从一个侧面反映了说明此吸引子所必须的信息量,它是该系统中最重要和最主要的信息,对它的细致研究将有利于我们抓住问题的主要方面,更根本地分析和认识问题。 二、中学数学分形问题与分形几何学问题的例子 例1、将一个三角形的三边中点连结,挖去所得的小三角形;再将剩下的图形的各边的中点

(完整版)均值不等式及其证明

1平均值不等式及其证明 平均值不等式是最基本的重要不等式之一,在不等式理论研究和证明中占有重要的位置。平均值不等式的证明有许多种方法,这里,我们选了部分具有代表意义的证明方法,其中用来证明平均值不等式的许多结论,其本身又具有重要的意义,特别是,在许多竞赛的书籍中,都有专门的章节介绍和讨论,如数学归纳法、变量替换、恒等变形和分析综合方法等,这些也是证明不等式的常用方法和技巧。 1.1 平均值不等式 一般地,假设12,,...,n a a a 为n 个非负实数,它们的算术平均值记为 12...,n n a a a A n +++= 几何平均值记为 112(...)n n n G a a a == 算术平均值与几何平均值之间有如下的关系。 12...n a a a n +++≥ 即 n n A G ≥, 当且仅当12...n a a a ===时,等号成立。 上述不等式称为平均值不等式,或简称为均值不等式。 平均值不等式的表达形式简单,容易记住,但它的证明和应用非常灵活、广泛,有多种不同的方法。为使大家理解和掌握,这里我们选择了其中的几种典型的证明方法。供大家参考学习。 1.2 平均值不等式的证明 证法一(归纳法) (1) 当2n =时,已知结论成立。 (2) 假设对n k =(正整数2k ≥)时命题成立,即对 0,1,2,...,,i a i k >=有 1 1212...(...)k k n a a a a a a k +++≥。 那么,当1n k =+时,由于

121 1 (1) k k a a a A k +++++= +,1k G +=, 关于121,,...,k a a a +是对称的,任意对调i a 与j a ()i j ≠,1k A +和1k G +的值不改变,因此不妨设{}1121min ,,...,k a a a a +=,{}1121max ,,...,k k a a a a ++= 显然111k k a A a ++≤≤,以及1111()()0k k k a A a A +++--<可得 111111()k k k k A a a A a a +++++-≥. 所以 1111211 1(1)...k k k k k k kA k A A a a a A A k k k +++++++-+++-= == 2111...()k k k a a a a A k ++++++-=≥即12111...()k k k k k A a a a a A +++≥+- 两边乘以1k A +,得 111211112111...()...()k k k k k k k k k k A a a A a a A a a a a G ++++++++≥+-≥=。 从而,有11k k A G ++≥ 证法二(归纳法) (1) 当2n =时,已知结论成立。 (2) 假设对n k =(正整数2k ≥)时命题成立,即对 0,1,2,...,,i a i k >=有 12...k a a a +++≥ 那么,当1n k =+时,由于

新人教版初一数学不等式练习题

不等式练习题 一、 选择题 1.下列式子①3x =5;②a >2;③3m -1≤4;④5x +6y ;⑤a +2≠a -2;⑥-1>2中,不等式有( )个 A 、2 B 、3 C 、4 D 、5 2.下列不等关系中,正确的是( ) A 、 a 不是负数表示为a >0; B 、x 不大于5可表示为x >5 C 、x 与1的和是非负数可表示为x +1>0; D 、m 与4的差是负数可表示为m -4<0 3.若m <n ,则下列各式中正确的是( ) A 、m -2>n -2 B 、2m >2n C 、-2m >-2n D 、2 2n m > 4.下列说法错误的是( ) A 、1不是x ≥2的解 B 、0是x <1的一个解 C 、不等式x +3>3的解是x >0 D 、x =6是x -7<0的解集 5.下列数值:-2,-1.5,-1,0,1.5,2能使不等式x +3>2成立的数有( )个. A 、2 B 、3 C 、4 D 、5 6.不等式x -2>3的解集是( )A 、x >2 B 、x >3 C 、x >5 D 、x <5 7.如果关于x 的不等式(a +1)x >a +1的解集为x <1,那么a 的取值范围是( ) A 、a >0 B 、a <0 C 、a >-1 D 、a <-1 8.已知关于x 的不等式x -a <1的解集为x <2,则a 的取值是( ) A 、0 B 、1 C 、2 D 、3 9.满足不等式x -1≤3的自然数是( ) A 、1,2,3,4 B 、0,1,2,3,4 C 、0,1,2,3 D 、无穷多个 10.下列说法中:①若a >b ,则a -b >0;②若a >b ,则ac 2>bc 2;③若ac >bc ,则a >b ;④若ac 2>bc 2,则a >b.正确的有( ) A 、1个 B 、2个 C 、3个 D 、4个 11.下列表达中正确的是( ) A 、若x 2>x ,则x <0 B 、若x 2>0,则x >0 C 、若x <1则x 2<x D 、若x <0,则x 2>x 12.如果不等式ax <b 的解集是x < a b ,那么a 的取值范围是( ) A 、a ≥0 B 、a ≤0 C 、a >0 D 、a <0 二、 填空题 1.不等式2x <5的解有________个. 2.“a 的3倍与b 的差小于0”用不等式可表示为_______________. 3.如果一个三角形的三条边长分别为5,7,x ,则x 的取值范围是______________. 4.在-2<x ≤3中,整数解有__________________. 5.下列各数0,-3,3,-0.5,-0.4,4,-20中,______是方程x +3=0的解; _______是不等式x +3>0的解;___________________是不等式x +3>0. 6.不等式6-x ≤0的解集是__________.

算术-几何平均值不等式

算术-几何平均值不等式 信息来源:维基百科 在数学中,算术-几何平均值不等式是一个常见而基本的不等式,表现了两类平均数:算术平均数和几何平均数之间恒定的不等关系。设为个正实 数,它们的算术平均数是,它们的几何平均数是。算术-几何平均值不等式表明,对任意的正实数,总有: 等号成立当且仅当。 算术-几何平均值不等式仅适用于正实数,是对数函数之凹性的体现,在数学、自然科学、工程科学以及经济学等其它学科都有应用。 算术-几何平均值不等式经常被简称为平均值不等式(或均值不等式),尽管后者是一组包括它的不等式的合称。 例子 在的情况,设: ,那么 .可见。 历史上的证明

历史上,算术-几何平均值不等式拥有众多证明。的情况很早就为人所知,但对于一般的,不等式并不容易证明。1729年,英国数学家麦克劳林最早给出了一般情况的证明,用的是调整法,然而这个证明并不严谨,是错误的。 柯西的证明 1821年,法国数学家柯西在他的著作《分析教程》中给出了一个使用逆向归纳法的证明[1]: 命题:对任意的个正实数, 当时,显然成立。假设成立,那么成立。证明:对于个正实数, 假设成立,那么成立。证明:对于个正实数,设,,那么由于成立,。 但是,,因此上式正好变成 也就是说

综上可以得到结论:对任意的自然数,命题都成立。这是因为由前两条可以得到:对任意的自然数,命题都成立。因此对任意的,可以先找使得,再结合第三条就可以得到命题成立了。 归纳法的证明 使用常规数学归纳法的证明则有乔治·克里斯托(George Chrystal)在其著作《代数论》(algebra)的第二卷中给出的[2]: 由对称性不妨设是中最大的,由于,设,则,并且 有。 根据二项式定理, 于是完成了从到的证明。 此外还有更简洁的归纳法证明[3]: 在的情况下有不等式和成立,于是:

高中数学高频考点专题复习之以分形为背景的数列问题的研究与拓展

以分形为背景的数列问题的研究与拓展 【课本溯源】下图中的三角形称为希尔宾斯基三角形. 图中从左向右的四个三角形,着色三角形的个数依次构成数列{a n }的前4项,写出数列{a n }的一个通项公式,并作出它的图象. 这一问题的背景是分形几何,分形几何的一个重要的特点是自相似性,可通俗地理解为适当地放大或缩小图形的几何尺寸,整个结构并不改变. 分形几何学是美籍法国数学家伯努瓦·B?曼德尔布罗特(B enoit B.M andelbrot )在20世纪70年代创立的一门新学科,与欧氏几何学在研究对象等诸多方面迥然不同. 它的创立,为描述自然界和社会系统中大量存在的不规则图形和现象提供了相应的思想方法,为解决传统科学众多领域的难题提出了全新的思路. 这门充满活力的新学科与数列结合起来,不仅对传统的数列题作了提升,又能发展我们的实践能力,拓展为我们的几何思维. 课本溯源中的问题解答:由题意分析知:12341,3,9,27a a a a ====,则数列{}n a 是首项为1,公比为3的等比数列,所以13n n a -=. 作图略. 本题通过观察即不难发现着色三角形的个数依次数列{a n }成等比数列,而在一些综合性比较强的数列问题中,通项公式的求解往往是解决数列难题的瓶颈,如何熟练掌握常用的求通项公式的方法如累积法、累加法等,是我们必须思考的问题. 下面我们再探究几个以分形为背景的数列问题. 【探究拓展】 探究1:如图,一条螺旋线是用以下方法画成:ABC △是边长为1的正三角形, 曲线1CA 、12A A 、23A A 是分别以A 、B 、C 为圆心,AC 、1BA 、2CA 为半径画的弧,曲线123CA A A 称为螺旋线旋转一圈. 然后又以A 为圆心,3AA 为半径画弧,…,这样画到第n 圈,则所得螺旋线的长度n l = . (要求用含,n π的代数式表示即可) 【解】由图可知12(123)3l π=++,22 (123456)3 l π=+++++,……, 22 (1233)(3)3 n l n n n ππ=+++ +=+. 【评注】由弧长公式可知l r α=,由第1圈、第2圈的弧长不完全归纳出第n 圈的画出,体现了由特殊到一般的思想. 探究2:下图是一个树形图的生长过程,依据图中所示的生长规律,第16行的实心圆点的个数是 .

初中数学专题 不等式及其解集试题及答案

第九章不等式与不等式组 9.1 不等式 9.1.1 不等式及其解集 要点感知1 用__________表示大小关系的式子,叫做不等式,用__________表示不等关系的式子也是不等式. 预习练习1-1 下列式子中是不等式的有__________. ①3<4;②2x2-3>0;③5y2-8;④2x+3=7;⑤3x+1<7. 1-2 “b的1 2 与c的和是负数”用不等式表示为__________. 要点感知2使不等式__________的未知数的__________叫做不等式的解. 预习练习2-1以下所给的数值中,是不等式-2x+3<0的解的是( ) A.-2 B.-1 C.3 2 D.2 2-2 不等式3x<9的解的个数有( ) A.1个 B.3个 C.5个 D.无数多个 要点感知3一个含有未知数的不等式的__________,组成这个不等式的解集.求不等式的解集的过程叫做__________. 预习练习3-1(20**·宿迁)如图,数轴所表示的不等式的解集是__________. 知识点1 不等式 1.数学表达式:①-5<7;②3y-6>0;③a=6;④x-2x;⑤a≠2;⑥7y-6>5y+2中,是不等式的有( ) A.2个 B.3个 C.4个 D.5个 2.“数x不小于2”是指( ) A.x≤2 B.x≥2 C.x<2 D.x>2 3.用不等式表示: (1)x的2倍与5的差不大于1; (2)x的1 3 与x的 1 2 的和是非负数; (3)a与3的和不小于5; (4)a的20%与a的和大于a的3倍. 知识点2 不等式的解集 4.下列说法中,错误的是( )

A.x=1是不等式x<2的解 B.-2是不等式2x-1<0的一个解 C.不等式-3x>9的解集是x=-3 D.不等式x<10的整数解有无数个 5.用不等式表示如图所示的解集,其中正确的是( ) A.x>-2 B.x<-2 C.x≥-2 D.x ≤-2 6.如图所示,将一刻度尺放在数轴上(数轴的单位长度是1 cm),刻度尺上的“0 cm”和“15 cm”分别对应数轴上的-3.6和x,则( ) A.9<x<10 B.10<x<11 C.11<x<12 D.12<x<13 7.在下列各数:-2,-2.5,0,1,6中,不等式2 3 x>1的解有__________;不等式- 2 3 x>1的 解有__________. 8.由于小于6的每一个数都是不等式1 2 x-1<6的解,所以这个不等式的解集是x<6.这种说法 对不对? 9.x与3的和的一半是负数,用不等式表示为( ) A.1 2 x+3>0 B. 1 2 x+3<0 C. 1 2 (x+3)<0 D.1 2 (x+3)>0 10.下面给出5个式子:①3x>5;②x+1;③1-2y≤0;④x-2≠0;⑤3x-2=0.其中是不等式的个数有( ) A.2个 B.3个 C.4个 D.5个 11.下列说法正确的是( ) A.2是不等式x-3<5的解集 B.x>1是不等式x+1>0的解集 C.x>3是不等式x+3≥6的解集 D.x<5是不等式2x<10的解集 12.下列不等式中,4,5,6都是它的解的不等式是( ) A.2x+1>10 B.2x+1≥9 C.x+5≤10 D.3-x>-2 13.(20**·长春改编)不等式x<-2的解集在数轴上表示为( )

高考数学百大经典例题 算术平均数与几何平均数

典型例题一 例1 已知R c b a ∈,,,求证.2 2 2 ca bc ab c b a ++≥++ 证明:∵ ab b a 22 2 ≥+, bc c b 222 ≥+, ca a c 22 2 ≥+, 三式相加,得 )(2)(2222ca bc ab c b a ++≥++,即.222ca bc ab c b a ++≥++ 说明:这是一个重要的不等式,要熟练掌握. 典型例题二 例2 已知c b a 、、是互不相等的正数, 求证:abc b a c c a b c b a 6)()()(2 2 2 2 2 2 >+++++ 证明:∵022 2>>+a bc c b ,, ∴abc c b a 2)(22 >+ 同理可得:abc b a c abc c a b 2)(2)(2 2 2 2 >+>+,. 三个同向不等式相加,得 abc b a c c a b c b a 6)()()(222222>+++++ ① 说明:此题中c b a 、、互不相等,故应用基本不等式时,等号不成立.特别地,b a =,c b ≠时,所得不等式①仍不取等号. 典型例题三 例3 求证)(2222222c b a a c c b b a ++≥+++++. 分析:此问题的关键是“灵活运用重要基本不等式ab b a 22 2≥+,并能由) (2c b a ++这一特征,思索如何将ab b a 22 2≥+进行变形,进行创造”. 证明:∵ab b a 22 2≥+, 两边同加2 2b a +得2 2 2 )()(2b a b a +≥+. 即2 )(2 2 2 b a b a +≥+.

证明n元均值不等式

学习好资料 欢迎下载 证明n 元均值不等式 1212n n n a a a n a a a +++≥证明: 首先证明,23n 2,222当,,,,时,不等式成立。 显然,12122a a a a +≥, 又因为412341234123412342+2222=4a a a a a a a a a a a a a a a a +++≥≥?, 同理可以证明得到n 2也成立。 再证明,当k k+1n 22∈(,) 也成立。 k k n=2+i 1i 2-1≤≤不妨设 ,其中,则有k k k k 21212 222a a a a a a ++ +≥, k+1k+1k+1k+121212 222a a a a a a ++ +≥ 则k k k 121222+12+i =++ +n a a a a a a a a +++++ +(), k k k k k k k k k k k k k k k k+1212 22k 2+i 1212 22+12+i 1222+1k 2+i 12 22+1 2++1 2+i i 2+2-i =++++2-i 2i i n a a a a a a a a a a a a a a a a a a a a a a a +++++++ ?+≥? (则()()) k k k k k k k k k 2+i 12 22+1 2+i k 2+i 12 22+1 2+i 2-2i i -a a a a a a a a a a 其中可以看成是()个相()加所得。 k k k k k k k k k k k k 2+i 12 22+12+i k 2+i 1212 22+12+i 22+1 2+i 2-i ++ +2+i a a a a a a a a a a a a a a a ?++ +≥()最后,在式两边同时减去就得到了()() 1212 n n n a a a n a a a ++ +≥即:得证。

初中数学不等式知识点

初中数学不等式知识点 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

不等式 性质 ①如果x>y,那么yy;() ②如果x>y,y>z,那么x>z;() ③如果x>y,而z为任意实数或,那么x+z>y+z;(,或叫同向不等式可加性) ④如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xzy,m>n,那么x+m>y+n;() ⑥如果x>y>0,m>n>0,那么xm>yn; ⑦如果x>y>0,那么x的n次幂>y的n次幂(n为正数),x的n 次幂

不等式两边相加或相减同一个数或式子,不等号的方向不变。(移项要变号) 不等式两边相乘或相除同一个正数,不等号的方向不变。 不等式两边乘或除以同一个负数,不等号的方向改变。(×÷负数要变号) 解集 确定: ①比两个值都大,就比大的还大(同大取大); ②比两个值都小,就比小的还小(同小取小); ③比大的大,比小的小,无解(大大小小取不了); ④比小的大,比大的小,有解在中间(小大大小取中间)。 三个或三个以上成的不等式组,可以类推。 数轴法 把每个不等式的解集在上表示出来,数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集。有几个就要几个。注意实点与空点的区别。 在确定一元二次不等式时,a>0,Δ=b2-4ac>0时,不等式解集可用"大于取两边,小于取中间"求出。 证明方法 比较法 1.作差比较法:根据a-b>0a>b,欲证a>b,只需证a-b>0;

平面几何问题的复数解法.许兴华

平面几何问题的复数解法.许兴华 复数是高中数学的重要内容之一,在中学数学中,有许多数学问题,如果我们能够根据题目的具体特征,将其转化为复数问题,那么这类数学问题往往可以得到复巧解妙证. 用复数方法解解平面几何的基本思路是,首先运用复数表示复平面上的点,然后利用复数的模和幅角的有关性质,复数运算的几何意义以及复数相等的条件,化几何问题为复数问题来处理. 1.用于证三角形为正三角形 典型1.求证:若三角形重心与其外心重合,则该三角形必 为正三角形. 证明思路分析 以三角形的相重合的外心(重心),为原点O 建立起复平面上的直角坐标系.设321,,Z Z Z 表示三角形的三个顶点,其对应的复 数是.,,321z z z 因O 为外心,故,||||||321r z z z ===又O 为重心,故,033 21=++z z z 即,0321=++z z z 于是由,321z z z -=+得2 2123||||z z z +=)()(2121z z z z ++= ,||||21212221z z z z z z +++=即,22121r z z z z -=+ 22123|||| z z z -=∴)()(2121z z z z --=),(||||21212221z z z z z z +-+=.3|z -z | 21r =∴ 同理可得:.3|z -z | |z -z | 1323r ==∴ 故321,,z z z 在复平面上是正三角形.

2.用于证明几何中的角度相等 典型2.已知正方形OBCD 中(如图),E 是CD 的中点,F 是CE 的中点,求证:FOB DOC ∠=∠2 1. 证明思路分析 建立如图所示的复平面上的直角坐标系,设 ,1||=OD 则,1=OD ,,4 31,211i OB i OF i OE =+=+= DOE ∠=α是 OD 与OE 的夹角,有 ),43arg(i)21arg(12 ),211arg(2i i +=+=+=αα又 )],43(2516arg[431arg i i i FOB +=+=∠=β ,2βα=∴即FOB DOC ∠=∠21. 3.用于证明几何中的不等式 典型3.在凸四边形ABCD 中,求证:BD AC BC AD CD AB ?≥?+?. 证明思路分析 建立如图所示的复平面上的 直角坐标系,设C,D,A 对应的复数分别是 .,,321z z z 则|, ||||,||||,||||,|||213312z z CD z AB z z CA z DB -==-==|,|||32z z AD -= ||||||||||||||||132213z z z z z z BC AD CD AB ?-+-?=?+? ||||31213231z z z z z z z z -+-=.|||||)(|312BD AC z z z ?=-=

算术—几何平均不等式

江苏省郑梁梅高级中学高二数学教学案(理) 主备人:冯龙云 做题人:顾华章 审核人:曾庆亚 课题:算术—几何平均不等式 一、教学目标: 1.掌握平均不等式的基本形式和特点,体会特殊化到一般化的思考方法; 2.利用平均不等式证明相关结论; 二、教学重点、难点 重点:掌握平均不等式的基本形式和特点; 难点:利用平均不等式证明相关结论。 三、教学过程 1、问题情境 复习回顾:基本不等式 2、建构数学 算术—几何平均不等式: 3、数学运用 例1、设,,a b c 为正数,证明:2 (1)()16ab a b ab ac bc c abc ++++++≥。

例2、设12,,,n a a a L 为正数,求证:1212111n n a a a n n a a a +++≥+++L L 。 例3、证明:对于任意正整数n ,有111(1)(1)1n n n n ++<+ +。 4、课堂练习 (1)已知x 、y 都是正数,且 141x y +=,求x y +的最小值。 (2)已知x 、y 都是正数,且x y >,求证:22 12232x y x xy y + ≥+-+。 5、课堂小结 四、板书设计 五、教学后记

江苏省郑梁梅高级中学高二数学作业(理) 班级__________ 姓名________ 学号_________ 1、设,,a b c 为正实数,求证:333111abc a b c +++≥ 2、已知a 、b 为正数,求证:22 (1)(1)9a b a b ab ++++≥。 3、已知a 、b 、c 为正数,且()1abc a b c ++=,求()()a b a c ++的最小值。

均值不等式的证明(精选多篇)

均值不等式的证明(精选多篇) 第一篇:常用均值不等式及证明证明 常用均值不等式及证明证明 这四种平均数满足hn?gn? an?qn ?、ana1、a2、 ?r?,当且仅当a1?a2?? ?an时取“=”号 仅是上述不等式的特殊情形,即d(-1)≤d(0)≤d(1)≤d(2)由以上简化,有一个简单结论,中学常用 均值不等式的变形: (1)对实数a,b,有a 2 22 ?b2?2ab (当且仅当a=b时取“=”号),a,b?0?2ab (4)对实数a,b,有 a?a-b??b?a-b? a2?b2? 2ab?0 (5)对非负实数a,b,有 (8)对实数a,b,c,有

a2? b2?c2?ab?bc?ac a?b?c?abc(10)对实数a,b,c,有 均值不等式的证明: 方法很多,数学归纳法(第一或反向归纳)、拉格朗日乘数法、琴生不等式法、排序 不等式法、柯西不等式法等等 用数学归纳法证明,需要一个辅助结论。 引理:设a≥0,b≥0,则?a?b??an?na?n-1?b n 注:引理的正确性较明显,条件a≥0,b≥0可以弱化为a≥0 ,a+b≥0 (用数学归纳法)。 当n=2时易证; 假设当n=k时命题成立,即 那么当n=k+1时,不妨设ak?1是则设 a1,a2,?,ak?1中最大者, kak?1?a1?a2???ak?1 s?a1?a2???ak 用归纳假设 下面介绍个好理解的方法琴生不等式法 琴生不等式:上凸函数f?x?,x1,x2,?,xn是函数f?x?在区间(a,b)内的任意n个点, 设f?x??lnx,f

?x?为上凸增函数所以, 在圆中用射影定理证明(半径不小于半弦) 第二篇:均值不等式证明 均值不等式证明一、 已知x,y为正实数,且x+y=1求证 xy+1/xy≥17/4 1=x+y≥2√(xy) 得xy≤1/4 而xy+1/xy≥2 当且仅当xy=1/xy时取等 也就是xy=1时 画出xy+1/xy图像得 01时,单调增 而xy≤1/4 ∴xy+1/xy≥(1/4)+1/(1/4)=4+1/4=17/4 得证 继续追问: 拜托,用单调性谁不会,让你用均值定理来证 补充回答: 我真不明白我上面的方法为什么不是用均值不等式证的法二: 证xy+1/xy≥17/4

最新初中数学不等式教案

不等式和不等式组 知识点: 一、不等式与不等式的性质 1、不等式:表示不等关系的式子。(表示不等关系的常用符号:≠,<,>)。 2、不等式的性质: (l )不等式的两边都加上(或减去)同一个数,不等号方向不改变,如a > b , c 为实数?a +c >b +c (2)不等式两边都乘以(或除以)同一个正数,不等号方向不变,如a >b , c >0?ac >bc 。 (3)不等式两边都乘以(或除以)同一个负数,不等号方向改变,如a >b ,c <0?ac <bc. 注:在不等式的两边都乘以(或除以)一个实数时,一定要养成好的习惯、就是先确定该数的数性(正数,零,负数)再确定不等号方向是否改变,不能像应用等式的性质那样随便,以防出错。 3、任意两个实数a ,b 的大小关系(三种): (1)a – b >0? a >b (2)a – b=0?a=b (3)a –b <0?a <b 4、(1)a >b >0? b a > (2)a >b >0?22b a < 二、不等式(组)的解、解集、解不等式 1、能使一个不等式(组)成立的未知数的一个值叫做这个不等式(组)的一个解。 不等式的所有解的集合,叫做这个不等式的解集。 不等式组中各个不等式的解集的公共部分叫做不等式组的解集。 2.求不等式(组)的解集的过程叫做解不等式(组)。

三、不等式(组)的类型及解法 1、一元一次不等式: (l )概念:含有一个未知数并且含未知数的项的次数是一次的不等式,叫做一元一次不等式。 (2)解法:与解一元一次方程类似,但要特别注意当不等式的两边同乘以(或除以)一个负数时,不等号方向要改变。 2、一元一次不等式组: (l )概念:含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组。 (2)解法:先求出各不等式的解集,再确定解集的公共部分。 注:求不等式组的解集一般借助数轴求解较方便。 典型例题: 1、判断正误: (1)若a >b ,c 为实数,则2ac >2 bc ; (2)若2ac >2bc ,则a >b 2、若a <b <0,那么下列各式成立的是( ) A 、b a 11< B 、ab <0 C 、1 b a 3、如果x -y <0,那么x 与y 的大小关系是x y .(填<或>符号) 4、若x y >,则下列式子错误的是( ) A .33x y ->- B .33x y ->- C .32x y +>+ D .33x y >

均值不等式的证明方法

柯西证明均值不等式的方法 by zhangyuong (数学之家) 本文主要介绍柯西对证明均值不等式的一种方法,这种方法极其重要。 一般的均值不等式我们通常考虑的是n n G A ≥: 一些大家都知道的条件我就不写了 n n n x x x n x x x ......2121≥ +++ 我曾经在《几个重要不等式的证明》中介绍过柯西的这个方法,现在再次提出: 8444844)()(: 4422)()(abcdefgh efgh abcd h g f e d c b a abcd abcd cd ab d c b a d c b a ≥+≥+++++++=≥+≥+++=+++八维时二维已证,四维时: 这样的步骤重复n 次之后将会得到 n n n x x x x x x n 2 221221 (2) ...≥ +++ 令A n x x x x x x x x x x n n n n n n =+++= =====++......;,...,2122111 由这个不等式有 n n n n n n n n n n A x x x A x x x A n nA A 2 121 212 221)..(..2 )2(- -=≥ -+= 即得到 n n n x x x n x x x ......2121≥ +++ 这个归纳法的证明是柯西首次使用的,而且极其重要,下面给出几个竞赛题的例子: 例1: 1 1 12101(1,2,...,)11(...)n i i i n n n a i n a a a a =<<=≥ --∑ 若证明 例2:

1 1 1211(1,2,...,)1 1(...)n i i i n n n r i n r r r r =≥=≥ ++∑ 若证明 这2个例子是在量在不同范围时候得到的结果,方法正是运用柯西的归纳法: 给出例1的证明: 12121 2 212 2 123 4 211(1)2(1)(1) 11,(1)(2)2(1) 22(1)2(1)2211111111n a a a a a a p a q a q p p q p q pq q p q q q p q a a a a =+ ≥ ?- --≥----=+= ?--≥-+?-+≥?+≥+?≥+ + + ≥+ ----≥ 当时设,而这是元均值不等式因此此过程进行下去 因2 1 1 2 1221 1212221 12 2 1 1 2 11(...)...(...)112 2 (2) 1111() 111n n n n n n n n i i n n n n n n n n n i i n n i i a a a a a a a a a a G n a G G G G n a G =++-==≥ --=====+-≥ = ----≥ --∑ ∑ ∑ 此令有即 例3: 1 115,,,,1(1),,111,,11( )( ) 1 1 n n i i i i i i i i i n n n i i i i i i n n i i i i i i i i i i i n r s t u v i n R r S s n n T t U u V v n n n r s t u v R ST U V r s t u v R ST U V =>≤≤== = = = ++≥--∑∑∑∑∑∏ 已知个实数都记,求证下述不等式成立: 要证明这题,其实看样子很像上面柯西的归纳使用的形式

中学数学研究(代数部分)考试试题A参考答案及评分标准

贵州师范大学2007—2008学年度第一学期 《中学数学研究》课程期终考试试卷 (A 卷;闭卷) (代数部分)参考答案及评分标准 一、(12分) ⑴(8分)请给出两种不同的方法证明2不是有理数? ⑵(4分)数学发展历史上是如何发现无理数的?这一发现在数系扩展中有何价值? 解: ⑴证法1(奇偶数判别,导致矛盾) 设2是一个有理数x ,即22 =x ,且x 可表示为既约分数 1),(,=n m n m ,于是 22 2=n m ,即 22 2n m =,因此2 m 是偶数,由于奇数的平方不能等于偶数,故m 是偶数。所以设k m 2=,则 2 2 2 2 4)2(2k k m n ===,故2 22k n =,从而n 也是偶数,这与()1,=n m 矛盾,这说明2不是 有理数。 证法2 若22=x ,且x 表示为既约分数 b a 。将 b a ,分解为素因数之积,由于222b a =,则2a 的素因 子必定成对出现,而22b 的素因子中2出现奇数次,矛盾。 证法3 若22 =x ,且x 表示为既约分数b a 。因为222 b a =,故b 可整除2 a ,但()1,= b a ,故1=b , 所以22 =a ,由此得221<<,由于1和4之间没有完全平方项,矛盾。 上述证法,每做对一种,给4分。但总分不超过8分 ⑵略 4分 二、(13分) ⑴(6分)为什么说初等数学中三角函数的定义是用几何方法建立起来的?请按中学数学教材体系给出正弦、余弦在初中和高中的定义。 ⑵(5分)数学分析教程中,可将三角函数展开成幂级数,请给出解析正弦和解析余弦的定义。为什么通过证明又说三角式的概念并不依赖于几何解释? ⑶(2分)上述问题的探析对你有何启示? 解:

初中数学不等式试题及标准答案

初中数学不等式试题及答案

————————————————————————————————作者:————————————————————————————————日期: 2

初中数学不等式试题及答案 A 卷 1.不等式2(x + 1) - 12 732-≤-x x 的解集为_____________。 2.同时满足不等式7x + 4≥5x – 8和5 23x x -<的整解为______________。 3.如果不等式3 3 131++ >+x mx 的解集为x >5,则m 值为___________。 4.不等式2 2 )(7)1(3)12(k x x x x ++<--+的解集为_____________。 5.关于x 的不等式(5 – 2m)x > -3的解是正数,那么m 所能取的最小整数是__________。 6.关于x 的不等式组?? ?<->+2 53 32b x x 的解集为-1x ,则不等式(a – 4b)x + 2a – 3b >0的解是__________。 B 卷 一、填空题 1.不等式2|43|2 +>--x x x 的解集是_____________。 2.不等式|x| + |y| < 100有_________组整数解。 3.若x,y,z 为正整数,且满足不等式?????≥+≥≥1997 213z y y z x 则x 的最小值为_______________。 4.已知M=1 21 2,12122000199919991998++=++N ,那么M ,N 的大小关系是__________。(填“>”或“<”) 5.设a, a + 1, a + 2为钝角三角形的三边,那么a 的取值范围是______________。 二、选择题 1.满足不等式4314 ||3<--x x 的x 的取值范围是( ) A .x>3 B .x<72- C .x>3或x<7 2 - D .无法确定 2.不等式x – 1 < (x - 1) 2 < 3x + 7的整数解的个数( ) A .等于4 B .小于4 C .大于5 D .等于5

相关文档
相关文档 最新文档