文档库 最新最全的文档下载
当前位置:文档库 › 超声波实验报告

超声波实验报告

超声波实验报告
超声波实验报告

1.

拟合出直线为94059.02

14979.0+?=t X 。 所以水中声速应该为0.14979 cm/μs ,即1497.9m/s ,与理论值1464m/s 误差为2.3%<3%。

2.实验中使用铝合金样品

当样品长度为25.05mm 时,三次测得的△t 均为8μs ,则△t/2=4μs 。传播速度应为25.05/8=6.2625mm/μs ,即626.5m/s 。

当样品长度为50.02mm 时,三次测得的△t 均为16μs ,则△t/2=8μs 。传播速度应为50.02/8=6.2525mm/μs ,即625.5m/s 。

由此,声波在样品中的传播速度为(626.5+625.5)/2 m/s=625 m/s 。

3.选择较短的铝合金圆柱样品(d1=25.05mm )作为腹壁,较长的铝合金圆柱样品(d2=50.02mm )作为脏器壁。

第一反射面t1=1.88μs ,第二反射面t2=3.20μs ,

第三反射面t3=4.00μs ,第四反射面t4=13.88μs ,

声波在铝合金中的传播速度为6250m/s ,在水中的传播速度为1464m/s ,

d1=1464*(3.20-1.88)/1000000=1.932mm

d2=6250*(4.00-3.20)/1000000=5.000mm

d3=1464*(13.88-4.00)/1000000=14.464mm

4.测量超声仪器对于铝合金材料的分辨力:

d2=39mm ,d1=30mm ,△d=39-30mm=9mm ,b=3.63μs ,a=11μs ,

33.0=a b 所以分辨力为mm mm mm a

b d F 97.233.09=?=??=

5.利用超声波脉冲法完成无损探伤实验

样块厚度D=64.1mm 。第一道缝深d1=25.0mm ,第二道缝深d2=45.0mm ,两条缝的边界相距△X=25.0mm 。

①当标尺读数x=85.0mm 时,无缺陷回波,样块底面回波与表面回波的时间差为 s 20.40t1-t2t 0μ==?。

②当标尺读数x=74.5mm 时,探头探测位置在第一道缝的半波高法边界处,缺陷回波与表面回波的时间差为s t t t μ00.813=-=?。计算得缝深度为25.1mm mm 4

.2081.64mm d1`0=?=???=t t D ,与观测值25.0mm 误差0.4%。 ③当标尺读数x=98.5mm 时,探头探测位置在第二道缝的半波高法边界处,缺陷回波与表面回波的时间差为s t t t μ40.1414=-=?。计算得缝深度为d2`=44.8mm 。45.3mm mm 4

.204.141.64mm d2`0=?=???=t t D ,与观测值45.0mm 误差0.7%。 ④半波高法找到两缝间距△X=98.5-74.5mm=24.0mm

与实测数据比较,误差均小于3%。

超声光栅测液体中的声速 实验报告

实验设计说明书题目:利用超声光栅测液体中的声速 院部:理工科基础教学部 专业班级:物理学(创新实验班)1班 学生姓名:某某某 学号:41106XXX 实验日期: 2013年5月21日

超声光栅测液体中的声速 人耳能听到的声波,其频率在16Hz 到20kHz 范围内。超过20Hz 的机械波称为超声波。光通过受超声波扰动的介质时会发生衍射现象,这种现象称为声光效应。利用声光效应测量超声波在液体中传播速度是声光学领域具有代表性的实验。 一、实验目的 (1)学习声光学实验的设计思想及其基本的观测方法。 (2)测定超声波在液体中的传播速度。 (3)了解超声波的产生方法。 二、 仪器用具 分光计,超声光栅盒,高频振荡器,数字频率计,纳米灯。 三、 实验原理 将某些材料(如石英、铌酸锂或锆钛酸铅陶瓷等)的晶体沿一定方向切割成晶片,在其表面上加以交流电压,在交变电场作用下,晶片会产生与外加电压频率相同的机械振动,这种特性称为晶体的反压电效应。把具有反压电效应的晶片置于液体介质中,当晶片上加的交变电压频率等于晶片的固有频率时,晶片的振动会向周围介质传播出去,就得到了最强的超声波。 正文: 光声效应的发现无疑是物理学两大分支的又一次融合,利用超声光栅测量液体中的声速就是这一物理现象的应用。此次实验的仪器包括超声光栅池、超声仪、分光计、测微目镜以及光源。 由于声波是纵波,所以当超声波在液体(本实验用的是水)传播时,声波的振动会引起液体密度空间分布的周期性变化(如右图),进而导致液体的折射率亦呈周期性分布(如右图)。如果在某一时间t 0,液体密度的空间函数为: ()0s 02sin x t x π ρρρωλ??=+?- ? ?? ? ① 其中,0ρ是液体的静态密度,ρ?是密度的变化幅度,s ω是超声波的角频率,λ是超声波长,x 是超声波的传播方向,也是密度变化的空间方向;此时,折射率 的空间函数为:()0s 02sin n x n n t x πωλ? ?=+?-? ?? ?②,其中0n 为液体的静态折射率

超声波测厚仪

超声波测厚仪 1.系统方案设计 1.1 概述 由于社会不断进步发展,人们对物体厚度测量的要求越来越高,许多传统的测厚方法已经无法满足我们的需求,还有在很多要求实时测距的情况下,传统的测厚方法也很难完成测量的任务。第一台接触式速续测厚仪大约出现在1930年,操作者用这台侧厚仪器去侧量铜材的厚度时, 必须把它推向待侧的钢带, 用机械的方法来测量距带材边沿几寸范围内的金属材料的厚度。这种测量方法使用极其不便,而且测量精度也很低。在我们看来,一般的物体尺寸的测量,无非长、宽、高(厚),三个方面,而厚度测量是生产中最常见的测量内容之一,常用量具是游标卡尺或千分尺,这些量具在使用时都必须和工件接触,虽然接触压力不大,但对一些特殊工件,在测量时不允许量具和工件接触,否则会在工件表面上留下压印或划痕,甚至有些测量环境环境下很难或无法进行接触式测量,那么,这就需要有一种新的方法来代替接触式测量。随着科技大发展和生产力的要求,非接触式的测量方法出现了。第一台成功的非接触式自动测厚仪应用了X射线吸收技术。从此,非接触式测量方法开始了迅猛发展,其强大的功能和优点无法使传统的接触式测量望其项背,也为人类社会的发展,工业文明的进步做出了巨大的贡献。而目前能够通过采用波在介质中的传播速度和时间关系进行测量的技术主要有激光测距、微波雷达测距和超声波测距三种。激光和雷达测距仪造价偏高,不利于广泛的普及应用,在某些应用领域有其局限性。超声波测距由于其能进行非接触测量和相对较高的精度,越来越被人们所重视。于是,超声波测距这种新的测距方法在测距的应用中将越来越广。

由于超声波具有指向性好、能量损耗低、传播距离较远、不易受外界环境影响和对被测目标无损害等特点,利用超声波测量厚度就可以解决传统测量方法中遇到的问题。利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求,因此超声波测量距离技术在工业控制、勘探测量、机器人定位和安全防范等领域得到了广泛的应用。 超声波测厚电路可以由传统的模拟或者数字电路构建,但是基于这些传统电路构建的系统往往可靠性差,调试困难,可扩展性差,所以基于单片机的超声波测距系统被广泛的应用。通过简单的外围电路发生和接收超声波,当探头发射的超声波脉冲通过被测物体到达材料分界面时,脉冲被反射回探头通过精确测量超声波在材料中传播的时间来确定被测材料的厚度。凡能使超声波以一恒定速度在其内部传播的各种材料均可采用此原理测量。并且可以采集环境温度进行测距补偿,其测量电路小巧,精度高,反映速度快,可靠性好,并且能够非常简单快捷的测出所需要的距离。 超声波测厚适用于超声波能以一恒定速度在其内部传播,并能从其背面得到反射的各种材料厚度的测量。此仪器可对各种板材和各种加工零件作精确测量。可广泛应用于石油、化工、冶金、造船、航空、航天等各个领域。由单片机计时,单片机使用12.0MHz晶振,所以此系统的测量精度可以达到毫米级,同时此系统的成本非常的低廉,稳定性好,可以得到广泛的应用。 1.2 系统方案框图 图1 超声波测厚仪原理框图 此系统根据超声波在空气中传播反射原理, 把超声波传感器作为接口部件, 利用超声波在空气中传播的时间差来测量厚度,设计了一套超声波检测系统。该系统设计主要分为主控制器模块、超声波发射模块、超声波接收模块和显示模块等四个基本模块构成。

超声实验报告

超声实验报告 超声实验 学号: 姓名: 班级: 日期: 【摘要】 超声学是一门主要研究超声的产生方法和探测技术、超声在介质中的传播规律、超声与物质的相互作用,包括在微观尺度的相互作用以及超声的众多应用的学科。本实验利用超声在介质中的传播规律测量了超声探头的延迟时间、横波在不同介质中传播的折射角和纵、横波在不同介质中的传播速度,并利用测量得到的传播速度求出了不同介质的弹性模量和泊松比。最后利用超声测距的原理模拟了超声水下勘测,了解了超声在水下勘测和医疗中的作用。 【关键词】 超声,水下勘测,弹性模量 2 一、实验背景超声的研究和发展与媒质中超声的产生和接收的研究密切相关。 自1883年人类首次制成超声气哨,这一类机械型超声换能器在不断改进后至今仍广泛地应用于流体媒质的超声应用当中。 20世纪初,随着电子学的发展人们发现了一些晶体材料的压电效

应和磁致伸缩效应,1917年,法国人朗之万利用天然石英晶体制成了第一个夹心式超声换能器用来探查海底的潜艇。随着军事和国民经济各部门中超声应用的不断发展,又出现更大超声功率的磁致伸缩换能器,以及各种不同用途的电动型、电磁力型、静电型换能器等多种超声换能器。 随着材料科学的发展,机电耦合系数高、价格低廉、性能良好的压电陶瓷、人工压电单晶、压电半导体以及塑料压电薄膜等材料的出现使得产生和检测超声波的频率,由几十千赫提高到上千兆赫,波型也由单纯的纵波扩大为横波、扭转波、弯曲波、表面波等。超声学的一个发展方向便是不断的提高超声的频率,利用超高频超声声子来进行物质结构方面的等基础研究。 同时,近10年来随着计算机图像学的迅猛发展,超声由于其具有的对身体无创伤,机器技术门槛低,检查费用低廉等优势,超声诊断也随之发展起来,并被广泛地应用于工业机械探伤和医疗诊断方面。此外,超声洁牙器、超声洗碗机等产品也相继问世。超声技术已经越来越多地出现在我们生活的方方面面。 本实验通过学习用超声法来测量固体介质常用参数的方法,学习超声扫描成像技术的应用,来促进对超声波产生和发射的机理,以及声探头的结构及作用的了解,并通过读取超声信号的波形图锻炼读图分析的能力,激发学生在超声探测和成像应用及其信号处理方面的兴趣和思考。 二、实验原理本实验的主要器材是CSS-1超声波扫描成像仪。该

声速的测量(超声)实验报告

声速的测量(超声) 一、实验目的: ①用共振干涉法求超声声速; ②用相位比较法求超声声速。 二、实验仪器: 超声声速测量仪、信号发生器、数字频率计、同轴电缆、示波器、游标卡尺、压电陶瓷超声换能器。 三、实验原理: ①声速的测量: 利用公式νλ,测量声波的频率ν和波长λ去求声速v。 ②声压驻波:已知两列频率、振幅和振动方向相同的平面简谐波,向相反的方向传播时,叠加的合成波就是驻波,在驻波场中质点振幅最大处为波腹,质点位移振幅近似为零处为波节,相邻波腹或波长的距离为半波长(λ/2)。 ③声波波长的测量:接收器S2输出的信息有两部分:1、驻波的信息,其振幅随S2的移动而变化,在共振时,S1、S2的距离为l:,,,此时振幅较大。2、类 似行波的信息,S1、S2用的相位差,也随着S2的移动而变化,每移动λ/2,相位差改变Π(即180°)。利用这两种信息均可测量声波波长λ。(1)共振干涉法;(2)相位比较法。 四、实验方法: ①用共振干涉法测声速: 示波器的X端用内部扫描,调内部扫描与S2的信息同步,示波器上显示的是S2的交流信号按时间展开的图形,移动S2示波器上图形有时很大,有时很小。在S2移动范围内,仔细测多个出现极大值时S2的位置l1、l2、……、l n,用逐差法求出λ,再求声速v。 ②用相位比较法测声速: 示波器的X端用内部扫描,调内部扫描与S2的信息同步,移动S2示波器上的图形会从椭圆变换到一条直线,再从直线变换到一个反方向的椭圆,往复变换。在S2移动范围内,仔细测多个出现直线时S2的位置l1、l2、……、l n,用逐差法求出λ,再求声速v。 ③记录实验室的实温t。 ④用当前实温和公式求出声速,与以上两种方法求出的声速进行比较, 分析。 五、数据处理: 温度:34℃频率:37500Hz 共振干涉法(单位:mm): 218.98 213.58 209.20 204.56 199.62 194.92 190.64 185.72 180.62 176.52 相位比较法(单位:mm): 174.60 169.60 164.80 160.68 155.90 151.22 146.28 141.58 136.68 131.70 共振干涉法: λ

超声波测厚仪中文版说明书资料

目录 快速操作指南 (1) 第一章概述 (2) 1.1技术指标 (2) 1.2主要特点 (3) 1.3配置 (4) 第二章整机及键盘简介 (5) 2.1整机介绍 (5) 2.2键盘介绍 (6) 第三章操作简介 (7) 3.1零点校准 (7) 3.2声速设置或校准 (7) 3.2.1已知声速时声速设置 (7) 3.2.2已知厚度校准(单点校准) (8) 3.2.3两点校准 (8) 3.3基本操作流程 (8) 3.3管材测量 (10) 第四章菜单功能及设置 (11) 4.1仪器菜单 (11) 4.1.1穿透涂层 (12) 4.1.2数据存取 (12) 4.1.3报警 (14) 4.1.4单位 (14) 4.1.5扫查 (14) 4.1.6差值 (15) 4.1.7高温 (15) 4.1.8均值 (16) 4.1.9标准 (16) 4.1.10精度 (17)

4.1.11频率 (17) 4.1.12自动关机 (17) 4.1.13出厂设置 (18) 4.1.14对比度 (18) 4.1.15零点校准 (18) 4.1.16手动选择探头 (18) 4.1.17声音设置 (19) 4.1.18屏幕旋转 (19) 4.1.19单点校准和两点校准 (19) 4.1.20声速表 (19) 4.1.21背光 (19) 4.1.22曲面 (20) 第五章维护和保养 (21) 5.1使用注意事项 (21) 5.2日常维护和保养 (21) 第六章故障分析和排除 (22) 附录:常用材料声速表 (23)

快速操作指南 !注意: ●如您使用的测厚仪无“穿透涂层”测量模式,请确认 被测物为裸材,如被测点表面有油漆等,请将其打磨干净! ●如您使用的测厚仪有“穿透涂层”测量模式,在被测 点表面有涂层时,请选择此测量模式,但需确保被测厚度在“穿透涂层”测量模式的量程内! 第一次使用或者更换探头开机时,操作如下: 1)连接探头:将探头两个插头插入测厚仪主机顶端的两 个插孔内,无需分左右,但请确定完全插入。 注意:在插入探头前,请检查探头插头是否拧紧,如未拧紧请拧紧! 2)开机:按键开机。 3)调节声速:如已知材料声速,方法参考3.2.1,如未知材料声速,但已知材料厚度,方法参考3.2.2。 4)校准零点(参考3.1),SW7/SW7U/SW7A无需校零点。 5)测量:在被测点上涂抹耦合剂,将探头与被测点耦合紧密,厚度值稳定后读数。

实验报告超声波

袂四川大学实验报告书 羁课程名称:实验名称:超声波探伤实验 专业:班号:姓名:学号: 蕿系别: 肅实验日期:2013年3月10日同组人姓名:教师评定成绩: 芃一、实验名称 蚃超声波探伤实验 莈二、实验目的 荿1.了解探伤仪的简单工作原理 蚄2.熟悉超声波探伤仪、探头和标准试块的功用 膁3.了解有关超声波探伤的国家标准 莁4.掌握超声波探伤的基本技能 葿三、主要实验仪器 肅CTS-22型超声波探伤仪试块探头直尺机油 袃四、实验原理

A 型脉冲反射式超声波探伤仪,仪器屏横坐标表示超声波在工件中的传播时 膀实验中广泛应用的是 间(或传播距离)纵坐标表示反射回波波高。根据光屏上缺陷波的位置和高度,可以确定缺陷的位置和大小。 A 型脉冲式超声波探伤仪的工作原理:电路接通后,同步电路产生同步脉冲信号,同时触发发射、扫描电路。发射电路被触发后产生高频脉冲作用于探头,通过探头的逆电压效应将电信号转换为声信号,发射超声波。超声波在遇到异质界面(缺陷或底面)反射回来呗探头吸收。通过探头的正电压效应将信号转换为电信号,并送至放大电路呗放大检波,然后加到荧光屏垂直偏转板上,形成重叠的缺陷波 F 和底波B。扫描电路被处罚后产生锯齿波,加到荧光屏水平偏转板上,形成一条扫描亮线,将缺陷波 F 和底波B按时间展开。其工作原理图如下图所示: 薈五、实验内容与步骤 蒆一.超生波探伤仪的使用、仪器性能的测定、仪器与直探头综合性能测定 莁实验要求: 1. 掌握仪器主要性能:水平线性、垂直线性和动态范围的测试方法; 罿 2. 掌握仪器和直探头主要综合性能:盲区、分辨力、灵敏度余量的测试方法。 蚈背景知识: 蚃1. 仪器的主要性能: 肃 A. 水平线性仪器荧光屏上时基线水平刻度值与实际声程成正比的程度。 蚈 B. 垂直线性仪器荧光屏上的波高与输入信号幅度成正比的程度。 螈 C. 动态范围指反射信号从垂直极限衰减到消失所需的衰减量。 肄 2. 仪器与探头的主要综合性能: 蒁 A. 盲区从探侧面到能发现缺陷的最小距离成为盲区,其内缺陷不能发现。 螁 B. 分辨力在荧光屏上区分距离不同的相邻两缺陷的能力。 袈 C. 灵敏度余量指仪器与探头组合后在一定范围内发现微小缺陷的能力。 蒅 D. 声束扩散角扩散角的大小取决于超声波的波长与探头晶片直径的大小。

声速测量实验报告

大学物理实验课教案 俸永格(136********) 教学题目:声速的测量 教学对象:10级电子信息班、10动医学班、10级农机班、10级植保班。授课地点:海南大学基础实验楼2610室。 教学重点:让学生了解测量超声波在媒介中传播速度的实验设计思想和实验方法。 教学难点:让学生熟练掌握双踪示波器、SV5/7测试仪、SV8信号源的协调使用并完成两正交信号相位差的多次测量。 一实验目的: (1)加深对驻波及振动合成等理论知识的理解, (2)掌握用驻波法、相位法测定超声波在媒介中的传播速度, (3)了解压电换能器的工作原理,进一步熟悉示波器的使用方法提高运用示波器观测物理参数的综合运用能力。 二实验仪器: GW-680双踪示波器一台,SV8信号发生器一台,SV7测试仪一台,同轴电缆若干。 三实验原理 声波是一种在弹性媒质中传播的纵波。对超声波(频率超过2×104Hz的声波)传播速度的测量在国防工业、工业生产、军事科学与医疗卫生各领域都具有重大的现实意义。实验室常用驻波法和相位法进行测量。 (一)驻波法测量声速基本原理 如图所示为两列同频率、同振幅、振动方向平行且相向传波的机械波在媒介中形成的驻波波形,其波腹间距与波节间距均为半个波长。通过对波腹(节)

间距X的测量便可实现对波长λ的间接测量,结合对驻波谐振频率f的测量便可间接求算声波的传播速度v。 v = λ×f λ=2X v = 2X×f 原理图示1(驻波法原理图) (二)相位法测量声速基本原理 请同学们自行完成!要求体现以下两个方面的内容! (1)简谐振动正交合成的基本原理, (2)利用李萨如图形的相位差特点间接测量声速的基本原理。 四实验内容与步骤 (一)驻波法测声速 实验连线图示1(驻波法) (1)了解测试仪的基本结构,调节两个换能器的间距5cm左右。 (2)初始化示波器面板获得扫描线。 (3)按图示1正确连线,将示波器的扫描灵敏度与通道1垂直灵敏度旋钮分别调至适当档位,缓慢顺时针方向转动换能器平移鼓轮至驻波波腹位置

超声波测厚仪的基本原理

超声波测厚仪的基本原理 超声波测厚仪是根据超声波脉冲反射原理来进行厚度测量的,当探头发射的超声波脉冲通过被测物体到达材料分界面时,脉冲被反射回探头,通过测量超声波在材料中传播的时间来确定被测材料的厚度。凡能使超声波以一恒定速度在其内部传播的各种材料均可采用此原理测量。按此原理设计的测厚仪可对各种板材和各种加工零件作测量,也可以对生产设备中各种管道和压力容器进行监测,监测它们在使用过程中受腐蚀后的减薄程度。可广泛应用于石油、化工、冶金、造船、航空、航天等各个领域。 使用技巧: 1、一般测量方法: (1)在一点处用探头进行两次测厚,在两次测量中探头的分割面要互为90°,取较小值为被测工件厚度值。 (2)30mm多点测量法:当测量值不稳定时,以一个测定点为中心,在直径约为30mm的圆内进行多次测量,取小值为被测工件厚度值。 2、测量法:在规定的测量点周围增加测量数目,厚度变化用等厚线表示。 3、连续测量法:用单点测量法沿指定路线连续测量,间隔不大于5mm。 4、网格测量法:在指定区域划上网格,按点测厚记录。此方法在高压设备、不锈钢衬里腐蚀监测中广泛使用。 影响超声波测厚仪示值的因素: [/b](1)工件表面粗糙度过大,造成探头与接触面耦合效果差,反射回波低,甚至无法接收到回波信号。对于表面锈蚀,耦合效果极差的在役设备、管道等可通过砂、磨、挫等方法对表面进行处理,降低粗糙度,同时也可以将氧化物及油漆层去掉,露出金属光泽,使探头与被检物通过耦合剂能达到很好的耦合效果。 (2)工件曲率半径太小,尤其是小径管测厚时,因常用探头表面为平面,与曲面接触为点接触或线接触,声强透射率低(耦合不好)。可选用小管径专用探头(6mm),能较的测量管道等曲面材料。 (3)检测面与底面不平行,声波遇到底面产生散射,探头无法接受到底波信号。 (4)铸件、奥氏体钢因组织不均匀或晶粒粗大,超声波在其中穿过时产生严重的

声速的测定实验报告

声速的测定实验报告 1、实验目的 (1)学会用驻波法和相位法测量声波在空气中传播速度。 (2)进一步掌握示波器、低频信号发生器的使用方法。 (3)学会用逐差法处理数据。 2、实验仪器 超声声速测定仪、低频信号发生器DF1027B 、示波器ST16B 。 3、实验原理 3.1 实验原理 声速V 、频率f 和波长λ之间的关系式为λf V =。如果能用实验方法测量声波的频率f 和波长λ,即可求得声速V 。常用的测量声速的方法有以下两种。 3.2 实验方法 3.2.1 驻波共振法(简称驻波法) S 1发出的超声波和S 2反射的超声波在它们之间的区域内相干涉而形成驻波。当波源的 频率和驻波系统的固有频率相等时,此驻波的振幅才达到最大值,此时的频率为共振频率。 驻波系统的固有频率不仅与系统的固有性质有关,还取决于边界条件,在声速实验中, S 1、S 2即为两边界,且必定是波节,其间可以有任意个波节,所以驻波的共振条件为: Λ Λ3,2,1,2 ==n n L λ (1) 即当S 1和S 2之间的距离L 等于声波半波长的整数倍时,驻波系统处于共振状态,驻波振幅最大。在示波器上得到的信号幅度最大。当L 不满足(1)式时,驻波系统偏离共振状态,驻波振幅随之减小。 移动S 2,可以连续地改变L 的大小。由式(1)可知,任意两个相邻共振状态之间,即 S 2所移过的距离为: () 22 2 11λ λ λ = ? -+=-=?+n n L L L n n (2) 可见,示波器上信号幅度每一次周期性变化,相当于L 改变了2λ。此距离2λ 可由超声声速测定仪上的游标卡尺测得,频率可由低频信号发生器上的频率计读得,根据f V ?=λ,就 可求出声速。 3.2.2 两个相互垂直谐振动的合成法(简称相位法) 在示波器荧光屏上就出现两个相互垂直的同频率的谐振动的合成图形——称为李沙如图形。其轨迹方程为: ()()φφφφ122122122 12 2-=-- ???? ??+???? ??Sin Cos A A XY A Y A X (5) 在一般情况下,此李沙如图形为椭圆。当相位差 12=-=?φφφ时,由(5)式,得 x A A y 12=,即轨迹为一条处在于第一和第三象限的直线[参见图16—2(a)]。

TT150A超声波测厚仪使用说明书_副本

TT150A 超声波测厚仪使用说明书

1 概述 (3) 1.1 技术参数 (3) 1.2 主要功能 (4) 1.3 工作原理 (4) 1.4 仪器配置 (5) 1.5 工作条件 (6) 2 结构与外观 (7) 2.3 主显示界面 (8) 2.4 键盘定义 (8) 3 测量前的准备 (9) 3.1 仪器准备 (9) 3.2 探头选择 (9) 3.3 被测工件的表面处理 (9) 4 仪器使用 (9) 4.1 仪器开、关机 (9) 4.2 探头零点校准 (10) 4.3 声速设置 (10) 4.4 声速测量 (10) 4.5 两点校准 (11) 4.6厚度测量 (12) 4.7 设置测厚模式 (12) 4.8 设置显示分辨率(测量精度) (12) 4.9 改变单位制式 (12) 4.10 存储功能 (13) 4.11 厚度值打印 (14) 4.12警示声音设置 (14)

4.13 背光功能 (15) 4.14 电池电量指示 (15) 4.15 自动关机 (15) 4.16 恢复出厂设置 (15) 4.17 与PC机通讯 (15) 5 测量应用技术 (16) 5.1 测量方法 (16) 5.2管壁测量法 (16) 6维护及注意事项 (16) 6.1 电源检查 (16) 6.2 一般注意事项 (16) 6.3 测量中注意事项 (17) 6.4 标准试块的清洁 (17) 6.5 机壳的清洁 (17) 6.6 仪器维修 (17) 7 贮存与运输条件 (17) 附录A材料声速 (18) 附录B 超声测厚中的常见问题与处理方法 (19) 用户须知 (25)

1 概述 本仪器是智能型超声波测厚仪,采用最新的高性能、低功耗微处理器技术,基于超声波测量原理,可以测量金属及其它多种材料的厚度,并可以对材料的声速进行测量。可以对生产设备中各种管道和压力容器进行监测,监测它们在使用过程中受腐蚀后的减薄程度,也可以对各种板材和各种加工零件作精确测量。本仪器可广泛应用于石油、化工、冶金、造船、航空、航天等各个领域。 1.1 技术参数 ●显示方法:高对比度的段码液晶显示,高亮度EL背光; ●测量范围:(0.75~300)mm(钢中),公制与英制可自由转换; ●声速范围:(1000~9999) m/s: ●分辨率:示值精度:TT150A: ±(0.5%H+0.04)mm ●H为被测物实际厚度 ●测量周期:单点测量时每秒钟4次、扫描模式每秒钟10次; ●存储容量:可存储20组(每组最多100个测量值)厚度测量 数据 ●工作模式:具有单点测厚和扫描测厚两种测厚工作模式 ●单位制:公制或者英制(可选) ●工作电压:3V(2节AA尺寸碱性电池) ●持续工作时间:大于100h(不开背光时) ●通讯接口:RS232,可与微型打印机或PC连接 ●外形尺寸:150mm×74mm×32 mm ●整机重量:245g

超声波测距实验报告

电子信息系统综合设计报告 超声波测距仪

目录 摘要 (3) 第一章绪论 (3) 1.1 设计要求 (3) 1.2 理论基础 (3) 1.3 系统概述 (4) 第二章方案论证 (4) 2.1 系统控制模块 (5) 2.2距离测量模块 (5) 2.3 温度测量模块 (5) 2.4 实时显示模块 (5) 2.5 蜂鸣报警模块 (6) 第三章硬件电路设计 (6) 3.1 超声波收发电路 (6) 3.2 温度测量电路 (7) 3.3 显示电路 (8) 3.4 蜂鸣器报警电路 (9) 第四章软件设计 (10) 第五章调试过程中遇到的问题及解决 (11) 5.1 画PCB及制作 (11) 5.2 焊接问题及解决 (11) 5.3 软件调试 (11) 实验总结 (13) 附件 (14) 元器件清单 (14) HC-SR04超声波测距模块说明书 (15) 电路原理图 (17) PCB图 (17) 程序 (18)

摘要 该系统是一个以单片机技术为核心,实现实时测量并显示距离的超声波测距系统。系统主要由超声波收发模块、温度补偿电路、LED显示电路、CPU处理电路、蜂鸣器报警电路等5部分组成。系统测量距离的原理是先通过单片机发出40KHz 方波串,然后检测超声波接收端是否接收到遇到障碍物反射的回波,同时测温装置检测环境温度。单片机利用收到回波所用的时间和温度补偿得到的声速计算出距离,显示当前距离与温度,按照不同阈值进行蜂鸣报警。由于超声波检测具有迅速、方便、计算简单、易于做到实时控制的特点,并且在测量精度方面能达到工业实用的要求,因此在生产生活中得到广泛的应用,例如超声波探伤、液位测量、汽车倒车雷达等。 关键词:超声波测距温度测量单片机 LED数码管显示蜂鸣报警 第一章绪论 1.1设计要求 设计一个超声波测距仪,实现以下功能: (1)测量距离要求不低于2米; (2)测量精度±1cm; (3)超限蜂鸣器或语音报警。 1.2理论基础 一、超声波传感器基础知识 超声波传感器是利用晶体的压电效应和电致伸缩效应,将机械能与电能相互转换,并利用波的特性,实现对各种参量的测量。 超声波的传播速度与介质的密度和弹性特性有关,与环境条件也有关: 在气体中,超声波的传播速度与气体种类、压力及温度有关,在空气中传播速度为C=331.5+0.607t/0C (m/s) 式中,t为环境温度,单位为0C. 二、压电式超声波发生器原理 压电式超声波发生器实际上是利用压电晶体的谐振来工作的。它有两个压电晶片和一个共振板。当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。反之,如果两电极间未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,这时它就成为超声波接收器了。 三、超声波测距原理 由于超声波指向性强,能量消耗缓慢,在空气中传播的距离较远,因而超声波

大学物理仿真实验实验报告 超声波测声速

大学物理仿真实验实验报告 试验日期: 实验者: 班级: 学号: 超声波测声速 一实验原理 由波动理论可知,波速与波长、频率有如下关系:v = f λ,只要知道频率和波长就可以求出波速。本实验通过低频信号发生器控制换能器,信号发生器的输出频率就是声波频率。声波的波长用驻波法(共振干涉法)和行波法(相位比较法)测量。下图是超声波测声速实验装置图。 驻波法测波长 由声源发出的平面波经前方的平面反射后,入射波与发射波叠加,它们波动方程分 别是:

叠加后合成波为: 的各点振幅最大,称为波腹,对应的位置: ( n =0,1,2,3……) 的各点振幅最小,称为波节,对应的位置: ( n =0,1,2,3……) 二实验仪器 1)声速的测量实验仪器 包括超声声速测定仪、函数信号发生器和示波器 2)超声声速测定仪 主要部件是两个压电陶瓷换能器和一个游标卡尺。 3)函数信号发生器 提供一定频率的信号,使之等于系统的谐振频率。 4)示波器 示波器的x, y轴输入各接一个换能器,改变两个换能器之间的距离会影响示波器上的图形。并由此可测得当前频率下声波的波长,结合频率,可以求得空气中的声速。 三实验内容 1.调整仪器使系统处于最佳工作状态。 2.用驻波法(共振干涉法)测波长和声速。 3.用相位比较法测波长和声速。

*注意事项 1.确保换能器S1和S2端面的平行。 2.信号发生器输出信号频率与压电换能器谐振频率f 0保持一致。 三 数据记录与处理 1. 基础数据记录 谐振频率=33.5kHz 2. 驻波法测量声速 λ的平均值:==∑=1 6i i λλ 1.0585(cm ) λ的不确定度: ) 1()(6 1 2 --= ∑=i i S i i λλ λ=0.002(cm ) 因为,λi = (1i+6-1i ) /3,Δ仪=0.02mm 所以,=仪?= 3 32λu 0.000544(cm ) =+=22λ λλσu S 0.021(mm ) 计算声速: 50.354==λυf (m/s ) 计算不确定度: (m/s) 3)()((kHz) 2.03 %122=+==?= f f f f λσσσσλυ 实验结果表示:υ=(354±3)m/s ,=0.8% 3. 相位比较法测量声速

超声波测声速实验报告

实验名称:超声波测声速实验报告 一、实验目的 (1)、了解超声波的发射和接收方法。 (2)、加深对振动合成、波动干涉等理论知识的理解。 (3)、掌握用干涉法和相位法测声速。 二、实验原理 由波动理论可知,波速与波长、频率有如下关系:v = f λ,只要知道频率和波长就可以求出波速。本实验通过低频信号发生器控制换能器,信号发生器的输出频率就是声波频率。声波的波长用驻波法(共装置图。 波与发射波叠加,它们波动方程分别是: 叠加后合成波为:

的各点振幅最大,称为波腹,对应的位置: ( n =0,1,2,3……) 的各点振幅最小,称为波节,对应的位置: ( n =0,1,2,3……) 因此只要测得相邻两波腹(或波节)的位置Xn、Xn-1即可得波长。 相位比较法测波长:从换能器S1发出的超声波到达接收器S2,所以在同一时刻S1与S2处的波有一相位差:φ=2∏x/λ,其中λ是波长,x为S1和S2之间距离)。因为x改变一个波长时,相位差就改变2∏。利用李萨如图形就可以测得超声波的波长。 三、实验仪器 超声声速测定仪:主要部件是两个压电陶瓷换能器和一个游标卡尺。函数信号发生器:提供一定频率的信号,使之等于系统的谐振频率。示波器:示波器的x, y轴输入各接一个换能器,改变两个换能器之间的距离会影响示波器上的李萨如图形。并由此可测得当前频率下声波的波长,结合频率,可以求得空气中的声速。 四、实验内容 1.调整仪器使系统处于最佳工作状态。 2.用驻波法(共振干涉法)测波长和声速。

3.用相位比较法测波长和声速。 五、实验数据及处理: f=34kHz; Vp-p=5V; L=3.976cm; 六、实验结论: 波长λ=1.0612cm; 由此声速经测算为v=(354±3)m/s; U=0.8% 七、思考题: 1.固定距离,改变频率,以求声速。是否可行? 答:不行,由“v = f λ”,距离一定后使得波长无法计算。 2.各种气体中的声速是否相同?为什么? 答:不同,因为不同气体的密度不同,声波在不同介质中波长改变,根据公式可得结论。

超声实验实验报告

近代物理实验实验报告 超声实验 何昊东工物50 指导老师:王合英2017-3-9 【摘要】: 超声学是一门主要研究超声的产生方法和探测技术、超声在介质中的传播规律、 超声与物质的相互作用,包括在微观尺度的相互作用以及超声的众多应用的学科。本实验利用超声在介质中的传播规律测量了超声探头的延迟时间、横波在不同介质中传播的折射角和纵、横波在不同介质中的传播速度,并利用测量得到的传播速度求出了不同介质的弹性模量和泊松比。最后利用超声测距的原理模拟了超声水下勘测,了解了超声在水下勘测和医疗中的作用。 关键词: 超声水下勘测弹性模量 一、引言 超声的研究和发展与媒质中超声的产生和接收的研究密切相关。 自1883年人类首次制成超声气哨,这一类机械型超声换能器在不断改进后至今仍广泛地应用于流体媒质的超声应用当中。 20世纪初,随着电子学的发展人们发现了一些晶体材料的压电效应和磁致伸缩效应,1917年,法国人朗之万利用天然石英晶体制成了第一个夹心式超声换能器用来探查海底的潜艇。随着军事和国民经济各部门中超声应用的不断发展,又出现更大超声功率的磁致伸缩换能器,以及各种不同用途的电动型、电磁力型、静电型换能器等多种超声换能器。 随着材料科学的发展,机电耦合系数高、价格低廉、性能良好的压电陶瓷、人工压电单晶、压电半导体以及塑料压电薄膜等材料的出现使得产生和检测超声波的频率,由几十千赫提高到上千兆赫,波型也由单纯的纵波扩大为横波、扭转波、弯曲波、表面波等。超声学的一个发展方向便是不断的提高超声的频率,利用超高频超声声子来进行物质结构方面的等基础研究。 同时,近10年来随着计算机图像学的迅猛发展,超声由于其具有的对身体无创伤,机器技术门槛低,检查费用低廉等优势,超声诊断也随之发展起来,并被广泛地应用于工业机械探伤和医疗诊断方面。此外,超声洁牙器、超声洗碗机等产品也相继问世。超声技术已经

超声波测距实验报告

目录 1、课题设计的目的和意义 (3) 2、课题要求 (3) 2.1、基本功能要求 (3) 2.2、提高要求 (4) 3、重要器件功能介绍 (4) 3.1、CX20106A红外线发射接收专用芯片 (4) 3.2、AT89C51系列单片机的功能特点 (5) 3.3、ISD1700优质语音录放电路 (6) 4、超声波测距原理 (8) 4.1、超声波测距原理图 (8) 4.2、超声波测距的基本原理 (9) 5、硬件系统设计 (10) 5.1、超声波发射单元 (10) 5.2、超声波接收单元 (11)

5.3、显示单元 (11) 5.4、语音单元 (12) 5.5、硬件设计中遇到的难题: (12) 6、系统软件设计 (14) 7、调试与分析 (15) 7.1调试 (15) 7.2误差分析 (15) 8、总结 (16) 9、附件 (17) 9.1、总电路 (17) 9.2、主要程序 (18) 10、参考文献 (22)

1课题设计的目的及意义 随着科学技术的快速发展,超声波在测距仪中的应用越来越广,但就目前技术水平而言,人们可以利用的测距技术还十分有限,因此,这是一个正在蓬勃发展而又有无限前景的技术及产业领域。展望未来,超声波测距作为一种新型的非常重要有用的工具在各方面都有很大的发展空间,它将朝着更加高定位高精度的方向发展,以满足日益发展的社会需求。如声纳的发展趋势:研究具体的高定位精度的被动测距声纳,以满足军事和渔业等的发展需求,实现远程的被动探测和识别。毋庸置疑,未来的超声波测距仪将与自动化智能化接轨,与其他的测距仪集成和融合,形成多测距仪。 超声波测距在某些场合有着显著的优点,因为这种方法是利用计算超声波在被测物体和超声波探头之间的传输来测量距离的,因此它是一种非接触式的测量,所以他就能够在某些场合或环境比较恶劣的环境下使用。比如测有毒或者有腐蚀性化学物质的液面高度或者高速公路上快速行驶汽车之间的距离。 随着测距仪的技术进步,测距仪将从具有单纯判断功能发展到具有学习功能,最注重发展到具有创造力。在新的时代,测距仪将发挥更大的作用。 2课题要求 以单片机AT89C51为中心控制单元,配以超声波发射、接收装置,实现超声波发射及接收其遇到障碍物发生反射形成的回波信号,并根据超声波在介质中的传播速度及超声波从发射到接收到回波的时间,计算出发射点距障碍物的距离,设计出一套基于单片机的脉冲反射式超声波测距系统,利用单片机进行操作控制,用数码管作输出显示,设计发射、接收、检测、显示硬件电路和测距系统软件。

A类超声实验

实验四、A 类 超 声 实 验 一、实验目的: ⒈超声波产生和发射机理。 ⒉用A 类超声实验仪测量水中声速、水层厚度。 ⒊用A 类超声实验仪测量固体厚度及超声无损探伤。 二、实验装置与材料 A 类超声实验仪主机(FD-UDE-A 型)、数字示波器(DS5022ME )、有机玻璃水箱、金属反射板、探头、游标卡尺、样品架(可放12个样品:铝、铁、铜、有机玻璃、冕玻璃和带缺陷的铝柱)。 三、实验原理 ⒈超声波的产生与接收 产生超声波的方法有很多种,应用最普遍的是压电法。压电法采用压电式换能器(探头),它是应用某些晶体的压电效应制成的。所谓(正)压电效应是指压 电晶片相对的两个表面受到压力 或拉力其厚度发生变化时,晶片 两表面上出现等量异号电荷的现 象。在一定范围内,受力越大产 生的电荷越多,当晶片受到变化 的压力和拉力交替作用时,晶片 两表面之间产生同样规律的电压 变化;反之当晶体两表面之间加 上交变的电压时,晶体的厚度将视电场的方向而变化,这种现象称为逆压电效应。当对压电晶片施加频率大于20KHZ 的交变电压(由高频振荡器产生),那么在交变电场的作用下,压电晶片将发生同频率的压缩和拉伸形变,即产生超声振动,该振动在弹性媒质中传播产生超声波。超声波就是频率高于20KHZ 并不引起声感的弹性波。其主要特性:频率高、波长短、方向性强,并与其他波动一样。 ⒉超声波的反射 当超声波从一种介质进入另一种介质时,在介质的交界面上也发生反射现象。反射波的强度I r 与入射波的强度I j 之比,决定于两种煤质的阻抗差: 2 2121?? ? ??+-=E E E E Ij Ir …………………(1) 式中E1=ρ1C1, E2 =ρ2C2 分别表示第一媒质和第二媒质的声阻抗(ρ1、ρ2和C1、C2 表示两种不同媒质的密度和超声波在两种介质中的传播速度)。 根据(1)式可知,两种媒质的阻抗差愈大,超声波在其分界面上的反射就愈强烈。 ⒊超声波测厚度及声速

大学物理实验超声波速测量实验报告

大学物理实验超声波速测量实验报告 一实验目的 1.了解超声波的物理特性及其产生机制; 2.学会用相位法测超声波声速并学会用逐差法处理数据; 3.测量超声波在介质中的吸收系数及反射面的反射系数; 4.并运用超声波检测声场分布。 5.学习超声波产生和接收原理, 6.学习用相位法和共振干涉法测量声音在空气中传播速度,并与公认值进行比较。 7.观察和测量声波的双缝干涉和单缝衍射 二实验条件 HLD-SV-II型声速测量综合实验仪,示波器,信号发生仪 三实验原理 1、超声波的有关物理知识 声波是一种在气体。液体、固体中传播的弹性波。声波按频率的高低分为次声波(f<20Hz)、声波(20Hz≤f≤20kHz)、超声波(f>20kHz)和特超声波(f≥10MHz),如下图。 声波频谱分布图 振荡源在介质中可产生如下形式的震荡波: 横波:质点振动方向和传播方向垂直的波,它只能在固体中传播。 纵波:质点振动方向和传播方向一致的波,它能在固体、液体、气体中的传播。 表面波:当材料介质受到交变应力作用时,产生沿介质表面传播的波,介质表面的质点做椭圆的振动,因此表面波只能在固体中传播且随深度的增加衰减很快。 板波:在板厚与波长相当的弹性薄板中传播的波,可分为SH波与兰姆波。

超声波由于其波长短、频率高,故它有其独特的特点:绕射现象小,方向性好,能定向传播;能量较高,穿透力强,在传播过程中衰减很小,在水中可以比在空气或固体中以更高的频率传的更远,而且在液体里的衰减和吸收是比较低的;能在异质界面产生反射、折射和波形转换。 2、理想气体中的声速值 声波在理想气体中的传播可认为是绝热过程,因此传播速度可表示为 μrRT =V (1) 式中R 为气体普适常量(R=),γ是气体的绝热指数(气体比定压热容与比定容热容之比),μ为分子量,T 为气体的热力学温度,若以摄氏温度t 计算,则:t T T +=0 K T 15.2730= 代入式(1)得, 00001V 1)(V T t T t T rR t T rR ++?+===μμ (2) 对于空气介质,0℃时的声速0V = m s 。若同时考虑到空气中的蒸汽的影响,校准后 声速公式为: s m p p T t w /)319.01)(1(45.331V 0++= (3) 式中w p 为蒸汽的分压强,p 为大气压强。 3、共振干涉法 设有一从发射源发出的一定频率的平面声波,经过空气传播,到达接收器,如果接收面与发射面严格平行,入射波即在接收面上垂直反射,入射波与反射波相干涉形成驻波,反射面处为位移的波节。改变接收器与发射源之间的距离l ,在一系列特定的距离上,媒质中出现稳定的驻波共振现象。此时,l 等于半波长的整数倍,驻波的幅度达到极大;同时,在接收面上的声压波腹也相应地达到极大值。不难看出,在移动接收器的过程中,相邻两次达到共振所对应的接收面之间的距离即为半波长。因此,若保持频率 v 不变,通过测量相邻两次接收信号达到极大值时接收面之间的距离(2/λ),就可以用λv =V 计算声速。 声压变化与接收器位置的关系:

德国GE超声波测厚仪MX-3 MX-5 MX-5DL说明书

GE 检测控制技术 DM5E 系列腐蚀测厚仪一系列高性能、可靠且便于使用的仪器 DM5E 系列让您以合适的价格选择适合自己的功能。

DM5E 系列 DM5E 系列是GE检测控制技术推出的最新一代便携式腐蚀监测测厚仪。它大大改进了先前腐蚀测厚仪的性能,在正常温度以及高温时拥有更佳的厚度测量稳定性和可重复性。它可在最恶劣的工作环境下运行,进行油气以及石化和发电行业的管道、压力容器及储罐的壁厚测量。 三种级别 DM5E 系列有三种型号,提供三个级别的功能: ? DM5E Basic ? DM5E ? DM5E DL DM5E Basic DM5E Basic 的坚固外壳是所有型号的通用外壳。它采用人机工程学设计,包括连续工作 60 小时的AA蓄电池在内,重量仅为223g。这种基本型号符合 EN 15317 的规范,具有 LCD数据显示功能,该显示在一切照明条件下均背光可见。仪器操作由一只手通过用户友好型界面完成。该设备是一种密封、防尘防水的薄膜式键盘,配有最少的功能键和方向键。通过菜单导航让操作简单而直观。这种基本机型融合了包括最小/最大值捕获、B-Scan(B 扫描)生成、报警以及差分厚度测量等多种功能,实现了测量厚度与标称厚度的快速比较。DM5E DM5E 融入了 DM5E Basic 的所有功能,同时提供 DUAL MUL TI 操作模式。该工作模式已运用于 GE 先前的腐蚀测厚仪,在通过涂层测量金属厚度方面作用突出。无需去除测量点处的涂层,节省了时间和成本。用户可以在现场将 DM5E Basic 升级到 DM5E。 DM5E DL DM5E DL 与 DM5E 相似,只是增加了支持网格数据文件格式的内置数据记录仪。数据记录仪可容纳多达50,000 个记录。文件可以通过Mini USB 通信端口传输到个人计算机上。也可以通过宏指令将文件直接导成 Microsoft Excel 格式。文件名和注释的所有字母数字数据直接通过键盘输入。基本和标准型都可在现场升级为 DL 型。 用户友好操作界面 所有型号的DM5E 均具有相同的用户友好操作键盘界面。该界面具有一个中央模式键、一个校准/开关键、两个用于激活和设置功能控制的功能方向键,以及四个用于调整参数值和浏览直观单级菜单的方向键。通过键盘可以访问仪器的所有校准、设置以及测量显示模式。使用 DL 型时,用户可以通过文件显示模式在文件中创建和存储厚度读数。所有校准均通过菜单完成,操作员通过向导进行各步操作。配有一个内置校准提示仪,可以将其设置为在 规定的测量次数或给定的时间段后提示用户进行校准。

相关文档