文档库 最新最全的文档下载
当前位置:文档库 › 实验一 颗粒自由沉淀实验

实验一 颗粒自由沉淀实验

实验一  颗粒自由沉淀实验
实验一  颗粒自由沉淀实验

实验一 颗粒自由沉淀实验

颗粒自由沉淀实验是研究浓度较稀时的单颗颗粒的沉淀规律。一般是通过沉淀柱静沉实验,获取颗粒沉淀曲线。它不仅具有理论指导意义,而且也是给水排水处理工程中,某些构筑物如给水与污水的沉砂池设计的重要依据。

目的

1.加深对自由沉淀特点、基本概念及沉淀规律的理解。

2.掌握颗粒自由沉淀实验的方法,并能对实验数据进行分析、整理、计算和绘制颗粒自由沉淀曲线。

原理

浓度较稀的、粒状颗粒的沉淀属于自由沉淀,其特点是静沉过程中颗粒互不干扰、等速下沉,其沉速在层流区符合Stokes (斯笃克斯)公式。

但是由于水中颗粒的复杂性,颗粒粒径、颗粒比重很难或无法准确地测定,因而沉淀效果、特性无法通过公式求得而是通过静沉实验确定。 由于自由沉淀时颗粒是等速下沉,下沉速度与沉淀高度无关,因而自由沉淀可在一般沉淀柱内进行,但其直径应足够大,一般应使D ≥100mm 以免颗粒沉淀受柱壁干扰。

具有大小不同颗粒的悬浮物静沉总去除率与截留速度U 。、颗粒重量百分率的关系如下:

?

+

-=0

0)1(P S dP u u P E (1-1)

此种计算方法也称为悬浮物去除率的累积曲线计算法。

设在一水深为H 的沉淀柱内进行自由沉淀实验,如图1一且示。实验开始,沉淀时间为0,此时沉淀柱内悬浮物分布是均匀的,即每个断面上颗粒的数量与粒径的组成相同,悬浮物浓度为C 0(mg /L ),此时去除率E =0。 实验开始后,不同沉淀时间I ;,颗粒最小沉淀速度U ;相应为 i

i t H U =

(1-2)

此即为t i ,时间内从水面下沉到池底(此处为取样点)的最小颗粒d i 所具有的沉速。此时取 样点处水样悬浮物浓度为C i ,而

00

011E P C C C C C i i i

=-=-

=- (1-3)

此时去除率E 0,表示具有沉速u ≥u i (粒径d ≥d i )的颗粒去除率,而 0

C C P i i =

(1-4)

则反映了t i 时,未被去除之颗粒即d

实际上沉淀时间t i 内,由水中沉至池底的颗粒是由两部分颗粒组成,即沉速u ≥u i 的那一部分颗粒能全部沉至池底。除此之外,颗粒沉速u s <u i 的那一部分颗粒,也有一部分能沉

至池底。这是因为,这部分颗粒虽然粒径很小,沉速u s <u i ,但是这部分颗粒并不都在水面,而是均匀地分布在整个沉淀柱的高度内,因此,只要在水面下,它们下沉至池底所用的时间能少于或等于具有沉速u i 的颗粒由水面降至池底所用的时间t i ,那么这部分颗粒也能从水中被除去。

沉速u s <u i 的那部分颗粒虽然有一部分能从水中去除,但其中也是粒径大的沉到池底的多,粒径小的沉到池底的少,各种粒径颗粒去除率并不相同。因此若能分别求出各种粒径的颗粒占全部颗粒的百分比,并求出该粒径在时间t i 内能沉至池底的颗粒占本粒径颗粒的百分比,则二者乘积即为此种粒径颗粒在全部颗粒中的去除率。如此分别求出u s <u i 的那些颗粒的去除率,并相加后,即可得出这部分颗粒的去除率。

为了推求其计算式,我们首先绘制u i ~P 关系曲线,其横坐标为颗粒沉速u ,纵坐标为未被去除颗粒的百分比P ,如图1-2示。由图中可见, 0

2

10

20

121C C C C C C C P P P -=

-=

-=? (1-5)

故ΔP 是当选择的颗粒沉速由u 1降至u 2时,整个水中所能多去除的那部分颗粒的去除率,也就是所选择的要去除的颗粒粒径由d 1减到d 2时,此时水中所能多去除的,即粒径在d 1~d 2之间的那部分颗粒所占的百分比。因此当ΔP 间隔无限小时,则dP 代表了小于d i 的某一粒径d 占全部颗粒的百分比。这些颗粒能沉至池底的条件,应是由水中某一点沉至池底所的用的时间,必须等于或小于具有沉速为u i 的颗粒由水面沉至池底所用的时间,即应满足

i

i

u Hu x u H u x α

α≤

由于颗粒均匀分布,又为等速沉淀,故沉速和 u α

H

x ,如图1-1所示,而

i

u u H

x α=

此即为同一粒径颗粒的去除率。取u 0=u i ,且为设计选用的颗粒沉速;u s =u α,则有

u u u u S i

=

α

由上述分析可见,dP S 。反映了具有沉速u S 颗粒占全部颗粒的百分比,而

u u S

则反映了在设计沉速为u 0的前提下,具有沉速u S (<u 0)的颗粒去除量占本颗粒总量的百分比。故

dP u u S 0

(1-6)

正是反映了在设计沉速为u 0时,具有沉速为u S 的颗粒所能去除的部分占全部颗粒的比率。利用积分求解这部分U 。M 。。的颗粒的去除率,则为 dP u u P S ?

故颗粒的去除率为

dP u u P E P S ?

+-=0

0)1( (1-7)

工程中常用下式计算

0)1(u Pu P E S

∑?+

-= (1-8)

设备及用具

1.有机玻璃管沉淀柱一根,内径D ≥100mm ,高1.5m 。工作水深即由溢流口至取样口距离,共两种,H 1=2.0m,H 2=1.2m 。每根沉降往上设溢流管,取样管,进水及放空管。

2.配水及投配系统包括钢板水池,搅拌装置,水泵、配水管,循环水管和计量水深用标尺、如图1-3示。

3.计量水深用标尺,计时用秒表或手等。 4.玻璃烧杯,玻璃棒等。

5.悬浮物定量分析所需的温度计 步骤及记录

1.将实验用水倒入水池内,开启循环管路闸门2,用泵循环或机械搅拌装置搅拌,待池内水质均匀后,从池内取样,测定悬浮物浓度,此即为C 0值。

2.开启闸门1、3,关几扣闸门2,水经配水管进入沉淀管内,当水上升到溢流口,并流出后,关闭闸门3、停泵。记录时间,沉淀实验开始。

3.隔5、10、20、30、60、120min 由取

样口取样,记录沉淀柱内液面高度。

4.观察悬浮颗粒沉淀特点、现象。 5.测定水样悬浮物含量。

6.实验记录用表,如表1-1所示。

表1-1颗粒自由沉淀实验记录 日期: 水样:

注意事项

1.向沉淀柱内进水时,速度要适中,既要较快完成进水,以防进水中一些较重颗粒沉淀,又要防止速度过快造成柱内水体紊动,影响静沉实验效果。

2.取样前,一定要记录管中水面至取样口距离H 0(以cm 计)。 3.取样时,先排除管中积水而后取样,每次约取100~200mL 。 4.测定悬浮物浊度时,应注意搅拌,并尽快测量。

数据整理

1. 实验基本参数整理

实验日期: 水样性质及来源: 沉淀柱直径d= 柱高H=

水温: ℃ 原水悬浮物浓度C 0(mg /L ) 绘制沉淀柱草图及管路连接图 2.实验数据整理

将实验原始数据按表1-2整理,以备计算分析之用。 表中不同沉淀时间t i 时,沉淀管内未被移除的悬浮物的百分比及颗粒沉速分别按下式计算 未被移除悬浮物的百分比 %1000

C C P i i

扣 C 0——原水中SS 浓度值,mg /L ;

C i ——某沉淀时间后,水样中SS 浓度值,mg /L 。

相应颗粒沉速s mm t H u i

I

i /=

4.以颗粒沉速u 为横坐标,以P 为纵坐标,在普通格纸上绘制u ~P 关系曲线。

5.利用图解法列表(表1-3)计算不同沉速时,悬浮物的去除率。

表1-2实验原始数据整理表

表1-3悬浮物去除率E 的计算

0)1(u P

u P E S ??∑+

-=

6.根据上述计算结果,以E 为纵坐标,分别以u 及t 为横坐标,绘制u ~E ,t ~E 关系曲线。 思考题

1.自由沉淀中颗粒沉速与絮凝沉淀中颗粒沉速有何区别。 2.绘制自由沉淀静沉曲线的方法及意义。

3.沉淀柱高分别为H =1.2m ,H =2.0m ,两组实验成果是否一样,为什么? 4.利用上述实验资料,按 %1000

0C C C E I

-=

计算不同沉淀时间t 的沉淀效率E ,绘制E ~t ,E ~u 静沉曲线,并和上述整理结果加以对照与分析,指出上述两种整理方法结果的适用条件。

附:工作曲线

实验一自由沉降实验讲解

实验一自由沉降实验 一、实验目的 1、观察自由沉降过程; 2、通过沉降实验学会绘制E~t 关系曲线和E~u 关系曲线; 3、能正确运用数据求解总去除率E T 。 二、实验原理 在含有离散颗粒的废水静置沉淀过程中,若试验柱内有效水深为H ,通过不同的沉淀时间t ,可求得不同的颗粒沉淀速度u ,u=H/t 。如以p 0表示沉速u

颗粒自由沉降实验

实验项目名称: 颗粒自由沉淀实验 (所属课程: 水污染控制工程 ) 院 系: 专业班级: 姓 名: 学 号: 实验日期: 实验地点: 合作者: 指导教师: 本实验项目成绩: 教师签字: 日期: 一、实验目的 (1) 加深对自由沉淀特点、基本概念及沉淀规律的理解。 (2) 掌握颗粒自由沉淀实验的方法,并能对实验数据进行分析、整理、计算和绘制颗粒自由沉淀曲线。 二、实验原理 浓度较稀的、粒状颗粒的沉淀属于自由沉淀,其特点是静沉过程中颗粒互不 干扰、等速下沉,其沉速在层流区符合 Stokes 公式。但是由于水中颗粒的复杂性,颗粒粒径、颗粒比重很难或无法准确地测定,因而沉淀效果、特性无法通过公式求得,而是要通过静沉实验确定。 由于自由沉淀时颗粒是等速下沉,下沉速度与沉淀高度无关,因而自由沉淀 可在一般沉淀柱内进行,但其直径应足够大,一般应使 D ≥100mm 以免颗粒沉淀受柱壁干扰。 具有大小不同颗粒的悬浮物静沉总去除率E 与截留速度u0、颗粒质量分数的关系如下 此种计算方法也称为悬浮物去除率的累积曲线计算法。 设在一水深为H 的沉淀柱内进行自由沉淀实验,实验开始时,沉淀时间为0,此时沉淀柱内悬浮物分布是均匀的,即每个断面上颗粒的数量与粒径的组成相同,悬浮物浓度为C0(mg/L ),此时去除率E=0。 实验开始后,悬浮物在筒内的分布变得不均匀。不同沉淀时间ti ,颗粒下沉到池底的最小沉淀速度u i 相应为u i =H/t i 。此时为t i 时间内沉到池底(此处为取样点)的最小颗粒d i 所具有的沉速。此时取样点处水样水样悬浮物浓度为Ci ,则颗粒总去除率: 00011C C C C C P E i i i -=-= -=。

自由沉淀实验报告

自由沉淀实验报告 一、实验目的 1. 加深对自由沉淀特点、基本概念及沉淀规律的理解。 2. 掌握颗粒白由沉淀实验的方法,并能对实验数据进行分析、整理、计算和绘制颗粒自由沉淀曲线。 二、实验原理 浓度较稀的、粒状颗粒的沉淀属于自由沉淀.其特点是静沉过程中颗粒互不干扰、等速下沉,其沉速公层流区符合Stokes(斯托克斯)公式。但是由于水中颗粒的复杂性,颗粒粒径、颗粒密度很难或无法准确地测定,因而沉淀效果、特性无法通过公式求得而是通过静沉实验确定。 由于自由沉淀时颗粒是等速下沉,下沉速度与沉淀高度无关、因而自由沉淀可在一般沉淀柱内进行,但其直径应足够大,一般应使D>100mm,以免颗粒沉淀受柱壁干扰。 具有大小不同颗粒的悬浮物静沉总去除率E与截留速度u o、颗粒质量分数的关系如下: E=1?P0+ u s u0 dp P0 此种计算方法也称为悬浮物去除率的累积曲线计算法。 设在一水深为H的沉淀柱内进行自由沉淀实验,如图2-1所示。实验开始,沉淀时间为0,此时沉淀柱内悬浮物分布是均匀的,即每个断面上颗粒的数量与粒径的组成相同,悬浮物浓度为C0(mg/L),此时去除率E=0。

图2-1 自由沉淀示意 实验开始后,不同沉淀时间t i颗粒最小沉淀速度u i相应为 u i=H i 此即为t i时间内从水面下沉到池底(此处为取样点)的最小颗粒d i所具有的沉速。此时取样点处水样悬浮物浓度为C i而 C0?C i C0=1? C i C0 =1?P i P i=E0 此时去除率E0,表示具有沉速u≥u i(粒径d≥d i)的颗粒去除率,而 P i=C i C0 则反映了t i时,未被去除之颗粒即d<d i的颗粒所占的百分比。 实际上沉淀时间t i内,由水中沉至池底的颗粒是由两部分颗粒组成。即沉速u≥u i 的那一部分颗粒能全部沉至池底;除此之外.颗粒沉速u0<u i的那一部分颗粒,也有一部分能沉至池底。这是因为,这部分颗粒虽然粒径很小,沉速u0<u i,但是这部分颗粒并不都在水面,而是均匀地分布在整个沉淀柱的高度内。因此只要在水面下,它们下沉至池底所用的时间能少于或等于具有沉速u i的颗粒由水面降至池底所用的时间t i,那么这部分颗粒也能从水中被除去。 沉速u0<u i的那部分颗粒虽然有一部分能从水中去除,但其中也是粒径大的沉到池底的多,粒径小的沉到池底的少.各种粒径颗粒去除率并不相同。因此若能分别求出各种粒径的颗粒占全部颗粒的百分比,并求出该粒径颗粒在时间t i内能沉至池底的颗粒占本粒径颗粒的百分比,则二者乘积即为此种粒径颗粒在全部颗

实验二自由沉淀.

实验二自由沉淀 一、实验目的 1、观察沉淀过程,加深对自由沉淀特点、基本概念及沉淀规律的理解; 2、掌握颗粒自由沉淀实验的方法,求出沉淀曲线。 二、实验原理 浓度较稀的、粒状颗粒的沉淀属于自由沉淀,其特点是静沉过程中颗粒互不干扰、等速下沉,其沉速在层流区符合Stokes公式。 由于水中颗粒的复杂性,颗粒粒径、颗粒比重很难或无法准确地测定,因而沉淀效果、特性无法通过公式求得,而是要通过静沉实验确定。 由于自由沉淀时颗粒是等速下沉,下沉速度与沉淀高度无关,因而自由沉淀可在一般沉淀柱内进行,但其直径应足够大,一般应使D≥100mm以免颗粒沉 图1 自由沉淀实验装置图 1、沉淀柱 2、水泵 3、水箱 4、支架 5、气体流量计 6、气体入口 7、排水口 8、取样口 一般来说,自由沉淀实验可按以下两个方法进行: (一)底部取样法 底部取样法的沉淀效率通过曲线积分求得。设在一水深为H的沉淀柱内进行自由沉淀实验,如图1所示。将取样口设在水深H处,实验开始时(t=0),整个实验筒内悬浮物颗粒浓度均为C0。分别在t1、t2、……、t n时刻取样,分别测

得浓度为C 1、C 2、……C n 。那么,在时间恰好为t 1、t 2、……、t n 时,沉速为h/t 1=u 1、h/t 2=u 2、……、h/t n =u n 的颗粒恰好通过取样口向下沉,相应地这些颗粒在高度H 中已不复存在了。记p i =C i /C 0,则1-p i 代表时间t i 内高度H 中完全去除的颗粒百分数,p j -p k (k>j≥i )代表沉速位于u j 和u k 之间的颗粒百分数,在时间t i 内,这部分颗粒的去除百分数为()/2 ()j k j k i u u p p u +?-,当j 、k 无限接近时, ()/2 ()j k j j k j i i u u u p p dp u u +?-= 。这样,在时间t i 内,沉淀柱的总沉淀效率0(1)i p j i j i u P p dp u =-+? 。实际操作过程中,可绘出p-u 曲线并通过积分求出沉淀 效率。 (二) 中部取样法 与底部取样法不同的是,中部取样法将取样口设在沉淀柱有效沉淀高度(H )的中部。 实验开始时,沉淀时间为0,此时沉淀柱内悬浮物分布是均匀的,即每个断面上颗粒的数量与粒径的组成相同,悬浮物浓度为C 0(mg/l ),此时去除率E=0。 实验开始后,悬浮物在筒内的分布变得不均匀。不同沉淀时间t i ,颗粒下沉到池底的最小沉淀速度u i 相应为i i t H u =。严格来说,此时应将实验筒内有效水深H 的全部水样取出,测量其悬浮物含量,来计算出t i 时间内的沉淀效率。但这样工作量太大,而且每个实验筒只能求一个沉淀时间的沉淀效率。为了克服上述弊病,又考虑到实验筒内悬浮物浓度随水深的变化,所以我们提出的实验方法是将取样口装在H/2处,近似地认为该处水样的悬浮物浓度代表整个有效水深内悬浮物的平均浓度。我们认为这样做在工程上的误差是允许的,而实验及测定工作也可以大为简化,在一个实验筒内就可以多次取样,完成沉淀曲线的实验。假设此时取样点处水样水样悬浮物浓度为C i ,则颗粒总去除率000011C C C C C P E i i i -=-=-=。而0 C C P i i =则反映了t i 时未被去除的颗粒(即d

絮凝沉淀实验

实验项目名称:絮凝沉淀实验 (所属课程:水污染控制工程) 院系:专业班级:姓名:学号: 实验日期:实验地点:合作者:指导教师: 本实验项目成绩:教师签字:日期: 一、实验目的 (1)加深对絮凝沉淀的特点、基本概念及沉淀规律的理解。 (2)掌握絮凝实验方法,并能利用实验数据绘制絮凝沉淀静沉曲 二、实验原理 悬浮物浓度不太高,一般在600~700mg/L以下的絮状颗粒的沉淀属于絮凝沉淀,如给水工程中混凝沉淀、污水处理中初沉池内的悬浮物沉淀均属此类。沉淀过程中由于颗粒相互碰撞,凝聚变大,沉速不断加大,因此颗粒沉速实际上是一变速。这里所说的絮凝沉淀颗粒沉速,是指颗粒沉淀平均速度。在平流沉淀池中,颗粒沉淀轨迹是一曲线,而不同于自由沉淀的直线运动。在沉淀池内颗粒去除率不仅与颗粒沉速有关,而且与沉淀有效水深有关。因此沉淀柱不仅要考虑器壁对悬浮物沉淀的影响,还要考虑柱高对沉淀效率的影响。 静沉中絮凝沉淀颗粒去除率的计算基本思想与自由沉淀一致,但方法有所不同。自由沉淀采用累积曲线法,而絮涨沉淀采用的是纵深分析法,颗粒去除率按下式计算。 三、实验设备与试剂

(1)沉淀柱:有机玻璃沉淀柱,内径D≥100mm,高H=3.6m,沿不同高度设有取样口,如图所示。管最上为溢流孔,管下为进水孔,共五套。 (2)配水及投配系统:钢板水池,搅拌装置、水泵、配水管。 (3)定时钟、烧杯、移液管、瓷盘等。 (4)悬浮物定量分析所需设备及用具:万分之一分析天平,带盖称量瓶、干燥皿、烘箱、抽滤装置,定量滤纸等。 (5)水样:城市污水、制革污水、造纸污水或人工配制水样等。 四、实验步骤 (1)将欲测水样倒入水池进行搅拌,待搅拌匀后取样测定原水悬浮物浓度SS值。(2)开启水泵,打开水泵的上水闸门和各沉淀柱上水管闸门。 (3)放掉存水后,关闭放空管闸门,打开沉淀柱上水管闸门。 (4)依次向1~5沉淀柱内进水,当水位达到溢流孔时,关闭进水闸门,同时记录沉淀时间。5根沉淀柱的沉淀时间分别是20min、40 min、60 min、80 min、120 min。(5)当达到各柱的沉淀时间时,在每根柱上,自上而下地依次取样,测定水样悬浮物的浓度。 (6)记录见表1。 五、实验结果 (1)实验基本参数整理 实验日期水样性质及来源:生活污水 沉淀柱直径d= 110mm 柱高H=170cm 水温/℃=20 原水悬浮物浓度C (mg/L)=962 绘制沉淀柱及管路连接图 (2)实验数据整理

沉淀实验实验报告

沉淀实验实验报告 篇一:自由沉淀实验报告 六、实验数据记录与整理 1、实验数据记录 沉降柱直径水样来源柱高 静置沉淀时间/min 表面皿表面皿编号质量/g 表面皿 和悬浮物总质量/g 水样中悬浮物质量/g 水样体积/mL 悬浮物沉降柱浓度/工作水(g/ml)深/mm 颗粒沉沉淀效 速/率/%(mm/s) 残余颗 粒百分比/% 0 5 10 20 30 60 120 0 1 2 3 4 5 6 79.0438 80.7412 1.6974 81.7603 83.2075 1.4472 64.1890 65.4972 1.3082 66.1162 67.3286 1.2124 73.7895 74.9385 1.1490 83.4782 84.6290 1.1508 75.0332 76.1573 1.1241

31.0 30.0 30.0 30.0 30.0 31.0 31.0 0.0548 0.0482 0.0436 0.0404 0.0383 0.0371 0.0363 846.0 808.0 780.0 724.0 664.0 500.0 361.0 1.860 0.883 0.395 0.230 0.069 0.021 11.40 20.44 26.28 30.11 32.30 33.76 100 87.96 79.56 73.72 69.89 67.70 66.24 2、实验数据整理 (2)绘制沉淀曲线:E-t 、E-u 、ui~pi曲线如下: 2-1、绘制去除率与沉淀时间的曲线如下: 图2.2:沉淀时间t与沉淀效率E的关系曲线 2-2、绘制去除率与沉淀速度的曲线如下: 图2.2:颗粒沉速u与沉淀效率E的关系曲线 2-3、绘制去除率与沉淀速度的曲线如下: 图2.3:颗粒沉速u与残余颗粒百分比的关系曲线 (1)选择t=60min 时刻:(大家注意哦!这部分手写的,不要直接打印!) 水样中悬浮物质量=表面皿和悬浮物总质量-表面皿质量,如表格所示。原水悬浮物的浓度:C0? 水样中悬浮物质量1.6974 ??0.0548g/ml 水样体积31.0 悬浮物的浓度:C5? 水样中悬浮物质量1.1508

沉淀实验.

沉淀试验 一、目的 (1) 加深对自由沉淀特点、基本概念及沉淀规律的理解。 (2) 掌握颗粒自由沉淀试验的方法,并能对试验数据进行分析、整理、计算和绘制 颗粒自由沉淀曲线。 二、设备及用具 (1) 有机玻璃管沉淀柱一根,内径D ≥100㎜,高1.5m 。有效水深即由溢流口至取 样口距离,共两种,H 1=0.9m ,H 2=1.2m 。每根沉降柱上设溢流管、取样管、 进水及放空管。 (2) 配水及投配系统包括钢板水池、搅拌装置、水泵、配水管、循环水管和计量水 深用标尺。 (3) 计量水深用标尺,计时用秒表。 (4) 玻璃烧杯,移液管,玻璃棒,瓷盘等。 (5) 悬浮物定量分析所需设备有万分之一天平、带盖称量瓶、干燥皿、烘箱、抽滤 装置、定量滤纸等。 (6) 水样可用煤气洗涤污水,轧钢污水,天然河水或人工配制水样。 三、步骤及记录 (1) 将试验用水导入水池内,开启水泵循环管路上的阀门,用泵循环或机械搅拌装 置搅拌,待水池内水质均匀后,从池内取样,测定悬浮物浓度,记为C 0值。 (2) 开启配水管上阀门,关闭水泵循环管上阀门,水经配水管进入沉淀柱内,当水 上升到溢流口,并流出后,关闭阀门、停泵。 (3) 向沉淀柱内通入压缩空气江水样搅拌均匀。 (4) 记录时间,沉淀试验开始,隔0、3、8、15、25、40、60、85min 由取样口取样, 记录沉淀柱内页面高度。 (5) 观察悬浮颗粒沉淀特点、现象。 (6) 测定水样悬浮物含量。 (7) 记录试验结果,见表1 。 四、试验基本参数整理 水样性质及来源: 水温: 原水悬浮物浓度C 0(mg/L ) 沉淀柱直径d= 柱高H= 空白试验 滤前重量: 滤后重量: 差值: 计算公式: P i = C C i ×100% u i = i i t H

项目一 颗粒自由沉淀实验

项目一颗粒自由沉淀实验 一、实训目标 1.加深对自由沉淀特点、基本概念及沉淀规律的理解。 2.掌握颗粒自由沉淀实验的方法,并能对实验数据进行分析、整理、计算和绘制颗粒自由沉淀曲线。 二、技能要求 1、掌握颗粒静置自由沉淀实验的操作过程。 2、掌握取样、过滤和称量的操作方法。 三、课时 6课时 四、实验原理 颗粒的自由沉淀是指在沉淀的过程中,颗粒之间不互相干扰、碰撞、呈单颗粒状态,各自独立完成的沉淀过程。自由沉淀有两个含义: (1)颗粒沉淀过程中不受器壁干扰影响; (2)颗粒沉降时,不受其它颗粒的影响。 当颗粒与器壁的距离大于50d(d为颗粒的直径)时就不受器壁的干扰。当污泥浓度小于5000mg/l时就可假设颗粒之间不会产生干扰。 颗粒在沉砂池中的沉淀以及低浓度污水在初沉池中的沉降过程均是自由沉淀,自由沉淀过程可以由Stokes(斯笃克斯)公式进行描述。 但是由于水中颗粒的复杂性,颗粒粒径、颗粒比重很难或无法准确地测定,因而沉淀效果、特性无法通过公式求得而是通过静沉实验确定。 取一定直径、一定高度的沉淀柱,在沉淀柱中下部设有取样口,如图1.1所示,将已知悬浮物浓度为C0的水样注入沉淀柱,取样口上水深为h0,在搅拌均匀后开始沉淀实验,并开始计时,经沉淀时间t1,t2,…ti从取样口取一定体积水样,分别记下取样口高度,分析各水样的悬浮物浓度C1、C2…Ci,从而通过公式 η=C0-C i/C0×100% 式中:η—颗粒被去掉百分率; C0—原水悬浮物的浓度(mg/l) Ci—ti时刻悬浮物质量浓度(mg/l) 同时计算: p=C i/C0×100% 式中:p—悬浮颗粒剩余百分率; C0—原水悬浮物的浓度(mg/l) C i—t i时刻悬浮物质量浓度(mg/l)

自由沉降试验及其沉降曲线问题解析

1:自由沉降试验及其沉降曲线 自由沉降适用于悬浮固体浓度较低,且为非絮凝性或弱絮凝性的水质状况。试验是在设有一个取样口的透明沉降柱中进行的。柱的内径为100mm,有效高度为1.5~2.0m。取样口可设在工作水深为H的低部,也可设在H/2的中部,二者分别称为底部取样和中部取样。目前趋向于采用中点取样法,这是因为:随着沉降时间的延长,沉降柱内的悬浮固体浓度势必形成上稀下浓的线形不均匀分布态势,而我们要测定的是沉降柱内整个水层的残留SS浓度,用H/2处的SS浓度代表柱内的SS平均浓度,能减小采用底部取样带来的沉降效率的负偏差。 沉降试验及沉降曲线绘制的方法 (1)将水样在试验装置内循环搅拌均匀后,从取样口取两份100mL水样,用重量法测定初始SS浓度C0; (2)将柱内水位迅速调整至溢流口处,开始记时; (3)当累计沉降历时为t1、t2、t3…tn(常取5、10、30、60、90和120min) 时,各取100mL水样两份,用来测定对应沉降时间的残留SS浓度C1、C2、C3…Cn,同时记录各次取样后的水面累计下降高度Δh1、Δh2、Δh3…Δhn-1; (4)列表计算与各沉降时间对应的沉降效率E; (5)在标准计算纸上绘制E-t和E-u沉降曲线。 目前常用的沉降试验数据处理方法有两种:一种是常规计算法,另一种是Camp图解积分法。前者计算简单,但误差较大,得到的E-t和E-u曲线;后者比较复杂,但结果精确,得到的是ET-t和ET-u曲线。 (一)常规计算法 (1)由沉降时间t(h)和对应的工作水深H(m),按公式u=H/t计算 沉降速度u(m/h)式中的工作水深H是指由水面到柱底零断面的实际高度,而与取样口位置无关。 工作水深随沉降历时的变化情况如图3-5。由图可见,在[t0,tn]区间内,H随t呈跳跃式的不连续变化。如忽略[t0,ti]范围内所经历的各次水深变化,则工作水深可按下式近似计算。2: 自由沉淀中颗粒沉速受颗粒大小的影响,特别是小颗粒在布朗运动作用下不沉淀。絮凝沉淀完全克服了布朗运动的影响;因为絮凝剂形成的矾花越大,颗粒密度与溶液密度的差越大,沉降越快。 自由沉淀的颗粒,彼此互不干扰,也不受容器壁的干扰,只受颗粒在水中的重力作用。絮凝沉淀的颗粒,其尺寸、沉速都会逐渐增大 自由沉降是物理过程,是针对水中较大颗粒物;而混凝沉降是借助混凝剂.助凝剂,通过脱稳.电中和,桥联,网捕卷扫作用,是不易沉淀的细小悬浮物和胶体相互凝结长大,然后自由沉降,是一个化学物理过程. 水处理中没有纯粹的自由沉淀,也没有纯粹的絮凝沉淀。象初沉池和终沉池中,两种沉淀作用都有。只不过为了达到好的沉淀效果和节省占地面积,一般会采取一些措施增强絮凝沉淀作用:如设计合理的沉淀池中心桶中可发生絮凝作用。至于化学混凝和絮凝则另当别论。在自由沉降中,由于悬浮物固体浓度低,而且颗粒之间不发生凝聚,因此在沉降过程中颗粒的形状.粒径和密度都保持不变,互不干扰的各自独立完成匀速沉降过程.固体颗粒在沉砂池及初次沉淀池内的初期沉降就属于自由沉降. 絮凝沉淀,颗粒在沉淀过程中接触碰撞势能相互凝聚为较大的絮体,颗粒粒径和沉降速度随沉降时间的延续而增大. 投入的药量应根据胶体浓度及无机金属盐水解产物的分子形态、荷电性质和荷电量等确定。

颗粒自由沉降

自由沉淀实验实验指导书 城乡建设学院市政与环境工程系 2013.10

自由沉淀实验 一、实验目的 水中悬浮颗粒依靠重力作用,从水中分离出来的过程称为沉淀。沉淀可分为四种基本类型,即自由沉淀、絮凝沉淀、成层沉淀和压缩沉淀。自由沉淀用以去除低浓度的离散性颗粒如沙砾、铁屑等。这些杂质颗粒的沉淀性能一般都要通过实验测定。 本实验采用测定沉淀柱底部不同历时累计沉淀泥量方法,找出去除率与沉速的关系。希望达到以下目的: 1、了解和掌握自由沉淀的规律,根据实验结果绘制时间-沉淀率(t-E ),沉速-沉淀率(u-E ) 和 u c c o t 的关系曲线 2、 通过实验,掌握颗粒自由沉淀的实验方法; 3、比较累计沉淀泥量法与累计曲线法的共同点; 4、加深理解沉淀的基本概念和杂质的沉降规律。 二、实验装置及材料 沉淀柱尺寸:φ150 mm ×2000 mm 数量4根 最大进水速度:3000L/H 配套实验装置有: 1、PVC 配水箱1个 2、不锈钢潜水泵1台 3、搅拌混合器1套 4、配水管阀门1套 5、水泵循环阀门套 6、各沉淀柱进水阀门1套 7、各沉淀柱放空阀门1套 8、排水管1套 9、取样口 10、沉淀柱4根 11、溢流管 12、固定支架1个 13、连接的管道、阀门、开关等若干。 整体外形尺寸:1200mm ×800mm ×2300mm 测定悬浮物的设备(用户自备) 分析天平,具塞称量瓶、烘箱、滤纸、漏斗、量筒、烧杯等 水样(用户自备) 实际工业废水或粗硅藻土等配制水样 三、实验步骤 1、打开沉淀管的阀门将污水注入沉淀管,然后打开进气阀门,曝气搅拌均匀。 2、关闭进气阀,此时取水样100mL (测得悬浮物浓度Co ),同时记下取样口高度,开启秒 表,记录沉淀时间。 3、当时间为1min 、3 min 、5 min 、10 min 、15 min 、20 min 、40 min 、60 min 时,分别取样 100mL ,测其悬浮位浓度(Ct )。记录沉淀柱内液面高度。 4、测定每一沉淀时间的水样悬浮物固体量。悬浮性固体的测定方法如下:首先调烘箱支 (105±1)℃,叠好滤纸放入称量瓶中,打开盖子,将称量瓶放入105℃的烘箱烘至恒

颗粒自由沉淀实验报告

建筑与测绘工程学院 《水处理实验设计与技术》 实验报告

实验1 颗粒自由沉淀实验 颗粒自由沉淀实验是研究浓度较低时的单颗粒的沉淀规律。一般是通过沉淀柱静沉实验,获取颗粒沉淀曲线。它不仅具有理论指导意义,而且也是给水排水处理工程中沉砂池设计的重要依据。 一、实验目的 加深对自由沉淀特点、基本概念及沉淀规律的理解。 掌握颗粒自由沉淀实验的方法,并能对实验数据进行分析、整理、计算和绘制颗粒自由沉淀曲线。 二、实验原理 浓度较低的、粒状颗粒的沉淀属于自由沉淀,其特点是静沉过程中颗粒互不干扰、等速下沉,其沉速在层流区符合Stokes (斯托克斯)公式。 但是由于水中颗粒的复杂性,颗粒粒径、颗粒相对密度很难或无法准确地测定,因而沉淀效果、特性无法通过公式求得而是通过静沉实验确定。 由于自由沉淀时颗粒是等速下沉,下沉速度与沉淀高度无关,因而自由沉淀可在一般沉淀柱内进行,但其直径应足够大,一般应使内径D ≥100mm 以免颗粒沉淀受柱壁干扰。 具有大小不同颗粒的悬浮物静沉总去除率η与截留沉速u 0剩余颗粒重量百分率P 的关系如下: ()dP P u u P s ?+-=00 001η ( 1 ) 此种计算方法也称为悬浮物去除率的累积曲线计算法。 设在一水深为H 的沉淀柱内进行自由沉淀实验,如图1所示。实验开始,沉淀时间为0,此时沉淀柱内悬浮物分布是均匀的,即每个断面上颗粒的数量与粒径组成相同,悬浮物浓度为C 0(mg/L ),此时去除率η=0。 实验开始后,不同沉淀时间t i ,颗粒最小沉淀速度u i 相应为: i i t H u = ( 2 ) 此即为t i 时间内从水面下沉到池底(此处为取样点)的最小颗粒d i 所具有的沉速。此时取样点处水样悬浮物浓度为C i ,而: 00 0011η=-=-=-i i i P C C C C C ( 3 ) 此时去除率η0,表示u ≥u i (d ≥d i )的颗粒除去率,而:

实验一_自由沉淀实验报告说明.doc

实验一 自由沉淀实验 一、实验目的 (1)加深对自由沉淀特点、基本概念及沉淀规律的理解; (2)掌握颗粒自由沉淀的实验方法; (3)对实验数据进行分析、整理、计算和绘制颗粒自由沉淀曲线。 二、实验原理 如果不明白也可以仔细阅读课本P33的内容。 浓度较稀的、粒状颗粒的沉淀属于自由沉淀,其特点是静沉过程中颗粒互不干扰、等速下沉,其沉速在层流区符合Stokes(斯笃克斯)公式。非絮凝性或弱絮凝性固体颗粒在稀悬浮液中的沉淀,属于自由沉淀。由于悬浮固体浓度低,而且颗粒之间不发生聚集,因此在沉降过程中颗粒的形状、粒径和密度都保持不变,互不干扰地各自独立完成匀速沉降过程。 自由沉淀实验一般在沉淀柱里进行,其直径应足够大,一般应使D ≥100mm ,以免颗粒沉淀受柱壁干扰。 在沉淀柱内,某个沉淀时长t 对应着一个颗粒沉速u0 = H / t 。此时颗粒物的总去除效率为 ?+-=00001 )1(P udP u P E 式中 E----总沉淀效率; P 0----沉速小于u 0的颗粒在全部悬浮颗粒中所占的百分数(也就是我们测定的残留率); 1-P 0----沉速大于或等于u0的颗粒去除百分数; u 0----某一指定颗粒的最小沉降速度; u----小于最小沉降速度u 0的颗粒沉速。 工程上常用下式计算 0)1(u u P P E ∑??+ -= 三、实验设备与试剂 1. 沉淀用有机玻璃柱,内径D=150mm ,高H=1700mm 。工作水深即由柱内液面至取样口的距离。 2. 配水系统一套。 3. 计量水深用标尺、计时用秒表; 4. 本实验使用浊度来代替悬浮物的测定。

水处理实验问答题

实验一活性炭吸附实验 1. 2.间歇吸附和连续流吸附相比,吸附容量q和N是否相等?怎样通过实验求出N值? 答:间歇吸附指定量的吸附剂和定量的溶液经过长时间的充分接触而达到平衡。间歇吸附平衡的测定方法有:(1)保持气相的压力不变,经过一段时间吸附后,测定气体容积减少值的容量法;(2)吸附剂和气体充分接触,测定吸附剂重量增加值的重量法 2.通过本实验、你对活性炭吸附有什么结论性意见?本实验如何进一步改进? 答:通过本实验,可以得出结论:在一定程度内,吸附作用的去除率随着吸附剂的增加而增大,当到达某一个值时,去除率的增大不再明显,我对活性炭吸附的意见是:找到那个转折点,尽可能的保障投入有效。 实验二混凝实验 1. 2.根据最佳投药量实验曲线,分析沉淀水浊度与混凝剂加注量的关系 答:在一定范围内,混凝效果随混凝剂的投加量增加而增大,超过一定剂量时,效果反而减小。 2.本实验与水处理实际情况有哪些区别?如何改进? 答:(1)水环境的温度因素没有考虑进去,需多设一个因素(2)水平梯度跨越过大,可能最佳条件在梯度中间值。可在两个最佳条件范围内再设细分梯度,进行试验(3)实际环境中污水的污染物质种类多样,不单单是土壤颗粒,所以最好的水样,应该取自污水处理厂处理前的水。 实验三压力溶气气浮实验 1. 2.气浮法与沉淀法有什么相同之处?有什么不同之处? 答:(1)两者都是污水初期处理的物理方法。用来去除污水中的悬浮固体。 (2)气浮法通过向池内鼓气,使憎水的悬浮颗粒与气泡相吸附结合,使其整体密度变小,上浮,再通过刮渣机除去。沉淀法是通过悬浮颗粒的自由沉淀和絮凝作用,在重力作用下下沉。从而与水分离,沉入下层。 实验四曝气设备充氧能力的测定 1.

絮凝沉淀实验报告

竭诚为您提供优质文档/双击可除 絮凝沉淀实验报告 篇一:环境工程专业----实验报告 颗粒自由沉淀实验 一、实验目的 1、过实验学习掌握颗粒自由沉淀的试验方法。 2、进一步了解和掌握自由沉淀的规律,根据实验结果 绘制时间-沉淀率(t-e)、沉速-沉淀率(u-e)和ct/co~u 的关系曲线。 二、实验原理 沉淀是指从液体中借重力作用去除固体颗粒的一种过程。根据液体中固体物质的浓度和性质,可将沉淀过程分为自由沉淀、沉淀絮凝、成层沉淀和压缩沉淀等4类。本实验是研究探讨污水中非絮凝性固体颗粒自由沉淀的规律。实验用沉淀管进行。设水深为h,在t时间内能沉到深度h颗粒 的沉淀速度vh/t。根据给定的时间to计算出颗粒的沉速uo。凡是沉淀速度等于或大于u0的颗粒在t0时就可以全部去除。设原水中悬浮物浓度为co则

沉淀率=(co-ct)/c03100% 在时间t时能沉到深度h颗粒的沉淀速度u: u=(h310)/(t360)(mm/s) 式中:c0——原水中所含悬浮物浓度,mg/l c1————经t时间后,污水中残存的悬浮物浓度,mg/l;h——取样口高度cm;t——取样时间,min。 三、实验步骤 1、做好悬浮固体测定的准备工作。将中速定量滤纸选好,放入托盘,调烘箱至 105±1℃,将托盘放入105℃的烘箱烘45min,取出后放入干燥器冷却30min,在1/10000天平上称重,以备过滤时用。 2、开沉淀管的阀门将软化淤泥和水注入沉淀管中曝气搅拌均匀。 3、时用100ml容量瓶取水样100ml(测得悬浮物浓度为c0)记下取样口高度,开动秒表。开始记录沉淀时间。 4、时间为 5、10、15、20、30、40、60min时,在同一取样口分别取100ml水样,测其悬浮物浓度为(ct)。 5、一次取样应先排出取样口中的积水,减少误差,在取样前和取样后必须测量沉淀管中液面至取样口的高度,计算时采用二者的平均值。 6、已称好的滤纸取出放在玻璃漏斗中,过滤水样,并用蒸馏水冲净,使滤纸上得到全部悬浮性固体,最后将带有

自由沉淀实验

实验一 颗粒自由沉淀实验 一、实验目的 1.加深对自由沉淀特点、基本概念及沉淀规律的理解。 2.掌握颗粒自由沉淀的实验方法,并能对实验数据进行分析、整理,计算和绘制颗粒自由沉淀曲线。 二、实验原理 沉淀是水污染控制中用以去除水中杂质的常用方法。根据水中悬浮颗粒的凝聚性能和浓度,沉淀通常可以分成四种不同的类型:自由沉淀、絮凝沉淀、区域沉淀、压缩沉淀。 浓度较稀的、粒状颗粒的沉降称为自由沉淀,其特点是在静沉过程中颗粒互不干扰、等速下沉,其沉淀在层流区符合Stokes(斯托克斯)公式。但是由于水中颗粒的复杂性,颗粒粒径、颗粒密度很难或无法准确地测定,因而沉淀效果、特性无法通过公式求得而是通过静沉实验确定。 由于自由沉淀时颗粒是等速下沉,下沉速度与沉淀高度无关,因而自由沉淀可在一般沉淀柱内进行,但其直径应该足够大,一般应使D≥100mm,以免沉淀颗粒受柱壁的干扰。 自由沉淀所反映的一般是沙砾、河流等的沉淀特点。具有大小不同颗粒的悬浮物静沉总去除率E 与截留速度u 0、颗粒质量分数的关系如下: dp u ui P E p ?+-=0 01)1( (1-1) 式中 E ——总沉淀效率; P 0——沉速小于u i 的颗粒在全部悬浮颗粒中所占的百分数; 1-P 0——沉速大于或等于u i 的颗粒去除百分数; u i ——某一指定颗粒的最小沉降速度; u ——小于最小沉降速度u i 的颗粒沉速。 公式推导如下: 设在水深为H 的沉淀柱内进行自由沉淀实验。实验开始,沉 淀时间为0,此时沉淀柱内悬浮物分布是均匀的,即每个断面上颗粒的数量与粒径的组成相同,悬浮物浓度为C 0(mg/L),此时去除率E=0。 实验开始后,不同沉淀时间t i ,颗粒最小沉淀速度u i 相应为 u i = i t H (1-2) u i 此即为t i 时间内从水面下沉到取样点的最小颗粒d i 所具有 图1-1 自由沉淀实验示意 的沉速。此时取样点处水样悬浮物浓度为C i ,未被去除之颗粒即示意d

颗粒自由沉淀

? +-=0 0)1(P s dP u u P η颗粒自由沉淀实验 一、 实验目的 ① 研究浓度较稀时的单颗粒的自由沉淀规律,加深对其沉淀特点、基本规 律的理解 ② 掌握颗粒自由沉淀实验的方法,并能对实验数据进行分析、整理、计算、和绘制颗粒自由沉淀曲线。 二、 实验原理 浓度较稀的、粒状颗粒的沉淀属于自由沉淀,其特点是静沉过程中颗粒互不干扰、等速下沉,其沉速在层流区符合斯驾克斯(Srokes )公式。但是由于水中颗粒的复杂性,颗粒粒径、颗粒相对密度很难或无法准确地测定,因此沉淀效果、特性无法通过公式求得,而是通过静沉实验确定。 由于自由沉淀时颗粒是等速下沉,下沉速度与沉淀高度无关,因而自由沉淀可在一般沉淀柱内进行,但其直径应足够大,一般应使D ≥100mm ,以免颗粒沉淀受柱壁干扰。 具有大小不同颗粒的悬浮物静沉总去除率(η)与截留速度(u 0)、颗粒重量百分率的关系如下: 式中 η——沉淀效率; u 0——理想沉淀池截留沉速; P 0——所有沉速小于的颗粒质量占原水中全部颗粒质量的百分率; u 0——小于截留沉速的颗粒沉速。 此种计算方法也称为悬浮物去除率的累积曲线计算方法。 设在一水深为H 的沉淀柱内进行自由沉淀实验。实验开始,沉淀时间为0,此时沉淀柱内悬浮物分布是均匀的,即每个断面上颗粒的数量与粒径的组成相同,悬浮物浓度为C (mg/L ),此时去除率η=0。 实验开始后,不同沉淀时间t i ,颗粒沉淀速度u i 相应为: 式中u i ——颗粒沉淀速度,mm/s ; H ——取样口至水面高度,mm ; t i ——沉淀时间,min 。 此即为t i 时间内从水面下沉到池底的颗粒所具有的沉速。此时取样点处水样悬浮物浓度为C i ,未被去除的颗粒所占的百分比为: i i t H u =

颗粒自由沉淀实验报告

实验报告 课程名称:水处理实验技术 实验名称:颗粒自由沉淀实验 实验小组:徐啸、郑璞、丁鸣、冉琳 指导教员:施培俊 专业:环境工程 中国人民 理工大学工程兵工程学院研究生一队解放军 二〇〇八年十月七日

颗粒自由沉淀实验 颗粒自由沉淀实验是研究浓度较稀时的单颗粒的沉淀颗规律。一般是通过沉淀柱静沉实验,获取颗粒沉淀曲线。它不仅具有理论指导意义,而且也是给水排水处理工程中沉砂池设计的重要依据。 一、实验目的: 1. 掌握颗粒自由沉淀的实验方法,加深对颗粒自由沉淀特点、基本概念及沉淀规律的理解。 2. 能对实验结果进行分析、整理、计算,并能绘制颗粒自由沉淀曲线。 二、实验原理 沉淀是借重力作用从液体中去除固体颗粒的一种过程。根据液体中固体物质的浓度和性质,可将沉淀过程分为自由沉淀、絮凝沉淀、成层沉淀和压缩沉淀等四类。 浓度较稀、粒状颗粒的沉淀属于自由沉淀。其特点是静沉过程中颗粒互不干扰、等速下沉,且其沉速在层流区符合Stocks公式。但由于水中颗粒的复杂性,颗粒粒径、颗粒比重很难或无法准确的测定,因而沉淀效果、特性无法通过公式求得,只能通过静沉实验即颗粒自由沉淀实验确定。 具有大小不同颗粒的悬浮物静沉总去除率η与截留速度μ0、颗粒重量百分比率的关系如下:

dP P P s ?+ -=0 0)1(μμη 设在一水深为H 的沉淀柱内进行自由沉淀实验,如下图所示。设实验开始时沉淀时间为0,柱内悬浮物均匀分布,即每个断面上颗粒的数量与粒径的组成相同,悬浮物浓度为C 0(mg/L ),去除率η=0。 取样口 u 1 u x 颗粒自由沉淀示意 实验开始后,不同沉淀时间t i ,颗粒最小沉淀速度u i 相应为: i i t H u = 此即为t i 时间内从水面下沉到池底(取样点)的最小颗粒d i 所具有的沉速。此时取样点处水样悬浮物浓度为C i ,而: 00 0011η=-=-=-i i i P C C C C C 此时去除率η0,表示具有沉速u≥u i (粒径d≥d i )的颗粒去除率,而: C C P i i = 则反映了t i 时,未被去除的颗粒即d

实验三 颗粒自由沉淀实验

实验三颗粒自由沉淀实验 一、目的 通过沉淀实验,熟悉沉淀类型及各自特点,掌握沉淀曲线测试与绘制方法。 二、原理 浓度较稀的、粒状颗粒的沉淀属于自由沉淀,其特点是静沉过程中颗粒互不干扰、等速下沉。一般当污泥浓度小于5000mg/l时刻可假定颗粒之间不产生干扰,为自由沉淀。 自由沉淀速度在层流区符合Stokes(斯笃克斯)公式。但由于水中颗粒的复杂性,颗粒粒径、颗粒密度很难或无法准确地测定.因而沉淀效果、特性无法通过公式求得而是通过静沉实验确定。 三. 实验设备材料 1. 沉淀用有机玻璃柱,上设溢流管、取样口、进水管及放空管; 2. 计量水深用标尺、计时用秒表; 3. 悬浮物定量分析用电子天平、定量滤纸、称量瓶、烘箱、抽滤装置、干燥器等装置; 4. 取样用100ml比色管、100ml量筒、瓷盘等。 四实验方法和步骤 1. 检查沉淀装置连接情况、保证各个阀门完全闭合;各种用具是否齐全。 2. 将水样注入沉淀柱,搅匀,开始计时 3.用量筒取样100ml,测悬浮物浓度C0。 4. 在开始后1、5、10、15、20、40、60min时分别在取样

口取样100ml,测悬浮物浓度。同时观察悬浮颗粒沉淀特点、现象。 5. 悬浮物测定方法:1将定量滤纸置于称量瓶内烘至恒重W1;2将过滤水样后的滤 纸放入称量瓶中,烘至恒重W2;3悬浮物浓度 五注意事项 1.向沉淀柱内进水时,速度要适中,既要较快完成进水,以防进水中一些较重颗粒沉淀,又要防止速度过快造成柱内水体紊动,影响静沉实验效果。 2.取样时,先排除管中积水而后取样(排出20ml左右),每次取样100 mL。 3. 每次取样都会造成液面下降,需记录每次取样时的液面与取样口高度差 六实验结果整理 ?计算悬浮物去除率、剩余率及沉降速度 ?绘制去除率-沉淀历时、去除率-沉淀速度、剩余率-沉淀速度曲线 实验四 ?一、实验目的 针对不含耗氧微生物的污水和含耗氧微生物的污水进行曝气充氧实验,测定氧传递修正系数α和β,并了解两种情况下氧转移过程的区别 ?二、原理 略 三. 实验设备材料 1、溶解氧测定仪

颗粒沉降实验

实验一颗粒自由沉淀实验 一、实验目的 1.加深对自由沉淀特点、基本概念及沉淀规律的理解。 2.掌握颗粒自由沉淀实验的方法,并能对实验数据进行分析、整理、计算和绘制颗粒自由沉淀曲线。 二、实验原理 颗粒的自由沉淀是指在沉淀的过程中,颗粒之间不互相干扰、碰撞、呈单颗粒状态,各自独立完成的沉淀过程。自由沉淀有两个含义: (1)颗粒沉淀过程中不受器壁干扰影响; (2)颗粒沉降时,不受其它颗粒的影响。 当颗粒与器壁的距离大于50d(d为颗粒的直径)时就不受器壁的干扰。当污泥浓度小于5000mg/l时就可假设颗粒之间不会产生干扰。 颗粒在沉砂池中的沉淀以及低浓度污水在初沉池中的沉降过程均是自由沉淀,自由沉淀过程可以由Stokes公式进行描述。 但是由于水中颗粒的复杂性,颗粒粒径、颗粒比重很难或无法准确地测定,因而沉淀效果、特性无法通过公式求得而是通过静沉实验确定。 取一定直径、一定高度的沉淀柱,在沉淀柱中下部设有取样口,如图1所示.将已知悬浮物浓度为C0的水样注入沉淀柱,取样口上水深为H,在搅拌均匀后开始沉淀实验,并开始计时,经沉淀时间t1,t2,…ti从取样口取一定体积水样,分别记下取样口高度,分析各水样的悬浮物浓度C1、C2…Ci,从而通过公式(《水控(下)》P36,公式10-15) η=C0-Ci/C0×100% 式中:η—颗粒被去掉百分率; C0—原水悬浮物的浓度(mg/l) Ci—ti时刻悬浮物质量浓度(mg/l) 同时计算: Pi=Ci/C0×100% 式中:p—悬浮颗粒剩余百分率; C0—原水悬浮物的浓度(mg/l)

Ci—ti时刻悬浮物质量浓度(mg/l) 图1 自由沉淀示意图 通过下式计算沉淀速率 u=H×10/ti×60 式中:u—沉淀速率(mm/s); H—取样口高度(cm) ti—沉淀时间(min) 通过以上方法进行实验要注意以下几点: (1)每从管中取一次水样,管中水面就要下降一定高度,所以,在求沉淀速度时要按实际的取样口上水深来计算,为了尽量减小由此产生的误差,使数据可靠应尽量选用较大断面面积的沉淀柱。 (2)实际上,在经过时间ti后,取样口上h高水深内颗粒沉到取样口下,应由两个部分组成,即:u≥u0=h/ti的这部分颗粒,经时间ti后将全部被去除。除此之外,u<u0=h/ti的这一部分颗粒也会有一部分颗粒经时间ti后沉淀到取样口以下,这是因为,沉速u s<u0的这部分颗粒并不都在水面,而是均匀地分布在整个沉淀柱的高度内,因此,只要在水面下,它们下沉至池底所用的时间能少于或等于具有沉速u0的颗粒由水面降至池底所用的时间t i,那么这部分颗粒也能从水中被除去,。但是以上实验方法并未包括这一部分,所以存在一定的误差。 (3)从取样口取出水样测得的悬浮固体浓度C1、C2…Ci等,只表示取样口断面处原水经沉淀时间t1,t2,…ti后的悬浮固体浓度,而不代表整个h水深中经相应沉淀时间后的悬浮固体浓度。 三、实验设备及仪器 1.沉淀装置(沉淀柱、贮水箱、水泵空压机)

实验一 自由沉淀实验

实验一 自由沉淀实验 一 实验目的 (1)初步掌握颗粒自由沉淀的试验方法: (2)进一步了解和掌握自由沉淀规律,根据试验结果绘制时间~沉淀率(t~E ),沉速~沉淀率(u~E )和C t /C 0~u 的关系曲线。 二 实验原理 沉淀是指从液体中借重力作用去除固体颗粒的一种过程。根据液体中固体物质的浓度和性质,可将沉淀过程分为自由沉淀、絮凝沉淀、成层沉淀和压缩沉淀等四类。本试验是研究探讨污水中非絮凝性固体颗粒自由沉淀的规律。试验用沉淀管进行,如图。设水深为h ,在t 时间能沉到h 深度的颗粒的沉速u =h/t 。根据某给定的时间t 0,计算出颗粒的沉速u 0。凡是沉淀速度等于或大于u 0的颗粒,在t 0时都可以全部去除。设原水中悬浮物浓度为c 0(mg/L ),则沉淀率为: %100c c c E 0 t 0?-= 在时间t 时能沉到h 深度的颗粒的沉淀速度为: )s /mm (60 t 10 h u ??= 式中: c 0—原水中悬浮物浓度(mg/L ) c t —经t 时间后,污水中残存的悬浮物浓度(mg/L ) h —取样口高度(cm ) 自由沉淀试验装置 三 实验装置与设备 1、沉淀管、储水箱、水泵和搅拌装置 2、秒表,皮尺 3、测定悬浮物的设备:分析天平,称量瓶,烘箱、滤纸、漏斗、漏斗架、量筒,烧杯等。 4、污水水养,采用高岭土配置。 四 实验步骤 1.将一定量的高岭土投入到配水箱中,开动搅拌机,充分搅拌。

2.取水样200ml (测定悬浮浓度为c 0)并且确定取样管内取样口位置。 2.启动水泵将混合液打入沉淀管到一定高度,停泵,停止搅拌机,并且记录高度值。开动秒表,开始记录沉淀时间。 3.当时间为1、3、5、10、15、20、40、60分钟时,在取样口分别取水200ml ,测定悬浮物浓度(c t )。 4、每次取样应先排出取样口中的积水,减少误差,在取样前和取样后皆需测量沉淀管中液面至取样口的高度,计算时取二者的平均值。 5.测定每一沉淀时间的水样的悬浮物浓度固体量。首先调烘箱至105±1℃,跌好滤纸放入称量瓶中,打开盖子,将称量瓶放入105℃烘箱中至恒重,称取重量,然后将恒重好的滤纸取出放在玻璃漏斗中,过滤水样,并用蒸馏水冲净,使滤纸上得到全部悬浮性固体。最后将带有滤渣的滤纸移入称量瓶中,称其悬浮物的重量(还要重复烘干至恒重的过程) 6.悬浮固体计算: )L /mg (V 1000 1000)(C 12??ω-ω= 式中: ω1—称量瓶+滤纸重量(g ) ω2—称量瓶+滤纸重量+悬浮物(g ) V —水样体积(100ml ) 五 试验结果整理 1.根据不同沉淀时间的取样口距液面平均深度h 和沉淀时间t ,计算出各种颗粒的沉淀速度ut 和沉淀率E ,并绘制沉淀时间~沉淀率和沉速~沉淀率的曲线 2.利用上述资料,计算不同时间t 时,沉淀管内未被去除的悬浮物的百分比,即: P =(c t /c 0)×100% 以颗粒沉速u 为横坐标,以P 为纵坐标,绘制u -P 关系曲线。 3.讨论自由沉淀净沉曲线的意义。 1-1 颗粒自由沉淀实验记录 表1-2 实验原始数据整理表